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Horospherical model for holomorphic discrete series

and horospherical Cauchy transform

Simon Gindikin, Bernhard Krötz and Gestur Ólafsson

Abstract

We define a complex horospherical transform on an affine symmetric space X = G/H of
Hermitian type and show that it has no kernel on the representations of the H-spherical
holomorphic discrete series.

Introduction

For some homogeneous spaces the method of horospheres delivers an effective way to decompose
representations into irreducible representations. For Riemannian symmetric spaces Y = G/K,
horospheres are orbits of maximal unipotent subgroups of G. They are parameterized by points
of the horospherical homogeneous space ΞR = G/MN where N is a fixed maximal unipotent sub-
group and M = ZK(A) as usual. The horospherical transform maps sufficiently regular functions on
Y to the corresponding average along the horospheres. The crucial point is that the abelian group A
acts on Ξ and that this action commutes with the action of G. The decomposition of the natural
representation of G in L2(Ξ) into irreducible representations reduces to the decomposition relative
to A. In this way we obtain all unitary spherical representations on Y (with constant multiplicity),
except the complementary series. The computation of the Plancherel measure on Y is equivalent to
the inversion of the horospherical transform.

The method of horospheres works for several other types of homogeneous spaces, including
complex semisimple Lie groups (considered as symmetric spaces) but it has very serious restric-
tions: discrete series representations lie in the kernel of the horospherical transform, as well as all
representations induced from parabolic subgroups that are not minimal. In short, the kernel is the
orthocomplement of the most continuous part of the spectrum. The simplest example when the horo-
spherical transform can not be inverted is for the group SL(2, R). In [Gin00, Gin02, Gin04],
a modification of the method of horospheres was suggested: the complex horospherical transform
(the horospherical Cauchy–Radon transform). For a homogeneous space X we consider the complex-
ification XC and, instead of real horospheres on X, we consider complex horospheres on XC without
real points (they do not intersect X). The integration along a real horosphere may be viewed as the
integration of a δ-function on X with support on this horosphere. In the complex version, we replace
this δ-function by a Cauchy-type kernel with singularities on the complex horosphere without real
points. In [Gin00, Gin02] it was shown that such a complex horospherical transform is injective for
SL(2; R) and that it reproduces the Plancherel formula; in [Gin04] it was shown for all compact
symmetric spaces.
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The objective of this paper is to show that the complex horospherical transform has no kernel
on the holomorphic discrete series. Holomorphic discrete series exist for affine symmetric spaces
X = G/H of Hermitian type. Here G is a group of Hermitian type [Har56, OO91]. The corresponding
part of L2(X) can be realized as boundary values of the Hardy space H2(D+) in a Stein tube
D+ ⊂ XC with edge X (see [HOO91]). Our aim is to define a complex horospherical transform that
has no kernel on the representations of the H-spherical holomorphic discrete series.

The first step towards the realization of our objective is the construction of the space that is
going to be the image of the complex horospherical transform. For this, we consider those complex
horospheres in the Stein symmetric space XC = GC/HC that are parameterized by points of the
complex horospherical space Ξ = GC/MCNC. In Ξ, we then consider an orbit Ξ+ of G × T+ where
T+ is a semigroup in the complex abelian group TC = AT with the compact torus T as the edge.
The space O(Ξ+) of holomorphic functions on Ξ+ is a Fréchet model of the holomorphic discrete
series. More exactly, if we decompose this representation with respect to the compact torus T ,
we obtain G-modules that are lowest weight modules (if they are irreducible); we obtain all such
modules with multiplicity one. Using the abelian semigroup T+ we can define a Hardy-type space
H2(Ξ+) with spectrum ‘almost all’ of the holomorphic discrete series.

The next step consists of providing the geometrical background for the construction of the
horospherical transform. First, we prove that the horospheres E(ξ) parameterized by points ξ ∈ Ξ+

do not intersect X. We construct a simple Cauchy-type kernel that has no singularities on X and the
edge of its singularities coincides with E(ξ). Using this kernel, we define the horospherical Cauchy
transform from L1(X) to O(Ξ+), which can be extended on L2(X). The horospherical transform
decomposed under T yields the holomorphic spherical Fourier transform.

The last step is the inversion of the horospherical Cauchy transform. We give the Radon-type
inversion formula using results from [Kro01] for the holomorphic discrete series. Let us remark that
for X = SL(2, R), the inversion formula was obtained in [Gin00, Gin02] with tools from integral
geometry on quadrics. This method automatically extends on any symmetric spaces of Hermitian
type of rank 1, that is, the hyperboloids of signature (2, n). Let us also pay attention to the similarity
of formulas in this paper and formulas in [Gin04] for compact symmetric spaces. This confirms the
view that finite-dimensional spherical representations are similar to representations of holomorphic
discrete series.

1. Symmetric spaces of Hermitian type

The objective of this section is to set up a standard choice of terminology that will be used through-
out the text.

Let us fix some conventions upfront. For a real Lie algebra g let us denote by gC = g ⊗R C

its complexification. Likewise, if not stated otherwise, for a connected Lie group G we write GC
for its universal complexification, cf. [Hoc65, §XVII.5]. If ϕ : G → H is a homomorphism of
connected Lie groups, then we also denote the following by ϕ:

• the derived homomorphism dϕ(1) : Lie(G) → Lie(H);

• the extension of ϕ to a holomorphic homomorphism GC → HC.

Let G be a connected semisimple Lie group with Lie algebra g. We assume that G ⊂ GC and that
GC is simply connected. Let τ : G → G be a non-trivial involution and write H (respectively HC),
for the τ -fixed points in G (respectively GC). The object of concern is the affine symmetric space
X = G/H. We observe that X is contained in its complexification XC = GC/HC as a totally real
submanifold. Write x0 = HC for the base point in XC.
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Let h be the Lie algebra of H and note that g = h + q with τ |q = −idq. The symmetric pair
(g, h) is called irreducible if g does not contain any τ -invariant ideals except the trivial ideals, {0}
and g. In that case, either g is simple or g = g1 × g1 with g1 simple and τ(x, x′) = (x′, x). We say
that X is irreducible if (g, h) is irreducible. From now on we assume that X is irreducible.

Fix a Cartan involution θ : G → G commuting with τ . Denote by K < G the subgroup of θ-fixed
points and write Y = G/K for the associated Riemannian symmetric space. Write k for the Lie
algebra of K. Then g = k + s with θ|s = −ids. Note that the universal complexification KC of K
naturally identifies with the θ-fixed points in GC.

We assume that G is a Lie group of Hermitian type, that is, Y is Riemannian symmetric space
of Hermitian type. The assumption can be phrased algebraically: z(k) �= {0} with z(k) the center
of k.

We assume that τ induces an anti-holomorphic involution on Y and then call X an affine
symmetric space of Hermitian type.

Remark 1.1. (a) Our assumptions on G and τ can be phrased algebraically, namely

z(k) ∩ q �= {0}. (A)

Let us mention that another way to formulate (A) is to say that q admits an H-invariant regular
elliptic cone, that is, X is compactly causal [HO96].

(b) Symmetric spaces of Hermitian type resemble compact symmetric spaces on an analytical
level. Combined they form the class of symmetric spaces that admit lowest weight modules in their
L2-spectrum (holomorphic discrete series).

As X is irreducible, it follows that z(k)∩ q = iRZ0 is one dimensional. It is possible to normalize
Z0 in such a way that the spectrum of ad(Z0) is {−1, 0, 1}. The zero-eigenspace is kC. We denote
the +1-eigenspace in sC by s+, and the −1-eigenspace by s−.

Let t be a maximal abelian subspace in q containing iZ0. Then t is contained in k∩ q. Set a = it
and note that aC = tC.

Let ∆ be the set of roots of tC in gC,

∆n = {α ∈ ∆ | gα
C ⊆ sC} = {α ∈ ∆ | α(Z0) ∈ {−1, 1}}

and
∆k = {α ∈ ∆ | gα

C ⊆ kC} = {α ∈ ∆ | α(Z0) = 0}.
Then ∆ = ∆k ∪̇∆n. The elements of ∆n are called non-compact roots and the elements in ∆k are
called compact roots. We choose an ordering in it∗ such that α(Z0) > 0 implies that α ∈ ∆+

n ⊆ ∆+.
Let W be the Weyl group of ∆ and Wk the subgroup generated by the reflections coming from the
compact roots. As s(Z0) = Z0 for all s ∈ Wk, it follows that ∆+

n is Wk-invariant.

1.1 Polyhedrons, cones and the minimal tubes
Set A = exp(a), AC = exp(aC), T = exp(t) and TC = exp(tC). We note that

AC = TC = TA 	 T × A.

For α ∈ ∆ let α̌ ∈ a be its coroot, that is, α̌ ∈ [gα
C
, g−α
C

] ∩ a and α(α̌) = 2. Then

Ω =
∑

α∈∆+
n

R>0 · α̌ (1.1)

defines a Wk-invariant open convex cone in a = it that contains Z0. Often one refers to Ω as the
minimal cone (it is denoted cmin in [HO96]). Let us remark that one can characterize Ω as
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the smallest Wk-invariant open convex cone in a that contains a long non-compact coroot, that is,

Ω = co(Wk(R>0 · α̌)) (α long in ∆+
n ). (1.2)

Here co(·) denotes the convex hull of (·).
We set A+ = exp(Ω) and note that A+ ⊂ A is an open semigroup. Moreover,

T+ = T exp(Ω) = TA+ ⊂ TC

defines a semigroup and complex polyhedron with edge T . We also use the notation A− = exp(−Ω)
and T− = TA−.

