
25 Understanding the Garbage
Collector

This chapter includes contributions from Stephen Weeks and Sadiq Ja�er.

We've described the runtime format of individual OCaml variables earlier, in Chap-

ter 24 (Memory Representation of Values). When you execute your program, OCaml

manages the lifecycle of these variables by regularly scanning allocated values and

freeing them when they're no longer needed. This in turn means that your applications

don't need to manually implement memory management, and it greatly reduces the

likelihood of memory leaks creeping into your code.

The OCaml runtime is a C library that provides routines that can be called from

running OCaml programs. The runtime manages a heap, which is a collection of

memory regions that it obtains from the operating system. The runtime uses this

memory to hold heap blocks that it �lls up with OCaml values in response to allocation

requests by the OCaml program.

25.1 Mark and Sweep Garbage Collection

When there isn't enough memory available to satisfy an allocation request from the

pool of allocated heap blocks, the runtime system invokes the garbage collector (GC).

An OCaml program can't explicitly free a value when it is done with it. Instead, the GC

regularly determines which values are live and which values are dead, i.e., no longer

in use. Dead values are collected and their memory made available for reuse by the

application.

The GC doesn't keep constant track of values as they are allocated and used. Instead,

it regularly scans them by starting from a set of root values that the application always

has access to (such as the stack). The GC maintains a directed graph in which heap

blocks are nodes, and there is an edge from heap block b1 to heap block b2 if some

�eld of b1 is a pointer to b2.

All blocks reachable from the roots by following edges in the graph must be retained,

and unreachable blocks can be reused by the application. The algorithm used by

OCaml to perform this heap traversal is commonly known asmark and sweep garbage

collection, and we'll explain it further now.

https://doi.org/10.1017/9781009129220.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.029

436 Understanding the Garbage Collector

25.2 Generational Garbage Collection

The usual OCaml programming style involves allocating many small values that are

used for a short period of time and then never accessed again. OCaml takes advantage

of this fact to improve performance by using a generational GC.

A generational GCmaintains separate memory regions to hold blocks based on how

long the blocks have been live. OCaml's heap is split into two such regions:

• A small, �xed-size minor heap where most blocks are initially allocated

• A larger, variable-size major heap for blocks that have been live longer

A typical functional programming style means that young blocks tend to die young

and old blocks tend to stay around for longer than young ones. This is often referred to

as the generational hypothesis.

OCaml uses di�erent memory layouts and garbage-collection algorithms for the

major and minor heaps to account for this generational di�erence. We'll explain how

they di�er in more detail next.

The Gc Module and OCAMLRUNPARAM

OCaml provides several mechanisms to query and alter the behavior of the runtime

system. The Gcmodule provides this functionality from within OCaml code, and we'll

frequently refer to it in the rest of the chapter. As with several other standard library

modules, Core alters the Gc interface from the standard OCaml library. We'll assume

that you've opened Core in our explanations.

You can also control the behavior of OCaml programs by setting the OCAMLRUNPARAM

environment variable before launching your application. This lets you set GC param-

eters without recompiling, for example to benchmark the e�ects of di�erent settings.

The format of OCAMLRUNPARAM is documented in the OCaml manuala.
a https://ocaml.org/manual/runtime.html

25.3 The Fast Minor Heap

The minor heap is where most of your short-lived values are held. It consists of one

contiguous chunk of virtual memory containing a sequence of OCaml blocks. If there

is space, allocating a new block is a fast, constant-time operation that requires just a

couple of CPU instructions.

To garbage-collect the minor heap, OCaml uses copying collection to move all

live blocks in the minor heap to the major heap. This takes work proportional to the

number of live blocks in the minor heap, which is typically small according to the

generational hypothesis. In general, the garbage collector stops the world (that is, halts

the application) while it runs, which is why it's so important that it complete quickly

to let the application resume running with minimal interruption.

https://doi.org/10.1017/9781009129220.029 Published online by Cambridge University Press

https://ocaml.org/manual/runtime.html
https://doi.org/10.1017/9781009129220.029

25.3 Understanding Allocation 437

25.3.1 Allocating on the Minor Heap

Theminor heap is a contiguous chunk of virtualmemory that is usually a fewmegabytes

in size so that it can be scanned quickly.

