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Abstract. In this paper we study local indices of systems ofp-adic linearly differential equations
which arise fromp-adic representations of the absolute Galois group of local field of characteristic
p with finite monodromy. We show the induction formula of the local index ofp-adic differential
equations and prove the equality between the local index of differential equations and the Swan
conductor ofp-adic Galois representations by inductive methods.
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1. Introduction

Let p be a prime. In [TN2] we showed that the category ofp-adic representations
with finite monodromy on a local field of positive characteristicp is equivalent
to that of overconvergent etale'-r-modules, which are differential modules with
etale Frobenius structures. In this paper we show that the Swan conductor of a
p-adic representation with finite monodromy coincides with the irregularity of the
correspondingp-adic differential module. Here the irregularity is a generalization
of that of Robba which is defined using local indices [Ro2]. In the case of rank
one, Matsuda showed the equality for an odd primep [Ma].

Let F be a complete discrete valuation field of positive characteristicp with a
perfect residue class fieldk and denote byGF the absolute Galois group ofF . Let
K be the field of fraction of the Witt vector ring withk-coefficients and denote by
j j an absolute value ofK. Put

E† =

(
1X

n=�1

anx
n j

an 2 K; janj is bounded,

janj�
n ! 0 (n! �1) for some 0< � < 1

)
;

thenE† is a henselian discrete valuation field with residue class fieldF . In [Tn2]
we showed an equivalence of categories�

p-adic reprsentations ofGF

with finite local monodromy

�
D†

�!

�
overconvergent etale
'-r-modules

�
:

Here finite local monodromy means that the inertia subgroup ofGF acts through
a finite quotient and an overconvergent etale'-r-module is anE†-module with
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246 TSUZUKI NOBUO

Frobenius', all of whose slopes are 0, and with a connectionr. For any over-
convergent'-r-moduleM of rank one, there always exists a base such that the
differential operator which is associated to the base has a coefficient inK(x) ([Ma,
5.2, 5.3] or (8.2.1)). So one can define an irregularity ofM by the irregularity of
Robba [Ro2, 10.1]. In the case of general rank, however, it is not known that there
exists a good basis such that the coefficients of the corresponding differential oper-
ator are matrices ofK(x)-coefficients, so that we can not define the irregularity of
overconvergent etale'-r-modules directly.

Let us explain how to define the irregularity. Assume thatk is algebraically
closed. An overconvergent etale'-moduleM is �-unipotent if and only if the
action of Frobenius' is unipotent modulo the maximal ideal (3.2). We show that
M is�-unipotent if and only if the correspondingp-adic representationV is totally
wild ramified (3.5.1). In this case there is a basis such that the coefficients of the
corresponding differential operatorL are matrices ofH† = f

P�1
n=0 anx

n 2 E†g-
coefficients and all morphisms of overconvergent etale'-modules comes from
those asH†-modules (3.3). We define the irregularity ofM onK by

i(M) = �dimK ker(L: (H†)r!(H†)r) + dimK coker(L: (H†)r!(H†)r);

wherer is the rank ofM . i(M) is independent of the choice of such a basis. In
general case, first we pull back to the case thatk is algebraically closed. Then,
for any overconvergent etale'-r-moduleM , there is a positive integerN (p6 jN)
such that the pull back[N ]�M by the map[N ]: E† ! E† (x 7! xN ) is�-unipotent.
Define the irregularity by1

N i([N ]�M) (7.1.1). Our irregularity coincides with that
of Robba ifL has coefficients inK(x).

One of our main theorems is as follows;

THEOREM (7.2.2)LetV be ap-adic representation ofGF with finite local mono-
dromy and putM = D†(V ). Then, the irregularityi(M) is finite and

i(M) = Swan(V ):

HereSwan(V ) is the Swan conductor ofV [Og, II.].

To prove the theorem, we use an inductive method. Iff :F ! F 0 is a finite sep-
arable extension, we denote by(E†)0 the corresponding finite unramified extension
over E†. For an overconvergent'-r-modulesM over (E†)0, we define a direct
imagef�M (5.1). The functor of direct image commutes with the functor D†, that
is, if V is a representation onF 0, then D†(f�V ) �= f�D†(V ) (5.2.1).

Assume thatk is algebraically closed. If the extensionF 0=F is an Artin–Schreier
extension of degreepand ifM is a�-unipotent overconvergent'-module over(E†)0

with a basis such that the corresponding differential operatorL has coefficients in
rational functions, thenf�M also has such a good basis (5.6). Moreover, ifi(M)
is finite, theni(f�M) is also finite and the inductive formula

i(f�M) = rank(M)lengthOF 0
!OF 0=OF

+ i(M);
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holds (8.1.2). Here!OF 0=OF
is the logarithmic differential module ofOF 0 overOF

[KK, (1.7)]. The formula above corresponds to the formula for Swan conductor as
follows. LetV be a potentially unipotent representation ofGF 0, then

Swan(f�V ) = rank(V )lengthOF 0
!OF 0=OF

+ Swan(V ):

Therefore, the formula ‘irregularity= Swan’ holds for the pair(f�M;f�V ) if it
holds for the pair(M;V ) by the commutativity off� and D†.

To finish the proof, we use Brauer induction. In the case of rank one we give a new
proof which in cludes the case ofp = 2 (8.2.2). Ifk is algebraically closed, and ifV
is absolutely irreducible and totally wild ramified,V is an induced representation
of a representation of rank one. Then we can calculate the irregularity ofM using
the formula (1.0.1) inductively and show that it coincides with Swan conductor
of V . In general case, we can reduce to the preceding case. We calculate a local
index not only in the case when the field of coefficients of differential structures
is thep-adic completioncKalg of an algebraically closure ofK, but also in the
case when it isK. Because it is useful for applying to the Euler characteristic of
overconvergent unit-rootF -isocrystals on a curve. (See [Be] [Ga].)

Our method of calculation of local indices relies on the finite monodromy
theorem for overconvergentetale'-r-modules [TN2]. If we consider irregularities
for overconvergent'-r-modules with arbitrary slopes, we need such a type of
monodromy theorem. (See [Cr, 4.16.2.].)

The category ofp-adic representations on a local field of residue characteristic
p is large. In this paper we treat only those with finite local monodromy. It is a
future problem that what kinds of phenomena happen on the side of differential
structures which correspond to infinitely ramified representations.

The author would like to thank Shigeki Matsuda for useful discussion.

2. Notations

In this section we fix notations.

(2.1) Letp be a prime number. For� andk such that

� is a finite extension over the fieldQp of p-adic numbers;
k is a perfect field of characteristicp;
the residue class fieldFq of � is included ink,

(2.1.1)

we define a complete discrete valuation fieldK = K(�; k) by � 
W (Fq) W (k).
HereW (A) is the ring of Witt vectors of a ringA.

For a field
 and for an indeterminantx, denote byFx;
 the field
((x)) of
formal power series. We use the notationFx for Fx;
 if there is no ambiguity.

For any field
, we denote by
sep a separable closure of
 in a fixed alge-
braically closed field
alg and byG
 the absolute Galois group Gal(
sep=
).
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Let
 be a valuation field. Denote byO
 (resp.
un, resp.b
) the valuation ring
(resp. the maximal unramified extension in
sep, resp. the completion under the val-
uation) of
. We denote byRep

�
(G
) the category of continuous representations

of finite dimension with coefficients in� of the absolute Galois group of
 and by
Repfin

�
(G
) the full subcategory ofRep�(G
) which consists of representations

with finite local monodromy, that is, the inertia subgroup ofG
 acts via a finite
quotient.

(2.2) Denote byR>0 the set of non-negative real numbers. For a complete field

under a non-Archimedean absolute valuej j:
 ! R>0 and for an indeterminant
x, we define several
-algebras as follows:

Sx;
 = O
[[x]];

Ax;
=

(
1X
n=0

anx
n j an 2 
; janj�

n ! 0 (n!1) for any 0< � < 1

)
;

Hx;
=

(
�1X
n=0

anx
n j an 2 
; janj ! 0 (n! �1)

)
;

H
†
x;
=

(
�1X
n=0

anx
n j an 2 
; janj�

n ! 0 (n! �1) for some 0< � < 1

)
;

Ex;
 =

(
1X

n=�1

anx
n j an 2 
; sup

n
janj <1;

�1X
n=0

anx
n 2 Hx;


)
;

E
†
x;
 =

(
1X

n=�1

anx
n 2 Ex;
 j

�1X
n=0

anx
n 2 H

†
x;


)
;

Rx;
=

(
1X

n=�1

anx
n j

1X
n=0

anx
n 2 Ax;
;

�1X
n=0

anx
n 2 H

†
x;


)
;

Lx;
 =

�
b(x)

a(x)
j a(x) 2 O
[x]; a(x) 6= 0; b(x) 2 Sx;


�
:

Here we regardLx;
 as a subring ofE†
x;
 since a nonzero element ofO
[x] is a

unit of E†
x;
. We have several sequences of
-algebras;

Sx;
 � Ax;
 � E
†
x;
 � Rx;
;

and so on, via the natural inclusion. The ringSx;
;Ax;
; : : : is functorial in
. We
use the notationsSx; : : : instead ofSx;
; : : : if there is no ambiguity.

(2.2.1) REMARK. OurAx;
 (resp.H†
x;
, resp.Rx;
) coincides withA0(1) (resp.

H
†
0(1), resp.R0(1)) in [Ro2, 2].
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(2.2.2) LEMMA. We haveLx \Hx � 
(x) in Ex.

For formal Laurent power seriesa =
P
anx

n, we definejajG 2 R>0[f1g by
supnjanj. Denote byORx the subalgebra ofRx which consists of elementsa 2 Rx

such thatjajG 6 1 forRx = Ax; : : : .
If 
 is a complete discrete valuation field, thenEx (resp.E†

x) is a complete
discrete valuation field (resp. a henselian discrete valuation field) under the absolute
valuej jG and a uniformizer of
 is also that ofEx (resp.E†

x). The residue class
field of Ex (resp.E†

x) is Fx;k
 by the natural projection, wherek
 is the residue
class field of
. (See [Cr, 4.2] [Ma 3.2].) By the Weierstrass preparation theorem
we have

(2.2.3) LEMMA. If 
 is a discrete valuation field, then the fieldLx coincides with
the quotient field Frac(Sx) of Sx in E†

x.

(2.2.4) REMARK. If
 is not a discrete valuation field,Ex (resp.E†
x) is not a field.