Define G-invariant subsets of XC by

D± = GA± · x0 ⊂ XC.

According to [Nee99], D+ and D− are Stein domains in XC with X = G · x0 as Shilov boundary.
Subsequently we will refer to D+ and D− as the minimal tube in XC with edge X.

1.2 Minimal θτ -stable parabolics
Denote by g 
→ g the complex conjugation in GC with respect to the real form G. We write θ for
the involution on GC given by g 
→ θ(g)

Let

n+
C

=
⊕

α∈∆+
k

kαC and n−
C

=
⊕

α∈∆+
k

k−α
C

.

Set

nC = n+
C
⊕
⊕

α∈∆+
n

gα
C = n+

C
⊕ s+,

mC = {U ∈ hC | (∀V ∈ t)[U, V ] = 0},

and

pC = mC ⊕ tC ⊕ nC.

Note that mC is contained in kC, as Z0 ∈ tC. The Lie algebra pC is a minimal θτ -stable parabolic
subalgebra of gC. Define subgroups of GC by MC = ZHC(tC) ⊂ KC and NC = exp(nC).

Note that TC = AC. Then the prescription

PC = MCACNC = MCTCNC

defines a minimal θτ -stable parabolic subgroup of GC whose Lie algebra is pC. Write Γ = MC∩AC =
M ∩ T and observe that Γ is a finite 2-group. The isomorphic map

(MC ×Γ AC) × NC → PC, ([m,a], n) 
→ man

yields the structural decomposition of PC.
We denote by t ⊆ c a τ -stable Cartan subalgebra of g contained in k. Then c = t ⊕ ch, where

ch = c ∩ h. Denote by Σ the set of roots of cC in gC. Similarly we set Σn, the set of non-compact
roots, Σk, the set of compact roots. We choose a positive system Σ+ such that Σ+|t\{0} = ∆+.

Define tori in G by C = exp c and Ch = exp ch. We note that C = TCh 	 T ×Γ Ch.

2. Complex horospheres I: definition and basic properties

The objective of this section is to discuss (generic) horospheres on the complex symmetric space
XC = GC/HC. We show that the space of horospheres is GC-isomorphic to the homogeneous
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space Ξ = GC/MCNC. Further we introduce a G-invariant subdomain Ξ+ ⊂ Ξ that is a central
object for the rest of this paper.

Write ξ0 = MCNC for the base point of Ξ. Usually we express elements ξ ∈ Ξ as ξ = g · ξ0 for
g ∈ GC.

Consider the following double fibration.

GC/MC
π1

����
��

��
��� π2

����
��

���
��

Ξ XC

(2.1)

By a horosphere in XC we mean a subset of the form

E(ξ) = π2(π−1
1 (ξ)) (ξ ∈ Ξ). (2.2)

For ξ = g · ξ0, we record that

E(ξ) = gMCNC · x0 = gNC · x0 ⊂ XC

(use MC ⊂ HC).
Similarly, for z ∈ XC we set

S(z) = π1(π−1
2 (z)). (2.3)

If z = g · x0 for g ∈ GC, then note that S(z) = gHC · ξ0. Moreover, for z ∈ XC and ξ ∈ Ξ one has
the incidence relations

z ∈ E(ξ) ⇐⇒ π−1
1 (ξ) ∩ π−1

2 (z) �= ∅ ⇐⇒ ξ ∈ S(z). (2.4)

The space of horospheres on XC shall be denoted by Hor(XC), that is,

Hor(XC) = {E(ξ) | ξ ∈ Ξ}.
Our first objective is to show that Ξ parameterizes Hor(XC).

Proposition 2.1. The map

E : Ξ → Hor(XC), ξ 
→ E(ξ)
is a GC-equivariant bijection.

Proof. Surjectivity and GC-equivariance are clear by definition. It remains to establish injectivity.
For that write G

E(ξ0)
C

for the stabilizer of E(ξ0) in GC. By GC-equivariance it is enough to show that
G

E(ξ0)
C

⊆ MCNC. Assume that g·E(ξ0) = E(ξ0). Then gNC ⊆ NCHC. In particular, g = nh ∈ NCHC.
As G

E(ξ0)
C

is a group and n ∈ G
E(ξ0)
C

, it follows that h ∈ G
E(ξ0)
C

. By Lemma 2.2 (from below) it
follows that h ∈ MC. Hence, g = h(h−1nh) ∈ MCNC, as MC normalizes NC.

Lemma 2.2. Assume that h ∈ HC is such that h · E(ξ0) = E(ξ0). Then h ∈ MC.

Proof. Identify the tangent space Tx0(GC/HC) with gC/hC. Then, as (hNCh
−1) · x0 = NC · x0, it

follows that
Ad(h)(nC ⊕ hC) = nC ⊕ hC.

Thus, if U ∈ nC, there exists Z ∈ nC and L ∈ hC such that Ad(h)U = Z + L. Applying (1 − τ)
to this equality, we get Ad(h)(U − τ(U)) = Z − τ(Z). As qC = (1 − τ)(nC) ⊕ tC, and this sum is
orthogonal with respect to Killing form, it follows that Ad(h)tC = tC. In particular, h ∈ NHC(tC).

We recall the Riemannian dual Xr = Gr/Kr of X = G/H, which corresponds to the Lie algebras
gr = kr + sr with kr = (h ∩ k) + i(h ∩ s) and sr = i(q ∩ k) + (q ∩ s). Note that a is maximal abelian
in sr.
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To continue with the proof, we observe that NHC(tC) = NKr(a)MC. Thus, we may assume that
h ∈ NKr(a). Write σr for the complex conjugation in GC with respect to the real form Gr. Then
taking σr fixed points in hNC ∈ NCHC yields hN r ∈ N rKr with N r = Gr ∩NC. Thus the situation
is reduced to the Riemannian case where it follows from [Hel94, p. 78].

It is crucial to observe that there is a TC-action on Ξ that commutes with the left GC action, as
follows.

Proposition 2.3. Let ξ = g · ξ0 ∈ Ξ, g ∈ GC. For t ∈ TC the prescription

ξ · t = gt · ξ0 (2.5)

defines an element of Ξ. In particular,

TC × Ξ → Ξ, (t, ξ) 
→ ξ · t−1 (2.6)

defines an action of TC on Ξ, which commutes with the natural action of G on Ξ.

Proof. As TC normalizes MCNC it follows that (2.5) is defined. Finally, (2.5) implies that (2.6)
defines a left action of TC.

It is obvious that the map

(GC × TC) × Ξ → Ξ, ((g, t), ξ) 
→ g · ξ · t−1 (2.7)

is a holomorphic action of the complex group GC × TC on the homogeneous space Ξ.
The remainder of this section is devoted to the definition and basic discussion of an important

G × T -invariant subset Ξ+ of Ξ.
We recall from § 1.1 the polydisc T+ = TA+ and define

Ξ+ = GT+ · ξ0 = GA+ · ξ0.

We record that Ξ+ is a (G × T )-invariant subset of Ξ.
Note that G/MT is the base space of the fiber bundle G/M ×T T+ → G/MT with fiber T+/Γ.

There is a natural action of G × T on G/M ×T T+ given by

(G × T ) × (G/M ×T T+) → G/M ×T T+, ((g, t), [xM, a]) 
→ [gxM, at−1].

The next lemma gives us basic structural information on Ξ+.

Lemma 2.4. The set Ξ+ is open in Ξ = GC/MCNC. Moreover, the mapping

Φ : G/M ×T T+ → Ξ, [gM, t] 
→ gt · ξ0

is a G × T -equivariant diffeomorphism onto Ξ+.

Proof. Clearly, Φ is a defined G × T -equivariant map with im Φ = Ξ+. Let us show that Φ is
injective. For this assume that g1t1 · ξ0 = g2t2 · ξ0, gj ∈ G, tj ∈ T+. By G-equivariance we may
assume that g2 = 1. Then g1 ∈ G ∩ PC = MT and without loss of generality we may assume that
g1 ∈ M . Consequently, as TC ∩ MCNC = Γ, we obtain t1 ∈ t2Γ, that is, [M, t1] = [M, t2]. Hence, Φ
is injective.

A standard computation yields that dΦ is an immersion and a simple dimension count shows that
dimG/MT + dimT+ = dim Ξ. In particular, Φ is a submersion and im Φ = Ξ+ is open, concluding
the proof of the lemma.

The set GPC is open in GC and G∩PC = MT . Hence, G/MT can be viewed as an open, complex
submanifold of the flag manifold F = GC/PC. We write F+ = GPC/PC for the image of G/MT in
F and call F+ the flag domain. Although obvious, we emphasize that F+ is G-homogeneous.
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Consider now the following commutative diagram.

G/M ×T T+

��

Φ �� Ξ

��
G/MT �� F

(2.8)

By our preceding remarks and Lemma 2.4, the horizontal lines are real analytic isomorphisms onto
open subdomains (Ξ+ and F+). Further, the right-hand column constitutes a holomorphic fiber
bundle Ξ → F with fibers AC/Γ. We hence conclude that G/M ×T T+ → G/MT is a holomorphic
fiber bundle with fiber T+/Γ.

2.1 Fiberings

To conclude this section we mention three natural fibrations in relation to Ξ+ and F+. Write
S+ = exp(s+) and recall that the map

Y = G/K → GC/KCS
+, gK 
→ gKCS

+

is a G-equivariant open embedding. Henceforth, Y should be understood as an open subset of
the flag manifold GC/KCS

+. We note that KCS
+ is a maximal parabolic subgroup of GC that

contains PC.