The runtime stores the boundaries of the minor heap in two pointers that delimit the

start and end of the heap region (caml_young_start and caml_young_end, but we will

drop the caml_young pre�x for brevity). The base is the memory address returned by

the system malloc, and start is aligned against the next nearest word boundary from

base to make it easier to store OCaml values.

In a fresh minor heap, the limit equals the start, and the current ptr will equal

the end. ptr decreases as blocks are allocated until it reaches limit, at which point a

minor garbage collection is triggered.

Allocating a block in the minor heap just requires ptr to be decremented by the

size of the block (including the header) and a check that it's not less than limit. If

there isn't enough space left for the block without decrementing past limit, a minor

garbage collection is triggered. This is a very fast check (with no branching) on most

CPU architectures.

Understanding Allocation

You may wonder why limit is required at all, since it always seems to equal start.

It's because the easiest way for the runtime to schedule a minor heap collection is

by setting limit to equal end. The next allocation will never have enough space after

this is done and will always trigger a garbage collection. There are various internal

reasons for such early collections, such as handling pending UNIX signals, but they

don't ordinarily matter for application code.

It is possible to write loops or recurse in a way that may take a long time to do an

allocation - if at all. To ensure that UNIX signals and other internal bookkeeping that

require interrupting the running OCaml program still happen the compiler introduces

poll points into generated native code.

These poll points check ptr against limit and developers should expect them to be

placed at the start of every function and the back edge of loops. The compiler includes

a data�ow pass that removes all but the minimum set of points necessary to ensure

these checks happen in a bounded amount of time.

Setting the Size of the Minor Heap

The default minor heap size in OCaml is normally 2 MB on 64-bit platforms, but this

is increased to 8 MB if you use Core (which generally prefers default settings that

improve performance, but at the cost of a bigger memory pro�le). This setting can be

https://doi.org/10.1017/9781009129220.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.029

438 Understanding the Garbage Collector

overridden via the s=<words> argument to OCAMLRUNPARAM. You can change it after the

program has started by calling the Gc.set function:

open Core;;
let c = Gc.get ();;
val c : Gc.Control.t =

{Core.Gc.Control.minor_heap_size = 262144; major_heap_increment =

15;

space_overhead = 120; verbose = 0; max_overhead = 500;

stack_limit = 1048576; allocation_policy = 2; window_size = 1;

custom_major_ratio = 44; custom_minor_ratio = 100;

custom_minor_max_size = 8192}

Gc.tune ~minor_heap_size:(262144 * 2) ();;
- : unit = ()

Changing the GC size dynamically will trigger an immediate minor heap collec-

tion. Note that Core increases the default minor heap size from the standard OCaml

installation quite signi�cantly, and you'll want to reduce this if running in verymemory-

constrained environments.

25.4 The Long-Lived Major Heap

The major heap is where the bulk of the longer-lived and larger values in your program

are stored. It consists of any number of noncontiguous chunks of virtual memory, each

containing live blocks interspersed with regions of free memory. The runtime system

maintains a free-list data structure that indexes all the free memory that it has allocated,

and uses it to satisfy allocation requests for OCaml blocks.

The major heap is typically much larger than the minor heap and can scale to

gigabytes in size. It is cleaned via a mark-and-sweep garbage collection algorithm that

operates in several phases:

• The mark phase scans the block graph and marks all live blocks by setting a bit in

the tag of the block header (known as the color tag).

• The sweep phase sequentially scans the heap chunks and identi�es dead blocks that

weren't marked earlier.

• The compact phase relocates live blocks into a freshly allocated heap to eliminate

gaps in the free list. This prevents the fragmentation of heap blocks in long-

running programs and normally occurs much less frequently than the mark and

sweep phases.

