
JFP 23 (3): 229–248, 2013. c© Cambridge University Press 2013

doi:10.1017/S0956796813000063
229

A library for polymorphic dynamic typing

W O U T E R S W I E R S T R A
Utrecht University, Viale R. Elena, 324, 00185 Rome, Italy

T H O M A S V A N N O O R T
Radboud University Nijmegen, Comeniuslaan 4, 6525 HP Nijmegen, Netherlands

(e-mail:)w.s.swierstra@uu.nl and thomas@cs.ru.nl)

Abstract

This paper presents a library for programming with polymorphic dynamic types in the dependently
typed programming language Agda. The resulting library allows dynamically typed values with a
polymorphic type to be instantiated to a less general (possibly monomorphic) type without compro-
mising type soundness.

1 Introduction

There are situations where the types of the values that a program manipulates are not known
during compilation. This is typically the case when data, or even parts of the program itself,
are obtained by interacting with the ‘outside’ world: when values are exchanged between
applications by deserialization from disk, input is provided by a user, or part of a program
is obtained over a network connection.

Modern statically typed functional languages, such as Clean (Van Eekelen et al., 1990),
Haskell (Peyton Jones, 2003), and OCaml (Leroy et al., 2011), all support some form
of dynamic typing that allows programmers to defer type checking until runtime. These
languages define a special type for dynamically typed values. We will abbreviate such
dynamically typed values to dynamic value or just dynamic. A dynamically typed value
consists of a value packaged together with a representation of that value’s type. A pro-
grammer may attempt to coerce a dynamic value to a value with a statically known type
and such coercions may fail at run time. If such a coercion succeeds, however, the type
soundness of the rest of the program should not be compromised.

There are several differences between the forms of dynamic typing that are supported
by Clean and Haskell. In Haskell, dynamic typing is supported by means of a library, built
using several GHC language extensions (Lämmel & Peyton Jones, 2003). The Haskell
library for dynamic types provides a function toDyn that wraps a value in a dynamic:

incDyn :: Dynamic

incDyn = let inc :: Int → Int

inc x = x + 1

in toDyn inc

In Haskell, there are some limitations on which values can be wrapped in a dynamic. In
particular, Haskell only allows monomorphic values to be stored in a dynamic. In order

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


230 W. Swierstra and T. van Noort

to wrap a polymorphic value in a dynamic, we need to instantiate its type explicitly. For
example, the following code packages a monomorphic identity function, instantiated to
work on integers, in a dynamic:

idDyn :: Dynamic

idDyn = let id :: forall a . a → a

id x = x

in toDyn (id :: Int → Int)

A value may be unwrapped using the library function fromDyn. The type to which the
dynamic must be cast is inferred from the context:

idInt :: Maybe (Int → Int)
idInt = fromDyn idDyn

Now consider the following example:

fail :: Maybe (Bool → Bool)
fail = fromDyn idDyn

Although the value stored in the dynamic is the identity function, we had to instantiate
its type explicitly to be Int → Int. Coercing the identity on integers to the identity on
booleans fails, and hence the example above returns Nothing. This illustrates some of the
limitations of Haskell’s approach to dynamic typing.

Clean’s support for dynamic typing, on the other hand, is built into the language defini-
tion. In contrast to Haskell, the Clean compiler allows any value (of a non-abstract type) to
be stored in a dynamic, including polymorphically typed values. In Clean, any value can
be wrapped in a dynamic by using the dynamic keyword:

idDyn :: Dynamic

idDyn = dynamic (λ x → x)

Then we can unwrap a dynamic by pattern matching and providing an explicit-type anno-
tation:

id :: Maybe (A.a : a → a)
id = case idDyn of

(f :: A.a : a → a) → Just f

→ Nothing

In Clean, the notation A.a introduces a universal quantifier that binds the type variable a.
The Clean type A.a : a → a would be written forall a . a → a in Haskell. This example
shows how to cast dynamic values to a polymorphic type in Clean.

It is important to observe that the required type does not need to be structurally equal
to the type found in the dynamic: it is allowed to be more specific than the type of the
dynamic value. For example, suppose we require the result to be a function of the type
Int → Int:

idInt :: Maybe (Int → Int)
idInt = case idDyn of

(f :: Int → Int) → Just f

→ Nothing

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


A library for polymorphic dynamic typing 231

Here the compiler checks that the desired type is an instance of the type of the value in the
dynamic. When this succeeds, the value is implicitly coerced to the required type. Being
able to store an arbitrary, polymorphic value as a dynamic value turns out to have several
important applications (Plasmeijer & Van Weelden, 2005; Plasmeijer et al., 2011).

This paper describes a library for dynamic typing capable of handling polymorphic
values, thereby combining the advantages of both Haskell and Clean’s dynamic typing
mechanisms.

Throughout this paper we will use Agda (Norell, 2007, 2008), a programming language
with dependent types, to carry out this investigation. This may seem like a peculiar choice:
why introduce a third programming language? As we shall see, defining the desired library
for dynamically typed programming requires some ‘programming with types’. Although
we believe that it is possible to define such a library in Haskell (and indeed others have pro-
posed to do so), we have chosen to work in a language most suited for such a development.
In the future, we hope to investigate how our library may be backported to Haskell. This
does limit the practical applications of our library: despite recent progress (Brady, 2011),
it is still cumbersome to compile Agda code and to interface with Haskell.

One further advantage of working in Agda is that we cannot cut corners. The library we
define does not use compiler primitives, it does not extend the language, and it does not
require postulates or assumptions. As a result, the code we present is not only a library for
programming with dynamic types but may also be seen as a mathematical specification of
Clean’s dynamic types, together with a mechanized proof of type soundness.

