ON THE CLASS NUMBER OF A UNIT LATTICE OVER A RING OF REAL QUADRATIC INTEGERS

YOSHIO MIMURA

§1. Introduction

Let K be a totally real algebraic number field. In a positive definite quadratic space over K a lattice E_{n} is called a unit lattice of rank n if E_{n} has an orthonormal basis $\left\{e_{1}, \cdots, e_{n}\right\}$. The class number one problem is to find n and K for which the class number of E_{n} is one. Dzewas ([1]), Nebelung ([3]), Pfeuffer ([6], [7]) and Peters ([5]) have settled this problem. The present state of this problem is: If $n \geqq 3$, then the class number of E_{n} is one if and only if " $K=\boldsymbol{Q}, n \leqq 8$ ", " $\boldsymbol{K}=\boldsymbol{Q}(\sqrt{2}), n \leqq 4$ ", $" \boldsymbol{K}=\boldsymbol{Q}(\sqrt{5}), n \leqq 4 ", " \boldsymbol{K}=\boldsymbol{Q}(\sqrt{17}), n=3 ", " \boldsymbol{K}=\boldsymbol{K}^{(49)}, n=3$ " or " $\boldsymbol{K}=\boldsymbol{K}^{(148)}$, $n=3$ ", where \boldsymbol{Q} is the rational number field and $\boldsymbol{K}^{(99)}$ (resp. $\boldsymbol{K}^{(148)}$) is the unique totally real cubic number field with discriminant 49 (resp. 148). The class number two problem has been studied by Pohst ([10]), who gets a nearly complete result for $n \geqq 4$: If $n \geqq 4$, then the class number of E_{n} is two only if " $\boldsymbol{K}=\boldsymbol{K}^{(4)}$, $n=4$ " or " $K=\boldsymbol{Q}(\sqrt{5}), n=5,6,7$ ", and the class number of E_{n} is two in the first two cases. Pfeuffer ([8]) has shown that the class number of E_{n} is three for $\boldsymbol{K}=\boldsymbol{Q}(\sqrt{5})$ and $n=6$. In the special case that K is a real quadratic field, it remains to consider the class number of E_{3} over $K(\neq \boldsymbol{Q}(\sqrt{2}), \boldsymbol{Q}(\sqrt{5}), \boldsymbol{Q}(\sqrt{17}))$.

All former proofs of the "only if" assertions and nearly all proofs of the class number one (or two) for special fields K and special n use the Siegel Mass Formula. On the other hand we have another method by which Kneser ([2]) has found the class number of E_{n} for \boldsymbol{Q}. Using this method Salamon ([11]) has found the first result for $\boldsymbol{Q}(\sqrt{3})$. In this paper we shall prove the following theorem by using the Kneser method.

Theorem. In the case of real quadratic fields, the class number of E_{n} (with $n \geqq 3$) is two if and only if

$$
\begin{array}{ll}
\boldsymbol{Q}(\sqrt{2}), & n=5, \\
\boldsymbol{Q}(\sqrt{3}), & n=3, \\
\boldsymbol{Q}(\sqrt{5}), & n=5, \\
\boldsymbol{Q}(\sqrt{13}), & n=3, \\
\boldsymbol{Q}(\sqrt{33}), & n=3, \\
\boldsymbol{Q}(\sqrt{41}), & n=3 .
\end{array}
$$

The class number of E_{n} is a monotone increasing function of n for a fixed \boldsymbol{K} ([4], 105: 1). In Section 2 we discuss some properties of adjacent lattices. In Section 3 we find some special adjacent lattices to E_{n} and prove that the class number of E_{n} is more than two unless K is one of the exceptional eight fields (cf. Proposition 8). In Section 4 we treat the above exceptional cases and determine the class number by using the Kneser method. The notation used in this paper will generally be those of [4].

§2. Adjacent lattices

Let p be an odd prime number. Put

$$
A_{p}^{n}=\left\{\left(a_{1}, \cdots, a_{n}\right) \in \boldsymbol{Z}^{n} ; \sum_{i=1}^{n} a_{i}^{2} \equiv 0 \bmod p,\left(a_{1}, \cdots, a_{n}\right) \not \equiv(0, \cdots, 0) \bmod p\right\}
$$

where Z is the ring of rational integers. We define an equivalence relation \sim on $A_{p}^{n}:\left(a_{1}, \cdots, a_{n}\right) \sim\left(b_{1}, \cdots, b_{n}\right)$ if and only if there is a permutation $\left\{1^{\prime}, 2^{\prime}, \cdots, n^{\prime}\right\}$ of $\{1,2, \cdots, n\}$ and an integer c prime to p such that $b_{i}^{2} \equiv c a_{i^{\prime}}^{2} \bmod p$ for all i. In each equivalence class we can choose a representative (a_{1}, \cdots, a_{n}) satisfying

$$
0 \leqq a_{1} \leqq a_{2} \leqq \cdots \leqq a_{n}
$$

and

$$
\sum_{i=1}^{n} a_{i}^{2} \leqq \sum_{i=1}^{n} b_{i}^{2}
$$

for all $\left(b_{1}, \cdots, b_{n}\right)$ in the class. By R_{p}^{n} we denote the set of the above representatives. Let. $\left(a_{1}, \cdots, a_{n}\right)$ and (b_{1}, \cdots, b_{n}) be in the same class and $\left(a_{1}, \cdots, a_{n}\right) \in R_{p}^{n}$. We define the norm and the type of (b_{1}, \cdots, b_{n}) (or the class):

$$
N\left(b_{1}, \cdots, b_{n}\right)=\frac{1}{p} \sum_{i=1}^{n} a_{i}^{2},
$$

$$
T\left(b_{1}, \cdots, b_{n}\right)=\min \left\{\sum_{i=1}^{n} c_{i}^{2} ; \sum_{i=1}^{n} c_{i} b_{i} \equiv 0 \bmod p,\left(c_{1}, \cdots, c_{n}\right) \neq(0, \cdots, 0)\right\}
$$

It is easy to prove the following
Proposition 1. The number of the equivalence classes of the specified type T in A_{p}^{3} is as follows:

	$T=1$	$T=2$	$T=3$	$T \geqq 4$
$p=3$	0	1	0	0
$p \equiv 1 \bmod 24$	1	1	1	$(p-25) / 24$
$p \equiv 5 \bmod 24$	1	0	0	$(p-5) / 24$
$p \equiv 7 \bmod 24$	0	0	1	$(p-7) / 24$
$p \equiv 11 \bmod 24$	0	1	0	$(p-11) / 24$
$p \equiv 13 \bmod 24$	1	0	1	$(p-13) / 24$
$p \equiv 17 \bmod 24$	1	1	0	$(p-17) / 24$
$p \equiv 19 \bmod 24$	0	1	1	$(p-19) / 24$
$p \equiv 23 \bmod 24$	0	0	0	$(p+1) / 24$

Moreover if the type is one or two, then the norm is one.
Let $\boldsymbol{K}=\boldsymbol{Q}(\sqrt{ } \bar{D})$ be a real quadratic field over \boldsymbol{Q} with a square-free rational integer D and o be the ring of integers in \boldsymbol{K}. By gen L we denote the genus containing a lattice L in a quadratic space V over K. A lattice L is said to be even if $Q(L) \subset 2 \mathfrak{0}$. For vectors x_{1}, \cdots, x_{m} in $V,\left[x_{1}, \cdots, x_{m}\right]$ denotes the lattice generated by $\left\{x_{1}, \cdots, x_{m}\right\}$ over \mathfrak{o}.

Let \mathfrak{a} be a non-zero ideal of \mathfrak{o} and L be a unimodular lattice in V. For $x \in \mathfrak{a}^{-1} L$ such that $Q(x) \in \mathfrak{o}$, we put

$$
L(x)=\mathfrak{v} x+\{z \in L ; B(x, z) \in \mathfrak{v}\},
$$

which is called an \mathfrak{a}-adjacent lattice to L (Cf. [2]). The following Lemmas 1-4 are valid.

Lemma 1. Let L be a unimodular lattice and $L(x)$ be an \mathfrak{a}-adjacent lattice to L. Then $L(x)$ is unimodular. If \mathfrak{a} is prime to 20 or $L(x)_{\mathfrak{p}} \simeq$ $L_{\mathfrak{p}}$ for any dyadic spot \mathfrak{p}, then an \mathfrak{a}-adjacent lattice to L belongs to gen L.

Lemma 2. Let L be a unimodular lattice in V, and $L(x)$ and $L\left(x^{\prime}\right)$ two \mathfrak{a}-adjacent lattices to L. If $B\left(x, x^{\prime}\right) \in \mathfrak{0}$ and $x-\gamma x^{\prime} \in L$ for some $\gamma \in \mathfrak{o}$ prime to \mathfrak{a}, then $L(x)=L\left(x^{\prime}\right)$.

Lemma 3. Let L be a unimodular lattice in V and $L(x)$ and $L\left(x^{\prime}\right)$ be two \mathfrak{a}-adjacent lattices to L. If $x^{\prime}=\sigma x$ for some σ in $O(L)$, then $L(x)$ $\simeq L\left(x^{\prime}\right)$.

Lemma 4. Let L be a unimodular lattice in V and $L(x)$ be an aadjacent lattice to L. If there is a vector w in L such that $2 / Q(x-w)$ and $(Q(x)-Q(w)) / Q(x-w)$ are in \mathfrak{a}, then $L(x) \simeq L$.

Lemma 5. Let p be an odd prime number dividing D and \mathfrak{p} a prime ideal dividing p. Then a \mathfrak{p}-adjacent lattice to E_{n} is isometric to some $E_{n}(x)$ with $x=(\sqrt{D} / p) \sum_{i=1}^{n} a_{i} e_{i}$ and $\left(a_{1}, \cdots, a_{n}\right) \in R_{p}^{n} \cup\{(0, \cdots, 0)\}$.