Lemma 2.5. The following assertions hold.

(i) The natural map

Ξ+ → F+, zMCNC 
→ zPC

is a holomorphic fibration with fiber T+/Γ.

(ii) The restriction of the holomorphic fiber bundle F → GC/KCS
+, gPC 
→ gKCS

+ to the flag
domain

F+ → Y, gMT → gK

yields a holomorphic fibration with fiber the flag variety K/MT 	 KC/(KC ∩ PC).

(iii) The natural map

Ξ+ → Y, gt · ξ0 
→ gK

is a holomorphic fibration with fiber K/M ×T T+.

Proof. Assertions (i) and (ii) are clear. Finally, assertion (iii) is a consequence of assertions (i)
and (ii).

3. The G × T -Fréchet module O(Ξ+)

The natural action of G×T on Ξ+ gives rise to a representation of G×T on the Fréchet space O(Ξ+)
of holomorphic functions on Ξ+. Our goal is to decompose O(Ξ+) with respect to this action. By
the compactness of T , it is clear that O(Ξ+) decomposes discretely under T . It turns out that each
T -isotypical component is the section module of a holomorphic line bundle over the flag domain F+

and that all such section modules arise in this manner.
In the second part of this section, we turn our attention to G × T -invariant Hilbert spaces of

holomorphic functions on Ξ+. By definition these are unitary G × T -modules H with continuous
G × T -equivariant embeddings into O(Ξ+). There are many interesting examples such as weighted
Bergman and weighted Hardy spaces. We discuss the Hardy space H2(Ξ+) on Ξ+ with constant
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weight and show that H2(Ξ+) constitutes a natural model for the H-spherical holomorphic discrete
series of G.

3.1 The decomposition of O(Ξ+)
In § 2, we exhibited a natural action of G × T on Ξ+, namely

(G × T ) × Ξ+ → Ξ+, ((g, t), ξ) 
→ g · ξ · t−1. (3.1)

We recall that O(Ξ+) becomes a Fréchet space when endowed with the topology of compact con-
vergence.

Remark 3.1. Finite-dimensional representation theory of GC shows that Ξ (and, hence, Ξ+) is
holomorphically separable. In particular, O(Ξ+) �= {0}.

Denote by GL(O(Ξ+)) the group of bounded invertible operators on O(Ξ+).
The action (3.1) induces a continuous representation of G × T on O(Ξ+):

L × R : G × T → GL(O(Ξ+)), ((L × R)(g, t)f)(ξ) = f(g−1 · ξ · t),
with (g, t) ∈ G × T , f ∈ O(Ξ+) and ξ ∈ Ξ+.

We first decompose O(Ξ+) under the action of the compact torus T . Denote by T̂/Γ the character
group of T/Γ, that is, T̂/Γ = Homcont(T/Γ, S1). In the following we identify T̂/Γ with the lattice

Λ = {λ ∈ a∗ | ∀U ∈ (exp |t)−1(Γ)λ(U) ∈ 2πiZ}.
Explicitly, one associates the character χλ(tΓ) = eλ(log t) to λ ∈ Λ. Often we write tλ for χλ(tΓ).

The assumption that GC is simply connected allows an uncomplicated description of the lattice Λ.

Lemma 3.2. We have

Λ =
{

λ ∈ a∗
∣∣∣∣ (∀α ∈ ∆)

〈λ, α〉
〈α,α〉 ∈ Z

}
.

Proof. (‘⊆’) Let λ ∈ Λ. We first show that 〈λ, α〉/〈α,α〉 ∈ Z for all α ∈ ∆k. For that, observe that
the compact symmetric space K/H ∩ K embeds into G/H via the natural map

K/H ∩ K → G/H, k(H ∩ K) 
→ kH.

Thus, [Hel84, ch. V, Theorem 4.1] yields that 〈λ, α〉/〈α,α〉 ∈ Z for all α ∈ ∆k. To complete the proof
of (‘⊆’) we still have to verify 〈λ, α〉/〈α,α〉 ∈ Z for all α ∈ ∆n. Fix α ∈ ∆n. Standard structure
theory implies that there is an embedding of symmetric Lie algebras (su(1, 1), so(1, 1)) → (g, h)
such that

[
i 0
0 −i

]
∈ su(1, 1) is mapped to iα̌ ∈ t. As SL(2, C) is simply connected, we thus obtain an

immersive map SU(1, 1)/SO(1, 1) → G/H. In particular, 〈λ, α〉/〈α,α〉 ∈ Z must hold.
(‘⊇’) Suppose that 〈λ, α〉/〈α,α〉 ∈ Z holds for all α. Recall the extension t ⊆ c of t to a compact

Cartan subalgebra of g. In the following we consider λ as an element of c∗ that is trivial on c ∩ h.
In [Hel84, p. 537], it was shown that λ is analytically integral for C = exp c (this needs that GC is
simply connected). In particular, λ defines an element χλ ∈ T̂ . It remains to show that χλ|Γ = 1.
As M = ZH∩K(a) and Γ = M ∩ T , this reduces to an assertion on the compact symmetric space
K/H ∩ K, where it follows from [Hel84, ch. V, Theorem 4.1].

For each λ ∈ Λ, define the λ-isotypical component of O(Ξ+) by

O(Ξ+)λ = {f ∈ O(Ξ+) | (∀t ∈ T )R(t)f = t−λf}. (3.2)

As (R,O(Ξ+)) is a continuous representation of the compact torus T on a Fréchet space, the Peter–
Weyl theorem yields

O(Ξ+) =
⊕
λ∈Λ

O(Ξ+)λ. (3.3)
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Each O(Ξ+)λ is a G-module for the representation L. In order to describe it explicitly we recall
some facts on holomorphic line bundles.

For λ ∈ Λ, we write Cλ for C when considered as a MT -module with trivial M -action and T
acting by χλ. Recall that G/MT inherits a complex manifold structure through its identification
with the flag domain F+. In particular, to each λ ∈ Λ one associates the holomorphic line bundle

Lλ = G ×MT Cλ. (3.4)

Write O(Lλ) for its G-module of holomorphic sections, i.e. O(Lλ) consists of smooth functions
f : G → C such that:

• f(gmt) = t−λf(g) for g ∈ G, t ∈ T and m ∈ M ;
• G/MT → Lλ, gMT 
→ [gMT, f(g)] is holomorphic.

The restriction of Lλ to the flag variety K/MT yields the holomorphic line bundle

Kλ = K ×MT Cλ

over K/MT . Write Λ0 for the ∆−
k -dominant elements of Λ, that is,

Λ0 = {λ ∈ Λ | (∀α ∈ ∆+
k )〈λ, α〉 � 0}. (3.5)

According to Bott [Bot57], Vλ = O(Kλ) is finite dimensional and non-trivial if and only if λ ∈ Λ0.
By Lλ = G ×MT Cλ 	 G ×K (K ×MT Cλ), we retrieve the standard isomorphism

O(Lλ) 	 O(G ×K Vλ).

In particular,
O(Lλ) �= {0} ⇐⇒ λ ∈ Λ0. (3.6)

We remind the reader that the T -weight spectrum of πλ is contained in λ+Z�0[∆+]. In particular,
O(Lλ), if irreducible, is a lowest weight module for G with respect to the positive system ∆+ and
lowest weight λ.

Finally, we establish the connection between O(Ξ+)λ and O(Lλ). For this, let us denote by Ξ0

the pre-image of F+ in Ξ, that is,
Ξ0 = GTC · ξ0.

Note that Ξ+ ⊂ Ξ0. Holomorphicity and T -equivariance yield O(Ξ+)λ = O(Ξ0)λ. Likewise,
restriction yields O(Ξ0)λ 	 O(Lλ). Thus, holomorphic extension and restriction gives a natural
G-isomorphism O(Ξ+)λ 	 O(Lλ).

We summarize our discussion.

Proposition 3.3. The G × T -Fréchet module O(Ξ+) decomposes as

O(Ξ+) =
⊕
λ∈Λ0

O(Ξ+)λ.

Moreover, holomorphic extension and restriction canonically identifies O(Ξ+)λ with the section
module O(Lλ).

We conclude this section with some comments on unitarization of the section modules O(Lλ).

Remark 3.4. Let λ ∈ Λ0 and let us denote by O(Lλ)K-fin the (g,K)-module of K-finite sections of
O(Lλ). Let us assume that O(Lλ)K-fin is irreducible. Then O(Lλ)K-fin identifies with the generalized
Verma module N(λ) = U(gC)⊗U(kC+s−) Vλ and the Shapovalov form on N(λ) gives rise to the (up to
scalar unique) equivariant Hermitian form on O(Lλ)K-fin. We say that O(Lλ)K-fin is unitarizable if
the Shapovalov form is positive definite. Another way to formulate it is that there exists a unitary
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lowest weight representation (πλ,Hλ) such that the (g,K)-module of K-finite vectors HK-fin
λ is

(g,K)-isomorphic to O(Lλ)K-fin. In this situation O(Lλ) is then naturally G-isomorphic to the
hyperfunction vectors H−ω

λ of πλ.
We want to emphasize that not all λ ∈ Λ0 correspond to unitarizable modules O(Lλ)K-fin

(a necessary condition is λ|Ω � 0 and we refer to [EHW83] for more precise information).
However, we want to stress that O(Lλ)K-fin is automatically unitarizable if λ|Ω is sufficiently positive
(for example, if condition (3.12) below is satisfied).

3.2 The Hardy space on Ξ+

The objective of this section is to introduce the Hardy space on Ξ+ and to prove some of its basic
properties.