2 Monomorphic dynamics

In this section we use Agda to define a small library for monomorphic dynamic typing. In
later sections, we will show how this can be extended to handle polymorphism. Note that
the code we present relies on a small Agda prelude that defines heterogeneous equality,
natural numbers, and several familiar Haskell types.

The central concept that underlies programming with generics and dynamics in a depen-
dently typed language is that of a universe (Martin-Löf, 1984; Altenkirch & McBride,
2003; Oury & Swierstra, 2008). A universe consists of a data type U encoding some
collection of types and a ‘decoding’ function el : U → Set that maps every code to the
type it represents. To make this more concrete, consider the following universe definition:

data U : Set where
NAT : U

PAIR : U → U → U

⇒ : U → U → U

el : U → Set

el NAT = Nat

el (PAIR u1 u2) = Pair (el u1) (el u2)
el (u1 ⇒ u2) = el u1 → el u2

This defines a data type U with three constructors and a function mapping every element
of U to the type it represents. For example, the constructor NAT is used to represent

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


232 W. Swierstra and T. van Noort

natural numbers. The el function maps NAT to Nat, the inductively defined type of natural
numbers. This universe is also closed under two type constructors: pairs and function
spaces. Although we could also add other types or type constructors, such as the unit type,
the empty type, co-products, fixed points, and so forth, we will restrict ourselves to these
two type constructors. Crucially, the constructions we present do not rely on the covariance
or contravariance of the type constructors in the universe of discourse.

A dynamic value consists of an element of this universe, paired with a value of the type
that it represents:

data Dynamic : Set where
Dyn : (u : U) → el u → Dynamic

Next, we need to define a cast function with the following type:

cast : (u : U) → Dynamic → Maybe (el u)

Intuitively, a call to cast u dyn should check if the value stored in dyn has type el u. If so,
it should successfully return the value stored in the dynamic; otherwise, it should fail and
return Nothing.

To check whether or not two inhabitants of U are structurally equal, we need to define
the following function:

decEqU : (u1 u2 : U) → Either (u1 ≡ u2) (u1 �≡ u2)

Here the statement u1 ≡ u2 refers to the usual notion of propositional equality between
u1 and u2; the statement u1 �≡ u2 is the negation of this equality. The definition proceeds
by simultaneous induction on both u1 and u2. As it is entirely straightforward, we have
omitted it from this paper.

Using this auxiliary function, we can now define the cast function as follows:

cast : (u1 : U) → Dynamic → Maybe (el u1)
cast u1 (Dyn u2 x) with decEqU u1 u2
cast u1 (Dyn �u1� x) | Inl Refl = Just x

cast u1 (Dyn u2 x) | = Nothing

The cast function decides whether or not the argument u1 is equal to the type of the
value stored in the dynamic using Agda’s with construct (McBride & McKinna, 2004;
Norell, 2007). If this is the case, we pattern match on the Refl constructor, from which
we learn that the first component of the dynamic must be equal to u1. In Agda, this
information is recorded by a forced pattern, �u1�. In that case, we return the value stored
in the dynamic. Otherwise the cast fails. Chapter 2 of Norell’s thesis (2007) gives a more
complete description of both forced patterns and the with construct.

3 Polymorphic dynamic typing

The universe we saw previously could only be used to represent a fairly small collection of
monomorphic types. In this section we will show how to extend it with type variables. We
represent type variables as De Bruijn indices using the datatype Fin n.

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


A library for polymorphic dynamic typing 233

data Fin : Nat → Set where
Fz : Fin (Succ n)
Fs : Fin n → Fin (Succ n)

For any natural number n, the type Fin n has n distinct inhabitants. Note that in the type-
set code presented in this paper, any unbound variables in type signatures are implic-
itly universally quantified, as is the convention in Haskell (Peyton Jones, 2003) and Epi-
gram (McBride & McKinna, 2004). When we wish to be more explicit about implicit
arguments, we will adhere to Agda’s notation of enclosing such arguments in curly braces.

We now extend the universe from the previous section with a new constructor for type
variables:

data U (n : Nat) : Set where
NAT : U n

PAIR : U n → U n → U n

⇒ : U n → U n → U n

VAR : Fin n → U n

The universe U is parametrized by a natural number, indicating the number of variables
that type codes may use. Furthermore, we add a new constructor, VAR, for type variables.
We will refer to inhabitants of U n as (codes for) monotypes.

Finally, we introduce a new data type V that wraps universal quantifiers around any
monotype.

data V : Set where
FORALL : {n : Nat} → U n → V

You may want to think of the FORALL constructor as wrapping n universal quantifiers
around its argument monotype, ensuring that it is closed. We will refer to inhabitants of V

as (codes for) polytypes.
Using the universes U and V, we can now represent the type of the polymorphic identity

function as follows:

idType : V

idType = FORALL {Succ Zero} (VAR Fz ⇒ VAR Fz)

We have some degree of freedom about how many quantifiers to use. If we had written
FORALL {Succ (Succ (Succ Zero))} (VAR Fz ⇒ VAR Fz), this would correspond to the
Haskell type forall a b c . a → a.

Interpretation. Although we have defined the data types necessary to represent polymor-
phic types, we still need to define the interpretation functions mapping U and V to Set.
Before we can do so, we need to define one auxiliary notion: type environments.

data Env : Nat → Set where
Nil : Env Zero

Cons : U Zero → Env n → Env (Succ n)

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


234 W. Swierstra and T. van Noort

An environment Env n consists of a list of exactly n closed monotypes. It is straightfor-
ward to define a function, findInEnv, that given an index and an environment, returns the
monotype stored in the environment at that index:

findInEnv : Fin n → Env n → U Zero

findInEnv Fz (Cons u ) = u

findInEnv (Fs i) (Cons env) = findInEnv i env

In the base case for Fz we return the first entry. In the case for Fs i, we make a recursive
call on the index i and the tail of the environment.