Proof. Note that $p_{0}=\mathfrak{f}^{2}$ and $\mathfrak{o} / \mathfrak{p} \simeq \boldsymbol{Z} / p \boldsymbol{Z}$. Take an element $z=$ $\sum_{i=1}^{n} \alpha_{i} e_{i} \in \mathfrak{p}^{-1} E_{n}$ with $Q(z) \in \mathfrak{o}$. We can find $a_{i} \in Z$ such that

$$
\sqrt{D} \alpha_{i} \equiv \frac{D}{p} a_{i} \bmod \mathfrak{p}
$$

since $\sqrt{\bar{D}} \alpha_{i} \in \mathcal{0}$ and D / p is prime to \mathfrak{p}. Put $x=(\sqrt{\bar{D}} / p) \sum_{i=1}^{n} a_{i} e_{i}$. Then $x \in \mathfrak{p}^{-1} E_{n}$ and $z-x \in E_{n}$. We have $\sum_{i=1}^{n} a_{i}^{2} \equiv 0 \bmod p$ since $Q(z) \in \mathfrak{D}$. Hence $Q(x) \in \mathfrak{o}$ and $\left(a_{1}, \cdots, a_{n}\right) \in A_{p}^{n}$ if $x \notin E_{n}$. Since $-2 B(x, z)=Q(z-x)$ $-Q(x)-Q(z) \in \mathfrak{0}$ and $B(x, z) \in \mathfrak{p}^{-2}$, we have $B(x, z) \in \mathfrak{0}$. By Lemma 2 we have $E_{n}(z)=E_{n}(x)$. Considering the structure of $O\left(E_{n}\right)$, we may have $\left(a_{1}, \cdots, a_{n}\right) \in R_{p}^{n} \cup\{(0, \cdots, 0)\}$ by Lemmas 2 and 3.

§3. Special adjacent lattices to E_{n}

Proposition 2. Let b_{1}, \cdots, b_{n} be positive rational integers satisfying $\sum_{i=1}^{n} b_{i}^{2}=D$. Assume $n \geqq 3$. Consider the lattice $\bar{A}=E_{n}(z)=[z] \perp A$ with $z=(1 / \sqrt{D}) \sum_{i=1}^{n} b_{i} e_{i}$. Then

1) $\bar{A} \in \operatorname{gen} E_{n}$,
2) A is even if $n \equiv b_{1} \equiv \cdots \equiv b_{n} \equiv 1 \bmod 2$,
3) $A \in \operatorname{gen} E_{n-1}$ unless $n \equiv b_{1} \equiv \cdots \equiv b_{n} \equiv 1 \bmod 2$,
4) $A \simeq E_{2}$ if $n=3, D \equiv 1 \bmod 4$ and $b_{i}=b_{j}$ for some $i<j$,
5) $1 \notin Q(A)$ unless $n=3, D \equiv 1 \bmod 4$ and $b_{i}=b_{j}$ for some $i<j$.

Proof. (i) Suppose that D is odd. By Lemma 1 we have $\bar{A} \in \operatorname{gen} E_{n}$ Let \mathfrak{p} be a dyadic spot on \boldsymbol{K}. We can assume that b_{1} is odd. Put $v_{i}=$ $b_{1} e_{i}-b_{i} e_{1}$ for $i=2,3, \cdots, n$. Then $A_{\mathfrak{p}}=\left[v_{2}, \cdots, v_{n}\right]_{\mathfrak{p}}$ with $B\left(v_{i}, v_{j}\right) \in \boldsymbol{Z}$ and $\operatorname{det}\left(B\left(v_{i}, v_{j}\right)\right)=b_{1}^{2(n-2)} D \equiv 1 \bmod 2$. The assertion (2) is clear. We shall show (3). Consider a lattice $M=\left[v_{2}, \cdots, v_{n}\right]$ over Z. Then $M_{2} \simeq$ $\langle 1\rangle \perp \cdots \perp\langle 1\rangle \perp\langle D\rangle$ or $M_{2} \simeq\langle 1\rangle \perp \cdots \perp\langle 1\rangle \perp\langle D\rangle \perp\langle D\rangle \perp\langle D\rangle$ since M is not even and the Hasse symbol of M_{2} takes the value +1 , where M_{2} is the $2 Z$-completion of M. So $A_{\mathfrak{p}} \simeq E_{n-1 p}$ since $\mathfrak{o}_{\mathfrak{p}} \supset Z_{2}$ and $\sqrt{D} \in K$. By Lemma 1 we have the assertion (3).
(ii) Suppose that D is even. We can assume that b_{1} and b_{2} are odd. Let \mathfrak{p} be dyadic. Then $A_{\mathfrak{p}}=\left[b_{1} z-\sqrt{\bar{D}} e_{1}, v_{3}, \cdots, v_{n}\right]_{\mathfrak{p}}$ with $\operatorname{det}\left(B\left(v_{i}, v_{j}\right)\right)=b_{1}^{2(n-3)}\left(D-b_{2}^{2}\right) \equiv 1 \bmod 4$. Thus $A_{\mathfrak{p}} \simeq\left[v_{3}, \cdots, v_{n}\right]_{\mathfrak{p}} \perp\left\langle D-b_{2}^{2}\right\rangle$. By a similar argument as in (i) we have $A_{\mathfrak{p}} \simeq E_{n-1 p}$. By Lemma 1 we have $A \in$ gen E_{n-1}, and so $\bar{A} \in \operatorname{gen} E_{n}$.
(iii) Suppose that $n=3, D \equiv 1 \bmod 4$ and $b_{1}=b_{2}$. Thus $b_{3} \equiv 1$ \bmod 2. Take f and g in Z such that $2 b_{2} f-b_{3} g=1$. Put

$$
w_{1}=-\left(b_{3} f+b_{2} g\right) z+f \sqrt{\bar{D}} e_{3}+\frac{1}{2}(1+g \sqrt{\bar{D}}) e_{1}+\frac{1}{2}(-1+g \sqrt{\bar{D}}) e_{2}
$$

and $w_{2}=w_{1}-e_{1}+e_{2}$. Then $A=\left[w_{1}\right] \perp\left[w_{2}\right] \simeq E_{2}$.
(iv) We shall show the assertion (5). Any non-zero vector $u \in A$ can be written as $u=-a z+\sum_{i=1}^{n}\left(c_{i}+d_{i} \sqrt{\bar{D}}\right) e_{i}$ with $a=\sum_{i=1}^{n} b_{i} d_{i} \in \boldsymbol{Z}$, $\sum_{i=1}^{n} b_{i} c_{i}=0,|a| \leqq \frac{1}{2} D, c_{i} \in \frac{1}{2} Z, d_{i} \in \frac{1}{2} Z$ and $c_{i}-d_{i} \in Z$ for all i. Thus

$$
\begin{aligned}
Q(u) & =\sum_{i=1}^{n} c_{i}^{2}+D \sum_{i=1}^{n} d_{i}^{2}-a^{2}+2 \sqrt{D} \sum_{i=1}^{n} c_{i} d_{i} \\
& =\sum_{i=1}^{n} c_{i}^{2}+\sum_{i<j}\left(b_{i} d_{j}-b_{j} d_{i}\right)^{2}+2 \sqrt{D} \sum_{i=1}^{n} c_{i} d_{i} .
\end{aligned}
$$

If the number of the pairs (i, j) such that $b_{i} d_{j}-b_{j} d_{i} \neq 0$ and $i<j$ is less than $n-1$, then $b_{i} d_{j}-b_{j} d_{i}=0$ for all i and j. Hence $d_{1} / b_{1}=\cdots=$ $d_{n} / b_{n}=c$ for some $c \in \boldsymbol{Q}$. Since the g.c.d. of b_{i} 's is one, we have $c \in \frac{1}{2} Z$ or $c \in Z$ according as $D \equiv 1 \bmod 4$ or not. Thus $a=\sum_{i=1}^{n} b_{i} d_{i}=c \sum_{i=1}^{n} b_{i}^{2}$ $=c D$. This implies $c=0$ and $a=d_{1}=\cdots=d_{n}=0$. Hence $c_{i} \in Z$ for all i and so $\sum_{i=1}^{n} c_{i}^{2} \geqq 2$. This shows $Q(u) \neq 1$. Suppose that the number of the pairs (i, j) such that $b_{i} d_{j}-b_{j} d_{i} \neq 0$ and $i<j$ is not less than $n-1$. If all d_{i} 's are in Z, then $\sum_{i<j}\left(b_{i} d_{j}-b_{j} d_{i}\right)^{2} \geqq n-1 \geqq 2$, so $Q(u)$ $\neq 1$. Thus we may assume that $D \equiv 1 \bmod 4$ and $d_{i^{\prime}} \notin Z$ for some i^{\prime}. Thus $c_{i} \notin Z$. Then $\sum_{i=1}^{n} c_{i}^{2} \geqq \frac{1}{2}$ since $b_{1} b_{2} \cdots b_{n} \neq 0$. Hence

$$
\sum_{i=1}^{n} c_{i}^{2}+\sum_{i<j}\left(b_{i} d_{j}-b_{j} d_{i}\right)^{2} \geqq \frac{1}{2}+\frac{1}{4}(n-1)=\frac{1}{4}(n+1) \geqq 1
$$

and the equality holds only when $n=3$ and $\sum_{i=1}^{n} c_{i}^{2}=\frac{1}{2}$. This case occurs only when $n=3$ and $b_{i}=b_{j}$ for some $i<j$ since $\sum_{i=1}^{n} b_{i} c_{i}=0$. But this is excluded.

Proposition 3. Let $D \not \equiv 1 \bmod 4$. Let p be an odd prime dividing D. Consider the lattice $B=E_{3}(y)$ with $y=(\sqrt{D} / p) \sum_{i=1}^{3} a_{i} e_{i}$ and $\left(a_{1}, a_{2}, a_{3}\right) \in R_{p}^{3}$. Then
(1) $B \in \operatorname{gen} E_{3}$,
(2) $B \simeq E_{1} \perp B^{\prime}$ and $1 \notin Q\left(B^{\prime}\right)$ if $D=p=\sum_{i=1}^{3} a_{i}^{2}$ or if $T\left(a_{1}, a_{2}, a_{3}\right)=1$,
(3) $1 \notin Q(B)$ if $T\left(a_{1}, a_{2}, a_{3}\right) \geqq 2$ and unless $D=p=\sum_{i=1}^{3} a_{i}^{2}$.