We begin with some measure-theoretic preliminaries. The groups GC and MCNC are unimodular
and, hence, Ξ = GC/MCNC carries a GC-invariant measure µ.

Recall that M is a compact subgroup of G and denote by dm a normalized Haar measure on M .
Further, we let dg and d(gM) denote left G-invariant measures on G (respectively G/M), normalized
by the condition ∫

G
f(g) dg =

∫
G/M

∫
M

f(gm) dm d(gM)

for all f ∈ L1(G).
Note that the stabilizer in G of any point ξ ∈ T+ · ξ0 ⊂ Ξ+ is the compact subgroup M . In

particular, one has ∫
G

f(g · ξ) dg =
∫

G/M
f(g · ξ) d(gM) (3.7)

for all ξ ∈ T+ · ξ0 and integrable functions f on Ξ+.
Write ‖ · ‖2 for the L2-norm on L2(G). Let us remark that the representation (R,O(Ξ+)) of T

naturally extends to a representation of the semigroup T− ∪ T , also denoted by R. Furthermore, if
f ∈ O(Ξ+) and t ∈ T−, then we can define the restriction of R(t)f to G by R(t)f |G : G → C by
R(t)f |G(g) = f(gt−1 · ξ0). The Hardy norm of f ∈ O(Ξ+) is defined by

‖f‖2 = sup
t∈T+

∫
G
|f(gt · ξ0)|2 dg = sup

t∈T−
‖R(t)f |G‖2

2. (3.8)

Let
H2(Ξ+) = {f ∈ O(Ξ+) | ‖f‖ < ∞}. (3.9)

Obviously
‖R(t)f‖ � ‖f‖ for all t ∈ T− (3.10)

and, hence, T− acts on H2(Ξ+) by contractions. Note that R(t)f |G is right M -invariant and, by the
definition of the Hardy space norm, R(t)f |G ∈ L2(G/M) ⊆ L2(G).

Lemma 3.5. The space H2(Ξ+) is a Hilbert space. Furthermore, the following hold.

(i) For ξ ∈ Ξ+ the point evaluation map evξ : H2(Ξ+) � f 
→ f(ξ) ∈ C is continuous.

(ii) The boundary value map β : H2(Ξ+) → L2(G/M) ⊆ L2(G)

β(f) = lim
T−�t→e

R(t)f |G

is an equivariant isometry into L2(G/M).

Proof. The proof follows a standard procedure and is more a sketch. We refer to [HOO91], in
particular the proof of Theorem 2.2, for a detailed discussion of the underlying methods.
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Let ξ ∈ Ξ+. Then there exist relatively compact open sets UG ⊆ G and UT ⊆ T+ such that
ξ ∈ UGUT · ξ0. Thus, there is a constant c > 0 such that the Bergman-type estimate∫

UGUT ·ξ0
|f(ξ)|2 dµ(ξ) � c · ‖f‖2

holds for all f ∈ H2(Ξ+). This implies that H2(Ξ+) is complete, and that point evaluations are
continuous.

Write C+ = {z ∈ C | Im(z) > 0} for the upper half-plane and fix Z ∈ iΩ. We note that the map
T− � t 
→ R(t)f |G ∈ L2(G) is well defined and holomorphic. Hence,

Lf : C+ → L2(G/M); Lf (z) = R(exp(zZ))f |G ∈ L2(G/M)

defines a holomorphic function on C+.
By [HOO91, Lemma 2.3] it follows that limz→0 Lf (z) exists and is monotonically increasing as

s ↘ 0 along each line segment exp(siZ) or, because of the right invariance of dg, on each t exp(siZ),
t ∈ T . As in [HOO91], we show that this limit is independent of Z. Thus, we get a boundary value
map β : H2(Ξ+) → L2(G/M), defined by

β(f) = lim
t→e

R(t)f |G.

By the definition of the Hardy space norm, we obviously have

‖β(f)‖2 � ‖f‖.
However, as the norm ‖R(exp(sZ))f‖2 is monotonically increasing for s ↘ 0, it follows that

‖R(exp(sZ))f‖2 � ‖β(f)‖
for all s ∈ R

+. Thus,

‖R(t)f |G‖ � ‖β(f)‖.
It follows that β : H2(Ξ+) → L2(G) is an isometry and, hence, H2(Ξ+) is a Hilbert space.

Clearly L × R defines a unitary representation of G × T on H2(Ξ+). Our aim is to decompose
H2(Ξ+) with respect to this action. As before we begin with the decomposition under T . For λ ∈ Λ,
the λ-isotypical component of H2(Ξ+) is given by H2(Ξ+)λ = H2(Ξ+) ∩ O(Ξ+)λ. The Peter–Weyl
theorem yields the orthogonal decomposition

H2(Ξ+) =
⊕
λ∈Λ0

H2(Ξ+)λ (3.11)

of H2(Ξ+) in G-modules.
We direct our attention to the unitary G-modules H2(Ξ+)λ inside of O(Ξ+)λ.
Suppose that H2(Ξ+)λ �= {0}. Then O(Lλ) �= {0} and the restriction mapping

H2(Ξ+)λ → O(Lλ)

gives a G-equivariant embedding. Moreover, β(H2(Ξ+)λ) ⊂ L2(G). Thus, H2(Ξ+)λ is a module of
the holomorphic discrete series of G. In terms of λ this means that λ satisfies the Harish-Chandra
condition [Har56]

〈λ − ρ(c), α〉 > 0 (∀α ∈ Σ+
n ), (3.12)

where ρ(c) = 1
2

∑
α∈Σ+ α.

Write Λsd for the set of all λ ∈ Λ0 that satisfy (3.12).
Conversely, let λ ∈ Λsd and write Hλ for a corresponding unitary lowest weight module with

lowest weight λ. Denote by vλ ∈ Hλ a normalized lowest weight vector and write d(λ) for the formal
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dimension (see [Har56] or (5.13) below). It is then straightforward that

Hλ → H2(Ξ+), v 
→ (gt · ξ0 
→
√

d(λ) · t−λ〈πλ(g−1)v, vλ〉)
defines a G-equivariant isometric embedding. Hence H2(Ξ+)λ 	 Hλ �= {0}.

Summarizing our discussion we obtain the Plancherel decomposition for H2(Ξ+).

Proposition 3.6. As a G-module, the Hardy space decomposes as

H2(Ξ+) 	
⊕

λ∈Λsd

Hλ.

Remark 3.7. (a) The set Λsd describes the set of all H-spherical unitary lowest weight representations
(up to equivalence) whose matrix coefficients are square integrable on G, that is, Λsd is the spectrum
of the H-spherical holomorphic discrete series of G.

(b) Later we mainly deal with the spectrum Λ2 of the holomorphic discrete series on X. One has

Λ2 ⊆ Λsd

with equality precisely for the equal rank cases, that is, rank(G) = rank(G/H) (see [OO88, OO91]).

4. Complex horospheres II: horospheres with no real points

We continue our discussion of complex horospheres from § 2. We introduce the notion of horosphere
without real points and investigate Ξ+ with respect to this property. In addition, we prove some
dual statements for the minimal tubes D±.

Definition 4.1. We say that the complex horosphere E(ξ) ⊂ XC has no real points if E(ξ)∩X = ∅.
We denote by Ξnr ⊂ Ξ the subset of those ξ that correspond to horospheres with no real points.

Lemma 4.2. The set Ξnr is a G-invariant subset of Ξ.

Proof. Let ξ ∈ Ξnr and g ∈ G. Assume that x ∈ E(g · ξ)∩X. Then g−1x ∈ E(ξ)∩X, contradicting
the assumption that E(ξ) has no real points.

Recall the open G-invariant subset Ξ+ = GA+ · ξ0 ⊂ Ξ. In the following it will be useful to
consider with Ξ+ its pre-image Ξ̃+ in GC, that is,

Ξ̃+ = GA+MCNC.

It is clear that Ξ̃+ is a left G-invariant and right MCNC-invariant open subset of GC.
Next we direct our attention to the Zariski open subset NCACHC of GC. Our objective is to

study Ξ̃+ in relation to NCACHC.

Remark 4.3. Note that Ξ̃−1
+ ⊂ NCACHC is equivalent to G ⊂ NCACHC. However, the latter is true

only for rank X = 1, that is dim t = 1. In general, G ∩ NCACHC is an open and dense subset of G
(cf. Theorem 4.5 below).

There is a right HC-invariant and left NC-invariant holomorphic middle projection

aH : NCACHC → AC/Γ, z 
→ aH(x)

In particular, for each λ ∈ Λ we obtain a natural (NC,HC)-invariant holomorphic maps

NCACHC → C, x 
→ aH(x)λ.

The holomorphic function NCAC · x0 → AC/Γ induced by aH is also denoted by aH .
The function aH enables us to give a useful geometric description of horospheres.
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Lemma 4.4. Let ξ = g · ξ0 ∈ Ξ for g ∈ GC. Then

E(ξ) = {z ∈ XC | g−1z ∈ NCAC · x0, aH(g−1z) = Γ}
= {z ∈ XC | g−1z ∈ NCAC · x0, aH(g−1z)λ = 1 for all λ ∈ Λ}.

Proof. (‘⊆’) If z ∈ E(ξ), then z = gn · xo for some n ∈ NC. Thus, g−1z = n · ξ0 ∈ NCAC · x0 and
aH(g−1z) = aH(n · x0) = Γ.

(‘⊇’) Conversely, let z ∈ XC be such that g−1z ∈ NCAC · x0 and aH(g−1z) = Γ. From the first
condition, it follows that g−1z = na · x0 for some n ∈ NC and a ∈ AC; the second condition implies
a ∈ Γ. Thus, z ∈ g · ξ0, as was required.