Given a type environment, we can close any monotype, replacing any type variables by
the closed monotypes to which they refer:

close : U n → Env n → U Zero

close NAT = NAT

close (PAIR u1 u2) env = PAIR (close u1 env) (close u2 env)
close (u1 ⇒ u2) env = close u1 env ⇒ close u2 env

close (VAR i) env = findInEnv i env

We can now define the interpretation of closed monotypes as follows:

elClosed : U Zero → Set

elClosed NAT = Nat

elClosed (PAIR u1 u2) = Pair (elClosed u1) (elClosed u2)
elClosed (u1 ⇒ u2) = elClosed u1 → elClosed u2
elClosed (VAR ())

The elClosed function maps any closed monotype to the type it represents: the codes for
natural numbers, pairs, and functions map to their respective types. The case for variables
is ruled out, as we know that the monotype is closed.

To interpret an arbitrary monotype that may still contain variables, the elU function re-
quires an additional type environment. It first closes the monotype, essentially substituting
closed types for any variables. By calling elClosed we can then produce the desired type,

elU : U n → Env n → Set

elU u env = elClosed (close u env)

This may seem a bit clumsy: why not define elU directly by induction on the first
argument? If you try to do so, there is a slight problem in the case branch for variables.
The case for variables would consult the environment and then recursively call elU:

elU (VAR i) env = elU (findInEnv i env) Nil

Agda’s termination checker is not able to see that this definition terminates – the recursive
call is not on a structurally smaller subterm of the first argument, but on some arbitrary
monotype stored in the environment. Although the monotype stored in the environment is
closed, Agda’s termination checker is not convinced that this branch will always terminate.
Indeed, if we were to store monotypes in U n, for arbitrary n, in the environment this need
not be the case. With the explicit stratification described above, Agda’s termination checker
happily accepts our definitions.

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


A library for polymorphic dynamic typing 235

We can now define the interpretation of polytypes as follows:

elV : V → Set

elV (FORALL {n} u) = forall {env : Env n} → elU u env

The interpretation maps the FORALL constructor to an implicit universal quantification
over an environment argument, and calls elU with this environment.

Before we move on to dynamics, there is one more design choice to point out. The
environment contains closed monotypes, rather than polytypes or types in Set. This is not
strictly necessary: the development we present below works if we allow the environment
to store arbitrary types in Set. Doing so requires a move from Set to Set1 in a handful of
definitions. To keep the types in this presentation small, we limit ourselves to environments
storing monotypes in this paper.

Using our new universes for monotypes and polytypes, we can now redefine the datatype
Dyn to use polytypes:

data Dynamic : Set where
Dyn : (v : V) → elV v → Dynamic

In contrast to the previous section, we can now wrap polymorphic values in a dynamic:

idDyn : Dynamic

idDyn = Dyn idType (λ x → x)

As a first approximation, we can redefine the cast function we saw previously to handle
polytypes:

cast : (v1 : V) → Dynamic → Maybe (elV v1)
cast v1 (Dyn v2 x) with decEqV v1 v2
cast v1 (Dyn �v1� x) | Inl Refl = Just x

... | = Nothing

The only difference with the previous version of the cast function in Section 2 is that we
now check whether or not two codes for polytypes, that is elements of V, are equal or not.
The previous version of the cast function dealt with a simpler type universe that could only
describe monomorphic types. Even though the universe V can describe polymorphic types,
we still only check whether the two types involved are structurally equal. This check is
done using the decEqV function, which itself uses the decEqU function from the previous
section. Its definition is straightforward but not listed here.

This definition of cast does not quite give us the behaviour we would like to have. For
example, consider the idDyn dynamic we defined above. When we try to cast it to the type
of the polymorphic identity function, this will succeed:

success : cast idType idDyn ≡ Just (λ x → x)
success = Refl

Should we try to cast it to, say, the identity function on natural numbers, this will fail:

fail : cast (FORALL {Zero} (NAT ⇒ NAT)) idDyn ≡ Nothing

fail = Refl

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


236 W. Swierstra and T. van Noort

The reason for this lies in the definition of the cast function: a cast will only succeed if the
two types are structurally identical. Clearly, this is too strict a requirement. In the coming
sections we will develop an alternative version of the cast function that instantiates the
type of polymorphic dynamics when necessary.

4 Instantiation

What is the problem we need to address? Given two monotypes, u1 and u2, we need to find
a substitution σ such that applying σ to u2 is equal to u1. When this is the case, we will say
that σ instantiates u2 to u1. Before we can define an algorithm that addresses this problem,
we need to define several functions to create and manipulate substitutions.

Substitutions. We begin by defining a data type to represent substitutions:

data PartSubst (m : Nat) : Nat → Set where
Nil : PartSubst m Zero

Cons : Maybe (U m) → PartSubst m n → PartSubst m (Succ n)

A value of type PartSubst m n consists of n values of type Maybe (U m). Such a value
describes a partial substitution that instantiates some variables in U n to a type U m. If
substitution has a Nothing at the i-th position, we have not yet encountered any constraints
on how to instantiate VAR i; applying the substitution would leave the variable VAR i

untouched. If the substitution does have a monotype at the i-th position, the substitution
will replace variable VAR i by that monotype. This is an important distinction to make: a
Nothing at the i-th position means no constraint, whereas VAR i means that this variable
must remain unconstrained.