Let fangn>1 be a sequence inm
 such thatjanj ! 1. Consider an element

a =
1X
n=1

anx
n 2 Sx;
;

thena has infinitely many zeros in the diskB(0;1�) = f� 2 b
algj j�j < 1g and
there is a sequence�i of zeros ofa such thatj�ij ! 0 (i!1). Therefore,�(x)�1

is not contained inE
x;b
alg. (See [DGS, II.2, 3].)

(2.3) For formal Laurent power series
P
anx

n of indeterminantx, we define an
additive map�x = x(d=dx) by

�x

�X
anx

n
�
=
X

nanx
n:

Then�x is an
-derivation onSx;
;Ax;
; : : : .
LetRx be one ofSx;Ax;Hx; : : : . We define a freeRx-module!Rx of rank one

by

!Rx = Rx
dx
x
:

We define an additive mapd:Rx ! !Rx byd(a) = �x(a)(dx=x) for a 2 Rx. Then
d is an
-derivation onRx.

(2.3.1) DEFINITION We say that a freeRx-moduleM of finite rank with an
additive mapr:M ! !Rx 
Rx M is ar-module overRx if and only ifr is an

-connection, that is,r(am) = da 
m + ar(m) for a 2 Rx andm 2 M . A
morphism ofr-modules overRx is anRx-homomorphism which commutes with
connections. We denote the category ofr-modules overRx by Mr

Rx
.
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For ar-moduleM of rank r and for a basisfeig of M , we define a matrix
CM;e 2Mr(Rx) (e= (e1; e2; : : : ; er)) by

r(e) =
dx
x

 eCM;e:

We also define a differential operatorLM;e 2M r(Rx[�x]) byLM;e = �x + CM;e.

(2.4) Fix� andk which satisfy the condition (2.1.1). Denote by� a uniformizer
of �. PutK = K(�; k) and fix the algebraic closurekalg (resp.Kalg) such that
the residue class field ofKalg is kalg. Define an endomorphism� onK by � =
id�
Frobf , where id� is an identity map on�, Frob is the usual Frobenius on the
ring of Witt vectors andq = pf is the cardinal of the residue class field of�. By
the condition (2.1.1),� is well-defined and the fixed subring of� is �. We call�
Frobenius. It is easily seen that� extends uniquely on any unramified extensionL

in Kun of K and on itsp-adic completionbL. We use the same notation� for this
extension.

LetL be an unramified extension ofK or itsp-adic completion incKalg. We say
a ring endomorphism� onEx;L is a Frobenius if and only if

�(a) � aq (mod�);

for a 2 O�E and the Frobenius� on L. We say that� is a Frobenius onE†
x if

and only if� is a Frobenius onEx with �(E†
x) � E†

x. A Frobenius� on Ex;L is a
Frobenius onE†

x if and only if �(x) 2 E†
x.

For a Frobenius� on E (resp.E†), define an element�(x; �) (simply,�(x) or
�) in E (resp.E†) by � = �x(�(x))=�(x). Thenj�jG < 1 and we have an equality
�x(�(a)) = ��(�x(a)), equivalently,d(�(a)) = �(d(a)) in !E (resp.!E†) for any
a 2 E (resp.E†). Here�(a(dx=x)) = ��(a)(dx=x). Later, we often use Frobenius
� with

�(x)

xq
2 H†;

or especially�(x) = xq. Then,� 2 H†, or� = q.
Fix an algebraic closureF alg of Fx;k such thatkalg is the residue class field of

F alg. Put eE = �
W (Fq) W (F alg). For a Frobenius� onE , there is an embedding

i�: E ! eE such that (i)jajG = ji�(a)j for a 2 E , wherej j is the unique valuation
on eE which is the extension of that onK, (ii) the map on residue class field
induced byi� is the injectionF � F alg and (iii) i�(�(a)) = (id�
 Frobf )(i�(a))
[TN2, 2.5.1]. By [Ma, 3.3], for any finite separable extensionFy;l over Fx;k in
F alg, there is a unique finite unramified extension overEx;K (resp.E†

x;K) which is

isomorphic toEy;L (resp.E†
y;L) in eE . HereL is the finite unramified extension of

L overK whose residue class field isl. Then the derivation�x and a Frobenius
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� on Ex;K (resp.E†
x;K) are uniquely extended to that onEy;L (resp.E†

y;L) and the
relation�x(�(a)) = �(x)�(�x(a)) is preserved on it. Ifx = a(y), then we have
the following relations

�x =
a(y)

�y(a(y))
�y;

�(x) =

�
�

�
�y(a(y))

a(y)

��
�y(a(y))

a(y)

�
�(y):

(2.4.1)

Of course,�(y) is not always contained inHy (resp.H†
y) even if�(x) is contained

in Hx (resp.H†
x). If Fy;l is Galois overFx;k, then Gal(Fy;l=Fx;k) acts onEy;L

(resp.E†
y;L) via the canonical identification Gal(Ey;L=Ex;K) �= Gal(E†

y;L=E
†
x;K)

�=

Gal(Fy;l=Fx;k) and�x (resp.�) commutes with the Galois action.

(2.5) For a matrix(aij) and for an applicationf , we definef((aij)) = (f(aij)).

3. �-unipotent etale'-r-modules

In this section we define the notion of (strictly)�-unipotent'-r-modules and
show some properties of them.

Fix � andk as in (2.1.1) and putK = K(�; k). Let � be a uniformizer of�.
Denote byE(†) eitherEx;K or E†

x;K and let� be a Frobenius onE(†). We use the

notationH(†) for Hx;K orH†
x;K which respects toE(†).

(3.1) First we recall the definition of'-r-modules and some properties of them
[TN1] [TN2].

(3.1.1) DEFINITION. We say anE(†)-vector spaceM of finite dimension with a
morphism' is a'-module overE(†) with respect to� if and only if they satisfy
the condition

(1) the application':M ! M is a �-linear endomorphism such that'(M)
generatesM overE(†). The map' is called Frobenius.

A morphism of'-modules is anE(†)-homomorphism which commutes with
Frobenius'. For a'-moduleM of rankr and for a basisfeig of M , we define a
matrixAM;e 2 GLr(E(†)) (e= (e1; e2; : : : ; er)) by

'(e) = eAM;e:

We denote the category of'-modules overE (†) with respect to� by M�E(†);�.

(3.1.2) DEFINITION. We say anE(†)-vector spaceM with a Frobenius' and a
connectionr is a'-r-module overE(†) with respect to� if and only if they satisfy
the conditions
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(1) (M;') is a'-module and(M;r) is ar-module;
(2) r � ' = (� 
 ') � r.

A morphism of'-r-modules is anE(†)-homomorphism which commutes with
Frobenius' and connectionr. We denote the category of'-r-modules overE (†)

with respect to� by M�r
E(†);�

.

(3.1.3) DEFINITION. (1) The slope of a'-module (resp.'-r-module)M is the
slope ofeE 
E(†) M as a usual sense ofF -space overeE , whereeE is defined in (2.4).

(2) A '-module (resp. a'-r-module)M is etale if and only if all slopes ofM
are 0.

We denote the category of etale'-modules (resp. etale'-r-modules) overE (†)

with respect to� byM�et
E(†);�

(resp.M�ret
E(†);�

). It is a full subcategory ofM�E(†);�
(resp.M�r

E(†);�
).

(3.1.4) REMARK. In [TN1] [TN2], we use the terminology ‘overconvergent'-r-
module’ (resp. ‘'-r-module’) for'-r-module overE† with respect to� (resp.
'-r-module overE with respect to�). We will use both in this paper.

All categoriesM�r
E(†)

, M�r
E(†);�

: : : are abelian and have tensor products and

duals. The natural functor� from the category overE† to that overE commutes
with tensor products and duals.

LetA 2 GLr(E(†)) andC 2Mr(E
(†)) which satisfy the relation

�x(A) + CA = �(x; �)A�(C): (3.1.5)

We define a'-r-moduleMA;C overE(†) with respect to� by

'(e1; e2; : : : ; er) = (e1; e2; : : : ; er)A;

r(e1; e2; : : : ; er) =
dx
x

 (e1; e2; : : : ; er)C;

wherefeig is a basis ofMA;C . We sayA is etale if and only if the'-module whose
Frobenius is defined byA is etale.

Let �0 be a finite extension of� and letk0 be an extension ofk such that the
pair�0 andk0 satisfy the condition (2.1.1). Denote byK 0 (resp. byE(†)

0

)K(�0; k0)

(resp.E(†)x;K0). Define the Frobenius�0 onE(†)
0

by

�0 = �f(�
0=�);

wheref(�0=�) is the degree of extension of the residue class field of�0 over that
of �. We define a functor

��0=�: M�E(†);� ! M�E(†)0 ;�0

(resp: ��0=�: M�r
E(†);�

! M�r
E(†)

0
;�0
);

(3.1.6)
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by(M;'; (r)) 7! (E(†)
0


E(†)M;�0
'f(�
0=�); (r)). ForA 2 GLr(E(†))andC 2

Mr(E
(†))which satisfy the relation (3.1.5), if we putA0 = A�(A) : : : �f(�

0=�)�1(A),
then one can easily see that the equation

�x(A
0) +CA0 = �(x; �0)A0�0(C);

holds. Hence, if we putA = AM;e for a basis ofM , then we have��0=�(M) =
MA0;C . The functor��0=� is exact, and commutes with�, tensor products and duals.
Moreover, ifM is etale, then��0=�(M) is also etale.

(3.2) We define the notion of�-unipotent'-r-modules. PutS = Sx;K.

(3.2.1) DEFINITION. (1) We say that a matrixA 2 GLr(E(†)) is �-unipotent if

and only ifA belongs to GLr(O
(†)
E ) and

A �

0
B@

1 �

...

0 1

1
CA (mod�):

(2) We say that a'-moduleM overE(†) with respect to� is �-unipotent if and
only if there exists a basisfeig of M such that the matrixAM;e is �-unipotent. We
say such a basis is�-unipotent.

(3.2.2) DEFINITION. (1) We say that a matrixA 2 GLr(E(†)) is strictly �-
unipotent if and only ifA is �-unipotent andA is contained in GLr(H(†)).

(2) We say that a'-moduleM overE(†) with respect to� is strictly�-unipotent
if and only if there exists a basisfeig of M such that the matrixAM;e is strictly
�-unipotent. We say such a basis is strictly�-unipotent.

If a matrixA is �-unipotent, thenA is etale.