Proof. By Lemma 1 we have $B \in \operatorname{gen} E_{3}$. Suppose that $T\left(a_{1}, a_{2}, a_{3}\right) \geqq 2$ and $Q(u)=1$ for some $u \in B$. We can write $u=a y+\sum_{i=1}^{3}\left(c_{i}+d_{i} \sqrt{D}\right) e_{i}$ where $a \in Z, c_{i} \in Z, d_{i} \in Z, \sum_{i=1}^{3} a_{i} c_{i} \equiv 0 \bmod p$ and $|a|<\frac{1}{2} p$. Then

$$
1=Q(u)=\sum_{i=1}^{3} c_{i}^{2}+\frac{D}{p} \frac{1}{p} \sum_{i=1}^{3}\left(a a_{i}+p d_{i}\right)^{2}+\frac{2 \sqrt{D}}{p} \sum_{i=1}^{3} c_{i}\left(a a_{i}+p d_{i}\right) .
$$

Hence we have $\sum_{i=1}^{3} c_{i}^{2}=0$ and $D=p=\sum_{i=1}^{3}\left(a a_{i}+p d_{i}\right)^{2}$ since $T\left(a_{1}, a_{2}, a_{3}\right)$ $\geqq 2$. Thus the assertion (3) holds. Now let $D=p=\sum_{i=1}^{3} a_{i}^{2}$. Then $B=[y] \perp B^{\prime}$ and $Q\left(B^{\prime}\right) \nexists 1$ by (5) of Proposition 2. If $T\left(a_{1}, a_{2}, a_{3}\right)=1$, then $a_{1}=0, D \neq p$ and $B=\left[e_{1}\right] \perp B^{\prime}$. Similarly we have $1 \notin Q\left(B^{\prime}\right)$.

Proposition 4. Let $D \equiv 1 \bmod 4$ and p be a prime dividing D. Consider the lattice $B=E_{n}(y)$ with $y=(\sqrt{\bar{D}} / p) \sum_{i=1}^{n} a_{i} e_{i}$ and $\left(a_{1}, \cdots, a_{n}\right) \in R_{p}^{n}$. Assume that $n \geqq 3$. Put $T=T\left(a_{1}, \cdots, a_{n}\right)$ and $N=N\left(a_{1}, \cdots, a_{n}\right)$. Then
(1) $B \in \operatorname{gen} E_{n}$,
(2) $B \simeq E_{1} \perp B^{\prime}$ with $1 \notin Q\left(B^{\prime}\right)$ if $n=3, D \neq p$ and $T=1$,
(3) $1 \notin Q(B)$ and $2 \in Q(B)$ if $D \neq p$ and $T=2$,
(4) $1 \notin Q(B)$ and $2 \in Q(B)$ if $D \neq p$ and $T \geqq 3$,
(5) $B \simeq E_{3}$ if $n=3, D=p$ and $T \leqq 2$,
(6) $B \simeq E_{1} \perp B^{\prime}$ with $1 \notin Q\left(B^{\prime}\right)$ if $D=p, N=1$ and $T \geqq 3$,
(7) $1 \notin Q(B)$ if $D=p, N=2$ and $T \geqq 3$,
(8) $1 \notin Q(B)$ if $D=p, N \geqq 3$ and $T \geqq 2$,
(9) $2 \notin Q(B)$ if $n=3, D=p, N \geqq 3$ and $T \geqq 3$,
(10) $2 \in Q(B)$ if $D=p$ with $N=2$ or if $T=2$.

Proof. By Lemma 1 we have (1). (10) holds trivially. Take a nonzero vector u in B and write

$$
u=a y+\sum_{i=1}^{n}\left(c_{i}+d_{i} \sqrt{D}\right) e_{i}
$$

with $a \in Z,|a|<\frac{1}{2} p, c_{i} \in \frac{1}{2} Z, d_{i} \in \frac{1}{2} Z, c_{i}-d_{i} \in Z$ and $2 \sum_{i=1}^{n} a_{i} c_{i} \equiv 0 \bmod p$. Then

$$
Q(u)=X+Y+\frac{2 \sqrt{D}}{p} \sum_{i=1}^{n} c_{i}\left(a a_{i}+p d_{i}\right)
$$

where $X=\sum_{i=1}^{n} c_{i}^{2}$ and $Y=(D / p)(1 / p) \sum_{i=1}^{n}\left(a a_{i}+p d_{i}\right)^{2}$. If $Y=0$, then
$a=d_{i}=0$ for all i, so $c_{i} \in Z$ for all i. Thus $X \geqq T$. If $X=0$ and $Y \neq 0$, then $c_{i}=0$ for all i and $Y \geqq D N / p$. If $X \neq 0$ and $Y \neq 0$, then $X+Y \geqq$ $(T / 4)+(D / p)(N / 4)$. Thus (3), (7), (8) and the half of (4) hold. Now suppose that $D \neq p$ and $T \geqq 3$ or that $D=p, T \geqq 3, N \geqq 3$ and $n=3$. Thus $X \geqq \frac{3}{4}$ and $Y \geqq \frac{3}{4}$. If $X=\frac{3}{4}$ with $Y=\frac{5}{4}$ or $X=\frac{5}{4}$ with $Y=\frac{3}{4}$, then we have $2 \equiv 4 X-4 Y \equiv \sum_{i=1}^{n}\left(2 c_{i}\right)^{2}-\sum_{i=1}^{n}\left(2 d_{i}\right)^{2} \equiv 0 \bmod 4$, which is a contradiction. If $X=Y=1$, then $D=p$ and $\sum_{i=1}^{n} c_{i}^{2}=1$. Thus $D=p$ and $n \geqq 4$, which is a contradiction. Hence (9) and the rest of (4) hold. If $n=3, D \neq p$ and $T=1$, then $a_{1}=0$ and $B=\left[e_{1}\right] \perp B^{\prime}$ with $B^{\prime}=$ $\left[e_{2}, e_{3}\right](y)$. Hence we have $1 \notin Q\left(B^{\prime}\right)$ by a direct calculation. So the assertion (2) holds. Assume that $n=3, D=p$ and $T \leqq 2$. Then $N=1$. If $T=1$, then $B=\left[e_{1}\right] \perp[y] \perp\left[y^{\prime}\right] \simeq E_{3}$ with $y^{\prime}=(1 / \sqrt{p})\left(a_{3} e_{2}-a_{2} e_{3}\right)$. If $T=2$, then $B \simeq E_{3}$ by Proposition 2, (4). Thus (5) holds. Finally (6) follows from Proposition 2, (5).

Proposition 5. Let $D \equiv 3 \bmod 4$. Consider the lattice $C=E_{3}(x)=$ $\left[e_{3}\right] \perp C^{\prime}$ with $x=\frac{1}{2}\left(e_{1}+\sqrt{D} e_{2}\right)$. Then
(1) $C \in \operatorname{gen} E_{3}$,
(2) $1 \notin Q\left(C^{\prime}\right)$ if $D>3$,
(3) C^{\prime} is even if and only if $D \equiv 7 \bmod 8$.

Proof. We have

$$
C^{\prime}=\left[x, 2 e_{2}\right] \simeq\left(\begin{array}{cc}
\frac{1}{4}(D+1) & \sqrt{\bar{D}} \\
\sqrt{\bar{D}} & 4
\end{array}\right)
$$

Let \mathfrak{p} be dyadic. If $D \equiv 3 \bmod 8$, then C^{\prime} is not even and $C_{\mathfrak{p}}^{\prime} \simeq\left\langle\frac{1}{4}(D+1)\right\rangle$ $\perp\left\langle\frac{1}{4}(D+1)\right\rangle \simeq E_{2 \mathrm{p}}$ since $3 \in K_{p}^{2}$. If $D \equiv 7 \bmod 8$, then C^{\prime} is even and $C_{p}^{\prime} \simeq\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, so $C_{p} \simeq\langle 1\rangle \perp\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \simeq E_{3 p}$ since $-1 \in \boldsymbol{K}_{p}^{2} . \quad$ Thus (1) and (3) are proved by Lemma 1. It is easy to show (2) directly.

Proposition 6. Let $D \equiv 5 \bmod$ 12. Consider the lattice $G=E_{3}(x)=$ $\left[e_{3}\right] \perp G^{\prime}$ with $x=\frac{1}{3}\left(e_{1}+D \sqrt{D} e_{2}\right)$. Then
(1) $G \in \operatorname{gen} E_{3}$ and $G^{\prime} \in \operatorname{gen} E_{2}$,
(2) $1 \notin Q\left(G^{\prime}\right)$ and $2 \notin Q\left(G^{\prime}\right)$ if $D \geqq 29$.

Proof. (1) follows from Lemma 1. We have $G^{\prime}=\left[x, 3 e_{2}\right]$. It is easy to show (2) by a direct calculation.

Proposition 7. Let D be a prime $p \equiv 1 \bmod 12$. Then the number of the classes in A_{p}^{3} whose type is six is one or zero according as
$p \equiv 1 \bmod 24$ or $p \equiv 13 \bmod 24$. Let $\left(a_{1}, a_{2}, a_{3}\right) \in R_{p}^{3}$ with $T=T\left(a_{1}, a_{2}, a_{3}\right)$ $\geqq 3$ and $N\left(a_{1}, a_{2}, a_{3}\right)=2$. Put $x=(1 / \sqrt{p})\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right)$. If there are two vectors u_{1} and u_{2} in $B=E_{3}(x)$ such that $Q\left(u_{1}\right)=Q\left(u_{2}\right)=2 B\left(u_{1}, u_{2}\right)$ $=2$, then $T=3$ or $T=6$.

Proof. Let $\left(b_{1}, b_{2}, b_{3}\right) \in A_{p}^{3}$ whose type is six. Thus we may assume that $b_{3}=2 b_{1}+b_{2}$. Hence $0 \equiv \sum_{i=1}^{3} b_{i}^{2} \equiv 2\left(b_{1}+b_{2}\right)^{2}+3 b_{1}^{2} \bmod p$. So ($-6 / p$) $=1$, i.e., $p \equiv 1 \bmod 24$. If $p \equiv 1 \bmod 24$, then there is an integer c such that $c^{2} \equiv-6 \bmod p$. Hence $\pm c\left(b_{1}+b_{2}\right) \equiv 3 b_{1} \bmod p$. Thus $\left(b_{1}, b_{2}, b_{3}\right) \sim$ ($c, 3-c, 3+c$), i.e., there is one and only one class whose type is six. We shall show $T=3$ or $T=6$. Suppose that $T \neq 3$ and $T \neq 6$. Thus $T=5$ or $T \geqq 7$. Take a vector u in B with $Q(u)=2$ and write

$$
u=a x+\sum_{i=1}^{3}\left(c_{i}+d_{i} \sqrt{p}\right) e_{i}
$$

with $a \in Z,|a|<\frac{1}{2} p, c_{i} \in \frac{1}{2} Z, d_{i} \in \frac{1}{2} Z, c_{i}-d_{i} \in Z, 2 \sum_{i=1}^{3} a_{i} c_{i} \equiv 0 \bmod p$. Then $Q(u)=X+Y+(2 / \sqrt{p}) \sum_{i=1}^{3} c_{i}\left(a a_{i}+p d_{i}\right)$, where $X=\sum_{i=1}^{3} c_{i}^{2}$ and $Y=$ $(1 / p) \sum_{i=1}^{3}\left(a a_{i}+p d_{i}\right)^{2}$. Hence we have one of the following:
(i) $X=0$ and $Y=2$,
(ii) $X=\frac{5}{4}$ and $Y=\frac{3}{4}$,
(iii) $X=\frac{3}{2}$ and $Y=\frac{1}{2}$.