Our aim is to define a function, check, that finds an instantiating substitution. This func-
tion will be defined using an accumulating parameter: starting with the empty substitution,
we will traverse both types simultaneously, collecting constraints on how type variables
must be instantiated. This motivates the need for considering partial substitutions: during
this traversal the substitution we have may not be complete yet. Instead of applying in-
termediate substitutions immediately during the traversal, we choose to work with partial
substitutions to keep our check function structurally recursive.

The empty substitution is easily constructed by performing induction on the length of
the substitution and inserting Nothing values at every position:

empty : {m : Nat} → PartSubst m n

empty {Zero} = Nil

empty {Succ n} = Cons Nothing empty

The empty substitution will be the initial accumulating parameter check function.
Just as we defined findInEnv, we can define findInPartSubst that looks up the type

associated with a given variable:

findInPartSubst : Fin n → PartSubst m n → Maybe (U m)
findInPartSubst Fz (Cons x ) = x

findInPartSubst (Fs i) (Cons subst) = findInPartSubst i subst

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


A library for polymorphic dynamic typing 237

The type of findInPartSubst is a little more complex than that of findInEnv because substi-
tutions may store types with uninstantiated variables, i.e. U n for some number n, whereas
environments may only store closed types, i.e. U Zero. This definition illustrates the need
for decoupling the length of the substitution n from the type of the values in the substi-
tution. In the recursive call to findInPartSubst the length of the remaining substitution
decreases, but the type returned stays the same.

The drawback of using partial substitutions is that the apply function is now also partial.
The function apply traverses the argument monotype looking for variables. Once a variable
is encountered, the apply function consults the substitution to try to find the monotype to
which the substitution maps this variable.

apply : PartSubst m n → U n → Maybe (U m)
apply NAT = Just NAT

apply subst (PAIR u1 u2) = Just PAIR � apply subst u1 � apply subst u2
apply subst (u1 ⇒ u2) = Just ⇒ � apply subst u1 � apply subst u2
apply subst (VAR i) = findInPartSubst i subst

This definition uses the applicative � operator (McBride & Paterson, 2008) to combine the
results of the recursive calls:

� : Maybe (a → b) → Maybe a → Maybe b

The last operation we will need on substitutions is the extend function defined below.
The application extend i u subst extends the substitution subst so that the variable i will
now be mapped to u. If subst already maps the variable i to a different monotype, the call
to extend will fail.

extend : Fin n → U m → PartSubst m n → Maybe (PartSubst m n)
extend Fz u (Cons Nothing subst) = Just (Cons (Just u) subst)
extend Fz u (Cons (Just u’) ) with decEqU u u’

extend Fz u (Cons (Just �u�) subst) | Inl Refl = Just (Cons (Just u) subst)
extend Fz u (Cons (Just u’) ) | Inr = Nothing

extend (Fs i) u (Cons mu subst) = Just (Cons mu) � extend i u subst

The definition of extend does what you would expect: It traverses the substitution until it
hits the i-th position. In the first branch, there is no monotype at the i-th position and the
function returns a new substitution in the obvious fashion. If there is already a monotype
at the i-th position, we check whether that monotype is equal to the argument monotype
u. If so, we leave the substitution unchanged; if not, the extend function fails and returns
Nothing. The final branch simply continues traversing the substitution.

Instantiation check. Now that we have defined substitutions, we continue by defining the
actual instantiation check. Given two types, u1 and u2, the check function determines if
the first argument is an instance of the second argument, and if so, returns the instantiating
substitution. The check function is defined using an accumulating parameter that is initially
the empty substitution in Figure 1.

The checkAcc simultaneously traverses both its type arguments, threading the accumu-
lating substitution through the recursive calls. The resultsof the recursive calls are

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


238 W. Swierstra and T. van Noort

Fig. 1. The instantiation check.

combined using the bind operation of the Maybe monad. If the two types differ at a non-
variable position, we know there is no substitution that can equate them, and we return
Nothing. The only interesting branch is the case where the second monotype is a variable.
In that case, we attempt to extend the substitution so that the variable encountered will map
to u.

Correctness. Before we use the check function to define a cast function, we need to
establish a few correctness properties. In particular, we need to show that if check u1 u2
successfully produces a substitution σ , then apply σ u2 ≡ Just u1. The cast function will
use this equality to coerce its argument to the desired type.

This key property that we need to prove can be formulated in Agda as follows:

checkAccCorrect : (u1 : U n) (u2 : U m) →
(subst subst’ : PartSubst n m) →
checkAcc u1 u2 subst ≡ Just subst’ →
apply subst’ u2 ≡ Just u1

This property is a bit more general than you might expect. Taking any substitution subst as
starting point for the accumulating parameter of checkAcc, we can show that the desired
equality holds, provided our instantiation check succeeds. It may come as a surprise that
any initial choice of substitution suffices. This only works because the instantiation check
traverses u2, updating the accumulating substitution. If there is any discrepancy between
the information already present in the substitution and the information gathered during this
traversal, the instantiation algorithm would have failed.

The proof of checkAccCorrect proceeds by induction on the monotypes u1 and u2.
Rather than present in its full glory, we will outline the definitions and lemmas neces-
sary. The off-diagonal cases of the checkAccCorrect lemma are easily discharged by the
assumption that instantiation was successful. There are only three interesting cases: the
branch for pairs, the branch for functions, and the branch for variables.

• In the first two cases, for pairs and functions, we traverse the constituent monotypes.
To glue together the results, we need an additional lemma.

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


A library for polymorphic dynamic typing 239

stability : (u1 : U m) (u2 : U n) (w1 : U m) (w2 : U n)
(subst subst’ subst” : PartSubst m n) →
checkAcc u1 u2 subst ≡ Just subst’ →
checkAcc w1 w2 subst’ ≡ Just subst” →
apply subst” u2 ≡ apply subst’ u2

Roughly speaking, this property states that if the substitution subst’ instantiates
u2 to u1, and we extend subst’ to some new substitution subst”, then subst” also
instantiates u2 to u1. The proof of the stability lemma is lengthy, but not conceptually
difficult.