We define a subset of Λ0 by

Λ�0 = {λ ∈ Λ0 | λ|Ω � 0} (4.1)
= {λ ∈ Λ | λ|Ω � 0, (∀α ∈ ∆+

k ) 〈λ, α〉 � 0}. (4.2)

The following theorem is the main geometric result of the paper.

Theorem 4.5. The following assertions hold.

(i) G ∩ NCACHC is open and dense in G.

(ii) Let λ ∈ Λ�0. Then the function aλ
H |G∩NCACHC extends to a continuous function on G and

|aH(g)λ| � 1 (g ∈ G).

Proof. The approach to prove this theorem lies in the use of the structural decomposition

G = KAqH (4.3)

where Aq = exp(aq) with aq ⊆ s∩q a maximal abelian subspace. There is a natural way to construct
such a aq out of the weight space decomposition gC = aC+mC+

⊕
α∈∆ gα

C
. This is briefly reviewed.

Let γ1, . . . , γr ∈ ∆+
n be a maximal set of long strongly orthogonal roots. Then one can find Zj ∈ g

γj

C
,

j = 1, . . . , r, such that

aq =
r⊕

j=1

R(Zj − τ(Zj)) (4.4)

is a maximal abelian subspace of s ∩ q; further

Aq ⊂ S+A−HC (4.5)

(see [HO96, pp. 210–211]).
(i) As S+ ⊆ NC , we obtain from (4.3) and (4.5) that

G ⊂ NCKA−HC.

Hence, it is sufficient to show that

KA− ∩ N+
C

AC(HC ∩ KC) is open and dense in KA−. (4.6)

To continue, we first have to recall some facts related to the Iwasawa decomposition of KC.
Write Ñ+

C
for a maximal C-stable unipotent subgroup of KC containing N+

C
and set Ã = exp(ic).

Then KC = Ñ+
C

ÃK is an Iwasawa decomposition of KC. We recall that Ω and, hence, A− are Wk-
invariant. Thus, Kostant’s nonlinear convexity theorem (cf. [Hel84, ch. IV, Theorem 10.5]) implies
that KA− ⊂ Ñ+

C
A−K. As Ñ+

C
⊂ N+

C
MC and A ⊆ Ã ⊆ AMC, we thus get KA− ⊂ N+

C
A−MCK.

In particular, in order to establish (4.6) it is enough to verify that K ∩ N+
C

AC(HC ∩ KC) is dense
in K. However, this is known (for example, it follows from [Cle88, Lemme 2.1]).
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(ii) In the proof of assertion (i) we have seen that G ⊂ NCMCA−KHC. Thus, we only have
to show that aλ

H can be defined as a holomorphic function on KC with |aH(ak)λ| � 1 for all
k ∈ K and a ∈ A−. For that let (τλ, Vλ) denote the holomorphic (HC ∩ KC)-spherical represen-
tation of KC with lowest weight λ. Write (·, ·) for a K-invariant inner product on Vλ. Let vλ be
a normalized lowest weight vector and vH be the spherical vector with (vH , vλ) = 1. Then, for all
x ∈ N+

C
AC(HC ∩ KC) ⊂ KC, we have

(πλ(x)vH , vλ) = aH(x)λ.

As the left-hand side has a holomorphic extension to KC, the same holds for aλ
H . Finally, for a ∈ A−

and k ∈ K, we have
aH(ak)λ = aλaH(k)λ.

Observe that aλ � 1 as λ ∈ Λ�0 and that |aH(k)λ| � 1 for all k ∈ K by [Cle88, Lemme 2.3] (see
also [Osh89]). This completes the proof of assertion (ii).

Theorem 4.5 features interesting and important corollaries.

Corollary 4.6. Let λ ∈ Λ�0 be such that λ|Ω > 0. Then aλ
H |

Ξ̃−1
+ ∩NCACHC

extends to a holomorphic

function on Ξ̃−1
+ with

|aH(x)λ| < 1 (x ∈ Ξ̃−1
+ ).

Corollary 4.7. We have Ξ+ ⊆ Ξnr, that is, E(ξ) ∩ X = ∅ for all ξ ∈ Ξ+.

Proof. Suppose that there exists ξ ∈ Ξ+ such that E(ξ) ∩ X �= ∅. Then Ξ̃+ ∩ HC �= ∅, which is
equivalent to Ξ̃−1

+ ∩ HC �= ∅; a contradiction to the previous corollary.

Remark 4.8 (Monotonicity/convexity). Theorem 4.5(ii) has a natural interpretation in terms of
convexity/monotonicity. Write pra = � log aH and note that pra : NCACHC → a is a well-defined
continuous map. Theorem 4.5(ii) is then equivalent to the inclusion

pra(G ∩ NCACHC) ⊆
⊕

α∈∆−
n ∪∆+

k

R�0 · α̌. (4.7)

4.1 Dual statements for the minimal tubes
Recall from § 1.1 the minimal tubes D± = GA± · x0 in XC with edge X.

It follows from Neeb’s nonlinear convexity theorem [Nee94] that

GA− ⊆ NCMCA−G. (4.8)

This fact combined with Theorem 4.5 yields

GA−HC ∩ NCACHC ⊆ NCTA− exp
( ⊕

α∈∆+
k

R�0 · α̌
)

HC. (4.9)

We have shown the following.

Corollary 4.9. Let λ ∈ Λ�0 be such that λ|Ω > 0. Then, aλ
H |D−∩NCAC·x0 extends to a holomorphic

function on D− such that

|aH(x)λ| < 1 (x ∈ D−).

We recall the definition of the orbits S(z) ⊂ Ξ for z ∈ XC (cf. (2.3)). The convexity inclusion
(4.9) delivers the dual statement to Corollary 4.7.

Corollary 4.10. We have S(z) ∩ G/M = ∅ for all z ∈ D−.
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Proof. Let z = ga · x0 for g ∈ G and a ∈ A−. Suppose that S(z) ∩ G/M �= ∅. As S(z) = gaHC · ξ0,
this is equivalent to aHCNC ∩G �= ∅. In other words, Ga∩NCHC �= ∅; a contradiction to (4.9).

Remark 4.11. Note that (4.8) is equivalent to A+G ⊆ GA+MCNC. This inclusion exhibits an
interesting additional structure of Ξ+: it implies

Ξ+ = GA+G · ξ0. (4.10)

Remark 4.12 (Generalization to other cones). Let Ω̃ be a Wk-invariant convex open sharp cone in
a containing Ω. A particular interesting example is the maximal cone (denoted by cmax in [HO96]).
In this context we would like to mention that the results in this section remain true for Ω replaced
by Ω̃, the obvious adjustment of Λ�0 understood.

5. The horospherical Cauchy transform

Our geometric results from § 4 enable us to define a natural horospherical Cauchy kernel on Ξ+.
The kernel gives rise to the horospherical Cauchy transform L1(X) → O(Ξ+). The main result is a
geometric inversion formula for the horospherical Cauchy transform for functions in the holomorphic
discrete series on X.

5.1 The horospherical Cauchy kernel
In this section we define the horospherical Cauchy kernel and the corresponding horospherical
Cauchy transform. We introduce the holomorphic spherical Fourier transform and relate it to the
horospherical Cauchy transform.

To begin with, we have to recall some features of the root system ∆. Let us denote by

Π = {α1, . . . , αm}

a basis of ∆ corresponding to the positive system ∆+
n ∪∆−

k . As Spec ad(Z0) = {−1, 0, 1}, it follows
that exactly one member of Π is non-compact, say αm. Define weights ω1, . . . , ωm ∈ a∗ by

〈ωi, αj〉
〈αj , αj〉

= δij (1 � i, j � n).

Set

Λ>0 = Z�0 · ω1 + · · · + Z�0 · ωm−1 + Z>0 · ωm.

Recall the definition of Λ�0 from (4.1) and (4.2).

Lemma 5.1. The following assertions hold.

(i) ωi|Ω > 0 for all 1 � i � n. In particular, λ|Ω > 0 for all λ ∈ Λ>0.

(ii) Λ�0 = Z�0 · ω1 + · · · + Z�0 · ωm. In particular, Λ>0 ⊂ Λ�0.

Proof. (i) Fix x ∈ Ω. Then x =
∑

α∈∆+
n

kαα̌ with kα > 0. Now each α ∈ ∆+
n can be uniquely

expressed as α = αm + γ with γ ∈ Z�0[∆−
k ]. Moreover, if α = β is the highest root, then γ ∈

Z>0[α1, . . . , αn−1]. As kβ > 0, the assertion follows.
(ii) Set Λ′

�0 = Z�0 · ω1 + · · · + Z�0 · ωm. We first show that Λ′
�0 ⊆ Λ�0. For that let λ ∈ Λ′

�0,
say λ =

∑m
i=1 kiωi with ki ∈ Z�0. As α1, . . . , αn−1 constitutes a basis of ∆−

k , it follows that
〈λ, α〉/〈α,α〉 ∈ Z�0 for all α ∈ ∆+

k . Furthermore, λ|Ω � 0 by assertion (i). Hence, Λ′
�0 ⊆ Λ�0.