In the case (ii) we have $1 \equiv \sum_{i=1}^{3}\left(2 c_{i}\right)^{2} \equiv \sum_{i=1}^{3}\left(2 d_{i}\right)^{2} \equiv \sum_{i=1}^{3}\left(2 a a_{i}+2 p d_{i}\right)^{2}$ $=3 p \equiv 3 \bmod 4$. This is a contradiction. In the case (iii) we have $\left(a_{1}, a_{2}, a_{3}\right) \sim(c, 3-c, 3+c)$ for an integer c with $c^{2}+6 \equiv 0 \bmod p$ by the argument used above since $X=\frac{6}{4}$. Since T must be five we have $c \equiv$ $\pm 1, \pm 2, \pm 3, \pm 6$ or $\pm 9 \bmod p$, which is a contradiction to the fact that p divides $c^{2}+6$. In the case (i) we have $c_{i}=0$ and $d_{i} \in Z$ for all i. Hence we can write $u_{1}=a x+\sqrt{p} \sum_{i=1}^{3} d_{i} e_{i}=(1 / \sqrt{p}) \sum_{i=1}^{3} f_{i} e_{i}$ and $u_{2}=$ $a^{\prime} x+\sqrt{p} \sum_{i=1}^{3} d_{i}^{\prime} e_{i}=(1 / \sqrt{p}) \sum_{i=1}^{3} f_{i}^{\prime} e_{i}$ with $a, a^{\prime}, d_{i}, d_{i}^{\prime}, f_{i}, f_{i}^{\prime} \in Z$. Thus $f_{i} \equiv$ $a a_{i} \bmod p$ and $f_{i}^{\prime} \equiv a^{\prime} a_{i} \bmod p$. Hence $f_{i} f_{j}^{\prime}-f_{j} f_{i}^{\prime} \equiv 0 \bmod p . \quad$ Since $3 p^{2}=$ $(2 p)^{2}-p^{2}=\sum_{i=1}^{3} f_{2}^{2} \sum_{i=1}^{3} f_{i}^{\prime 2}-\left(\sum_{i=1}^{3} f_{i} f_{i}^{\prime}\right)^{2}=\sum_{i<j}\left(f_{i} f_{j}^{\prime}-f_{j} f_{i}^{\prime}\right)^{2}$, we have $f_{i} f_{j}^{\prime}$ $-f_{j} f_{i}^{\prime}=h_{i j} p= \pm p$ whenever $i \neq j$. Since $0=f_{1}\left(f_{2} f_{3}^{\prime}-f_{3} f_{2}^{\prime}\right)+f_{2}\left(f_{3} f_{1}^{\prime}-f_{1} f_{3}^{\prime}\right)$ $+f_{3}\left(f_{1} f_{2}^{\prime}-f_{2} f_{1}^{\prime}\right)$, we have $0=f_{1} h_{23}+f_{2} h_{31}+f_{3} h_{12}$, i.e., $a_{1} h_{23}+a_{2} h_{31}+a_{3} h_{12} \equiv$ $0 \bmod p$. This implies that $T \leqq 3$. This is a contradiction.

Lemma 6. Let D be a square-free positive integer. In order that $D=b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}$ for some positive integers b_{1}, b_{2}, b_{3} and b_{4}, it is necessary and sufficient that $D \neq 1,2,3,5,6,11,14,17,29,41$.

Proposition 8. Let $n \geqq 3$. Then the class number of E_{n} is more than two unless D is one of the following: $2,3,5,13,17,29,33,41$.

Proof. It is enough to find two lattices L and M in gen E_{3} such that $L \neq E_{3}, M \neq E_{3}$ and $L \neq M$.
(i) Let $D \equiv 2 \bmod 4$. For L we take the lattice A in Proposition 2 if $D=10$. If $D \neq 10$, then there is an odd prime $q(\neq 5)$ dividing D. By Proposition 1 there is an element $\left(a_{1}, a_{2}, a_{2}\right) \in R_{q}^{3}$ whose type is more than one, for which we consider the lattice B in Proposition 3. Then put $L=B$ if $D \neq 10$. Next take an odd prime p dividing D. If $p \equiv 1 \bmod 4$, then there is an element $\left(a_{1}, a_{2}, a_{3}\right) \in R_{p}^{3}$ whose type is one, for which we consider the lattice B in Proposition 3. If $p \equiv 3 \bmod 4$, then we can consider the lattice \bar{A} in Proposition 2. Then put $M=B$ or $M=\bar{A}$ according as $p \equiv 1 \bmod 4$ or $p \equiv 3 \bmod 4$. Note that $1 \notin Q(L)$ and $M \simeq E_{1} \perp M^{\prime}$ with $1 \notin Q\left(M^{\prime}\right)$.
(ii) Let $D \equiv 3 \bmod 8$. For L we take a lattice $\bar{A} \simeq E_{1} \perp A$ with an even lattice A in Proposition 2. For M we take the lattice $C \simeq$ $E_{1} \perp C^{\prime}$ with an odd lattice C^{\prime} and $1 \notin Q\left(C^{\prime}\right)$ in Proposition 5.
(iii) Let $D \equiv 7 \bmod 8$. For L we take a lattice A with $1 \notin Q(A)$ in Proposition 2 and for M we take the lattice $C \simeq E_{1} \perp C^{\prime}$ with $1 \notin Q\left(C^{\prime}\right)$ in Proposition 5.
(iv) Let $D \equiv 1 \bmod 4$ and not a prime. If no prime divisor of D is congruent to $7 \bmod 8$, then by Proposition 1 we have two elements $\left(a_{1}, a_{2}, a_{3}\right) \in R_{p}^{3}$ and $\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right) \in R_{q}^{3}$ for some prime divisors p and q of D (possibly $p=q$) such that $T\left(a_{1}, a_{2}, a_{3}\right)=1$ and $T\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right) \geqq 2$ or such that $T\left(a_{1}, a_{2}, a_{3}\right)=2$ and $T\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right) \geqq 3$. For L and M we take the lattice B for (a_{1}, a_{2}, a_{3}) and the lattice B for ($a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}$) in Proposition 4. If D has a prime divisor $p \equiv 7 \bmod 8$, then there is an element (a_{1}, a_{2}, a_{3}) $\in R_{p}^{3}$ whose type is more than two, for which we can consider the lattice B with $Q(B) \nexists 1$ in Proposition 4. Put $L=B$. There are positive integers b_{1}, b_{2} and b_{3} such that $b_{1}^{2}+b_{2}^{2}+b_{3}^{2}=D$ since $D \equiv 1 \bmod 4$ and $p \equiv 3 \bmod 4$. We have $b_{i} \neq b_{j}$ whenever $i \neq j$ since $(-2 / p)=-1$. Hence we can consider a lattice $\bar{A}=E_{1} \perp A$ with $1 \notin Q(A)$. Put $M=\bar{A}$.
(v) Let D be a prime $p \equiv 1 \bmod 12$. Since $p=3 a^{2}+b^{2}$ for some positive integers a and b, we can consider the lattice A for (a, a, a, b) in Proposition 2. Put $L=A$. Then $1 \notin Q(L)$ and there are two vectors u_{1} and u_{2} in L such that $Q\left(u_{1}\right)=Q\left(u_{2}\right)=2 B\left(u_{1}, u_{2}\right)=2$. First suppose $p \equiv 1 \bmod 24$. Then there are at least two elements (a_{1}, a_{2}, a_{3})
and ($a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}$) in R_{p}^{3} whose types are more than three by Proposition 1. Hence we can assume that $T\left(a_{1}, a_{2}, a_{3}\right) \neq 6$ by Proposition 7. We put $M=B$ for $\left(a_{1}, a_{2}, a_{3}\right)$ in Proposition 4. Hence $M \neq E_{3}$. And $M \neq L$ if $N\left(a_{1}, a_{2}, a_{3}\right) \neq 2$. If $M \simeq L$ and $N\left(a_{1}, a_{2}, a_{3}\right)=2$, then (noting the existence of the pair $\left\{u_{1}, u_{2}\right\}$) we have $T\left(a_{1}, a_{2}, a_{3}\right)=3$ or 6 by Proposition 7. This is a contradiction. Secondly suppose that $p \equiv 13 \bmod 24$. There is an element (a_{1}, a_{2}, a_{3}) R_{p}^{3} whose type is more than three by Proposition 1. For M we take the lattice B for $\left(a_{1}, a_{2}, a_{3}\right)$ in Proposition 4. If $N\left(a_{1}, a_{2}, a_{3}\right)$ $=1$, then $B=E_{1} \perp B^{\prime}$ with $1 \notin Q\left(B^{\prime}\right)$. If $N\left(a_{1}, a_{2}, a_{3}\right) \geqq 3$, then $1 \notin Q(B)$ and $2 \notin Q(B)$. If $N\left(a_{1}, a_{2}, a_{3}\right)=2$, then $1 \notin Q(B)$ and $B \neq L$ by Proposition 7 .
(vi) Let D be a prime $p \equiv 5 \bmod 12$. For L we take the lattice A with $1 \notin Q(A)$ in Proposition 2. For M we take the lattice $G=E_{1} \perp G^{\prime}$ with $1 \notin Q\left(G^{\prime}\right)$ in Proposition 6 .

§4. Special values of D

For the explicit value of the class number of E_{n} we use the Kneser Method. Following [4] we state the method. By J we denote the group of ideles of the field \boldsymbol{K}. For a finite spot \mathfrak{p} on \boldsymbol{K} we put

$$
J^{\mathfrak{p}}=\left\{\boldsymbol{i}=\left(\boldsymbol{i}_{\mathfrak{q}}\right) \in J ; \boldsymbol{i}_{\mathfrak{q}} \text { is a unit in } \mathfrak{D}_{\mathfrak{q}} \text { for all finite spot } \mathfrak{q} \neq \mathfrak{p}\right\} .
$$

Put $V=K E_{n}$ and $P=\theta\left(O^{+}(V)\right)$, where θ is the spinor norm and $O^{+}(V)$ is the proper orthogonal group of V. Consider P as the image of P under the natural isomorphism $K^{*} \rightarrow J$. Recall Theorem 104:9 in [4]:

Lemma 7. Let $n \geqq 3, V_{p}$ be isotropic and $J=P J^{p}$. Then for any $L \in \operatorname{gen} E_{n}$ there is a lattice M isometric to L such that $M_{q}=E_{n 9}$ for all finite spot $\mathfrak{q} \neq \mathfrak{p}$.