• The variable branch of the checkAccCorrect lemma is reasonably straightforward.
The proof requires several auxiliary lemmas relating the findInPartSubst and extend

functions. For example, the following property requires a short inductive proof:

extend i u subst ≡ Just subst’ → findInPartSubst i subst’ ≡ Just u

Instantiating values. The instantiation check, check u1 u2, tries to compute a substitution
that instantiates the monotype u2 to u1. The question we still need to address is how to use
this substitution to instantiate a value of the polytype FORALL u2.

Recall that a value inhabiting elV (FORALL u) is a function taking an (implicit) envi-
ronment env to a value of type elU u env. The only way to instantiate such a function is
by constructing an environment that we can pass as an argument. The instantiate function
that we will define below does just this.

In what follows, we will work with total substitutions, as opposed to the partial substitu-
tions we have seen so far. Therefore, we begin by defining a new type Subst, representing
total substitutions, as a dependent pair consisting of a partial substitution and a proof of its
totality:

isTotal : PartSubst n m → Set

isTotal Nil = Unit

isTotal (Cons Nothing ) = Empty

isTotal (Cons (Just ) subst) = isTotal subst

data Subst (n m : Nat) : Set where
, : (subst : PartSubst n m) → isTotal subst → Subst n m

Using this notion of substitution, we can now define our instantiate function as follows:

instantiate : Env n → Subst n m → Env m

instantiate env (Nil,p) = Nil

instantiate env (Cons Nothing subst,())
instantiate env (Cons (Just i) subst,p) =

Cons (close i env) (instantiate env (subst,p))

The instantiate function traverses its argument substitution. Every type that occurs in
the substitution is closed using the argument environment, to produce a new environment
of the desired length. As the substitution is assumed to be total, we are free to discharge the
case branch where no type is encountered. This definition also makes clear why we need

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


240 W. Swierstra and T. van Noort

the substitution to be total. If the substitution is not total, we would need to invent a closed
monotype ‘out of thin air’ to produce an environment of the desired length.

We can prove the following characteristic property of instantiate:

instantiateCorrect : (u1 : U n) (u2 : U m) (subst : PartSubst n m)
(env : Env n) → (p : isTotal subst) →
apply subst u2 ≡ Just u1 →
elU u2 (instantiate env (subst,p)) ≡ elU u1 env

This theorem states that given an instantiating substitution from u2 to u1, we can convert
an element of u1 by instantiating its environment. The proof, by induction on u1 and u2, is
unsurprising: off-diagonal cases are discharged; pairs and functions require the application
of two induction hypotheses; variables require an additional lemma about instantiate.

With all this machinery in place, we can now return to the original problem: how to cast
a polymorphic dynamic?

5 Casting

Our aim is to define a cast function that is capable of instantiating polymorphic dynamic
types. To do so, we can call our check function that compares two monotypes and tries to
compute an instantiating partial substitution. We would like to compute an environment
to pass to the polymorphic value stored in the dynamic using the instantiate function
we have defined previously. Unfortunately, our instantiate function only works for total
substitutions and the result of check function produces a partial substitution. We still have
a bit more work to do.

Total substitutions. When does our check function not produce a total substitution? It
traverses the second monotype argument and finds a type to assign to each type variable
in that monotype. If that monotype does not contain all the type variables that have been
quantified over, however, the check function will not find a type with which to instantiate
that value. For instance, when constructing an instantiating substitution from the polytype
forall a b . a → a to Nat → Nat, our check function does not produce a type with which to
instantiate the type variable b. As a result, the substitution resulting from our instantiation
check is not total.

There are different solutions to this problem. We could choose to instantiate type vari-
ables that do not matter with some arbitrary type such as Nat. This would require several
proofs that it is safe to do so. While this solution does work, it yields a proof that is
‘correct by coincidence’ – it relies on the implicit assumption that certain type variables
do not occur. This seems to defeat the whole purpose of working in a dependently typed
language in the first place – we try to choose our types and function definition to rule out
impossible or uninteresting cases. Therefore, we choose to make this assumption explicit
in our definition of dynamically typed value.

We would like to enforce that types stored in a Dynamic do not contain spurious quan-
tifiers. To do so, we start by defining the Elem relation that witnesses that a type variable
occurs in a monotype,

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


A library for polymorphic dynamic typing 241

data Elem (i : Fin n) : U n → Set where
Here : Elem i (VAR i)
LeftPair : Elem i l → Elem i (PAIR l r)
RightPair : Elem i r → Elem i (PAIR l r)
LeftFun : Elem i l → Elem i (l ⇒ r)
RightFun : Elem i r → Elem i (l ⇒ r)

The base case states that the variable i occurs in the monotype VAR i. The other cases state
that if a type variable occurs in any subtree of a monotype u, it also occurs in u.

We can now lift this Elem relation to hold for all values of type Fin n. To do so, we
define the function allFin that lifts any predicate P on Fin n, to the proposition that states
that P holds for every choice of Fin n

allFin : {n : Nat} → (Fin n → Set) → Set

allFin {Zero} P = Unit

allFin {Succ y} P = Pair (P Fz) (allFin (λ n → P (Fs n)))

We call a monotype in U n strong if it contains all n distinct variables. (The term strong
suggests that it has not been weakened). We can use the allFin function to define an isStrong

predicate on monotypes

isStrong : U n → Set

isStrong u = allFin (λ i → Elem i u)

Using these definitions, we can now prove that if a partial substitution can be success-
fully applied to a strong monotype, this substitution must be total:

proveTotality : (u1 : U n) (u2 : U m) (subst : PartSubst n m) →
isStrong u2 →
apply subst u2 ≡ Just u1 →
isTotal subst

The proof uses an additional lemma, proved by induction over the Elem relation, that
findInPartialSubst will successfully return a result for every variable in u2.