Finally, we establish Λ�0 ⊆ Λ′
�0. For that fix λ ∈ Λ�0. Then λ =

∑m
i=1 kiωi with some real num-

bers ki. We have to show that ki ∈ Z�0. Now λ ∈ Λ�0 means in particular that 〈λ, α〉/〈α,α〉 ∈ Z�0

for all α ∈ ∆+
k . Hence, 〈λ, αi〉/〈αi, αi〉 ∈ Z�0 for all 1 � i � n − 1. It remains to show
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that 〈λ, αm〉/〈αm, αm〉 ∈ Z�0. Integrality is clear. Also, since R�0 · α̌m constitutes a boundary
ray of the cone Ω, non-negativity follows.

Define the horospherical Cauchy kernel on Ξ+ as the function

K(ξ) =
1

aH(ξ−1)−ωm − 1
·

m−1∏
j=1

1
1 − aH(ξ−1)ωj

(ξ ∈ Ξ+).

In view of Corollary 4.6 and Lemma 5.1(i), the function K is holomorphic, left H-invariant and
bounded on subsets of the form GU · ξ0 for U ⊂ A+ compact.

For a function f ∈ L1(X), this allows us to define its horospherical Cauchy transform by

f̂(ξ) =
∫

X
f(x) · K(x−1ξ) dx (ξ ∈ Ξ+).

We note that the horospherical Cauchy transform is a G-equivariant continuous map

L1(X) → O(Ξ+), f 
→ f̂ .

Remark 5.2. (a) The horospherical Cauchy kernel K is tied to the geometry of the minimal cone
Ω: there is no larger WK-invariant open convex cone Ω̃ such that K would be holomorphic on
G exp(Ω̃) ·ξ0 (this follows from Lemma 5.1 and (1.2)). In this context we wish to point the difference
to the results of § 4 which are valid for a wider class of convex cones (cf. Remark 4.12).

(b) For each λ ∈ Λ0 and ξ ∈ Ξ+ consider the complex hypersurface

L(λ, ξ) = {z ∈ XC | aH(ξ−1z)λ − 1 = 0}

in XC. Their intersection is E(ξ) and they do not intersect X. The singular set of the horospherical
Cauchy kernel is the union of the m hypersurfaces L(ωi, λ) and the edge of this set is just E(ξ).
This means that if f is a boundary value of a holomorphic function on D+, then f̂ is a residue on
E(ξ).

The horospherical Cauchy transform can be decomposed into its constituents associated to the
elements λ ∈ Λ>0. More precisely, for λ ∈ Λ>0 and f ∈ L1(X), let us define f̂λ ∈ O(Ξ+) by

f̂λ(ξ) =
∫

X
f(x) · aH(ξ−1x)λ dx.

We call the map λ 
→ f̂λ ∈ O(Ξ+) the spherical holomorphic Fourier transform of f .

Lemma 5.3. The following assertions hold.

(i) Let U ⊂ A+ be a compact subset. The series∑
λ∈Λ>0

aH(ξ−1)λ (ξ ∈ Ξ+)

converges uniformly on GU · ξ0 ⊂ Ξ+.

(ii) For all ξ ∈ Ξ+, one has ∑
λ∈Λ>0

aH(ξ−1)λ = K(ξ).
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Proof. Uniform convergence on GU · ξ0 is immediate from Corollary 4.6 and Lemma 5.1. Summing
up the geometric series, one obtains∑

λ∈Λ>0

aH(ξ−1)λ =
∞∑

k1=···=km−1=0

∞∑
km=1

aH(ξ−1)k1ω1+···+kmωm

=
(

1
1 − aH(ξ−1)ωm

− 1
)
·

m−1∏
j=1

1
1 − aH(ξ−1)ωj

=
1

aH(ξ−1)−ωm − 1
·

m−1∏
j=1

1
1 − aH(ξ−1)ωj

= K(ξ). �

We conclude from Lemma 5.3 that the horospherical Cauchy transform of a function f ∈ L1(X)
can be decomposed as

f̂ =
∑

λ∈Λ>0

f̂λ

with the right-hand side converging uniformly on compacta.

Remark 5.4. We wish to point out that the horospherical Cauchy kernel is a product of geometrical
and not functional analytic reasoning. We emphasize that, in general, not all parameters λ ∈ Λ>0

in the decomposition of the horospherical Cauchy kernel correspond to unitarizable lowest weight
modules (see Remark 5.6 below for a more detailed discussion).

5.2 Holomorphic Fourier transform on lowest weight representations
The objective of this section is to give a more detailed discussion of the holomorphic Fourier trans-
form for functions f ∈ L2(X) that are contained in lowest weight module.

To begin with, we collect some material on spherical unitary lowest weight representations.
A reasonable source might be the overview article [KO03].

Let (πλ,Hλ) be a non-trivial H-spherical unitary lowest weight representation of G. As before
we denote by vλ a normalized lowest weight vector. Write vH for the unique H-fixed distribution
vector that satisfies 〈vλ, vH〉 = 1.

We record the fundamental identity

aH(x)λ = 〈πλ(x)vH , vλ〉 (x ∈ X), (5.1)

which allows us to link our geometric discussion in § 4 with representation theory.

Remark 5.5. It follows from Corollary 4.9 that aλ
H admits a holomorphic extension to the minimal

tube D−. Traditionally this fact was explained via (5.1) in the context of holomorphic extension
of unitary lowest weight modules (see [Nee99]). We wish to point out that Corollary 4.9 asserts
more, namely that aλ

H |D− is bounded by 1. In addition, Corollary 4.9 is more geometric, that is,
not restricted to unitary parameters λ.

Pairing the G-module of smooth vectors H∞
λ with vH yields the G-equivariant embedding

ι : H∞
λ → C∞(X), v 
→ (x 
→ 〈πλ(x−1)v, vH 〉). (5.2)

We say that πλ is X-square integrable if there exists a constant ds(λ) > 0, the spherical formal
dimension (cf. [Kro01]), such that

√
ds(λ) · ι extends to an isometric map Hλ → L2(X).

X-square integrable parameters λ are characterized by the condition [OO91]

〈λ − ρ, α〉 > 0 for all α ∈ ∆+
n . (5.3)

Here ρ = 1
2

∑
α∈∆+ mαα with mα = dimC gα

C
.
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Likewise we say that πλ is X-integrable if ι(HK−fin
λ ) ⊂ L1(X). Integrability is described by the

inequality

〈λ − 2ρ, α〉 > 0 for all α ∈ ∆+
n . (5.4)

The set of parameters λ ∈ Λ>0 that satisfy condition (5.4) (respectively (5.3)) are denoted by
Λ1 (respectively Λ2). Note that Λ1 ⊂ Λ2.

Remark 5.6. We discuss the lattice Λ>0 with regard to Λ1 and Λ2. One recognizes a strong depen-
dence on the multiplicities mα, which we exemplify for three basic cases below. Recall that elements
λ ∈ Λ>0 are described by λ =

∑n
i=1 λiωi with λi ∈ Z�0 and λm > 0. In addition, let us keep in mind

that conditions (5.3) and (5.4) are equivalent to 〈λ− ρ, αm〉 > 0 and 〈λ− 2ρ, αm〉 > 0, respectively.
The equal rank case. In this situation one has t = c and mα = 1 for all α. Thus, ρ = 1

2

∑m
i=1 ωi

and therefore λ − ρ =
∑m

i=1(λi − 1
2)ωi. In particular, 〈λ − ρ, αm〉 = 〈αm, αm〉(λm − 1

2) and thus
Λ>0 ⊂ Λ2 as λm � 1 for elements λ ∈ Λ>0.

The group case. In this situation one has mα = 2 for all α and so ρ =
∑n

i=1 ωi. Accordingly we
obtain 〈λ− ρ, αm〉 = 〈αm, αm〉(λm − 1). It follows that Λ>0 parameterizes the holomorphic discrete
series and their limits; in particular, Λ2 ⊂ Λ>0.

The rank one case. Here one has Λ>0 = Z>0 ·ω and ρ = (mα/2)α. Thus, Λ2 = (Z>0 + [mα/2])ω
and Λ2 ⊂ Λ>0 with equality precisely for mα = 1, that is, g = sl(2, R).

For λ ∈ Λ2, we set L2(X)λ = ι(Hλ).

Lemma 5.7. Let λ, µ ∈ Λ2. Fix v ∈ Hλ and define f(x) = 〈πλ(x−1)v, vH〉 ∈ L2(X)λ. Then for all
ξ ∈ Ξ+, the function

X → C, x 
→ f(x)aH(ξ−1x)µ

is integrable and ∫
X

f(x)aH(ξ−1x)µ dx =
δλµ

ds(λ)
〈v, πλ(ξ)vλ〉. (5.5)

Here

πλ(ξ)vλ = a−λπλ(g)vλ ∈ Hλ for ξ = ga · ξ0, g ∈ G and a ∈ A+.

Proof. Fix ξ ∈ Ξ+. Holomorphic extension of (5.1) yields

aH(ξ−1g)µ = 〈πλ(g)vH , πλ(ξ)vλ〉

for all g ∈ G and ξ ∈ Ξ+. It follows that x 
→ aH(ξ−1x)µ is square integrable on X. Thus, x 
→
f(x)aH(ξ−1x)µ is integrable. Finally, we apply Schur-orthogonality (cf. [Kro01, Proposition 3.2])
and obtain ∫

X
f(x)aH(ξ−1x)µ dx =

∫
X
〈πλ(x−1)v, vλ

H〉〈πµ(x)vµ
H , πµ(ξ)vµ〉 dx

=
∫

X
〈πλ(x−1)v, vλ

H〉〈πµ(x−1)πµ(ξ)vµ, vµ
H〉 dx

=
δµλ

ds(λ)
〈v, πλ(ξ)vλ〉. �

For λ ∈ Λ1 let us write L1(X)λ for the closure of ι(HK−fin
λ ) in L1(X). The following lemma can

be understood as an L1-version of Schur-orthogonality for the Cauchy transform.