By Proposition 101:8 in [4] we have
Lemma 8. Let $n \geqq 3$ and the ideal class number of K be one. Assume that the norm of the fundamental unit in K is -1 or that the norm of a generator of \mathfrak{p} is negative. Then $J=P J^{\mathfrak{p}}$.

Lemma 9. Let $n \geqq 3$, p be a spot dividing D and $M \in \operatorname{gen} E_{n}$ with $M_{q}=E_{n q}$ for all finite spot $\mathfrak{q} \neq \mathfrak{p}$. Assume that n is odd and $D=2$ if \mathfrak{p} is dyadic. Then there is a chain of lattices

$$
E_{n}=L_{0}, L_{1}, \cdots, L_{t}=M
$$

in gen E_{n} with $L_{\imath+1} \mathfrak{p}$-adjacent to L_{i}.

Proof. Following the proof of 106:4 in [4], we can prove this assertion. It is enough to find a chain of lattices $E_{n \mathrm{p}}=L_{0}^{(p)}, L_{1}^{(p)}, \cdots, L_{t}^{(p)}=M_{p}$ in $V_{\mathfrak{p}}$ with $L_{\imath+1}^{(p)} \mathfrak{p}$-adjacent to $L_{i}^{(p)}$ and $L_{i}^{(p)} \simeq E_{n \mathfrak{p}}$. Put $L_{0}=E_{n}$. Then M_{p} $=\sigma L_{0 \text { p }}$ for some $\sigma \in O\left(V_{p}\right)$. By expressing σ as a product of symmetries on $V_{\mathfrak{p}}$ we see that it is enough if we assume that σ is a symmetry. Then $\sigma=\tau_{u}$ with u a maximal anisotropic vector in $L_{0 p}$. Then there is either a 1- or 2-dimensional unimodular sublattice K of $L_{0,}$ which contains u. If the rank of K is one, then $L_{0 p}=\tau_{u} L_{0 \mathrm{p}}=M_{p}$, so M_{p} is \mathfrak{p}-adjacent to $L_{0 \mathrm{p}}$. If the rank of K is two, then we take the splitting $L_{00}=K \perp K^{\prime}$. Then $K^{\prime}=\tau_{u} K^{\prime} \subset M_{\mathfrak{p}}$ and so we have a splitting $M_{\mathfrak{p}}=K^{\prime} \quad K=$
 may put $L_{0}^{(p)}=L_{0 p}, L_{1}^{(p)}=\left(p^{r-1} x+\mathfrak{p} y\right) \perp K^{\prime}=L_{0}^{(p)}\left(\pi^{r-1} x\right), \cdots, L_{r}^{(p)}=M_{p}=K^{\prime \prime}$ $\perp K^{\prime}=\left(\mathfrak{o}_{p} x+\mathfrak{p}^{r} y\right) \perp K^{\prime}=L_{r-1}^{(p)}(x)$, where $\mathfrak{p}=\pi \mathrm{o}_{p}$. We must show that $L_{i}^{(p)} \simeq E_{n p}$. It is trivial when $i=0$ or $i=r$. Assume that $1 \leqq i \leqq r-1$. If \mathfrak{p} is non-dyadic, then $\mathfrak{p}^{r-i} x+\mathfrak{p}^{i} y \simeq\langle 1\rangle \perp\langle-1\rangle \simeq K$, so $L_{i}^{(p)} \simeq K \perp K^{\prime}$ $\simeq E_{n p}$. If \mathfrak{p} is dyadic, then n is odd, hence $K^{\prime}=[z] \perp K^{\prime \prime \prime}$ with $Q(z)=\varepsilon$ a unit in \mathfrak{o}_{p}. It is enough to show that $\left(\mathfrak{p}^{r} x+\mathfrak{o}_{p} y\right) \perp \mathfrak{o}_{p} z \simeq\left(\mathfrak{p}^{r-i} x+p^{i} y\right)$ $\perp \mathfrak{o}_{p} z$ for $1 \leqq i \leqq r-1$. We can assume that $\mathfrak{p}^{r} B(x, y)=\mathfrak{o}_{p}$. Since $y \in$ $K \subset L_{0 \mathfrak{p}} \simeq E_{n \mathfrak{p}}$ and $\mathfrak{p}=\sqrt{2} \mathfrak{o}_{p}$, we have $Q(y) \equiv 0$ or $1 \bmod 2$. Similarly $Q(x) \equiv 0$ or $1 \bmod 2$ and $\varepsilon \equiv 1 \bmod 2$. If $Q(y) \equiv 0 \bmod 2$, then $\left(\mathfrak{p}^{r} x+\mathfrak{o}_{\mathrm{p}} y\right)$ $\perp \mathfrak{o}_{\mathfrak{p}} z \simeq\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \perp\langle\varepsilon\rangle \simeq\left(\mathfrak{p}^{r-i} x+\mathfrak{p}^{i} y\right) \perp \mathfrak{o}_{p} z . \quad$ If $Q(y) \equiv 1 \bmod 2$ and $\pi^{2 r} Q(x)$ $\equiv 0 \bmod 8$, then $\left(\mathfrak{p}^{r} x+\mathfrak{o}_{p} y\right) \perp \mathfrak{o}_{p} z \simeq\langle Q(y)\rangle \perp\langle-Q(y)\rangle \perp\langle\varepsilon\rangle \simeq\langle\varepsilon\rangle \perp$ $\langle-\varepsilon\rangle \perp\langle\varepsilon\rangle \simeq\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \perp\langle\varepsilon\rangle \simeq\left(p^{r-i} x+\mathfrak{p}^{i} y\right) \perp \mathfrak{o}_{p} z$. If $Q(x) \equiv Q(y) \equiv 1 \bmod 2$, $r=2$ and $i=1$, then $\left(\mathfrak{p}^{2} x+\mathfrak{o}_{p} y\right) \perp \mathfrak{o}_{p} z \simeq\langle Q(y)\rangle \perp\langle 3 Q(y)\rangle \perp\langle\varepsilon\rangle \simeq\langle\varepsilon\rangle$ $\perp\langle 3 \varepsilon\rangle \perp\langle\varepsilon\rangle \simeq\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right) \perp\langle\varepsilon\rangle \simeq(p x+p y) \perp \mathfrak{o}_{p} z$.

Proposition 9. Let $D=2$. Then the class number of E_{n} is one if $n \leqq 4$, two if $n=5$ and more than two if $n \geqq 6$.

Proof. There are three lattices $E_{6}, E_{6}\left((1 / \sqrt{2})\left(e_{1}+\cdots+e_{4}\right)\right)$ and $E_{6}\left((1 / \sqrt{2})\left(e_{1}+\cdots+e_{6}\right)\right)$ in gen E_{6}, any two of which are not isometric. Let $n=5$. Take $\mathfrak{p}=(\sqrt{2})$ and a \mathfrak{p}-adjacent lattice $E_{5}(x)$ in gen E_{5}. Write $x=(1 / \sqrt{2}) \sum_{i=1}^{5} \alpha_{i} e_{i}$. Note that $O\left(E_{5}\right)$ contains all permutations of $\left\{e_{1}, \cdots, e_{5}\right\}$. And note that $Q(x) \equiv 0$ or $1 \bmod 2$ since $E_{5}(x) \in \operatorname{gen} E_{5}$. By Lemmas 2 and 3 we have only to consider the following three cases:
(i) $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=\alpha_{5}=0$. Then $E_{5}(x)=E_{5}$. (ii) $\alpha_{1}=\alpha_{2}=1$ and $\alpha_{3}=$ $\alpha_{4}=\alpha_{5}=0$. Then $E_{5}(x) \simeq E_{5}$. (iii) $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=1$ and $\alpha_{5}=0$. Then
$E_{5}(x)=E_{4}^{0} \perp\left[e_{5}\right]$, where $E_{4}^{0}=E_{4}(u)$ with $u=(1 / \sqrt{2})\left(e_{1}+\cdots e_{4}\right)$. Hence a \mathfrak{p}-adjacent lattice to E_{5} in gen E_{5} is isometric to E_{5} or $E_{5}^{\prime}=E_{4}^{0} \perp\left[e_{5}\right]$. Next take a \mathfrak{p}-adjacent lattice $E_{5}^{\prime}(y)$ to E_{5}^{\prime} in gen E_{5} and write $\sqrt{2} y=w$ $+\alpha e_{5}$ with $\alpha \in \mathcal{0}$ and $w \in E_{4}^{0}$. Since $Q(y) \in \mathcal{0}$ and E_{4}^{0} is even, we have $\alpha \in \mathfrak{p}$. By Lemma 2 we have $E_{5}^{\prime}(y)=E_{5}^{\prime}((1 / \sqrt{2}) w)=E_{4}^{0}((1 / \sqrt{2}) w) \perp\left[e_{5}\right]$. Hence we may write $\sqrt{2} y=a u+\sum_{i=1}^{4} \alpha_{i} e_{i}$ where $\alpha_{i} \in \mathfrak{D}, a \in\{0,1\}$ and $\sum_{i=1}^{4} \alpha_{i} \equiv 0 \bmod \sqrt{2}$. Note that $Q(y) \equiv 0$ or $1 \bmod 2$ since $E_{5}^{\prime}(y) \in \operatorname{gen} E_{5}$. If $a=0$, then we have the following four cases by Lemmas 2 and 3: (i) $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$. Then $E_{5}^{\prime}(y)=E_{5}^{\prime}$. (ii) $\alpha_{1}=\sqrt{2}$ and $\alpha_{2}=\alpha_{3}=$ $\alpha_{4}=0$. Then $E_{5}^{\prime}(y)=E_{5}$. (iii) $\alpha_{1}=\alpha_{2}=1$ and $\alpha_{3}=\alpha_{4}=0$. Then $E_{5}^{\prime}(y)$ $=E_{4}^{0}(y) \perp\left[e_{5}\right]=E_{2}\left((1 / \sqrt{2})\left(e_{1}+e_{2}\right)\right) \perp E_{2}\left((1 / \sqrt{2})\left(e_{3}+e_{4}\right)\right) \perp\left[e_{5}\right] \simeq E_{5}$. (iv) $\alpha_{1}=\alpha_{2}=1, \alpha_{3}=\sqrt{2}$ and $\alpha_{4}=0$. Then $E_{5}^{\prime}(y) \simeq E_{5}^{\prime}$. Next consider the case of $a=1$. Since $\tau_{e_{1}} \in O\left(E_{5}^{\prime}\right)$, we have $\sqrt{2} \tau_{e_{1}} y=u+\left(-\alpha_{1}-\sqrt{2}\right) e_{1}+$ $\alpha_{2} e_{2}+\cdots$. Hence we may assume that $\alpha_{i} \equiv 0 \bmod 2$ or $\alpha_{i} \equiv 1 \bmod 2$. Thus we have only to consider the following cases by Lemmas 2 and 3: (v) $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$ or $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=1$. Then $E_{5}^{\prime}(y) \simeq E_{5}$. (vi) $\alpha_{1}=-1, \alpha_{2}=1$ and $\alpha_{3}=\alpha_{4}=0$. Apply Lemma 4 to this case taking $w=u-\sqrt{2} e_{1}$. Then $E_{5}^{\prime}(y) \simeq E_{4}^{0} \perp\left[e_{5}\right] \simeq E_{5}^{\prime}$. Thus a \mathfrak{p}-adjacent lattice to E_{5}^{\prime} is isometric to E_{5} or E_{5}^{\prime}. Hence $\left\{E_{5}^{\prime}, E_{5}\right\}$ is a set of all representatives of classes in gen E_{5} by Lemmas 7, 8 and 9. By Theorem 105:1 in [4] this implies that the class number is one if $n \leqq 4$.