Cast. We modify our Dynamic type to incorporate a new assumption:

data Dynamic : Set where
Dyn : (u : U n) → isStrong u → elV (FORALL u) → Dynamic

We require all types stored in a Dynamic to be strong. This does add some burden to the
users of our library as they need to write explicit proofs that a type is strong. We will return
to this point shortly. For the moment, we proceed by finally completing our definition of
cast in Figure 2.

The cast function starts by calling check in an attempt to find an instantiating substitu-
tion from u2 to u1. If this fails, the cast fails. If this succeeds, the cast succeeds, but we need
to provide a value of type elV (FORALL u1). To do so, we use the instantiate function to
produce an environment, which we pass to the polymorphic value stored in the dynamic.
As the instantiate function requires a total substitution as argument, we use the assumption
that u2 is strong to prove that the substitution resulting from our instantiation check is total.

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


242 W. Swierstra and T. van Noort

Fig. 2. The final cast function.

The instantiation produces a value of type elU u2 (instantiate env totalSubst) rather than
the desired type elU u1 env. Fortunately, we can prove that these two types are equal using
our instantiateCorrect lemma, which in turn relies on the checkAccCorrect lemma. The
coerce function uses this result to assign the desired type to the instantiated value. This
cast function brings together all the definitions and lemmas that we have defined in the
preceding pages.

There is one last subtlety in the definition of the cast function. We require an equality
proof to use the checkAccCorrect lemma, stating that the call to check was successful.
Despite having already pattern-matched on a Just constructor, we cannot provide the
required proof. The usual workaround in Agda is to define the following auxiliary data
type and function:

data Inspect {a : Set} (x : a) : Set where
by : (y : a) → x ≡ y → Inspect x

inspect : (x : a) → Inspect x

inspect x = x by Refl

Now by pattern matching on inspect (check u1 u2) rather than just check u1 u2, we
may refer to the required equality proof when we need it in the remainder of the case
branch.

Automation. This new version of our Dynamic type has a clear drawback: explicit proofs
of strength must be constructed. For example, suppose we start by defining the type of the
const function:

constType : U 2

constType = (VAR Fz) ⇒ ((VAR (Fs Fz)) ⇒ (VAR Fz))

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


A library for polymorphic dynamic typing 243

To package the polymorphic const function as a dynamic value, we now need to provide
an explicit proof object:

constDyn : Dynamic

constDyn = Dyn constType strength (\x y → x)
where
strength = (LeftFun Here,(RightFun (LeftFun Here),unit))

While the explicit type annotation u is bad enough, the strength proof that u contains each
bound variable is fairly ugly. Fortunately, such proofs can be easily computed, as we will
sketch here.

To compute such proofs, we start by defining a function that checks whether or not a
certain variable occurs in a type. In contrast to the Elem data type, this function computes
a boolean:

isElem : (i : Fin n) → U n → Bool

isElem i NAT = False

isElem i (PAIR u1 u2) = or (isElem i u1) (isElem i u2)
isElem i (u1 ⇒ u2) = or (isElem i u1) (isElem i u2)
isElem i (VAR j) = eqFin i j

In the usual fashion, we can turn any boolean into a proposition that is only inhabited
when the boolean holds:

So : Bool → Set

So True = Unit

So False = Empty

Using the allFin function defined previously, we can now give an alternative formulation
for the predicate that checks that a monotype is strong:

isSoStrong : U n → Set

isSoStrong u = allFin (λ i → So (isElem i u))

This predicate has an important property: for any closed value u of type U n, when the
type isSoStrong u is inhabited, it only consists of pairs of unit values. Furthermore, we can
show that this alternative isSoStrong predicate implies the original isStrong predicate. We
refer to this result as soundness:

soundness : (u : U n) → isSoStrong u → isStrong u

soundness u p = map (isElemSoundness u) p

where
map : {n : Nat} → ((i : Fin n) → P i → Q i) → allFin P → allFin Q

map {Zero} H = unit

map {Succ k} H (p1,p2) = (H Fz p1,map (λ i → H (Fs i)) p2)
isElemSoundness : (u : U n) (i : Fin n) → So (isElem i u) → Elem i u

We have omitted the proof of isElemSoundness, as it is a straightforward inductive proof
on the argument monotype.

Finally, we can use this proof to define the following smart constructor for our Dynamic

type as follows:

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


244 W. Swierstra and T. van Noort

toDyn : (u : U n) → elV (FORALL u) → {p : isSoStrong u} → Dynamic

toDyn u x {p} = Dyn u (soundness u p) x

On the surface, it may seem like we have not accomplished much. After all, even this
smart constructor requires a proof argument. There is, however, something, an important
difference compared to the original constructor of the Dynamic type. This is best illustrated
with an example.

We can now use the toDyn function to package the polymorphic identity function as a
dynamic value:

idDyn : Dynamic

idDyn = toDyn u (λ x → x)
where
u : U (Succ Zero)
u = (VAR Fz) ⇒ (VAR Fz)

What happened to the required proof argument? According to the type of toDyn we must
also produce a proof of isSoStrong u. This proof, however, is by definition equivalent
to a pair of unit types. That is the type isSoStrong ((Var Fz) ⇒ (Var Fz)) reduces to
Pair Unit Unit. To complete the definition, we could pass (unit,unit) as the implicit ar-
gument to the toDyn function. As Agda supports η-expansion on record types, including
the pair and unit type, the type checker is happy to fill in the missing implicit argument
for us. This is where we can finally reap the rewards of our isSoStrong predicate: the
computation reduces the required proof argument to a triviality that Agda is happy to infer.
This limited form of proof automation through reduction to unit types is quite common in
Agda developments (Swierstra, 2010; van der Walt & Swierstra, 2012).