A major garbage collection must also stop the world to ensure that blocks can be

moved aroundwithout this being observed by the live application. Themark-and-sweep

phases run incrementally over slices of the heap to avoid pausing the application for

long periods of time, and also precede each slice with a fast minor collection. Only the

compaction phase touches all the memory in one go, and is a relatively rare operation.

https://doi.org/10.1017/9781009129220.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.029

25.4 Memory Allocation Strategies 439

25.4.1 Allocating on the Major Heap

The major heap consists of a singly linked list of contiguous memory chunks sorted in

increasing order of virtual address. Each chunk is a single memory region allocated via

malloc(3) and consists of a header and data area which contains OCaml heap chunks.

A heap chunk header contains:

• The malloced virtual address of the memory region containing the chunk

• The size in bytes of the data area

• An allocation size in bytes used during heap compaction to merge small blocks to

defragment the heap

• A link to the next heap chunk in the list

• A pointer to the start and end of the range of blocks that may contain unexamined

�elds and need to be scanned later. Only used after mark stack over�ow.

Each chunk's data area starts on a page boundary, and its size is a multiple of the

page size (4 KB). It contains a contiguous sequence of heap blocks that can be as small

as one or two 4 KB pages, but are usually allocated in 1 MB chunks (or 512 KB on

32-bit architectures).

Controlling the Major Heap Increment

The Gcmodule uses the major_heap_increment value to control the major heap growth.

This de�nes the number of words to add to the major heap per expansion and is the

only memory allocation operation that the operating system observes from the OCaml

runtime after initial startup (since the minor is �xed in size).

Allocating an OCaml value on the major heap �rst checks the free list of blocks for

a suitable region to place it. If there isn't enough room on the free list, the runtime

expands the major heap by allocating a fresh heap chunk that will be large enough.

That chunk is then added to the free list, and the free list is checked again (and this

time will de�nitely succeed).

Older versions of OCaml required setting a �xed number of bytes for the major heap

increment. That was a value that was tricky to get right: too small of a value could lead

to lots of smaller heap chunks spread across di�erent regions of virtual memory that

require more housekeeping in the OCaml runtime to keep track of them; too large of a

value can waste memory for programs with small heaps.

You can use Gc.tune to set that value, but the values are a little counter-intuitive, for

backwards-compatibility reasons. Values under 1000 are interpreted as percentages,

and the default is 15%. Values 1000 and over are treated as a raw number of bytes. But

most of the time, you won't set the value at all.

25.4.2 Memory Allocation Strategies

Themajor heap does its best to managememory allocation as e�ciently as possible and

relies on heap compaction to ensure that memory stays contiguous and unfragmented.

https://doi.org/10.1017/9781009129220.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.029

440 Understanding the Garbage Collector

The default allocation policy normally works �ne for most applications, but it's worth

bearing in mind that there are other options, too.

The free list of blocks is always checked �rst when allocating a new block in the

major heap. The default free list search is called best-�t allocation, with alternatives

next-�t and �rst-�t algorithms also available.

Best-Fit Allocation

The best-�t allocator is a combination of two strategies. The �rst, size-segregated free

lists, is based on the observation that nearly all major heap allocations in OCaml are

small (consider list elements and tuples which are only a couple of machine words).

Best �t keeps separate free lists for sizes up to and including 16 words which gives a

fast path for most allocations. Allocations for these sizes can be serviced from their

segregated free lists or, if they are empty, from the next size with a space.

The second strategy, for larger allocations, is the use of a specialized data structure

known as a splay tree for the free list. This is a type of search tree that adapts to recent

access patterns. For our use this means that the most commonly requested allocation

sizes are the quickest to access.

Small allocations, when there are no larger sizes available in the segregated free

lists, and large allocations greater than sixteen words are serviced from the main free

list. The free list is queried for the smallest block that is at least as large as the allocation

requested.

Best-�t allocation is the default allocation mechanism. It represents a good trade-o�

between the allocation cost (in terms of CPU work) and heap fragmentation.

Next-Fit Allocation

Next-�t allocation keeps a pointer to the block in the free list that was most recently

used to satisfy a request. When a new request comes in, the allocator searches from

the next block to the end of the free list, and then from the beginning of the free list up

to that block.

Next-�t allocation is quite a cheap allocation mechanism, since the same heap chunk

can be reused across allocation requests until it runs out. This in turn means that there

is good memory locality to use CPU caches better. The big downside of next-�t is that

since most allocations are small, large blocks at the start of the free list become heavily

fragmented.