(3.2.3) PROPOSITION.If a matrix A 2 GLr(E(†)) is �-unipotent, then there
is a matrixQ 2 GLr(S) such thatQ is �-unipotent andQ�1A�(Q) is strictly
�-unipotent.

(3.2.4) COROLLARY.If M is a �-unipotent'-module overE (†) with respect to
�, thenM is strictly�-unipotent.

(3.2.5) REMARK. Ifk is algebraically closed, then there is a matrixQ 2 GLr(S)

such thatQ is �-unipotent andQ�1A�(Q) 2 1 + �x�1Mr(O
(†)
H ) for any �-

unipotent matrixA.

Before proving (3.2.3), we prove two lemmas.
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(3.2.6) LEMMA. Let A be a matrix inGLr(k((x))) such thatA =
�

1 �...0 1

�
.

For any element� = (�1; �2; : : : ; �r) 2 k((x))
r, there is a vector� = (�1; �2; : : : ;

�r) 2 k[[x]]
r such that

A�q(
t�)� t� + t� 2 k[x�1]r;

(resp: �q(�)� �A+ � 2 k[x�1]r):

Here�q is a qth power map andt� is the transpose of�.
Proof.In the caser = 1, put� = �(+)+�(�) (�(+) 2 xk[[x]]; �(�) 2 k[x

�1]).
Set� =

P1
i=0�

i
q(�(+)). Since�(+) 2 xk[[x]], the right-hand side is convergent

and�q(�)� � + � 2 k[x�1]. The rest is easy by induction onr. 2

(3.2.7) LEMMA. If a matrix A 2 GLr(OK=(�
n+1)[[x]][x�1]) satisfies the con-

ditions thatA �
�

1 �.. .0 1

�
(mod�) and thatA (mod�n) belongs toMr(OK=

(�n)[x�1]) for a non-negative integern (in the case thatn = 0, we assume only
�-unipotent forA), then there is a matrixQn 2 GLr(OK=(�

n+1)[[x]]) such that

Qn � 1(mod�n) (in the case thatn = 0,Q0 =
�

1 �. ..0 1

�
) and thatQn

�1A�(Qn)

is contained inMr(OK=(�
n+1)[x�1]).

Proof. The assertion is easily seen from (3.2.6) in the case whenr = 1. We

use induction onr. DecomposeA =
�
A11 A12

A21 A22

�
, A11 of size(r � 1) � (r � 1),

A12 of size (r � 1) � 1, A21 of size 1� (r � 1), andA22 of size 1� 1. We
may assume thatA21 2 (OK=(�

n+1)[x�1])r�1. In fact, by (3.2.6), there exists

� 2 k[[x]]r�1 such that the (2, 1)-component of
�

1 0
�n� 1

�
�1

A�
�

1 0
�n� 1

�
is contained

in (OK=(�
n+1)[x�1])r�1. SinceA21 � 0 (mod�), the(2;1)-component does not

change afterA! (Q0)�1A�(Q0) for Q0 = 1+ �n
�
Q0

11 Q0
12

0 Q0
22

�
,Q0ij 2M��(k[[x]]).

By the assumption of induction, we may assume that all coefficients ofA11 and
A22 belong toOK=(�

n+1)[x�1] modulo �n+1. Then we have the assertion by
(3.2.6). 2

Proof of (3.2.3). By (3.2.7) there is a sequence ofAn 2 GLr(O
(†)
E ); Qn 2

GLr(S) such that

A0 = A; An = Q�1
n�1An�1�(Qn�1);

An(mod�n) 2Mr(OK=�
n[x�1]);

Q0 �

0
B@

1 �

...

0 1

1
CA (mod�);

Qn � 1 (mod�n) (n > 1):
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THE LOCAL INDEX AND THE SWAN CONDUCTOR 255

Then the infinite productQ0Q1Q2 : : : is convergent in GLr(S) and this product is
the desiredQ. 2

We show some properties of�-unipotent'-modules.

(3.2.8) PROPOSITION.Let M1;M2 be �-unipotent'-modules. The direct sum
M1�M2, the tensor productM1 
M2, and the dualM_

1 are also�-unipotent.

(3.2.9) PROPOSITION.Let

0!M1 !M2 !M3 ! 0

be an exact sequence of'-modules.M2 is �-unipotent if and only if bothM1 and
M3 are�-unipotent.

Proof.Assume thatM2 is �-unipotent. Letfeig be a�-unipotent basis ofM2.

Let L3 be anO(†)
E -submodule inM3 which is generated by the images offeig.

ThenL3 is a lattice ofM3, that is,E 

O
(†)
E

L3
�= M3, andL3 is stable under the

action of Frobenius'. PutL3 = L3=�L3 and denote byei the image ofei in
L3. Take a subsetT of fe1; e2; : : : ; erg such thatei belongs toT if and only if ei
andhei+1; : : : ; eri are linearly independent overO(†)

E =(�). ThenT generatesL3

overO(†)
E by Nakayama’s Lemma and the representation matrix of the Frobenius'

with respect to the basis is�-unipotent. Therefore,M3 is�-unipotent. Considering
duals,M1 is �-unipotent by (3.2.9). The converse is easy. 2

Let�0 be a finite extension of� and letk0 be an extension ofk in kalg such that
the pair(�0; k0) satisfies the condition (2.1.1).

(3.2.10) PROPOSITION.Under the notation as in(3.1.6), if feig be a�-unipotent
basis of'-moduleM overE(†), then1
 ei is a�-unipotent basis of��0=�(M).

(3.2.11) REMARK. If k is algebraically closed, then the converse is also true.
(Use (3.5.1).)

Let k0 be a perfect field overk and putK 0 = K(�; k0) andE(†)
0

= E
(†)
y;K0 . Let

f : E(†) ! E(†)
0

be aK-algebra homomorphism such that the absolute valuej jG is
preserved and that the Frobenius� extends toE (†)

0

. Then, for a'-moduleM over
E(†), the pull backf�M = E(†)

0


E(†)M is also a'-module. Moreover,M is etale
if and only if f�M is so. (See [TN2, (3.2)].)

(3.2.12) PROPOSITION.Under the situation as above, letfeig be a�-unipotent
basis of'-moduleM overE(†). Then1
 ei is a�-unipotent basis off�M .

(3.2.13) REMARK. We obtain such an extensionE (†)
0

=E(†) as in (3.2.12) by the
corresponding finite unramified extension to a finite separable extensionFy;k0=Fx;k.
Assume thatk is algebraically closed and the degree of the extensionFy;k=Fx;k is
a power ofp. Then, the converse of (3.2.12) is also true by (3.5.1).
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(3.2.14) LEMMA. Assume that the Frobenius� on E (†) satisfies the condition
�(x)=xq 2 H(†). LetM be a'-r-module overE(†) with respect to� and letfeig

be a basis ofM . If AM;e is a strictly�-unipotent, thenCM;e 2 �x
�1Mr(O

(†)
H ).

Proof. Note that the condition that�(x)=xq 2 H(†) is equivalent to that
� = �(x; �) 2 H(†). Define a linear map :Mr(E) ! Mr(E) by  (Q) =
�A�(Q)A�1. Then is a contraction in thep-adic topology and (Mr(OH)) �

�Mr(OH) for j�jG < 1. Since�x(AM;e) 2 �Mr(O
(†)
H ), we have

CM;e = �(1�  )�1(�x(AM;e)A
�1
M;e) 2 �x

�1Mr(OH) \ E
(†)

= �x�1Mr(O
(†)
H );

by the relation (3.1.5). 2

(3.3) Assume that the Frobenius� satisfies the condition that�(x)�1 2 H(†) in
(3.3.1) and (3.3.2).

(3.3.1) LEMMA.LetA 2 GLr(E(†)) andB 2 GLs(E(†)) be strictly�-unipotent. If
a matrixQ 2Ms�r(E

(†)) satisfies the relationQA = B�(Q), thenQ is contained
in Ms�r(H

(†)).

Proof. We may assume thatQ belongs toMs�r(O
(†)
E ). Assume that there is

a non-negative integern such thatQ (mod�n) 2 Ms�r(OK=(�
n)[x�1]) but Q

(mod�n+1) 62Ms�r(OK=(�
n+1)[x�1]). Order the componentQ = (qij) by

qs1; qs2; : : : ; qsr; q(s�1)1; : : : ; q1r:

and letqij is the first component ofQ such thatqij(mod�n+1) 62 OK=(�
n+1)[x�1].

SinceAandB are strictly�-unipotent, the only terms of positive power ofxmodulo
�n+1 which appear in the both sides of equationX

k

qikakj =
X
k

bik�(qkj);

are the positive power ofx in qij (mod�n+1) in the left-hand side and the positive
power ofx in �(qij) (mod�n+1). The minimal positive orders ofx in both sides
are different. Therefore, we have the assertion. 2

(3.3.2) LEMMA. LetA 2 GLr(E(†)) andB 2 GLr(E(†)) be strictly�-unipotent.
If a matrixQ 2 GLr(E(†)) satisfies the relationQA = B�(Q), thenQ is contained
in GLr(H(†)).

Proof. One knowsQ 2 Mr(H
(†)) by (3.3.1) and the rest is to check det(Q) 2

(H(†))�. Hence we have only to check the assertion in the case wherer = 1.

Multiplying a suitable power of�, we may assume thatQ is contained inO(†)
E and

6� 0 (mod�). Comparing the valuation of both sides ink((x)), Q (mod�) must
belong tok by (3.3.1). Therefore,Q is a unit inH(†). 2
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From now until the end of (3.3) the Frobenius� satisfies the condition that
�(x)=xq 2 H(†).

For a spaceM overE(†) and for a basisfeig of M , define aH(†)-submodule
UM;e of M by theH(†)-module which is generated byei’s.

Let M be a�-unipotent'-module (resp.'-r-module) overE (†) with respect
to � and letfeig be a strictly�-unipotent basis. Then the Frobenius' (resp. the
connectionr) preservesUM;e by (3.2.14).UM;e is independent of the choice of a
basisfeig by (3.3.2) and we use the notationUM for it.

(3.3.3) DEFINITION. For a�-unipotent'-module (resp. a'-r-moduleM ), we
callUM a lattice overH(†) with respect to�.

By (3.3.1) we have

(3.3.4) PROPOSITION.For a morphism�:M1 ! M2 of �-unipotent'-modules
(resp.'-r-modules), there exists a uniquelyH(†)-linear homomorphism�U:UM1!

UM2 such that�U commutes with the Frobenius' (resp. the connectionr) and
that the scalar extensionidE(†) 
 �U coincides with�.