Note that if we had defined the following erroneous version of idDyn, Agda would give
an error message stating that it cannot find an argument of type Pair Unit (Pair Empty Unit)
to pass to the toDyn

idDyn : Dynamic

idDyn = toDyn u (λ x → x)
where
u : U 2

u = (VAR Fz) ⇒ (VAR Fz)

Examples. In this final section, we demonstrate several short examples of the cast func-
tion in action. Our first example shows that indeed, we can cast the polymorphic identity
function to the monomorphic identity on natural numbers,

example1 = cast u idDyn

where
u : U Zero

u = NAT ⇒ NAT

test1 : example1 ≡ Just (λ x → x)
test1 = Refl

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


A library for polymorphic dynamic typing 245

More interestingly, we can also cast the polymorphic identity function to a polymorphic
identity function on pairs. Doing so requires a shift from monotypes with a single free
variable to monotypes with two free variables,

example2 = cast u idDyn

where
u : U 2

u = PAIR (VAR Fz) (VAR (Fs Fz)) ⇒ PAIR (VAR Fz) (VAR (Fs Fz))

test2 : example2 ≡ Just (λ x → x)
test2 = Refl

Finally, we can also reorder quantified variables. The example below shows how to cast the
const function of type forall a b . a → b → a to a function of type forall a b . b → a → b.
To do so, use the constDyn dynamic defined previously:

example3 = cast u constDyn

where
u : U 2

u = (VAR (Fs Fz)) ⇒ ((VAR Fz) ⇒ (VAR (Fs Fz)))

test3 : example3 ≡ Just (λ x y → x)
test3 = Refl

All these examples illustrate just how smoothly the cast function can handle the usual
issues involved with variable binding, substitution, and unification.

6 Discussion

This paper is loosely based on a previous paper presented at the Workshop on Generic Pro-
gramming (Van Noort et al., 2011). The previous version was incomplete as two lemmas
were postulated, but not proven. Also, it used a slight variation on McBride’s unification
algorithm (McBride, 2003), rather than implement the check function directly. The di-
rect implementation presented here is much simpler and was originally presented in Van
Noort’s thesis (2012). The presentation there has been simplified further by introducing the
requirement that the types stored in a dynamic may not contain spurious quantifiers.

6.1 Further work

Throughout this paper we have chosen a small universe with natural numbers that is
closed under pairs and functions. It should be straightforward to add new types and type
constructors, such as booleans or co-products. One obvious direction for further work is to
stretch this universe further.

A limitation of the library presented here is that it can only handle predicative polymor-
phism. By using ‘unsafe’ Agda flags, such as disabling the termination checker or assuming
Set : Set, we may be able to lift this restriction. This is a fairly high price to pay. One of the
great advantages of the current implementation is the fact that it does not use any language
extensions or postulates. By sticking to the safe fragment of Agda, our library has type
soundness ‘for free’.

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


246 W. Swierstra and T. van Noort

A more feasible extension would be to drop the restriction that all quantifiers are in
prenex form, but still disallow impredicativity. This would allow quantifiers to appear at
within types, enabling us to write types such as forall a . a → forall b . b → a, which is
not currently possible. This would require a change in our universes U and V that would
certainly complicate matters.

More generally, this development illustrates how to write generic programs in a lan-
guage with dependent types using an explicit universe construction. The drawback of such
constructions is that they only work for a fixed universe. Better language support for such
developments (Chapman et al., 2010) would be very welcome. Until then, the best we
can do is to parametrize our module with some universe, which the users of our library
are free to instantiate. This does not work well for this development, however, as we
define a large number of functions by induction on our universe, such as apply or check.
Such functions must be passed as additional parameters to the module, together with any
properties on which the development relies, thereby substantially increasing the burden on
users.

An alternative direction for further work is to extend these ideas to handle dependent
types, rather than the limited type quantification we have seen so far. Formalizing a depen-
dently typed lambda calculi in type theory, however, is a notoriously hard problem (Barras,
1999; Danielsson, 2006; Chapman, 2008; McBride, 2010).

6.2 Related work

There is a great deal of literature comparing static and dynamic typing, and more specifi-
cally, discussing how to embed dynamic types safely in a language such as Haskell. Abadi
et al. (1991) provide one of the first studies of how to incorporate dynamic typing in a
statically typed language. While this initial work was restricted to monomorphic types,
this was later extended to handle polymorphism (Abadi et al., 1994). At the same time,
Leroy and Mauny (1993) studied how to add polymorphic dynamics to ML.

Existing literature for dynamic typing in Haskell cannot handle polymorphism. Baars
and Swierstra (2002) state: Whether our approach can easily be extended with dynamic
polymorphism is as yet unknown and a subject of further research. In a related paper,
Cheney and Hinze (2002) make a very similar observation: We believe our Dynamic also
can support making values of closed polymorphic types dynamic, although we have yet
to experiment with unifying and pattern-matching polymorphic type representations. A
weaker research question has been formulated by Sheard et al. (2005) and said to be
difficult (Sheard & Pasǎlić, 2008): Is it possible to build [..] singleton types to represent
polymorphic types? While we have tried many approaches we are not yet satisfied with the
generality of any of them. Unfortunately, there are no definitive answers to these questions.

