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A NOTE ON QUOTIENT FIELDS
OF POWER SERIES RINGS

HUAH CHU AND YI-CHUAN LANG

ABSTRACT.  Let R be an integral domain with quotient field K. If R has an overring
S # K, such that S[[X]] is integrally closed, then the “algebraic degree” of K((X)) over
the quotient field of R[[X]] is infinite. In particular, it holds for completely integrally
closed domain or Noetherian domain R.

In this note, any integral domain R is commutative with identity. It is well known that
if R is an integral domain with quotient field K, then the quotient field of R[X] is K(X).
But it is not the case for the power series rings.

If K is a field, the quotient field of the power series ring K[[X]] is the Laurent series ring
K((X)). In general, the quotient field Q(R[[X]]) of R[[X]] is properly contained in K((X)).
Gilmer [2] gave a necessary and sufficient condition for the ring Q(R[[X]]) = K((X)):
For any sequence {(a,)}32, of nonzero principal ideals of R, (°;(a;) # (0). In particular,
if there exists @ € R\ {0} such that 2, (a)’ = (0), then Q(R[[X]]) is properly contained
in K((X)). Sheldon [5, Theorem 2.1] showed that the transcendental degree of K((X))
over Q(R[[X]]) is infinite.

‘We shall prove that if R has an overring S such that S[[X]] is integrally closed, then the
“algebraic degree” of K((X)) over Q(R[[X]]) is infinite. In particular, if R is completely
integrally closed or Noetherian, the algebraic degree is infinite. (For a discussion of rings
R such that R[[X]] be integrally closed, we refer to Ohm [4].) We also remark that R
is completely integrally closed if and only if Q(R[[X]]) # Q(S[[X]]) for any subring
S,R C S C K [5, Theorem 3.4].

Lgt R be an integral domain which is not equal to its quotient field K. A ring S is
called an overring of Rif R C S C K. Let R[[X]] be the power series ring over R and
K((X)) the Laurent series ring over K. If Q(R[[X]]) is the quotient field of R[[X]], then
Q(RI[X]]) C K((X)). Let L be the algebraic closure of Q(R[[X]]) in K((X)).

THEOREM. If R has an overring S such that S # K and S[[X]] is integrally closed,
then the algebraic degree [L : Q(R[[X]])] is infinite.

PROOF.  Since S # K, we can choose a € R which is not a unit in S and let

f(M)=T"—aT""+ X € SIXIT] C SITIIX]].
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FIRST STEP.  f(T) is irreducible in S[T][[X]].
Suppose that
(T" —aT" ") + X = (po(T) + p1 (DX +pa(DX* +- )
(qo(D)+ @1 (DX +g2(DX* +--)

is a nontrivial factorization of f(7) in S[T][[X]]. Since po(T) + py(T)X + - - - and qo(T) +
q1(T)X + - - - are not units in S[T][[X]], po(T) and qo(T) are not units in S[T]. From (1),
we have

ey

po(Tgqo(T) = T" —aT""".

So we may assume that

po(D) = (T — )T,
@@M=T, i+j=n—1j>1

Considering the coefficient of X in (1), we have

Po(Dqi(T) +p1(T)gqo(T) = 1
(T —a)T'q () + pi (DT = 1.

Sincej > 1,i = 0. Let T = 0. Then —aq(0) = 1 and a is a unit in S. A contradiction.

SECOND STEP.  f(7T) is irreducible in S[[X]][T].
Suppose that

T —al" ' +X = (TZ +fl_l(X)T‘-’—1 PN +fo(X))
(T + gna COT™ "+ -+ go (X))

is a nontrivial factorization of f(7) in S[[X]][T]. Since fo(X)go(X) = X, one of fy and gq
is a unit in S[[X]]; say fo(X) is a unit. Because T¢ +f,_(X)T*~! +- - - + fo(X) is not a unit
in S[[X]][T], £ > 1. We regard T¢ + f;_(X)T*~! +- - - + fo(X) as an element in S[T][[X]].
It is not a unit since £ > 1.

T +gm 1(X)T" '+ - - +go(X) is a unitin S[T][[X]], then T + g, 1 (O)T™ ' +- - -+
£0(0) is a unit in S[T]. But X | go(X) in S[[X]], so go(0) = 0. This is impossible. Hence
(2) is also a nontrivial factorization of f(T) in S[T][[X]]. This contradicts the First Step.

@)

THIRD STEP. f(T) is irreducible in Q(S[[X]]I[T], and hence it is irreducible in

Q(RI[XIDIT].
Since S[[X]] is integrally closed and the monic polynomial f(7) is irreducible over

S[[X]], it is irreducible over Q(S[[X]]) by [6, p. 260, Theorem 5]. The second statement
is obvious.

FOURTH STEP. f(T) has a root in K((X)).
Let 0: K[[X]] — K[[X]]/ (X) & K be the canonical homomorphism. Then af (T) =
T" —aT™ ' = T""(T — a). Since 7! and T — a are comaximal in K[T], by Hensel’s

https://doi.org/10.4153/CMB-1994-023-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1994-023-7

164 H. CHU AND Y.-C. LANG

Lemma [1, p. 215, Theorem 1; 3, p. 189, Theorem (44.4)], there exist monic polynomials
g(T), k(T) € K[[X]][T] such that cg = T"!, 0h = T — a and f(T) = g(T)h(T). Thus h
has degree one and it gives a root of f(7) in K[[X]].

CONCLUSION.  For any n, the root is an element in K((X)) which is algebraic over
Q(R[[X]]) of degree n. Thus [L : Q(RI[X]])] = oo. .

COROLLARY. If R is completely integrally closed or Noetherian, then the degree
[L: QRIIX)] is infinite.

PROOF. If R is completely integrally closed, then R[[X]] is integrally closed
[1, p. 313, Proposition 14; 4]. Hence the corollary follows by theorem.

If R is Noetherian, then the integral closure S of R is a Krull domain [3, p. 118, Theo-
rem (33.10)]. Hence S is completely integrally closed [1, p. 480, Theorem 2] and S[[X]]
is integrally closed. Hence the result. [
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