From [11] we have
Proposition 10. Let $D=3$. Then the class number of E_{n} is one if $n \leqq 2$, two if $n=3$ and more than two if $n \geqq 4$.

Proposition 11. Let $D=5$. Then the class number of E_{n} is one if $n \leqq 4$, two if $n=5$ and more than two if $n \geqq 6$.

Proof. Put $x=(1 / \sqrt{5})\left(e_{1}+\cdots+e_{5}\right), y_{1}=(1 / \sqrt{5})\left(e_{1}+e_{2}+2 e_{3}+2 e_{4}\right)$ and $x_{1}=(1 / \sqrt{5})\left(e_{1}+e_{2}+e_{3}+2 e_{4}+2 e_{5}+2 e_{6}\right)$. Consider the lattice $E_{5}^{\prime}=$ $E_{5}(x)=[x] \perp E_{4}^{0}$. Then E_{4}^{0} is even. If $n=6$, then we have three lattices $E_{6}, E_{6}(x)$ and $E_{6}^{\prime}=E_{6}\left(x_{1}\right)$ in gen E_{6}. By Proposition 4, (8) we have $1 \notin Q\left(E_{6}^{\prime}\right)$. Thus the class number of E_{8} is more than two. Let $\mathfrak{p}=(\sqrt{5})$ and $n=5$. Take a p-adjacent lattice $E_{5}(y)$ to E_{5}. By Lemma 5 we may consider $y=(1 / \sqrt{5}) \sum_{i=1}^{5} a_{i} e_{i}$ with $\left(a_{1}, \cdots, a_{5}\right) \in R_{5}^{5}$. Hence $y \in\left\{0, x,(1 / \sqrt{5})\left(e_{1}+2 e_{2}\right), y_{1}\right\}$. Thus $E_{5}(0)=E_{5}, E_{5}(x)=E_{5}^{\prime}$ and $E_{5}\left((1 / \sqrt{5})\left(e_{1}+2 e_{2}\right)\right) \simeq E_{5}$. By Lemma 4 $E_{5}\left(y_{1}\right) \simeq E_{5}$ taking $w=\frac{1}{2}(1+\sqrt{5})\left(e_{3}+e_{4}\right) \in E_{5}$. Take a \mathfrak{p}-adjacent lattice $E_{5}^{\prime}(z)$ to E_{5}^{\prime}. By Lemma 2 we may assume that $\sqrt{5} z=a x+\sum_{i=1}^{b} \alpha_{i} e_{i}$
where $a=0$ or $1, \alpha_{i}=a_{i}+b_{i} \sqrt{5} \in Z[\sqrt{5}]$ and $\sum_{i=1}^{5} a_{i} \equiv 0 \bmod 5$. If $a=0$, then we have only to consider the following three cases by Lemmas 2 and 3 :
(i) $a_{1}=\cdots=a_{5}=0$. Then $z=\sum_{i=1}^{5} b_{i} e_{i}$, so $E_{5}^{\prime}(z)=E_{5}^{\prime}$ or $E_{5}^{\prime}(z)=$ E_{5} according as $\sum_{i=1}^{5} b_{i} \equiv 0 \bmod 5$ or not.
(ii) $a_{1}=\cdots=a_{5}=1$. Thus $z=x+\sum_{i=1}^{5} b_{i} e_{i}$ with $\sum_{i=1}^{5} b_{i} \equiv 0 \bmod 5$, so $z \in E_{5}^{\prime}$. Hence $E_{5}^{\prime}(z)=E_{5}^{\prime}$.
(iii) $a_{1}=1, a_{2}=-1, a_{3}=2, a_{4}=-2, a_{5}=b_{1}=\cdots=b_{4}=0$ and b_{5} $\in\{0,1\}$. If $b_{5}=0$, then $z \in E_{5}^{\prime}$, so $E_{5}^{\prime}(z)=E_{5}^{\prime}$. If $b_{5}=1$, then we have $E_{5}^{\prime}(z)=\left[z_{0}, z_{1}, \cdots, z_{4}\right] \simeq E_{5}$, where $z_{0}=z+\bar{\zeta} e_{3}+\zeta e_{4}-e_{5}, z_{1}=z+x+\bar{\zeta} e_{1}$ $+\bar{\zeta} e_{3}-e_{5}, z_{2}=z+2 x+\bar{\zeta} e_{1}-\sqrt{5} e_{3}-\zeta e_{5}, z_{3}=z-2 x+\zeta e_{2}+\sqrt{5} e_{4}-\bar{\zeta} e_{5}$ and $z_{4}=z-x+\zeta e_{2}+\zeta e_{4}-e_{5}$, where $\zeta=\frac{1}{2}(1+\sqrt{5})$.

If $a=1$, then we have only to consider the following six cases by Lemma 2 (note that $O\left(E_{5}^{\prime}\right)$ contains all permutations of $\left\{e_{1}, \cdots, e_{5}\right\}$):
(iv) $\alpha_{1}=\cdots=\alpha_{4}=0$ and $\alpha_{5}=2 \sqrt{5}$. Thus $E_{5}^{\prime}(z)=\left[2 z-5 e_{5}, 2 z-\right.$ $\left.e_{1}-4 e_{5}, 2 z-e_{2}-4 e_{5}, 2 z-e_{3}-4 e_{5}, 2 z-e_{4}-4 e_{5}\right] \simeq E_{5}$.
(v) $\alpha_{1}=\alpha_{2}=\alpha_{3}=0, \alpha_{4}=2$ and $\alpha_{5}=3+3 \sqrt{5}$. Thus $E_{5}^{\prime}(z)=[z+$ $2 x-\zeta e_{4}-(3+\sqrt{5}) e_{5}, z-2 x-\bar{\zeta}\left(e_{1}+e_{2}+e_{3}\right)-(3+\zeta) e_{5}, z-e_{1}-\zeta e_{4}-$ $\left.(3+\zeta) e_{5}, z-e_{2}-\zeta e_{4}-(3+\zeta) e_{5}, z-e_{3}-\zeta e_{4}-(3+\zeta) e_{5}\right] \simeq E_{5}$.
(vi) $\alpha_{1}=\alpha_{2}=\alpha_{3}=0, \alpha_{4}=1$ and $\alpha_{5}=4+\sqrt{5}$. Thus we have $E_{5}^{\prime}(z)=$ $\left[2 z+2 x-\zeta\left(e_{1}+e_{2}+e_{3}+e_{4}\right)-(3+2 \sqrt{5}) e_{5}, 2 z-2 x-\bar{\zeta}\left(e_{1}+e_{2}+e_{3}\right)-e_{4}\right.$ $+(3 \zeta-4) e_{5}, 2 z-\left(e_{1}+e_{2}\right)-\zeta e_{4}-(3 \zeta+1) e_{5}, 2 z-\left(e_{2}+e_{3}\right)-\zeta e_{4}-(3 \zeta+1) e_{5}$, $\left.2 z-\left(e_{1}+e_{3}\right)-\zeta e_{4}-(3 \zeta+1) e_{5}\right] \simeq E_{5}$.
(vii) $\alpha_{1}=\alpha_{2}=1, \alpha_{3}=\alpha_{4}=-1$ and $\alpha_{5}=0$. Thus we have $E_{5}^{\prime}(z)=$ $\left[z+x+\bar{\zeta} e_{1}-\zeta e_{2}, z+x+\bar{\zeta} e_{2}-\zeta e_{1}, z-x+\zeta e_{3}-\bar{\zeta} e_{4}, z-x+\zeta e_{4}-\bar{\zeta} e_{3}, z\right]$ $\simeq E_{5}$.
(viii) $\alpha_{1}=\alpha_{2}=2, \alpha_{3}=\alpha_{4}=-2$ and $\alpha_{5}=-5$. By Lemma 4 we have $E_{5}^{\prime}(z) \simeq E_{5}^{\prime}$ by taking $w=3 x-\sqrt{5}\left(e_{3}+e_{4}+e_{5}\right)$.
(ix) $\alpha_{1}=2, \alpha_{2}=1, \alpha_{3}=-1, \alpha_{4}=-2$ and $\alpha_{5}=2 \sqrt{5}$. Then we have $E_{5}^{\prime}(z)=\left[2 z+x-\sqrt{5} e_{1}-\zeta e_{2}-\bar{\zeta} e_{4}-4 e_{5}, 2 z-2 x-\zeta e_{1}+\sqrt{5} e_{3}+\sqrt{5} e_{4}+\right.$ $(\zeta-5) e_{5}, 2 z+2 x-\sqrt{5} e_{1}-\sqrt{5} e_{2}-\bar{\zeta} e_{4}-(\zeta+4) e_{5}, 2 z-x-\zeta e_{1}-\bar{\zeta} e_{3}+$ $\left.\sqrt{5} e_{4}-4 e_{5}, 2 z-\sqrt{5} e_{1}-\zeta e_{2}-\bar{\zeta} e_{3}+\sqrt{5} e_{4}-4 e_{5}\right] \simeq E_{5}$.