(3.3.5) PROPOSITION.Let

0!M1 !M2 !M3 ! 0;

be an exact sequence of�-unipotent'-modules(resp.'-r-modules). Then the
induced sequence(3.3.4)ofH(†)-modules

0! UM1 ! UM2 ! UM3 ! 0;

is exact.
Proof. Let e1; e2; : : : ; er (resp: f1; f2; : : : ; fs) be a strictly�-unipotent basis

of M1 (resp. a system of elements ofM2 such that the image inM3 is a strictly
�-unipotent basis). Then one can easily check that(e1; e2; : : : ; er; f1; f2; : : : ; fs)�

1r 0
0 �n1s

�
is a�-unipotent basis ofM2 for a suitable non-negative integern. By

the argument as in (3.3.2) there is a matrixQ =
�

1r �
0 1s

�
in GLs+r(S) such that

(e1; e2; : : : ; er; �
nf1; �

nf2; : : : ; �
nfs)Q is a strictly�-unipotent basis ofM2. 2

(3.4) LetF be a discrete valuation field of characteristicp with a perfect residue
class fieldk. Fix a uniformizerx of F . ThenF �= Fx;k, andF is the residue class

field ofE(†) = E
(†)
x;K by the natural projection. By [Fo2, A.1.2.] [TN2, Sect. 4] there

are canonical equivalences of categories

D�: Rep
�
(GF )! M�ret

E;� ;

D†
�: Repfin

�
(GF )! M�ret

E†;�:
(3.4.1)

The functors depend on the choice of the Frobenius�, but the structure of connec-
tions does not rely on the choice of the Frobenius�. We will now explain why the
structure of connection does not rely on the choice of Frobenius.
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Fix a Frobenius� on E . Then the embeddingE � eE is determined as in (2.4).
Let Eun be the maximal unramified extension ofE in eE and let bEun be thep-adic
completion ofEun. Then�x extends uniquely onbEun and commutes with the action
of GF on bEun since the extension of�x onEun is continuous by (2.4.1). If�1 is a
Frobenius onE , then�1 can also extend onbEun and commutes with the action of
GF on bEun. Moreover, the relation that

�x(�1(a)) = �(x; �1)�1(�x(a));

holds for anya 2 bEun.
Let �:GF ! GLr(�) be a continuous representation. By [Fo2, 1.2.4.] there

exists a matrixX 2 GLr( bEun) such that

�(�) = X�1�(X);

for all � 2 GF . For a Frobenius�1 on E , put A1 = X�1(X)�1 andC =
��(X)X�1. We have

(3.4.2) LEMMA.A1 (resp.C) is included inGLr(E) (resp.Mr(E)) and the relation

�x(A1) + CA1 = �(x; �1)A1�1(C);

holds.
Let MA1;C be a'-r-module overE with respect to�1 which corresponds to

the pairsA1 andC. SinceA1 = X�1(X)�1,MA1;C is etale.

(3.4.3) PROPOSITION.Under the equivalence

D�1: Rep
�
(GF )! M�ret

E;�1
;

of categories, there is an isomorphismD�1(�)
�=MA1;C in M�ret

E;�1
.

Proof. Let V� (resp.fvig) be a corresponding representation (resp. a basis of
V�). Define anbEun-linear map

bEunO
�

V� ! bEunO
E

MA1;C ;

by (v1; v2; : : : ; vr) = (e1; e2; : : : ; er)X, wherefeig is the canonical basis of
MA1;C . Then the map above is an isomorphism which is equivariant to the action
of Galois groupGF and Frobenius. Therefore, D�1(V�)

�=MA1;C by definition.2

In the case of'-r-modules overE†, we have only to replacebEun into

fE† = lim
�!
E

(E†
E)

u:
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HereE runs through all finite separable extensions ofF and (E†
E)

u is the field
of composition ofE†

E and thep-adic completioncKun of the maximal unramified
extension ofK in eE . Then the same assertions (3.4.2) and (3.4.3) hold for the
functor D†.

We point out that to findX for a representationV is independent of the choice of
the Frobenius. Hence, the connection is independent of the choice of the Frobenius.

(3.4.4) COROLLARY.LetA 2 GLr(E) (resp. GLr(E†)) andC 2 Mr(E) (resp.
Mr(E

†)) which satisfy the relation(3.1.5)and the condition thatA is etale for
a Frobenius�. Then, for any Frobenius�1 (resp.for any Frobenius�1 such that
�1(x) 2 E

†), there existsA1 2 GLr(E) (resp. GLr(E†)) such thatA1 is etale and

�x(A1) + CA1 = �(x; �1)A1�1(C):

Moreover, ifA is �-unipotent, then we can chooseA1 which is�-unipotent.
Proof. The former part follows from (3.4.3). IfA is �-unipotent, then we can

choose a matrixX 2 GLr(ObEun) (resp.X 2 GLr(OeE†)) of A�(X) = X such
thatX is�-unipotent by the proof of [Fo2, 1.2.4.] [TN2, (4.2)]. Therefore, we have
A1 = X�1(X)�1 is �-unipotent. 2

(3.4.5) COROLLARY.Let M be a'-r-module of rankr over E (†) with a �-
unipotent basisfeig. Then, there is a matrixQ 2 GLr(S) such thateQ is �-

unipotent and the matrixCM;eQ belongs to�x�1Mr(O
(†)
H ).

Proof.The assertion follows (3.2.3), (3.2.14) and (3.4.4). 2

We mention the extension of coefficients of representations. We do not treat it in
[TN2]. Let�0 be a finite extension of� and letk0 be a separable extension ofk in
kalg such that the pair(�0; k0) satisfies the condition (2.1.1). PutK 0 = K(�0; k0),

F 0 = Fx;k0 andE(†)
0

= E
(†)
x;K0. There is a naturalGF 0-injection�0 
�

eE ! eE 0,
whereGF 0 acts naturally on the left-hand side and via the natural mapGF 0 ! GF

on the right-hand side. For a Frobenius onE (†), put�0 = �f(�
0=�) as in (3.1.6). We

have

(3.4.6) PROPOSITION.The following diagram is commutative.

Rep(fin)
�

(GF )
D
(†)
�

- M�ret
E(†);�

Rep(fin)
�

(GF 0)

�0


?

D
(†)
�0

- M�ret
E(†)

0
;�0

?

��0=� :

(3.5) Keep the notations as in (3.4).
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(3.5.1) THEOREM.Assume that the fieldk is algebraically closed. LetV be an
object inRep

�
(GF ) (resp.Repfin

�
(GF )) and denote byM the'-r-module over

E (resp.E†) which corresponds toV through the equivalence(3.4.1). ThenM is
�-unipotent if and only if the image ofGF ! GL(V ) is a pro-p group.

Proof.Assume thatM is�-unipotent. Choose a�-unipotent basisfeig. LetX 2

GLr(ObEun) (resp.X 2 GLr(OeE†)) be a solution of the equationAM;e�(X) = X

such thatX is �-unipotent. Then the representationV is given by

� 2 GF 7! X�1�(X) 2 GLr(�): (3.5.2)

The image of the map (3.5.2) is included in the pro-p group0
BB@

1+ �� �

...

�� 1+ ��

1
CCA

(multiplicative). By the continuity the image of pro-finite groupGF is closed, so
that the image is pro-p.

Assume that the image ofGF ! GL(V ) is pro-p. LetT be anO�-lattice ofV .
Since the image ofGF ! GL(V ) is pro-p andT=�T is a finitep-group, there is

a basisv1; v2; : : : ; vr of T such that� 2 GF acts onT by the matrix
�

1 �...
0 1

�
modulo� with respect to the basisfvig. Then we can choose a�-unipotent matrix
X in GLr(ObEun) (resp. GLr(OeE†)) as in (3.4) which is determined by the repre-
sentationV . Hence, D�(V ) (resp.D†

�(V )) is �-unipotent. 2

For a positive integerN , denote by[N ]: E(†)x ! E
(†)
y the endomorphism which

is defined byx 7! yN .

(3.5.3) COROLLARYAssume thatk is algebraically closed. LetM be a'-r-
module overE(†)x . Then, there is a positive integerN such thatp6 jN and that the
pull back[N ]�M is �-unipotent overE†

y .
Proof. Let V be the corresponding representation ofM . Since� is a finite

extension ofQp andV is a continuous representation, there is a finite Galois and
tamely ramified extensionF 0 of degreeN over F such thatV is totally wild
ramified as a representation ofGF 0 . 2

4. Criterion of connection with coefficients of rational functions

In this section we give a criterion for a connection to be defined over a field of
rational functions.

(4.1) Let
be a complete field of characteristic 0 under a non-Archimedean absolute
valuej j:
 ! R>0 and denote byS;R;H, andL the ringSx;
;Rx;
;Hx;
, and
Lx;
, respectively.
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(4.1.1) DEFINITION. LetM be ar-module of rankr overR.
(1) We say that a basisfeig ofM isr-rational if and only if the associated dif-

ferential operatorLM;e (2.3) belongs toMr(
(x)[�x]). We sayM has a connection
with rational coefficients if and only if there exists ar-rational basisfeig of M .

(2) We say that a basisei ofM isr-formally rational if and only if the associated
differential operatorLM;e belongs toMr(L[�x]). We sayM has a connection with
formally rational coefficients if and only if there exists ar-formally rational basis
feig of M .

Now we give a criterion of connection with rational coefficients.

(4.1.2) LEMMA. Let L be a differential operator inMr(L[�x]). If there is a
matrixP 2 GLr(L) such thatP�1LP is contained inMr(H[�x]), thenP�1LP is
contained inMr(
(x)[�x]).

Proof.SinceP�1LP belongs to bothMr(L[�x]) andMr(H[�x]), the assertion
follows from (2.2.2). 2

(4.2) We apply (4.1.2) to�-unipotent'-r-modules. The notations are as in Sec-
tion 3.

(4.2.1) PROPOSITION.Assume that the Frobenius� satisfies the condition that
�(x)=xq 2 H(†). LetM be a�-unipotent'-r-module of rankr overE (†) with
respect to� and letfeig be a�-unipotent basis ofM . If feig isr-formally rational,
then there is a matrixQ 2 GLr(S) such thatQ is �-unipotent and thateQ is a
strictly �-unipotent andr-rational basis ofM . In particular, if feig is a strictly
�-unipotent andr-formally rational basis, thenfeig isr-rational.