First-Fit Allocation

If your program allocates values of many varied sizes, you may sometimes �nd that

your free list becomes fragmented. In this situation, the GC is forced to perform an

expensive compaction despite there being free chunks, since none of the chunks alone

are big enough to satisfy the request.

First-�t allocation focuses on reducing memory fragmentation (and hence the num-

ber of compactions), but at the expense of slower memory allocation. Every allocation

scans the free list from the beginning for a suitable free chunk, instead of reusing the

most recent heap chunk as the next-�t allocator does.

https://doi.org/10.1017/9781009129220.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.029

25.4 Marking and Scanning the Heap 441

For some workloads that need more real-time behavior under load, the reduction in

the frequency of heap compaction will outweigh the extra allocation cost.

Controlling the Heap Allocation Policy

You can set the heap allocation policy by calling Gc.tune:

Gc.tune ~allocation_policy:First_fit ();;
- : unit = ()

The same behavior can be controlled via an environment variable by setting

OCAMLRUNPARAM to a=0 for next-�t, a=1 for �rst-�t, or a=2 for best-�t.

25.4.3 Marking and Scanning the Heap

The marking process can take a long time to run over the complete major heap and

has to pause the main application while it's active. It therefore runs incrementally by

marking the heap in slices. Each value in the heap has a 2-bit color �eld in its header

that is used to store information about whether the value has been marked so that the

GC can resume easily between slices.

• Blue: On the free list and not currently in use

• White (during marking): Not reached yet, but possibly reachable

• White (during sweeping): Unreachable and can be freed

• Black: Reachable, and its �elds have been scanned

The color tags in the value headers store most of the state of the marking process,

allowing it to be paused and resumed later. On allocation, all heap values are initially

given the color white indicating they are possibly reachable but haven't been scanned

yet. The GC and application alternate between marking a slice of the major heap and

actually getting on with executing the program logic. The OCaml runtime calculates a

sensible value for the size of each major heap slice based on the rate of allocation and

available memory.

The marking process starts with a set of root values that are always live (such as the

application stack and globals). These root values have their color set to black and are

pushed on to a specialized data structure known as the mark stack. Marking proceeds

by popping a value from the stack and examining its �elds. Any �elds containing

white-colored blocks are changed to black and pushed onto the mark stack.

This process is repeated until the mark stack is empty and there are no further values

to mark. There's one important edge case in this process, though. The mark stack can

only grow to a certain size, after which the GC can no longer recurse into intermediate

values since it has nowhere to store them while it follows their �elds. This is known

as mark stack over�ow and a process called pruning begins. Pruning empties the mark

stack entirely, summarizing the addresses of each block as start and end ranges in each

heap chunk header.

Later in the marking process when the mark stack is empty it is replenished by

redarkening the heap. This starts at the �rst heap chunk (by address) that has blocks

https://doi.org/10.1017/9781009129220.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.029

442 Understanding the Garbage Collector

needing redarkening (i.e were removed from the mark stack during a prune) and entries

from the redarkening range are added to the mark stack until it is a quarter full. The

emptying and replenishing cycle continues until there are no heap chunks with ranges

left to redarken.

Controlling Major Heap Collections

You can trigger a single slice of the major GC via the major_slice call. This performs

a minor collection �rst, and then a single slice. The size of the slice is normally

automatically computed by the GC to an appropriate value and returns this value so

that you can modify it in future calls if necessary:

Gc.major_slice 0;;
- : int = 0

Gc.full_major ();;
- : unit = ()

The space_overhead setting controls how aggressive the GC is about setting the

slice size to a large size. This represents the proportion of memory used for live data

that will be �wasted� because the GC doesn't immediately collect unreachable blocks.

Core defaults this to 100 to re�ect a typical system that isn't overlymemory-constrained.

Set this even higher if you have lots of memory, or lower to cause the GC to work

harder and collect blocks faster at the expense of using more CPU time.

25.4.4 Heap Compaction

After a certain number of major GC cycles have completed, the heap may begin to be

fragmented due to values being deallocated out of order from how they were allocated.