How hard would it be to backport this development to Haskell? By using GADTs, type
families, rank-n types, and other Haskell 98 extensions, Holdermans (2012) has already
managed to develop a library along these lines. In contrast to the library presented here,
however, every polymorphic dynamic must be instantiated to a monomorphic type by the
cast function. Nonetheless, we would certainly hope that, in time, much of this work can
be transferred to Haskell.

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


A library for polymorphic dynamic typing 247

Acknowledgments

We would like to thank our colleagues in Nijmegen and Utrecht for their encouragement
and suggestions. James McKinna was an excellent source of advice and entertaining dis-
cussions when we first embarked on this research. Bastiaan Heeren, Stefan Holdermans,
Ruud Koot, José Pedro Magalhães, Stephanie Weirich and the anonymous reviewers pro-
vided invaluable feedback. We hope to have done justice with their comments.

References

Abadi, M., Cardelli, L., Pierce, B. & Plotkin, G. (1991) Dynamic typing in a statically typed
language. ACM Trans. Prog. Lang. Syst. 13(2), 237–268.

Abadi, M., Cardelli, L., Pierce, B., Rémy, D. & Taylor, R. (1994) Dynamic typing in polymorphic
languages. J. Funct. Prog. 5(1), 81–110.

Altenkirch, T. & McBride, C. (2003) Generic programming within dependently typed programming.
Proceedings of the IFIP TC2 Working Conference on Generic Programming, Schloss Dagstuhl,
Germany, July 2002.

Baars, A. & Swierstra, D. (2002) Typing dynamic typing. Proceedings of the International
Conference on Functional Programming (ICFP ’02). Pittsburgh, PA, USA.

Barras, B. (1999, Nov) Auto-Validation d’un Système de Preuves avec Familles Inductives, Thèse de
doctorat, Université Paris 7.

Brady, E. (2011) Epic – a library for generating compilers. In Proceedings of the 12th International
Conference on Trends in Functional Programming (TFP ’11). New York: Springer-Verlag.

Chapman, J. (2008) Type Checking and Normalisation, PhD thesis, University of Nottingham,
Nottingham, UK.

Chapman, J., Dagand, P.-É., McBride, C. & Morris, P. (2010) The gentle art of levitation. Proceedings
of the 15th ACM Sigplan International Conference on Functional Programming (ICFP ’10),
Baltimore, MD, September 27–29, 2010.

Cheney, J. & Hinze, R. (2002) A lightweight implementation of generics and dynamics. Proceedings
of the Haskell Workshop (Haskell ’02), Pittsburgh, PA, USA.

Danielsson, N. A. (2006) A formalisation of a dependently typed language as an inductive-recursive
family. Proceedings of the Types for Proofs and Programs Conference(TYPES ’06).

Holdermans, S. (in preparation) Polymorphic Dynamics for the Masses.

Lämmel, R. & Peyton Jones, S. (2003) Scrap your boilerplate: A practical design pattern for generic
programming. In Proceedings of the Workshop on Types in Language Design and Implementation
(TLDI ’03), New Orleans, LA, pp. 26–37.

Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D. & Vouillon, J. (2011) The OCaml System
Release 3.12: Documentation and User’s Manual. Tech. Report, Institut National de Recherche
en Informatique et en Automatique.

Leroy, X. & Mauny, M. (1993) Dynamics in ML. J. Funct. Prog. 3(4), 431–463.

Martin-Löf, P. (1984) Intuitionistic Type Theory. Berkeley, CA: Bibliopolis.

McBride, C. (2003) First-order unification by structural recursion. J. Funct. Prog. 13(6),
1061–1075.

McBride, C. (2010) Outrageous but meaningful coincidences: Dependent type-safe syntax and
evaluation. Proceedings of the 6th ACM SIGPLAN Workshop on Generic Programming (WGP
’10).

McBride, C. & McKinna, J. (2004) The view from the left. J. Funct. Prog 14(1), 69–111.

McBride, C. & Paterson, R. (2008) Applicative programming with effects. J. Funct. Prog. 18(1),
1–13.

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063


248 W. Swierstra and T. van Noort

Norell, U. (2007) Towards a Practical Programming Language Based on Dependent Type tTheory,
PhD thesis, Chalmers University of Technology, Sweden.

Norell, U. (2008) Dependently typed programming in Agda. In Revised Lectures of the International
School on Advanced Functional Programming, Heijen, The Netherlands, Lecture Notes in
Computer Science, vol. 5832, Koopman, Pieter, Plasmeijer, Rinus & Swierstra, Doaitse (eds).
New York, NY: Springer-Verlag. pp. 230–266.

Oury, N. & Swierstra, W. (2008) The power of Pi. Proceedings of the International Conference on
Functional Programming (ICFP ’08), Victoria, BC, Canada.

Peyton Jones, S. (ed). (2003) Haskell 98 Language and Libraries: The Revised Report. Cambridge,
UK: Cambridge University Press.

Sheard, T., Hook, J. & Linger, N. (2005) GADTs + Extensible Kinds = Dependent Programming.
Techical Report, Portland State University, Portland, OR.

Sheard, T. & Pasǎlić, E. (2008) Meta-programming with built-in type equality. Electron. Notes Theor.
Comput. Sci. 199, 49–65.

Swierstra, W. (2010) More dependent types for distributed arrays. Higher Order Symb. Comput.
23(4), 489–506.

van der Walt, P & Swierstra, W. (2012) Engineering proof by reflection in Agda. In 24th International
Symposium on Implementation and Application of Functional Languages, Oxford, UK, Revised
Selected Papers(IFL ’12). Oxford, UK: Department of Computer Science, University of Oxford.

van Noort, T. (2012) Dynamic Typing in Type-Driven Programming, PhD thesis, Radboud University
Nijmegen, Netherlands.

https://doi.org/10.1017/S0956796813000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000063