Proof.By (3.2.3) there is a matrixQ 2 GLr(S) such thatQ is �-unipotent and
eQ is a strictly�-unipotent basis. By (3.2.14),LM;eQ = Q�1LQ is contained in
Mr(H

(†)[�x]). Therefore, the assertion follows (4.1.2). 2

Now fix a Frobenius� onE(†) arbitrarily.

(4.2.2) COROLLARY.LetM be a�-unipotent'-r-module of rankr overE (†)

with respect to� and letfeig be a�-unipotent basis ofM . If feig isr-formally
rational, then there is a matrixQ 2 GLr(S) such thatQ is �-unipotent and that
eQ is a�-unipotent andr-rational basis ofM .

Proof.Choose a Frobenius�1 such that�1(x)=x
q 2 H(†). By (3.4.4) there is a

matrixA1 2 GLr(E(†)) such that

�x(A1) + CM;eA1 = �(x; �1)A1�1(CM;e);

andA1 is�-unipotent. Define a Frobenius structure'1 onM by'(e) = eA1. Then
the triple(M;'1;r) satisfies the assumption of (4.2.1). 2
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5. Direct image of'-r-modules

In this section we define direct images of'-r-modules and show some properties
of direct images.

(5.1) Fix a pair(�; k) as in (2.1.1). Denote byE(†)x (resp.!x) one of the fields

Ex;K and E†
x;K (resp.!

E
(†)
x

). The residue class field ofE(†)x is Fx = Fx;k. Let

f :Fx ! Fy = Fy;k0 be a finite separable extension inF alg
x . Then the unique finite

unramified extension overE(†)x in eE (2.4), which corresponds toFy, is isomorphic

toE(†)y = E
(†)
y;K0 for some elementy and forK 0 = K(�; k0). We also denote byf the

inclusionE(†)x � E
(†)
y . The Frobenius� (resp.�x) onE(†)x extends uniquely onE(†)y .

We have an isomorphism!y = !
E
(†)
y

�= !x
E(†)x
E
(†)
y by dy=y 7! dx=x
x=�y(x).

Let M be a'-module (resp. ar-module, resp. a'-r-module) overE (†)y .

Denote byMx theE(†)x -moduleM via the inclusionf . Define a Frobenius' on
Mx by ' itself (resp. a connectionr:Mx ! !x 
E(†)x

Mx by r(m) = dx=x 


(x=�y(x))r(�y)(m), wherer(m) = dy=y
r(�y)(m)). One can easily see that,

for a'-r-moduleM overE(†)y , the diagram

Mx
r
- !x 
E(†)x

Mx

Mx

'

?

r
- !x 
E(†)x

Mx

?

�
' ;

is commutative.

(5.1.1) PROPOSITION.For a '-moduleM overE (†)y , the pair (Mx; ') is a '-

module overE(†)x .
Proof. To prove that the induced map��(Mx) ! Mx by ' is bijective, it is

enough to show that the natural map��(Mx) ! ��M is bijective. Here��Mx

(resp.��M ) is the scalar extension ofMx (resp.M ) by � onE(†)x (resp.E(†)y ). One
can easily see that the lemma below implies the assertion.

(5.1.2) LEMMA. TheO(†)
Ex

-homomorphismid
O
(†)
Ex


 �:��((O(†)
Ey
)x) ! O

(†)
Ey

is

bijective. Here we denote by(O(†)
Ey
)x the naturalO(†)

Ex
-moduleO(†)

Ey
.

Proof.Denote by�q theqth power map. Consider the perfection ofFx andFy
and dimensions overFx, ��q (Fy)x ! Fy is injective, hence bijective. The assertion
holds by Nakayama’s Lemma. 2
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We know that the'-moduleM over E(†) is etale if and only if there is a sub
O
(†)
E -moduleL of M such that'(L) is included inL and generatesL overO(†)

E .

(5.1.3) PROPOSITION.If M is an etale'-moduleM on E (†)y , then(Mx; ') is
also etale.

Proof. Denote byLx theO(†)
Ex

-moduleL via the inclusionf . Let L be a sub

O
(†)
E -module ofM such that the induced map id
 ':��L ! L is isomorphic. It

is easy that we have only to show the natural map��Lx ! ��L is bijective, where
��Lx (resp.��L) is the scalar extension ofLx (resp.L) by � onO(†)

Ex
(resp.O(†)

Ey
).

This follows from (5.1.2). 2

(5.1.4) REMARK. The converse of (5.1.3) is also true sinceM is naturally embed-
ded into the etale'-modulef�Mx. (See (5.1.8).)

By (5.1.1) we define direct image functors

f�M�E(†)y ;�
! M�

E
(†)
x ;�

;

f�M�r
E
(†)
y ;�

! M�r
E
(†)
x ;�

;

for the morphismf by f�M = (Mx; '; (r)) as above. If we restrictf� to the etale
object, we get

f�M�et
E
(†)
y ;�

! M�et
E
(†)
x ;�

;

f�M�ret
E
(†)
y ;�

! M�ret
E
(†)
x ;�

;

by (5.1.3).
We denote by� the natural functorM�E† ! M�E . SinceEy �= Ex
E†

x
E†
y , we

have

(5.1.5) PROPOSITION.The functorf� commutes with�.

Let g:Fy ! Fz be a finite separable extension inF alg
x and denote byE(†)z the

finite unramified extension ineE with the residue class fieldFz. By our definition
we have

(5.1.6) PROPOSITION.(gf)� = f�g�.

Denote byC? one of the categoriesM�
E
(†)
?

, M�r
E
(†)
?

, M�
E
(†)
?

, andM�ret
E
(†)
?

for

?= x; y.

(5.1.7) PROPOSITION.LetM be an object inCy. Then we have

f�(M
_) �= (f�M)_:
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Proof.Define a map

f�(M
_)
O
E
(†)
x

f�M ! E(†)x ;

by m1 
 m2 7! trace
E
(†)
y =E

(†)
x
((m1;m2)Cy). Here we denote byE(†)x the trivial

object inCx and ( ; )Cy is the non-degenerate pairing onM_ 

E
(†)
y
M into E†

y .

SinceE(†)y =E
(†)
x is a finite separable extension and by (5.1.2), the above pairing is

a morphism inCx and non-degenerate. 2

For an objectM of Cy (resp.Cx) the natural mapf�f�M ! M (resp.M !

f�f
�M ), which is defined bya
m 7! am (resp.m 7! 1
m), is a morphism of

Cy (resp.Cx). By the standard arguments we have

(5.1.8) PROPOSITION.The functorsf� andf� are adjoint. In other words, there
is a natural isomorphism

HomCy(f
�M1;M2) �= HomCx(M1; f�M2):

By definition we have

(5.1.9) PROPOSITION.The functorsf� and f� commute with the functor��0=�
(3.1.6).

(5.2) We describe the relation between the functor of direct images and the functor
D� (resp. D†

�).

(5.2.1) THEOREM.LetV be an object inRep
�
(GFy) (resp.Rep(fin)

� (GFy)) and
putM = D�(V ) (resp.M = D†

�(V )). Then we have

D�(f�V ) �= f�(M) (resp:D†
�(f�V )

�= f�(M)):

Heref�V is the induced representation�[GFx]
�[GFy ]
V of V .

Proof.SinceM�ret
E†;� is a full subcategory ofM�et

E;� [TN1, (4.2.1)], it is suffi-
cient to show the case of D�. SinceM = D�(V ), there is a canonical pairing

( ; )y:M
_
O
�

V ! bEun;
which is Ey-linear, Frobenius- andGFy-equivariant and non-degenerate. Here
Frobenius acts by'M_ 
 id on the left-hand side and� on the right-hand side, and
� 2 GFy acts id
 � on the left-hand side. We define a pairing

( ; )x: f�(M_)
O
�

f�V ! bEun;
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by (m; g 
 v)x = g(m; v)y for m 2 f�(M
_) = M_ and forg 
 v 2 f�V =

�[GFx] 
�[GFy ]
V . Since(m; gh 
 h�1v)x = gh(m;h�1v)y = g(m; v)y for

h 2 GFy , ( ; )x is well-defined. One can easily see that the pairing( ; )x is Ex-
linear, Frobenius- andGFy-equivariant, and non-degenerate. Therefore, we obtain

D�(f�V ) �= (f�(M
_))_ �= f�(M);

by (5.1.7).

(5.3) PutF = Fx;k andE(†) = E
(†)
x;K . In the rest of this section we study direct

images of'-r-modules for a morphismf : E(†) ! E(†)
0

which corresponds to a
finite separable extensionf :F ! F 0.

First we discuss the unramified case. In this casex is also a uniformizer of
F 0 and, if we denote byk0 the residue class field ofF 0 and putK 0 = K(�; k0).

ThenF 0 = Fx;k0 , E(†)
0

is isomorphic toE(†)x;K0 andf is the natural injection. In this
situation, if we denote byu1; : : : ; u[k0: k] a basis ofW (k0) overW (k), the subfield

K 0(x) (resp.Lx;K0) of E(†)x;K0 is an extension of degree[k0: k] over the subfieldK(x)

(resp.Lx;K) of E(†)x;K with a basisfujg.

(5.3.1) PROPOSITION.Under the above situation, letM be ar-module over
E
(†)
x;K0. If feig is ar-rational basis(resp.ar-formally rational basis), thenfujeig

is ar-rational basis(resp.ar-formally rational basis) of f�M .

(5.4) From now we see the case of a totally ramified extensionF 0=F . Hence the
field of coefficients of differential structures is alwaysK and we omitK from
the notation. First we forget the extensionF 0 overF and discuss in the following
situation. Letf : E(†) ! E(†)

0

= E
(†)
y;K be a morphism withf(x) = a(y) =P1

n=d any
n 2 Sy (ad 2 O

�
K) for some positive integerd. One can easily see that

the fieldLy includes the fieldLx and there is a relation

yd + b1y
d�1 + � � �+ bd = 0 (bi 2 Sx for all i);

such thatjbdjG = 1 andbd = �a�1
d x + (higher terms onx). The above equation

modulo� is an Eisenstein polynomial, so that the extension of residue class fields
is totally ramified of degreed or an inseparable extension.

(5.4.1) LEMMA Under the above situation,Ly is a finite extension of degreed
overLx.