Hence gen E_{5} contains just two classes by Lemmas 7, 8 and 9. $\left\{E_{5}, E_{5}^{\prime}\right\}$ is a set of all representatives of classes in gen E_{5}.

Proposition 12. Let $D=13$. Then the class number of E_{n} is one if $n \leqq 2$, two if $n=3$ and more than two if $n \geqq 4$.

Proof. Let $n=4$. Then there are three lattices $E_{4}, E_{4}\left(y_{1}\right)$ and $E_{4}\left(y_{2}\right)$ in
gen E_{4} with $\sqrt{13} y_{1}=e_{1}+2 e_{2}+3 e_{3}+5 e_{4}$ and $\sqrt{13} y_{2}=e_{1}+3 e_{2}+4 e_{3}$. By Proposition $4 Q\left(E_{4}\left(y_{1}\right)\right) \nexists 1, Q\left(E_{3}\left(y_{2}\right)\right) \nexists 1$ and $E_{4}\left(y_{2}\right)=E_{3}\left(y_{2}\right) \perp\left[e_{4}\right]$. Thus the class number of E_{4} is more than 2. Let $n=3$ and $\mathfrak{p} \in(\sqrt{13})$. Take a \mathfrak{p}-adjacent lattice $E_{3}^{\prime}=E_{3}(x)$ to E_{3}. By Lemma 5 and Proposition 4(5) we may consider $\sqrt{13} x=e_{1}+3 e_{2}+4 e_{3}$. Thus

$$
Q\left(E_{3}^{\prime}\right) \not \supset 1 \quad \text { and } \quad E_{3}^{\prime}=[x, y, z] \simeq\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 3 & \sqrt{13} \\
1 & \sqrt{13} & 5
\end{array}\right)
$$

where $y=e_{1}+e_{2}-e_{3}$ and $z=6 x-\sqrt{13}\left(e_{2}+2 e_{3}\right)$. Next consider a \mathfrak{p} adjacent lattice $E_{3}^{\prime \prime}=E_{3}^{\prime}(u)$ to E_{3}^{\prime} with $\sqrt{13} u=\alpha x+\beta y+\gamma z \in E_{3}^{\prime}-\mathfrak{p} E_{3}^{\prime}$. If $\beta \in \mathfrak{p}$, then we may assume that $\beta=0$ and $\alpha=1$ by Lemma 2. Thus we may assume that $\gamma=2$ or $\gamma=-5$ since $Q(u) \in \mathfrak{o}$ by Lemma 4. If $\gamma=2$, then $E_{3}^{\prime \prime}=[u, y, \sqrt{13} z]=[u-y, 4 u+2 y-\sqrt{13} z, 3 u+2 y-\sqrt{13} z]$ $\simeq E_{3}$. If $\gamma=-5$, then $E_{3}^{\prime \prime}=[u, y, \sqrt{13} z]=[u+2 y, 3 u+y+\sqrt{13} z, 4 u+$ $2 y+\sqrt{13} z] \simeq E_{3}$. Let $\beta \notin \mathfrak{p}$. Then by Lemma 2 we may assume that α and $\beta \in Z$ such that $|\alpha| \leqq 6$ and $|\gamma| \leqq 6$ and that $\beta \equiv 2 \bmod \sqrt{13}$. Since $\tau_{x+\sqrt{13} y-3 z}, \tau_{2 x+\sqrt{13} y-3 z}, \tau_{x} \in O\left(E_{3}^{\prime}\right)$, we may assume that $\sqrt{13} u=x(\pm 2+$ $2 \sqrt{13}) y-6 z$. Hence $E_{3}^{\prime \prime}=[u, \pm(5 u-9 y)+x+(\pm 2 \sqrt{13}-2) z, 4 u \pm 2 x$ $-4 y-(\pm 2-\sqrt{13}) z] \simeq E_{3}^{\prime}$. By Lemmas 7, 8 and 9 we have the assertion.

Proposition 13. Let $D=17$. Then the class number of E_{n} is one if $n \leqq 3$ and more than two if $n \geqq 4$.

Proof. Let $n=4$. Then there are three lattices $E_{4}, E_{4}\left(y_{1}\right)$ and A in gen E_{4}, where $\sqrt{17} y_{1}=e_{1}+3 e_{2}+4 e_{3}+5 e_{4}, \sqrt{17} y_{2}=e_{1}+2\left(e_{2}+e_{3}+e_{4}+e_{5}\right)$ and $E_{5}\left(y_{2}\right)=\left[y_{2}\right] \perp A$. By Proposition $4 Q\left(E_{4}\left(y_{1}\right)\right) \nexists 1$, 2. By Proposition $2 Q(A) \nexists 1$ and $Q(A) \ni 2$. Hence the class number of E_{4} is more than two. Let $n=3$. Then by Lemma 5 and Proposition 4 a ($\sqrt{17}$)-adjacent lattice to E_{3} is isometric to E_{3}.

Proposition 14. Let $D=29$. Then the class number of E_{n} is more than two if $n \geqq 3$.

Proof. There are three lattices $E_{3}, E_{3}(y)$ and $E_{3}\left(y^{\prime}\right)$ in gen E_{3}, where $\sqrt{29} y=2 e_{1}+3 e_{2}+4 e_{3}$ and $2 y^{\prime}=e_{1}+\frac{1}{2}(1+\sqrt{29}) e_{2}+\frac{1}{2}(1-\sqrt{29}) e_{3}$. Then $E_{3}(y)=[y] \perp M$ with $1 \notin Q(M)$. Clearly $Q\left(E_{3}\left(y^{\prime}\right)\right) \nexists 1$ since

$$
E_{3}\left(y^{\prime}\right)=\left[y^{\prime}, 2 e_{1}, \sqrt{29} e_{1}-e_{2}+e_{3}\right] \simeq\left(\begin{array}{ccc}
4 & 1 & 0 \\
1 & 4 & 2 \sqrt{29} \\
0 & 2 \sqrt{29} & 31
\end{array}\right)
$$

Proposition 15. Let $D=33$. Then the class number of E_{n} is one if $n \leqq 2$, two if $n=3$ and more than two if $n \geqq 4$.

Proof. There are three lattices $E_{4}, E_{4}\left(x_{1}\right)$ and $E_{4}\left(x_{2}\right)$ in gen E_{4} with $x_{1}=(\sqrt{33} / 11)\left(e_{1}+e_{2}+3 e_{3}\right)$ and $x_{2}=(\sqrt{33} / 11)\left(e_{1}+e_{2}+2 e_{3}+4 e_{4}\right)$. Then $E_{4}\left(x_{1}\right)=E_{3}\left(x_{1}\right) \perp\left[e_{4}\right]$ with $1 \notin Q\left(E_{3}\left(x_{1}\right)\right)$ and $1 \notin Q\left(E_{4}\left(x_{2}\right)\right)$ by Proposition 4. Thus the class number of E_{4} is more than two. Put $\pi=11+2 \sqrt{33}$ and $\omega=6+\sqrt{33}$. Let $n=3$ and $\mathfrak{p}=(\pi)$. Then a \mathfrak{p}-adjacent lattice to E_{3} is isometric to E_{3} or $E_{3}\left(x_{1}\right)$ by Proposition 1 and Lemma 5. Note that

$$
\begin{aligned}
E_{3}\left(x_{1}\right) & =\left[e_{1}-e_{2}, x_{1}-e_{1}-2 e_{2}+e_{3}, 5 x_{1}+(1-\sqrt{33})\left(e_{1}+e_{2}\right)+(3-\sqrt{33}) e_{3}\right] \\
& \simeq\left(\begin{array}{ccc}
2 & 1 & 0 \\
1 & 9 & 3 \sqrt{33} \\
0 & 3 \sqrt{33} & 35
\end{array}\right) .
\end{aligned}
$$

Putting $x=(\sqrt{33} / 3)\left(e_{1}+e_{2}+e_{3}\right)$, then $E_{3}^{\prime}=E_{3}(x)=\left[e_{1}-e_{2}, x+\frac{1}{2}(3-\sqrt{33}) e_{1}\right.$ $\left.+\frac{1}{2}(1-\sqrt{33}) e_{2}+e_{3}, x-2\left(e_{1}+e_{2}\right)+4 e_{3}\right] \simeq E_{3}\left(x_{1}\right)$. To find a p-adjacent lattice to $E_{3}\left(x_{1}\right)$ we have only to find a \mathfrak{p}-adjacent lattice $E_{3}^{\prime \prime}$ to E_{3}^{\prime}. Let $E_{3}^{\prime \prime}=E_{3}^{\prime}(y)$ with $y \in \mathfrak{p}^{-1} E_{3}^{\prime}-E_{3}^{\prime}$. By Lemma 2 we can assume that $y=$ $(\sqrt{33} / 11) z$ with $z \in E_{3}^{\prime}-\mathfrak{p} E_{3}^{\prime}$. Thus $\mathfrak{p} y \subset \omega E_{3}^{\prime} \subset E_{3}$. Since $x \in E_{3}^{\prime}$ and $B(x, y)$ $=B\left(e_{1}+e_{2}+e_{3}, z\right) \in B\left(E_{3}^{\prime}, E_{3}^{\prime}\right) \subset 0$ we have $x+y \in E_{3}^{\prime \prime}$. For a vector $w \in E_{3}$ such that $B(w, x+y) \in \mathfrak{o}$ we have $\pi B(w, x)=B(w, \pi(x+y))-$ $B(w, \pi y) \in \mathfrak{o}$, also $\omega B(w, x) \in \mathfrak{o}$. Hence $B(w, x) \in \mathfrak{o}$, so $w \in E_{3}^{\prime}$. And hence $B(w, y)=B(w, x+y)-B(w, x) \in \mathfrak{v}$, so $w \in E_{3}^{\prime}(y)=E_{3}^{\prime \prime}$. Hence $E_{3}(x+y)$ $\subset E_{3}^{\prime \prime}$. Since $y=2 \omega(x+y)-(2 \omega x+\pi y)$ with $2 \omega x+\pi y \in E_{3}$ and $B(y, 2 \omega x$ $+\pi y) \in \mathfrak{0}$, we have $y \in E_{3}(x+y)$. For a vector $w \in E_{3}$ such that $B(w, x) \in \mathfrak{o}$ and $B(w, y) \in \mathfrak{0}$, we have $B(w, x+y) \in \mathfrak{o}$. Thus $E_{3}^{\prime \prime} \subset E_{3}(x+y)$. Hence $E_{3}^{\prime \prime}=E_{3}(u)$ with $u=x+y=(1 / \sqrt{33})\left(11 e_{1}+11 e_{2}+11 e_{3}+3 z\right) \in(1 / \sqrt{3} \overline{3}) E_{3}$. Clearly $\sqrt{33} u \notin \mathfrak{p} E_{3} \cup \omega E_{3}$. Write $\sqrt{33} u=\sum_{i=1}^{3} \alpha_{i} e_{i}$ with $\alpha_{i} \in \mathfrak{o}$. By Lemma 2 and considering the structure of $O\left(E_{3}\right)$, we have only to consider the following three cases:
(i) $\alpha_{1}=\alpha_{2}=4$ and $\alpha_{3}=1$. Then

$$
\begin{aligned}
E_{3}^{\prime \prime}= & {\left[u, 4 u+\frac{1}{2}(1-\sqrt{3 \overline{3}}) e_{1}-\frac{1}{2}(1+\sqrt{3 \overline{3}}) e_{2},\right.} \\
& \left.4 u-\frac{1}{2}(1+\sqrt{3 \overline{3}}) e_{1}+\frac{1}{2}(1-\sqrt{3 \overline{3}}) e_{2}\right] \simeq E_{3} .
\end{aligned}
$$