This makes it harder for the GC to �nd a contiguous block of memory for fresh

allocations, which in turn would require the heap to be grown unnecessarily.

The heap compaction cycle avoids this by relocating all the values in the major

heap into a fresh heap that places them all contiguously in memory again. A naive

implementation of the algorithm would require extra memory to store the new heap,

but OCaml performs the compaction in place within the existing heap.

Controlling Frequency of Compactions

The max_overhead setting in the Gc module de�nes the connection between free mem-

ory and allocated memory after which compaction is activated.

A value of 0 triggers a compaction after every major garbage collection cycle,

whereas the maximum value of 1000000 disables heap compaction completely. The

default settings should be �ne unless you have unusual allocation patterns that are

causing a higher-than-usual rate of compactions:

Gc.tune ~max_overhead:0 ();;
- : unit = ()

https://doi.org/10.1017/9781009129220.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.029

25.4 The Mutable Write Barrier 443

25.4.5 Intergenerational Pointers

One complexity of generational collection arises from the fact that minor heap sweeps

are much more frequent than major heap collections. In order to know which blocks in

the minor heap are live, the collector must track which minor-heap blocks are directly

pointed to bymajor-heap blocks.Without this information, eachminor collectionwould

also require scanning the much larger major heap.

OCaml maintains a set of such intergenerational pointers to avoid this dependency

between a major and minor heap collection. The compiler introduces a write barrier

to update this so-called remembered set whenever a major-heap block is modi�ed to

point at a minor-heap block.

The Mutable Write Barrier

The write barrier can have profound implications for the structure of your code. It's

one of the reasons using immutable data structures and allocating a fresh copy with

changes can sometimes be faster than mutating a record in place.

The OCaml compiler keeps track of any mutable types and adds a call to the

runtime caml_modify function before making the change. This checks the location of

the target write and the value it's being changed to, and ensures that the remembered

set is consistent. Although the write barrier is reasonably e�cient, it can sometimes

be slower than simply allocating a fresh value on the fast minor heap and doing some

extra minor collections.

Let's see this for ourselves with a simple test program. You'll need to install the Core

benchmarking suite via opam install core_bench before you compile this code:

open Core
open Core_bench

module Mutable = struct
type t =
{ mutable iters : int
; mutable count : float
}

let rec test t =
if t.iters = 0
then ()
else (
t.iters <- t.iters - 1;
t.count <- t.count +. 1.0;
test t)

end

module Immutable = struct
type t =
{ iters : int
; count : float
}

let rec test t =
if t.iters = 0

https://doi.org/10.1017/9781009129220.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.029

444 Understanding the Garbage Collector

then ()
else test { iters = t.iters - 1; count = t.count +. 1.0 }

end

let () =
let iters = 1_000_000 in
let count = 0.0 in
let tests =
[Bench.Test.create ~name:"mutable" (fun () ->

Mutable.test { iters; count })
; Bench.Test.create ~name:"immutable" (fun () ->

Immutable.test { iters; count })
]

in
Bench.make_command tests |> Command.run

This program de�nes a type t1 that is mutable and t2 that is immutable. The

benchmark loop iterates over both �elds and increments a counter. Compile and execute

this with some extra options to show the amount of garbage collection occurring:

$ dune exec -- ./barrier_bench.exe -ascii alloc -quota 1
Estimated testing time 2s (2 benchmarks x 1s). Change using '-quota'.

Name Time/Run mWd/Run mjWd/Run Prom/Run Percentage
----------- ---------- --------- ---------- ---------- ------------
mutable 5.06ms 2.00Mw 20.61w 20.61w 100.00%
immutable 3.95ms 5.00Mw 95.64w 95.64w 77.98%

There is a space/time trade-o� here. The mutable version takes longer to complete

than the immutable one but allocates many fewerminor-heapwords than the immutable

version.Minor allocation inOCaml is very fast, and so it is often better to use immutable

data structures in preference to the more conventional mutable versions. On the other

hand, if you only rarely mutate a value, it can be faster to take the write-barrier hit and

not allocate at all.