Proof.LetM = Lx + Lxy + � � � + Lxy
d�1 in Ly. By the above relation fory

M is a domain. SinceM is finite over the fieldLx, M is a field. One can easily
see thatSy is contained inM. Hence, we haveLy =M. 2

(5.4.2) REMARK. In general,Ly is not a Galois extension overLx even ifFy is a
Galois extension overFx. For examples, ifFy=Fx is an extension with(y�1)p �
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y�1 = x�1, thenLy is not a Galois extension overLx. Putu� = y�(y�1) for
� 2 Gal(Fy=Fx). Thenup� � yp�1u� = 1� yp�1. If u� is contained inLy, u� is
contained inSy;K by the normality. One can easily see that we find only 1 which
is a solution of the equationup� � yp�1u� = 1� yp�1 for u� in Sy;K .

(5.4.3) PROPOSITION.Under the notation as above, letM be ar-module over
E
(†)
y . If feig is ar-formally rational basis, thenfyjeig is ar-formally rational

basis off�M .
Proof.LetLy be aLy-subspace ofM which is generated byei, thenLy is stable

under the connectionr. Denote byLx theLy-spaceLy as anLx-module . Then

fyjeig generatesLx overLx by (5.3.2) andE(†)x 
Lx Lx = f�M . Sincex=�y(x)
is contained inLy (2.2.3),r(Lx) � !Lx 
Lx Lx.

(5.4.4) REMARK. In the case that the extensionF 0=F is an inseparable extension,
we can define the direct image under the assumption ona(y) and (5.4.1–3) also
make sense.

(5.5) Assume that the extensionF 0=F is totally tamely ramified of degreeN
(p6 jN). In this case we can choose a uniformizer ofy in F 0 with x = uyN for some
u 2 k�. (If k is algebraically closed, then we can choosey such thatu = 1.) If we
denote bybu a lifting of u in OK , there is an elementy 2 O(†)

E 0 which satisfies the

equationx = buyN sinceO(†)
E 0 is henselian. Hence,E(†)

0

(resp.F 0) is canonically

isomorphic toE(†)y (resp.Fy) andf is given byx 7! buyN (a(y) = buyN in the
notation of (5.4)). Moreover, the subfieldK(y) in E (†)

0

is an extension of degree
N over the subfieldK(x) in E(†) with a basis 1; y; : : : ; yN�1.

(5.5.1) PROPOSITION.LetM be ar-module overE (†)x . If feig is ar-rational
basis(resp.ar-formally rational basis), thenfyjeig is ar-rational basis(resp.
ar-formally rational basis) of f�M .

(5.6) We consider an Artin–Schreier extensionF 0=F of degreepwith a totally wild
ramification. ThenF 0 = F (z) with

zp � z = ux�N + (a polynomial of degreeN � 1 in k[x�1]);

for someu 2 k� and a positive integerN (p6 jN). SinceO(†)
E 0 is henselian, there is

a lifting z 2 O(†)
E 0 which satisfies the relation

zp � z = bux�N + (a polynomial of degreeN � 1 inOK [x
�1]);

where the right-hand side of the equation is a lifting of the equation above into
OK [x

�1]. Denote byv (resp.bv) the unique element ink with vp = u (resp. a
lifting of v in OK). Since the valuation ofz is �N=p in F 0 (ord(x) = 1), there
is an elementy in F 0 such thatyN = v�1z�1 andx � yp (modyp+1) by an easy
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computation. So there is an elementy in O(†)
E 0 which satisfies the conditions that

yN = bv�1z�1 and thatx � yp (mod(yp+1; �)). Hence,F 0 = Fy, E(†)
0

= E
(†)
y and

f is given byx 7! a(y) = ypw(y) for w(y) � 1+ (Nvp�1)�1yN(p�1) + OK [y
p]

(mod(yN(p�1)+1; �)).

(5.6.1) LEMMA. Under the notation as above, letM be a'-module overE (†)y

with a �-unipotent basisfeig. Then,e1; ze1; : : : ; z
p�1e1; e2; ze2; : : : ; z

p�1er is a
�-unipotent basis off�M .

Proof. PutAM;e = (aij) ands(x) = bux�N + � � � . Then,

'(zkej) � zpkej +

j�1X
i=1

zpkaijei

� (z + s(x))kej +

j�1X
i=1

zpkaijei

� zkej + (lower order terms) (mod�):

(5.6.2) LEMMA. Under the notation as in(5.6), letM be ar-module overE (†)y

with a r-formally rational basisfeig. Then the basise1; ze1; : : : ; z
p�1er is a

r-formally rational basis off�M .
Proof. Since 1; z; : : : ; zp�1 is a basis ofLy;K overLx;K, the assertion follows

(5.4.1) and (5.4.3). 2

From (5.6.1), (5.6.2), (4.2.2) and (4.2.1) we have

(5.6.3) PROPOSITION.Under the notation as in(5.6), letM be a'-r-module
of rankr overE(†)y with a �-unipotent andr-formally rational basisfeig. Then
there is a matrixQ 2 GLpr(Sx) such that(z�e)Q is a�-unipotent andr-rational
basis off�M , wherez�e is the basis off�M as in (5.6.1).In particular, assume
furthermore that the Frobenius� satisfies the condition that�(x)=xq 2 H(†)

x , then
there is a matrixQ 2 GLpr(Sx) such that(z�e)Q is a strictly �-unipotent and
r-rational basis off�M .

6. Calculation of the difference of local indices for direct images

In this section we study the behavior of local indices for direct images. The theory
of the local index was studied by Adolphson, Dwork, Robba and many people.
Applying their theory to our situation, we calculate the difference of local indices
for direct images of differential operators.

(6.1) Following the notation of [Ro1] [Ro2], for
-vector spacesE andF and for

-homomorphismL:E ! F , we sayL has an index if and only if both the kernel
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and the cokernel ofL are finite dimensional
-vector spaces. IfL has an index, we
define the index�
(L;E; F ) (�
(L;E) if E = F ) by dim
 kerL�dim
 cokerL.

(6.2) Let
be a complete field of characteristic 0 under a non-Archimedean absolute
valuej j. Let� be a subgroup of the group of continuous automorphism of
 and
denote by
� the�-invariant subfield of
. Then
� is complete. Define an action
of � onRx;
 by �(

P
anx

n) =
P
�(an)x

n for � 2 �. The action of� commutes
with the ring structures and the derivation�x and preserves the subringsAx;
 and
H

†
x;
. The�-invariant subalgebraR�

x;
 (resp.A�
x;
, resp.(H†

x;
)
�) isRx;
� (resp.

Ax;
�, resp.H†
x;
�

). Define an action on(Rx;
)
r of � by �(t(a1; : : : ; ar)) =

t(�(a1); : : : ; �(ar)). Denote byR one of(Ax;
)
r, (H†

x;
)
r and(Rx;
)

r and byR�

the corresponding(Ax;
�)
r, (H†

x;
�
)r or (Rx;
�)

r, respectively.

(6.2.1) LEMMA. Let L be a first order differential operator inMr(R
�[�x]).

If the dimension ofker(L;Rr) is finite over
, then the natural map
 

�

ker(L; (R�)r)! ker(L;Rr) of
-vector spaces is an isomorphism and the natural
map


� coker(L; (R�)r) ! coker(L;Rr) of 
-vector spaces is an injection.
In particular, if L has an index inRr, thenL has an index in(R�)r and we have

�
�(L; (R
�)r) > �
(L;R

r):

Proof. Let uk = t(uk;1; : : : ; uk;r) (1 6 k 6 s) be a basis of ker(L;Rr) over

. After an elementary modification, we may assume that there is a sequence of
pairs(k1; l1); (k2; l2); : : : ; (ks; ls) of integers such that(ki; li) 6= (kj ; lj) for i 6= j

and that theli-th coefficient ofui;ki is 1 for all i and that thelj-th coefficient of
ui;kj is 0 for all j 6= i. Since�(ui) is also a solution of the differential operatorL,
�(ui) is expressed by a linear sum ofuj over
. Comparing coefficients, we have
�(ui) = ui for all � 2 � by the assumption, henceui 2 ker(L; (R�)r) for all i. We
have shown the surjectivity of the map between kernels. The injectivity is easy.

Assume that for an elementa 2 (R�)r there is an elementb = t(b1; : : : ; br) 2
Rr such thata = L(b). We may assume that theli-th coefficient ofbki is 0 for all
1 6 i 6 s. We know that�(b) � b is a linear sum ofu1; : : : ; us over
 for each
� 2 �. Comparing coefficients, we have�(b) � b = 0 for all � 2 �. Hence,b is
contained in(R�)r and the map coker(L; (R�)r)! coker(L;Rr) is an injection.
Let v1; : : : ; vt be a system of representation of coker(L; (R�)r). Assume that,
renumbering if we need,�1v1 + � � � + �t0vt0 = 0 (� 2 
) is a minimal relation
of vi in coker(L;Rr). Then, one of�i=�1 is not contained in
�. Since
� is the
�-invariant field of
, there is a relation of length less thant0. Hence, we have
proven the assertion. 2

(6.2.2) LEMMA. Under the assumption of(6.2.1)and assume furthermore that�
is a finite group. If a differential operatorL 2 Mr(R

�[�x]) has an index inRr,
thenL has an index in(R�)r and we have

�
�(L; (R
�)r) = �
(L;R

r):
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Proof.SinceH1(�;GLt(
�)) = f1g for any positive integert [Sel,X.1.Prop. 3.],
we can choose a systemv1; v2; : : : ; vt of elements inRr such that its image is a
basis of coker(L; (R�)r) and that�(vi)� vi is contained in the image ofL for all
� 2 � and for alli. So the image off

P
�2� �(v1); : : : ;

P
�2� �(vt)g is a basis of

coker(L;Rr). On the other hand,
P

�2� �(vi) is contained in(R�)r for eachi. The
assertion follows from (6.2.1). 2

(6.2.3) REMARK. If
0 is a complete subfield of
 such that[
:
0] < 1, then
the same assertion of (6.2.2) also holds. Pick a finite Galois extension
1 of 
0

such that
 is included in
1. Then, apply (6.2.2) to both extensions
1=
 and

1=
0.

(6.3) Keep the notation in (6.2) and assume furthermore
 is algebraically closed
and complete under a valuation which is an extension of that onQp. We recall the
fundamental results of indices in [Ro1] [Ro2] and restate them in our context. For
an elementa =

P
anx

n in Rx;
, put

ord�x (a) = minfnj janj = jajGg;

when the minimum exists. (j jG is defined in (2.2).)