Lemma 5.8. Let λ ∈ Λ1. Then

f̂ = f̂λ for all f ∈ L1(X)λ.
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Proof. Fix f ∈ L1(X)λ. We have to show that f̂µ = 0 for all µ ∈ Λ>0\{λ}. For µ ∈ Λ2 this is a
consequence of Lemma 5.7. Therefore, we may assume that µ ∈ Λ>0\Λ2. This means that condition
(5.3) is violated, which we express as

〈µ − ρ, αm〉 � 0. (5.6)

We now show that

f̂µ(ξ) =
∫

X
f(x)aH(ξ−1x)µ dx = 0 for all ξ ∈ Ξ+.

The above equation has boundary values on G/M ⊂ ∂Ξ+ and it will be sufficient to prove that

f̂µ(gM) =
∫

X
f(x)aH(g−1x)µ dx = 0 for all g ∈ G.

We compute

f̂µ(gM) =
∫

X
f(x)aH(g−1x)µ dx

=
∫

X
f(gx)aH(x)µ dx

=
∫

T

∫
X

f(tgx)aH(tx)µ dx dt

=
∫

X

(∫
T

tµf(tgx) dt

)
aH(x)µ dx.

To arrive at a contradiction, suppose that
∫
T tµf(tgx) dt �= 0. This can only happen if µ belongs

to the T -weight spectrum of πλ. Now the T -weights of πλ are contained in λ + Z�0[∆+]. Thus,
µ = λ + γ for some γ ∈ ∆+. However, then

〈µ − ρ, αm〉 = 〈λ − ρ, αm〉 + 〈γ, αm〉.
Observe that both summands on the right-hand side are positive, the desired contradiction to
(5.6).

Remark 5.9 (Analytic continuation). Let λ ∈ Λ1 and f ∈ L1(X)λ ∩ L2(X)λ. Write f(x) =
〈πλ(x−1)v, vH〉 for some v ∈ Hλ. Then Lemmas 5.7 and 5.8 imply that

f̂(ξ) =
1

ds(λ)
〈v, πλ(ξ)vλ〉. (5.7)

Clearly, the right-hand side makes sense for all v ∈ Hλ and all X-square integrable parameters
λ ∈ Λ2. We now explain how passing to parameters λ ∈ Λ2 in (5.7) has a natural explanation in
terms of analytic continuation. For this, let G̃ denote the universal cover of G. Write Λ̃1, Λ̃2 for the
sets of G̃-integral parameters that satisfy (5.4), (5.3), respectively. Clearly Λ1,2 ⊂ Λ̃1,2. The effect
of passing to the universal cover is that the parameter spaces involved become continuous in the
central variable, that is, there exists constants 0 < c2 < c1 such that

Λ̃1|RZ0 = ]c1,∞[ · (αm|RZ0) and Λ̃2|RZ0 = ]c2,∞[ · (αm|RZ0).

By the concrete formula for ds(λ) from [Kro01, Theorem 4.15], we know that λ 
→ ds(λ) is a mero-
morphic function on a∗

C
that is positive on Λ̃2. Now, familiar techniques show that the assignment

Λ̃2 � λ 
→ 1
ds(λ)

〈v, πλ(ξ)vλ〉 ∈ C

becomes analytic in the central variable (the Shapovalov form is polynomial in λ and it is explained
in [Kro99] how to make consistent analytic choices for v and vλ in dependence of the central
coordinate of λ).
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Motivated by Remark 5.9, we define the horospherical Cauchy transform for functions f ∈
L2(X)λ, λ ∈ Λ2 by

f̂ = f̂λ.

5.3 Hyperfunctions and generalized matrix coefficients
In order to discuss the horospherical Cauchy transform and its inverse in a more comprehensive
way, we need some results on the analytic continuation of generalized matrix coefficients of lowest
weight representations. Proofs of the facts cited below can be found in [KNO97].

Let (π,H) be a unitary lowest weight representation of G. Write Hω and H−ω for the associated
G-modules of analytic and hyperfunction vectors, respectively. The nature of the T -spectrum of
π shows that π|T extends holomorphically to T−. Moreover, the so-obtained self-adjoint operators
π(a), a ∈ A−, are of trace class and strongly mollifying, that is,

π(a)H−ω ⊂ Hω (a ∈ A−). (5.8)

Assume that π is H-spherical and denote by vH the (up to scalar) unique H-fixed distribution
vector. Let v ∈ H−ω be a hyperfunction vector. We wish to interpret the generalized matrix coeffi-
cient f(x) = 〈π(x−1)v, vH 〉 as a generalized function on X = G/H. It follows essentially from (5.8)
that the prescription

f̃(ga · x0) = 〈π(g−1)π(a−1)v, vH 〉 for g ∈ G and a ∈ A+ (5.9)

defines a holomorphic function on D+ = GA+ ·x0. The minimal tube D+ has X as an edge and this
allows us to interpret f as the boundary value of f̃ . Henceforth, we identify f with the holomorphic
function f̃ .

Suppose that H ⊂ L2(X), that is, π = πλ with λ ∈ Λ2 and H = L2(X)λ. We now show how
the horospherical Cauchy transform restricted to L2(X)λ can be extended to L2(X)−ω

λ ⊂ O(D+).
In other words for ξ ∈ Ξ+ we wish to give meaning to

f̂(ξ) =
∫

X
f(x)aH(ξ−1x)λ dx

=
∫

X
〈π(x−1)v, vH 〉aH(ξ−1x)λ dx

as a holomorphic function on Ξ+. Express ξ as ξ = ga · ξ0 with g ∈ G and a ∈ A+. By the usual
holomorphic change of variables, one obtains that

f̂(ξ) =
∫

X
f(x)aH(a−1g−1x)λ dx

=
∫

X
〈π(x−1)π(g−1)π(a−1)v, vH〉aH(x)λ d(x).

Now the last expression is well defined by (5.8). Of course, one has

f̂(ξ) =
1

ds(λ)
〈π(a−1)π(g−1)v, vλ〉 (5.10)

by the same argument as in Lemma 5.7. Thus, we have shown that the horospherical Cauchy
transform on L2(X)λ extends to a G-equivariant continuous map

L2(X)−ω
λ → O(Ξ+)λ.

We conclude this section with a conjecture related to the holomorphic intertwining of O(D+)
and O(Ξ+). It can be seen as a holomorphic analogue of Helgason’s conjecture (actually a theorem
by [KKMOOT78]).
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In order to state the conjecture, some new terminology is needed. Let us call a holomorphic
function f on Ξ+ bounded away from the boundary if its restriction to gT+a is bounded for all
choices of g ∈ G and a ∈ A+. We denote by Ob.a.b.(D+) the space of all holomorphic functions on
Ξ+ that are bounded away from the boundary. Note that Ob.a.b.(D+) is a closed G-subspace of the
Fréchet space O(D+).

Conjecture 1. Let D(X) be the algebra of G-invariant differential operators on X. Naturally, we
can view D(X) as holomorphic differential operators on XC. Write O(D+)λ for the common holo-
morphic D(X)-eigenfunctions on D+ with infinitesimal character λ − ρ. Let λ ∈ Λ2. We conjecture
that

Ob.a.b.(D+)λ = L2(X)−ω
λ . (5.11)

Note that the inclusion ‘⊃’ is clear by (5.8).
We have already remarked that O(Ξ+)λ 	 H−ω

λ (see [KNO97]). Hence, our conjectured equality
means that the horospherical Cauchy transform induces an intertwining isomorphism Ob.a.b.(D+)λ →
O(Ξ+)λ.

It is also an interesting problem to formulate (and prove) the conjecture for other parameters.

Remark 5.10. We illustrate Conjecture 1 for the one-sheeted hyperboloid X = Sl(2, R)/SO(1, 1). Fix
λ ∈ 2Z>0 = Λ2 and denote by Hλ (respectively H−λ) the lowest (respectively highest) weight module
of G = Sl(2, R) with lowest (respectively highest) weight λ (respectively −λ). Denote by Vλ−2 the
finite-dimensional G-module of highest weight λ − 2. Write C∞(X)λ for the D(X)-eigenspace with
eigenvalue λ − 1. Then,

C∞(X)λ 	 H∞
λ ⊕H∞

−λ ⊕ Vλ−2.

Now, the functions of H∞
±λ extend holomorphically to D± but not beyond, whereas the functions of

Vλ−2 extend holomorphically to all of XC. One deduces that O(D+)λ = H−ω
λ ⊕ Vλ−2. Finally, the

holomorphic functions in Vλ−2 grow exponentially at infinity and hence are not bounded away from
the boundary. Thus, Ob.a.b.(D+)λ = L2(X)−ω

λ as conjectured.

5.4 Inversion of the horospherical Cauchy transform
To begin with we first have to explain certain facts on incidence geometry between the Shilov
boundary X of D+ and the boundary piece G/M of Ξ+.

We keep in mind that we realized G/M in the boundary of Ξ+ by G/M 	 G · ξ0 ⊂ ∂Ξ+.
Recall the orbits S(z) ⊂ Ξ from (2.3). For a point x ∈ X we define the real form of S(x) by

SR(x) = S(x) ∩ G/M.

In view of the incidence relation (2.4), one has

SR(x) = {ξ ∈ G/M | ξ ∈ S(x)} = {ξ ∈ G/M | x ∈ E(ξ)}.
Lemma 5.11. Let x = g · x0 ∈ X, g ∈ G. Then,

SR(x) = gH · ξ0 	 H/M.