The only way to know for sure is to benchmark your program under real-world

scenarios using Core_bench and experiment with the trade-o�s. The command-line

benchmark binaries have a number of useful options that a�ect garbage collection

behavior and the output format:

$ dune exec -- ./barrier_bench.exe -help
Benchmark for mutable, immutable

barrier_bench.exe [COLUMN ...]

Columns that can be specified are:
time - Number of nano secs taken.
cycles - Number of CPU cycles (RDTSC) taken.
alloc - Allocation of major, minor and promoted words.
gc - Show major and minor collections per 1000 runs.
percentage - Relative execution time as a percentage.
speedup - Relative execution cost as a speedup.
samples - Number of samples collected for profiling.

...

https://doi.org/10.1017/9781009129220.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.029

25.5 Attaching Finalizer Functions to Values 445

25.5 Attaching Finalizer Functions to Values

OCaml's automatic memory management guarantees that a value will eventually be

freed when it's no longer in use, either via the GC sweeping it or the program termi-

nating. It's sometimes useful to run extra code just before a value is freed by the GC,

for example, to check that a �le descriptor has been closed, or that a log message is

recorded.

What Values Can Be Finalized?

Various values cannot have �nalizers attached since they aren't heap-allocated. Some

examples of values that are not heap-allocated are integers, constant constructors,

Booleans, the empty array, the empty list, and the unit value. The exact list of what is

heap-allocated or not is implementation-dependent, which is why Core provides the

Heap_block module to explicitly check before attaching the �nalizer.

Some constant values can be heap-allocated but never deallocated during the lifetime

of the program, for example, a list of integer constants. Heap_block explicitly checks

to see if the value is in the major or minor heap, and rejects most constant values.

Compiler optimizations may also duplicate some immutable values such as �oating-

point values in arrays. These may be �nalized while another duplicate copy is being

used by the program.

Core provides a Heap_block module that dynamically checks if a given value

is suitable for �nalizing. Core keeps the functions for registering �nalizers in the

Core.Gc.Expert module. Finalizers can run at any time in any thread, so they can be

pretty hard to reason about in multi-threaded contexts. Async, which we discussed in

Chapter 17 (Concurrent Programming with Async), shadows the Gc module with its

ownmodule that contains a function, Gc.add_finalizer, which is concurrency-safe. In

particular, �nalizers are scheduled in their own Async job, and care is taken by Async

to capture exceptions and raise them to the appropriate monitor for error-handling.

Let's explore this with a small example that �nalizes values of di�erent types, all of

which are heap-allocated.

open Core
open Async

let attach_finalizer n v =
match Heap_block.create v with
| None -> printf "%20s: FAIL\n%!" n
| Some hb ->
let final _ = printf "%20s: OK\n%!" n in
Gc.add_finalizer hb final

type t = { foo : bool }

let main () =
attach_finalizer "allocated variant" (`Foo (Random.bool ()));
attach_finalizer "allocated string" (Bytes.create 4);
attach_finalizer "allocated record" { foo = (Random.bool ()) };

https://doi.org/10.1017/9781009129220.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.029

446 Understanding the Garbage Collector

Gc.compact ();
return ()

let () =
Command.async
~summary:"Testing finalizers"
(Command.Param.return main)

|> Command.run

Building and running this should show the following output:

$ dune exec -- ./finalizer.exe
allocated record: OK
allocated string: OK
allocated variant: OK

The GC calls the �nalization functions in the order of the deallocation. If several

values become unreachable during the same GC cycle, the �nalization functions will

be called in the reverse order of the corresponding calls to add_finalizer. Each call

to add_finalizer adds to the set of functions, which are run when the value becomes

unreachable. You can have many �nalizers all pointing to the same heap block if you

wish.

After a garbage collection determines that a heap block b is unreachable, it removes

from the set of �nalizers all the functions associated with b, and serially applies each

of those functions to b. Thus, every �nalizer function attached to b will run at most

once. However, program termination will not cause all the �nalizers to be run before

the runtime exits.

The �nalizer can use all features of OCaml, including assignments that make the

value reachable again and thus prevent it from being garbage-collected. It can also loop

forever, which will cause other �nalizers to be interleaved with it.

https://doi.org/10.1017/9781009129220.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.029