(6.3.1) LEMMA. Lets 6= 0 be an element ofAx;
�. Thens has an index inAx;
�

if and only if there is a unitu ofAx;
� such thatsu 2 
�[x]. If s has an index in
Ax;
�, ord�x (s) can be defined and we have

�
�(s;Ax;
�) = �ord�x (s):

In particular, if 
� is a complete discrete valuation field under the absolute value
j j , then, fors 2 Ax;
�, s has an index inAx;
� if and only ifs is contained in
Sx;
�[p

�1].
Proof.For s 2 Ax;
�, if there is a unitu of Ax;
� such thatsu 2 
�[x], then

there exists only finitely many zero points ofs in B(0;1�) = fz 2 
j jzj < 1g.
By the theory of Newton polygon of formal power series [DGS, II.2.], ord�

x (s) is
defined and ord�x (su) = ord�x (s). We may assume thats is a monic polynomial
such that deg(s) = ord�x (s) by the definition of
�. In the case that� = f1g,
the assertion holds by [Ro2, 3.4.]. Sincef1; x; : : : ; xord�x (s)�1g is a representation
system of coker(s;Ax;
), s has an index inAx;
� and

�
�(s;Ax;
�) = �
(s;Ax;
) = �ord�x (s);

by (6.2.1). Assume thats has an index inAx;
�. Then the intersection of
�[x] and

sAx;
� contains nonzero elements. Letsu (u 2 O
(†)
A
x;
�

) be a nonzero polynomial

of minimal degree. By the minimality of degree,u has no zero inB(0;1�) andu
has no minus slopes by [DGS, II.Thm.2.1]. Hence,u is a unit. 2
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(6.3.2) LEMMA. For an elements 6= 0 ofH†
x;
�

, s has an index inH†
x;
�

and we
have

�
�(s;H
†
x;
�

) = ord�x (s):

Proof.We may assume thatjsjG = 1. Put� = ord�x (s). Definepr�:H†
x;
�

!

H
†
x;
�

by pr�(
P�1

n=0 anx
n) =

P�1
n=� anx

n and put
�[x�1]>� = 
� � � � � �


�x�+1. Consider the following diagram

H
†
x;
�

=== H
†
x;
�

0 - 
�[x�1]>� - H
†
x;
�

s

?

pr�
- x�H†

x;
�

?

pr� � s

- 0 :

To show the assertion, we have only to prove the right vertical arrow is bijective. The
injectivity can be easily shown. Now we will show the surjectivity. Puts =

P
six

i

and choose 0< 
 < 1 such thatjsij 6 
��i. By definition of�, there is an
elementun of degreen� � in O
� [x

�1] such thatpr�(sun) = xn + (lower term)
and that the absolute value of theith coefficient ofpr�(sun) is less than or equal
to 
n�i for all n 6 �. For any element

P
bix

i 2 x�H†
x;
�

such that there is a

0 < � < 1 with jbij 6 ��i for all i, definecn (n 6 �) by b� if n = � and by
thenth coefficient of

P
bix

i � pr�(s
Pn+1

i=� ciui) for n < �. One can easily see
thatjcnj 6 maxf
; �g��n for all n. Therefore,

P
cnun is convergent inH†

x;
�
and

pr�(s
P
cnun) =

P
bnx

n. Therefore,pr� � s is surjective. 2

(6.3.3) REMARK. The number of ord�x (s) in (6.3.1) (resp. (6.3.2)) is the number
of zeros ofs in B(0;1�) (resp.B(1;1+) = fz 2 
j jtj > 1g [ f1g).

Let L be a differential operator inMr(Rx;
� [�x]). We sayL has an index in

(Ax;
�)
r (resp.(H†

x;
�
)r) if and only if there is an elements 2 
�[x] (resp.


�[x�1]) such thatsL 2 Mr(Ax;
�[�x]) (resp.Mr(H
†
x;
�

[�x])) and thatsL has
an index. We define an index by

�
�(L; (Ax;
�)
r) = �
�(sL; (Ax;
�)

r)� �
�(s; (Ax;
�)
r);

(resp: �
�(L; (H
†
x;
�

)r) = �
�(sL; (H
†
x;
�

)r)� �
�(s; (H
†
x;
�

)r)):

The notion and the definition of index are independent of the choice ofs by (6.3.1)
(resp. (6.3.2)).

From [Ro2, 3.11.] we have
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(6.3.4) LEMMA. If a differential operatorL 2Mr(

�(x)[�x]) has indices in two

of (Ax;
�)
r, (H†

x;
�
)r and(Rx;
�)

r, thenL has an index in the third and we have

�
�(L; (Rx;
�)
r) = �
�(L; (Ax;
�)

r) + �
�(L; (H
†
x;
�

)r):

(6.3.5) DEFINITION. We say a differential operatorL 2 Mr(Rx;
� [�x]) has

indices on
� if and only if L has indices in all three of(Ax;
�)
r, (H†

x;
�
)r and

(Rx;
�)
r.

From [Ro2, 3.14.] we have the following two lemmas.

(6.3.6) LEMMA. LetL andL0 be differential operators inMr(Rx;
� [�x]) with a
matrixQ in GLr(Rx;
�) such thatL0 = Q�1LQ.

(1) L has an index in(Rx;
�)
r if and only ifL0 has an index in(Rx;
�)

r. If so,
we have

�
�(L
0; (Rx;
�)

r) = �
�(L; (Rx;
�)
r):

(2) Assume thatQ is contained inGLr(
�(x) 

�[x] Ax;
�). Then,L has an
index in(Ax;
�)

r if and only ifL0 has an index in(Ax;
�)
r. If so, we have

�
�(L
0; (Ax;
�)

r) = �
�(L; (Ax;
�)
r):

(3) Assume thatQ is contained inGLr(
�(x) 

�[x�1] H
†
x;
�

). Then,L has an

index in(H†
x;
�

)r if and only ifL0 has an index in(H†
x;
�

)r. If so, we have

�
�(L
0; (H†

x;
�
)r) = �
�(L; (H

†
x;
�

)r):

(6.3.7) LEMMA. LetL be a differential operator inMr(

�(x)[�x]) and letL0 be

a differential operator inMr(

�(x)

�[x] Ax;
�[�x]). Assume that there exists a

matrixQ in GLr(Rx;
�) such thatL0 = Q�1LQ.L has indices on
� if and only
if L0 has indices both inRx;
� and inAx;
�. If so, the formulas

�
�(L
0; (Rx;
�)

r) = �
�(L; (Rx;
�)
r);

�
�(L
0; (Ax;
�)

r) = �
�(L; (Ax;
�)
r);

hold. The assertion is also valid if we replaceA intoH†.

(6.3.8) REMARK. (1) By [Ch, Cor.3.3]Q is decomposed intoxQdiagQHQA for
a diagonal matrixQdiag 2 Mr(Z), QH 2 GLr(H

†
x;
�

) andQA 2 GLr(Ax;
�).
(Consider the Galois action defined in (6.2).)

(2) In Section 8 we use (6.3.7) whenQ belongs to GLr(E
†
x;K) for a complete

discrete valuation fieldK. In this caseQ is decomposed intoQHQL such that
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QH 2 1+ �x�1Mr(O
†
Hx;K

) andQL 2 GLr(Lx;K). We can prove (6.3.7) by the
same method of [Ro2, 3.11] using this type of decomposition.

(6.4) LetK be a discrete valuation field of mixed characteristic(0; p)with a perfect
residue class field and denote bycKalg the completion of an algebraically closure
of K under the valuationj j. Let � be a subgroup of the group of continuous
automorphisms ofcKalg overK and putK(�) = (cKalg)� the�-invariant subfield
ofcKalg. Assume thata(y) =

P1
n=d any

n is an element inSy;K for a positive integer
d and thataN 2 O�K . Then theK-algebra homomorphismf :Rx;K(�) !Ry;K(�)

(resp.f :Ax;K(�) ! Ay;K(�)) which is defined byx 7! a(y) is injective and
preserves the Gauss normj jG.

(6.4.1) LEMMA. Via the injectionf as above, we have

(1) Ay;K(�) = Ax;K(�) � yAx;K(�) � � � � � yd�1Ax;K(�);

(2) Ry;K(�) = Rx;K(�) � yRx;K(�) � � � � � yd�1Rx;K(�).

Proof. (1) Consider the extensionK(�)[[x]] ! K(�)[[y]] (x 7! a(y)). If
s0 + s1y + � � � + sd�1y

d�1 = 0 for somesi 2 Ax;K(�), then we haves0 = s1 =
� � � = sd�1 = 0. So the map from the right-hand side of (1) intoAy;K(�) is injective.
Every elementt =

P
tny

n 2 Ay;K(�) is expressed bys0 + s1y + � � �+ sd�1y
d�1

for somesi =
P
si;nx

n 2 K(�)[[x]]. By the calculation of valuation, we have

jsi;nj 6 maxfjtmj jm 6 nd+ ig;

for all n > 0 inductively. Sincet 2 Ay;K(�), si is contained inAx;K(�) for all i.
(2) If s0+s1y+� � �+sd�1y

d�1 = 0 for somesi 2 Rx;K(�), then we havesi = 0
for all i. Indeed, if one ofsi is not contained inAy;K(�), then, considering the lowest
nagative term of allsi for x whose absolute value is largest among all absulute
values of coefficients of negative power terms ofx, we have a contradiction. So
si is contained inAy;K(�) and we havesi = 0 for all i by (1). Therefore, the
map from the right-hand side of (2) intoRy;K(�) is injective. For any element

t =
P
tny

n 2 H
†
y;K(�)

, there aresi =
P
si;nx

n 2 H
†
x;K(�)

such that

t = s0 + s1y + � � �+ sd�1y
d�1 + (an element ofSx;K(�)[p

�1]):

In fact, we constructsi inductively on the power ofy. Sincet is contained in
H

†
y;K(�)

, eachsi can be defined inHx;K(�) and the rest term is convergent in

Sx;K(�)[p
�1]. Of course, we use the property thatK(�) is complete. By our

construction ofsi, we have

jsi;nj 6 maxfjtmj jm 6 nd+ ig;

for all n 6 0. (si;0 = 0 for i 6= 0). Hence,si is contained inH†
x;K(�)

so that the
assertion (2) holds by (1). 2
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Let Ly be a differential operator inMr(Rx;K [�y]). Define the direct imageLx =
f�Ly 2 Mr(Rx;K [�x]) by the induced endomorphism through the isomorphism
(Ry;K)

r �= (Rx;K)
dr asRx;K-modules in (6.4.1).