(ii) $\alpha_{1}=\alpha_{2}=2$ and $\alpha_{3}=5$. Hence

$$
\begin{aligned}
E_{3}^{\prime \prime}= & {\left[u, 7 u+\frac{1}{2}(1-\sqrt{33}) e_{1}-\frac{1}{2}(1+\sqrt{33}) e_{2}-\sqrt{33} e_{3},\right.} \\
& \left.7 u-\frac{1}{2}(1+\sqrt{3 \overline{3}}) e_{1}+\frac{1}{2}(1-\sqrt{33}) e_{2}-\sqrt{33} e_{3}\right] \simeq E_{3} .
\end{aligned}
$$

(iii) $\alpha_{1}=1, \alpha_{2}=4$ and $\alpha_{3}=7$. Thus

$$
E_{3}^{\prime \prime}=\left[u, 4 u-\sqrt{33} e_{3}, e_{1}+5 e_{2}-3 e_{3}\right] \simeq E_{3}^{\prime}
$$

Hence we have the assertion by Lemmas 7, 8 and 9.
Proposition 16. Let $D=41$. Then the class number of E_{n} is one if $n=1$, two if $n=2,3$ and more than two if $n \geqq 4$.

Proof. By Proposition 6 there is a lattice G^{\prime} in gen E_{2} such that $1 \notin Q\left(G^{\prime}\right)$. Hence there are three lattices $E_{4}, G^{\prime} \perp E_{2}$ and $G^{\prime} \perp G^{\prime}$ in gen E_{4}. Thus the class number of E_{4} is more than two. Let $n=3$ and $\mathfrak{p}=(\sqrt{41})$. A \mathfrak{p}-adjacent lattice to E_{3} is isometric to E_{3} or $E_{3}(x)$ with $x=(1 / \sqrt{41})\left(e_{1}+2 e_{2}+6 e_{3}\right)$ by Propositions 1 and 4 and Lemma 3. Thus

$$
E_{3}^{\prime}=E_{3}(x)=[x, y, z] \simeq\langle 1\rangle \perp\left(\begin{array}{cc}
5 & 2 \sqrt{41} \\
2 \sqrt{41} & 5
\end{array}\right)
$$

with $y=2 e_{1}-e_{2}$ and $z=\sqrt{41}\left(e_{1}+e_{3}\right)-7 x$. Take a \mathfrak{p}-adjacent lattice $E_{3}^{\prime \prime}=E_{3}^{\prime}(u)$ to E_{3}^{\prime} such that $u \notin E_{3}^{\prime}$. Write $\sqrt{41} u=\alpha x+\beta y+\gamma z$ with $\alpha, \beta, \gamma \in \mathfrak{o}$. If $\alpha \in \mathfrak{p}$, then we may assume that $\alpha=0$ and $\gamma=20$ by Lemma 2. Since $Q(u) \in \mathfrak{0}$, we may assume that $\beta= \pm 5-8 \sqrt{41}$ by Lemma 2 . Thus $E_{3}^{\prime \prime}=[x] \perp[-u, \pm 10 u+(2 \sqrt{41} \pm 80) y-(8 \pm 5 \sqrt{41}) z] \simeq E_{3}^{\prime}$. If $\beta \in \mathfrak{p}$, then we may assume that $\alpha=7, \beta=0$ and $\gamma=1$. Hence $u=e_{1}+e_{3}$ and $E_{3}^{\prime \prime}=E_{3}$. If $\gamma \in \mathfrak{p}$, we may assume that $\alpha=6, \beta=1$ and $\gamma=0$. Thus $E_{3}^{\prime \prime}=[u] \perp[14 u-2 \sqrt{41} x-z] \perp[7 u-\sqrt{41} x-\sqrt{41} y+2 z] \simeq E_{3}$. If $\alpha \beta \gamma \notin$ \mathfrak{p}, then we may assume that $\gamma=1$ and $\beta \in \boldsymbol{Z}$ by Lemma 2. Note that $O\left(E_{3}^{\prime}\right)$ contains the isometries

$$
\begin{array}{rl}
" & x \rightarrow \pm x, y \rightarrow 2 \sqrt{41} y-5 z, z \rightarrow 33 y-2 \sqrt{41} z " \\
" x \rightarrow \pm x, y & \rightarrow \frac{1}{2}(17-\sqrt{41}) y+\frac{1}{2}(3-\sqrt{41}) z, \\
& z \rightarrow \frac{1}{2}(7 \sqrt{41}-13) y-\frac{1}{2}(17-\sqrt{41}) z "
\end{array}
$$

and

$$
\begin{aligned}
" x \rightarrow \pm x, y & \rightarrow \frac{1}{2}(17+\sqrt{41}) y-\frac{1}{2}(3+\sqrt{41}) z, \\
y & \rightarrow \frac{1}{2}(13+7 \sqrt{41}) y-\frac{1}{2}(17+\sqrt{41}) z " .
\end{aligned}
$$

Hence by Lemmas 2 and 3 we have only to consider the following two cases:
(i) $\sqrt{41} u=-(-2 \pm 3 \sqrt{41}) x \pm 3 y+z$ and
(ii) $\sqrt{41} u=(10 \pm 6 \sqrt{41}) x \mp 30 y+z$.

In the case of (i) we have

$$
E_{3}^{\prime \prime}=[u, \sqrt{41} x, y \pm 13 x]=[v] \perp\left[v_{1}, v_{2}\right] \simeq E_{3}^{\prime}
$$

where

$$
\begin{aligned}
2 v & =(-19 \pm \sqrt{41}) u-(9 \pm 3 \sqrt{41}) \sqrt{41} x+(5 \pm \sqrt{41})(y \pm 13 x) . \\
2 v_{1} & =(11 \pm \sqrt{41}) u+(15 \pm 3 \sqrt{41}) \sqrt{41} x-(7 \pm \sqrt{41})(y \pm 13 x)
\end{aligned}
$$

and

$$
v_{2}=2(\pm 2+\sqrt{41}) u+(\pm 19+2 \sqrt{41}) \sqrt{41} x-(\pm 6+\sqrt{41})(y \pm 13 x) .
$$

Then $Q(v)=1$. In the case of (ii) we have

$$
E_{3}^{\prime \prime}=[u, \sqrt{41} x, y \pm 15 x]=\left[v^{\prime}\right] \perp\left[v_{1}^{\prime}, v_{2}^{\prime}\right] \simeq E_{3}^{\prime},
$$

where

$$
\begin{aligned}
2 v^{\prime} & =(-9 \pm \sqrt{41}) u-(101 \pm 11 \sqrt{41}) \sqrt{41} x-(-33 \pm 7 \sqrt{41})(y \pm 15 x) \\
v_{1}^{\prime} & =(21 \pm \sqrt{41}) u-(236 \pm 11 \sqrt{41}) \sqrt{41} x+(21 \pm 15 \sqrt{41})(y \pm 15 x)
\end{aligned}
$$

and

$$
2 v_{2}^{\prime}=(25 \pm 17 \sqrt{41}) u-(273 \pm 191 \sqrt{41}) \sqrt{41} x+(501 \pm 11 \sqrt{41})(y \pm 15 x) .
$$

Then $Q\left(v^{\prime}\right)=1$. Hence the class number of E_{3} is two, and that of E_{2} is also two, by Lemmas 7, 8 and 9 .

References

[1] J. Dzewas, Quadratsummen in reell-quadratischen Zahlkörpern, Math. Nachr., 21 (1960), 233-284.
[2] M. Kneser, Klassenzahlen definiter quadratischen Formen, Arch. Math., 8 (1957), 241-250.
[3] O. Nebelung, p-adische Darstellungsdichten binärquadratischer Formen, Dissertation, Ulm 1978.
[4] O. T. O’Meara, Introduction to quadratic forms, Berlin-Göttingen-Heidelberg, Springer-Verlag, 1963.
[5] M. Peters, Einklassige Geschlechter von Einheitsformen in totalreellen algebraischen Zahlkörpern, Math. Ann., 226 (1977), 117-120.
[6] H. Pfeuffer, Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern, J. Number Theory, 3 (1971), 371-411.
[7] ——, Quadratsummen in totalreellen algebraischen Zahlkörpern, J. reine angew. Math., 249 (1971), 208-216.
[8] - Über die reelle Spiegelungsgruppe \mathfrak{r}_{4} und die Klassenzahl der sechsdimensionalen Einheitsform, Arch. Math., 31 (1978), 126-132.
[9] - On a conjecture about class numbers of totally positive quadratic forms in totally real algebraic number fields, J. Number Theory, 11 (1979),
[10] M. Pohst, Mehrklassige Geschlechter von Einheitsformen in total reellen algebraischen Zahlkörpern. J. reine angew. Math., 262/263 (1973), 420-435.
[11] R. Salamon, Die Klassen im Geschlecht von $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ und $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$ über $Z[\sqrt{3}]$, Arch. Math., 20 (1969), 523-530.

Department of Mathematics
Kobe University
Nada-ku, Kobe 657
Japan