Proof. First note that for x = g · x0 with g ∈ G one has SR(x) = g · SR(x0). Hence, it suffices to
show that

SR(x0) = H · ξ0 	 H/M.

Let ξ ∈ SR(x0) and write ξ = y · ξ0 for some y ∈ G. We have to show that y ∈ H and that y
is uniquely determined modulo M . First observe that ξ ∈ S(x0) means yNC ⊂ HCNC and so
y ∈ HCNC ∩ G. Now HCNC ∩ G = H implies y ∈ H. Finally, uniqueness modulo M is immediate
from Lemma 2.2.
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It is possible to view the boundary orbits SR(x) as certain limits. For z = ga ·x0 ∈ D+ we define

SR(z) = gaH · ξ0 	 H/M.

We note that SR(z) ⊂ Ξ+ by (4.10). Furthermore, there is the obvious limit relation

lim
A+� a→1

SR(ga · ξ) = SR(g · x0).

Write dz(ξ) for the measure on SR(z) that is induced from a Haar measure d(hM) on H/M via
the identification SR(z) 	 H/M . Define the space of fiber integrable holomorphic functions on Ξ+

by

Of.i.(Ξ+) =
{

φ ∈ O(Ξ+)
∣∣∣∣ D+ � z →

∫
SR(z)

|φ(ξ)| dz(ξ) is locally bounded
}

.

For a function φ ∈ Of.i.(Ξ+) we define its inverse horospherical transform φ∨ ∈ O(D+) by

φ∨(z) =
∫

SR(z)
φ(ξ) dz(ξ) (z ∈ D+).

We note that

Of.i.(Ξ+) → O(D+), φ 
→ φ∨

is a G-equivariant continuous map.
Finally, we define a subset Λc ⊂ Λ2 of large parameters by

Λc = {λ ∈ Λ2 | (∀α ∈ ∆+
n ) (λ − ρ)(α̌) > 2 − mα}.

The inversion formula for the horospherical Cauchy transform is based on the following key
result.

Lemma 5.12. Let λ ∈ Λc. Let f ∈ L2(X)−ω
λ ⊂ O(D+). Then f̂ ∈ Of.i(Ξ+) and

f(z) = d(λ) ·
∫

SR(z)
f̂(ξ) dz(ξ) (z ∈ D+). (5.12)

In other words, f = d(λ) · (f̂)∨.

Proof. Let f(ga · ξ0) = 〈πλ(a−1)πλ(g−1)v, vH〉 for some v ∈ H−ω
λ . Then by (5.10)

f̂(ξ) =
1

ds(λ)
〈v, πλ(ξ)vλ〉.

As λ ∈ Λc, [Kro01, Theorems 2.16 and 3.6] imply that∫
H/M

πλ(h)vλ d(hM) =
ds(λ)
d(λ)

· vH

with the left-hand side understood as a convergent H−ω
λ -valued integral.

Thus, with z = ga · x0 one obtains that∫
SR(z)

f̂(ξ) dz(ξ) =
∫

H/M

1
ds(λ)

〈πλ(a−1)πλ(g−1)v, πλ(h)vλ〉 d(hM)

=
1

d(λ)
· f(z),

completing the proof of the lemma.
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Remark 5.13. If λ ∈ Λ2\Λc and 0 �= f ∈ L2(X)−ω
λ , then the integral

∫
SR(z) f̂(ξ) dz(ξ) does not

converge. However, using the results from [Kro01] it can be shown that the identity (5.12) can
be analytically continued (cf. Remark 5.9) to all λ ∈ Λ2. Henceforth, we understand (5.12) as an
identity valid for all λ ∈ Λ2.

The formal dimension d(λ) is a polynomial in λ, explicitly given by [Har56]

d(λ) = c ·
∏

α∈Σ+

〈λ − ρ(c), α〉 (5.13)

with c ∈ R a constant depending on the normalization of measures.

The right action of T on Ξ+ induces an identification of U(tC) with G-invariant differential
operators on Ξ+. As usual we identify U(tC) with polynomial functions on t∗

C
. In this way, d(λ)

corresponds to a G-invariant differential operator L on Ξ+ that acts along the fibers of Ξ+ → F+

and has constant coefficients in logarithmic coordinates. In particular,

Lφ = d(λ) · φ (φ ∈ O(Ξ+)λ).

Combining this fact with (5.12) we obtain the main result of this paper.

Theorem 5.14. Let f ∈
∑

λ∈Λ2
L2(X)−ω

λ ⊂ O(D+). Then

f = (Lf̂)∨.

6. Example of the hyperboloid of one sheet

This section is devoted to the discussion of the case G = Sl(2, R) and H = SO(1, 1). Note that
G/H 	 SOe(2, 1)/SOe(1, 1). For what follows, it is inconsequential to assume that G = SOe(2, 1)
and H = SOe(1, 1) although the universal complexification of G = SOe(2, 1) is not simply connected.

The map

G/H → R
3, gH 
→ g ·

1
0
0


identifies X = G/H with the one-sheeted hyperboloid

X = {x = (x1, x2, x3)T ∈ R
3 | x2

1 + x2
2 − x2

3 = 1}.

The base point x0 becomes (1, 0, 0)T. Let us define a complex bilinear pairing on C
3 by

〈z,w〉 = z1w1 + z2w2 − z3w3 for z =

z1

z2

z3

 , w =

w1

w2

w3

 ∈ C
3.

If we set ∆(z) = 〈z, z〉 for z ∈ C
3, then X = {x ∈ R

3 | ∆(x) = 1}. Further, one has GC =
SO(2, 1; C) 	 SO(3, C) and HC = SO(1, 1; C) 	 SO(2, C). Clearly

XC = GC/HC = {z ∈ C
3 | ∆(z) = 1}.

Our choice of T will be

T = K =


 cos θ sin θ 0
−sin θ cos θ 0

0 0 1

 ∣∣∣∣ θ ∈ R

 .
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In particular, a = RU0 where

U0 =

 0 i 0
−i 0 0
0 0 0


and ∆ = ∆n = {α,−α} with α(U0) = 1. If we demand that α be the positive root, then

NC =




1 − z2

2
i
z2

2
iz

i
z2

2
1 +

z2

2
z

iz z 1


∣∣∣∣ z ∈ C


.

The homogeneous space GC/MCNC naturally identifies with the isotropic vectors Ξ = {ζ ∈ C
3\{0} |

∆(ζ) = 0} via the GC-equivariant map

GC/MCNC → Ξ, gMCNC 
→ g · ζ0 where ζ0 =

 1
−i
0

 .

The correspondence between elements of ζ ∈ Ξ and horospheres on XC is explicitly given by

ζ ↔ E(ζ) = {z ∈ XC | 〈z, ζ〉 = 1}.

Elements ζ ∈ Ξ can be expressed as ζ = ξ + iη with ξ, η ∈ R
3\{0} subject to

∆(ξ) = ∆(η) and 〈ξ, η〉 = 0.

A simple computation yields

Ξ+ = {ζ = ξ + iη ∈ Ξ | ∆(ξ) = ∆(η) > 1}

and

D+ = {z = x + iy ∈ XC | ∆(x) > 1}.

Next we compute the kernel function.

Lemma 6.1. For all z ∈ XC and ζ ∈ Ξ one has

aH(ζ−1z)−α = 〈z, ζ〉.

Proof. We first show that

aH(g)−α = 〈g · x0, ζ0〉 (g ∈ GC). (6.1)

Observe that both sides are holomorphic functions on GC that are left NC-invariant and right HC-
invariant. Thus, it is enough to test with elements a ∈ AC. Then aH(a)−α = a−α. On the other
hand for

a =

 cos θ sin θ 0
−sin θ cos θ 0

0 0 1


with θ ∈ C, we specifically obtain

〈a · x0, ζ0〉 =

〈 cos θ
−sin θ

0

 ,

 1
−i
0

〉 = cos θ + i sin θ = a−α.

This proves (6.1).
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It is now easy to prove the asserted statement of the lemma. For this, write ζ = g · ζ0 and
z = y · x0 for g, y ∈ GC. Then, (6.1) implies that

aH(ζ−1z)−α = aH(g−1y)−α = 〈g−1y · x0, ζ0〉 = 〈y · x0, g · ζ0〉 = 〈z, ζ〉.

We observe that Λ>0 = Λ2 = Z>0 · α. Hence, Lemma 6.1 implies that the horospherical Cauchy
kernel is

K(ζ) =
1

aH(ζ−1)−α − 1
=

1
〈ζ, x0〉 − 1

(ζ ∈ Ξ+).

The horospherical Cauchy transform for f ∈ L1(X) is given by

f̂(ζ) =
∫

X

f(x)
〈ζ, x〉 − 1

dx (ζ ∈ Ξ+)

with dx the invariant measure on the hyperboloid X. Finally, we discuss inversion. Let the inner
product on a be normalized such that 〈α,α〉 = 1 and identify R with a∗ by means of the bijection
R � λ 
→ λα ∈ a∗. Then, Λ>0 = Z>0 and d(λ) = λ − 1

2 . An easy calculation gives

L =
3∑

j=1

ζj
∂

∂ζj
− 1

2
.

For f ∈
∑

λ>0 L2(X)−ω
λ ⊂ O(D+) the inversion formula reads

f(z) =
∫ ∞

−∞
(Lf)


z1 − i

z2

r
cosh t − i

z1z3

r
sinh t

z2 + i
z1

r
cosh t − i

z2z3

r
sinh t

z3 − ir sinh t

 dt,

where r =
√

z2
1 + z2

2 .
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