(6.4.2) THEOREM.Under the notation as above, we have

(1) there is an elementsy 2 K[y] such thatsyLy 2 Mr(Ay;K [�y]) if and only if
there is an elementsx 2 K[x] such thatsxLx 2Mdr(Ax;K[�x]).

(2) Ly has an index in(Ay;K(�))
r (resp.(Ry;K(�))

r) if and only ifLx has an index
in (Ax;K(�))

dr (resp.(Rx;K(�))
dr). If so, we have

�K(�)(Lx; (Ax;K(�))
dr) = �K(�)(Ly; (Ay;K(�))

r);

�K(�)(Lx; (Rx;K(�))
dr) = �K(�)(Ly; (Ry;K(�))

r):

Proof.Letsy be an element inK[y] such thatsyLy is contained inMr(Ay;K [�y]).
By (5.4.1) there is an elementsx 2 K[x] such thatsx(a(y))Ly 2 Mr(Ay;K [�y]).
(For example, we can putsx = detLy;K=Lx;K (sy) � (some element inSx;K)). By
(6.4.1),sxLx 2Mr(Ax;K [�x]). The converse of (1) is easy. To prove (2), consider
the following diagram

(Ax;K(�))
dr sxLx

- (Ax;K(�))
dr

(Ay;K(�))
r

(6:4:1)

wwwwwwww
sx(a(y))Ly

- (Ay;K(�))
r ;

wwwwwwww(6:4:1)

is commutative, wheresx is an element inOK [x] such thatsxLx 2Mr(Ax;K[�x]).
Sincesx(a(y)) is contained inSx;K ,Ly has an index in(Ay;K(�))

r if and only ifLx
has an index in(Ax;K(�))

dr. By the choice ofa, ord�y (sx(a(y))) = dord�x (s(x)).
We have

�K(�)(Lx; (Ax;K(�))
dr)

= �K(�)(sxLx; (Ax;K(�))
dr) + dr ord�x (s(x))

= �K(�)(sx(a(y))Ly ; (Ay;K(�))
r) + r ord�y (sx(a(y)))

= �K(�)(Ly; (Ay;K(�))
r);

by (6.3.1). The case ofR is same as above. 2

We denote by[a(y)=�y(a(y))] the induced automorphism onRx;K(�) from the
mapa(y)=�y(a(y)) onRy;K(�) via the isomorphism in (6.4.1).
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(6.4.3) LEMMA. [a(y)=�y(a(y))] has an index inAx;K(�) and we have

�K(�)

 "
a(y)

�y(a(y))

#
; Ax;K(�)

!
= �ord�y (a(y)) + ord�y (�y(a(y))):

Proof. Sincea(y)=�y(a(y)) is contained inLy;K , a(y)=�y(a(y)) have an index
inAy;K(�) by (6.3.1). Hence,[a(y)=�y(a(y))] has an index inAx;K(�) by definition
and the formula follows (6.3.1). 2

(6.4.4) COROLLARY.LetLy = C1�y�C0 be a differential operator of first order
in Mr(Ry;K [�y]). Ly has an index in(Ay;K(�))

r (resp.(Ry;K(�))
r) if and only if

[a(y)=�y(a(y))]Lx has an index in(Ax;K(�))
dr (resp.(Rx;K(�))

dr). If so, then we
have

�K(�)

 "
a(y)

�y(a(y))

#
Lx; (Ax;K(�))

dr

!

= �r(ord�y (a(y)) � ord�y (�y(a(y)))) + �K(�)(Ly; (Ay;K(�))
r);

�K(�)

 "
a(y)

�y(a(y))

#
Lx; (Rx;K(�))

dr

!
= �K(�)(Ly; (Ry;K(�))

r):

Proof. Sincef�((a(y)=�y(a(y)))Ly) = [a(y)=�y(a(y))]Lx, (a(y)=�y(a(y)))Ly
has an index in(Ay;K(�))

r) if and only if [a(y)=�y(a(y))]Lx has an index in
(Ax;K(�))

dr) by (6.4.2). The formula follows (6.4.2) and (6.4.3). 2

(6.5) We apply our calculation of the difference of indices for direct images of a
morphism which corresponds to a finite separable extensionF 0 of F = Fx;k. The
notation follows (5.3)–(5.5).

First we study the totally ramified case. LetF 0 be a finite separable extension
overF . Choose a coordinate ofE†0 = E†

y as in (5.4).

(6.5.1) PROPOSITION.Under the notation as in(5.4.3), letM be ar-module over
E†
y with ar-formally rational basisfeig. LM;e has an index in(Ay;K(�))

r (resp.
(Ry;K(�))

r) if and only ifLf�M;y�e has an index in(Ax;K(�))
dr (resp.(Rx;K(�))

dr),
wherey�e is a basis as in(5.4.3).If so, then we have

�K(�)(Lf�M;y�e; (Ax;K(�))
dr)

= r lengthOF 0
!OF 0=OF

+ �K(�)(LM;e; (Ay;K(�))
r);

�K(�)(Lf�M;y�e; (Rx;K(�))
dr) = �K(�)(LM;e; (Ry;K(�))

r):

Herer = rankM and!OF 0=OF
is the logarithmic differential module ofOF 0 over

OF [KK, (1.7)].
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Proof. By (5.4.3) y�e is a r-formally rational basis off�M and we have
Lf�M;y�e = [a(y)=�y(a(y))]Lx. Since the extensionF 0=F is separable, we have
j�y(a(y))jG = 1. The assertion follows from (6.4.4) and the equalities

lengthOF 0
!OF 0=OF

= lengthOF 0
OF 0

. �y(a(y))
a(y)

!

= ord�y (�y(a(y))) � ord�y (a(y)):

Here, fora 2 O†
E 0 , we denote bya the natural projection ofa in F 0. 2

(6.5.2) REMARK. The formulas in (6.4.4) also hold if the extensionF 0=F is
inseparable and if we choose the coordinate ofE†0 as in (5.4) (See (5.4.4).). But
the author does not know what these identities mean.

In the case of a totally tamely ramified extensionF 0=F of degreeN (p6 jN),
choose a coordinate ofE†0 = E†

y as in (5.5). Then we also have

H
†
y;K(�)

= H
†
x;K(�)

� y�1H
†
x;K(�)

� � � � � y�N+1H
†
x;K(�)

:

By (6.3.2) and by the same method of (6.4) we have

(6.5.3) PROPOSITION.Under the notation as above, letM be ar-module over
E
(†)
y with a r-rational basisfeig and denote byfyjeig a basis off�M as in

(5.5.1). LM;e has an index in(H†
y;K(�)

)r if and only ifLf�M;y�e has an index in

(H†
x;K(�)

)Nr. If so, we have

�K(�)(Lf�M;y�e; (H
†
x;K(�)

)Nr) = �K(�)(LM;e; (H
†
y;K(�)

)r):

In particular,LM;e has indices onK(�) if and only ifLf�M;y�e has so.

We now discuss the case of unramified extension. Fix the situation as in (5.3).
Put�0 = Autcont(cKalg=K 0) \ � andK(�0) = (cKalg)�

0

. Then one can easily see
thatK(�0) is finite overK(�).

(6.5.4) PROPOSITION.Assume thatM is ar-module with ar-formally rational
basisfeig. Then,LM;e has an index in(Ax;K(�0))

r (resp.(Ry;K(�0))
r) if and only

if Lf�M;u�e has an index in(Ax;K(�))
[k0: k]r (resp.(Rx;K(�))

[k0: k]r). If so, then we
have

�K(�)(Lf�M;u�e; (Ax;K(�))
[k0: k]r) = [k0: k]�K(�0)(LM;e; (Ax;K(�0))

r);

�K(�)(Lf�M;u�e; (Rx;K(�))
[k0: k]r) = [k0: k]�K(�0)(LM;e; (Ry;K(�0))

r):

Assume furthermore thatLM;e has rational coefficients, thenLM;e has indices on
K(�0) if and only ifLf�M;u�e has indices onK(�).
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Proof.By (6.2.3) we may assume thatK(�0) = K(�). Sincefujg is a basis of
E

†
x;K0 overE†

x;K , we have

Lf�M;u�e =

0
BB@
LM;e 0

...

0 LM;e

1
CCA :

The assertion easily follows the formula above. 2

(6.5.5) REMARK. IfF 0 is at worst tamely ramified overF , then the logarithmic
differential module!OF 0=OF

= 0.

(6.6) We study the difference of local indices for a direct image which corresponds
to an Artin–Schreier extension of degreep. Follow the situation and notations as
in (5.6). LetM be ar-module of rankr overE†

y with ar-formally rational basis
feig. Denote byLM;e (resp.Lf�M;z�e) the differential operator which corresponds
to the pair(M;e) (resp.(f�M; z�e)), wherez�e is the basise1; ze1; : : : ; z

p�1er.
(See (4.1).) ThenLf�M;z�e is contained inMpr(Lx;K [�x]) by (5.4.2).

(6.6.1) PROPOSITION.Under the situation above,LM;ehas an index in(Ay;K(�))
r

(resp. (Ry;K(�))
r) if and only if Lf�M;z�e has an index in(Ax;K(�))

pr (resp.
(Rx;K(�))

pr). If so, we have

�K(�)(Lf�M;z�e; (Ax;K(�))
pr)

= r lengthOFy
!OFy=OFx

+ �K(�)(LM;e; (Ay;K(�))
r);

�K(�)(Lf�M;z�e; (Rx;K(�))
pr) = �K(�)(LM;e; (Ry;K(�))

r):

Proof.The assertion follows (5.6.2), (6.3.6) and (6.5.1). 2

(6.6.2) REMARK. In (6.6.1) the length of the logarithmic differential module
!OFy=OFx

isN(p� 1).

7. Irregularity for overconvergent etale '-r-modules

In this section we define an irregularity for overconvergent etale'-modules and
state our main theorems. Fix a pair(�; k) as in (2.1.1). PutF = Fx;k,K = K(�; k)

andcKun = K(�; kalg). Let�be a subgroup of the continuous automorphism group
Autcont(cKalg=K). PutK(�) = (cKalg)� and putcKun(�) to be the subfield ofcKalg

invariant under Autcont(cKalg=cKun) \ �.

(7.1) Fix a Frobenius� onE†
x;K such that�(x)=xq 2 H†

x;K.

Let M be an object ofM�ret
E†
x;K

;�
and denote byMa the pull back ofM by

the natural mapE†
x;K ! E

†
x;bKun

. ThenMa is an object inM�ret
E†

x;bKun
;�

. By (3.2.4)
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and (3.5.3) there is a positive integerN (p6 jN) such that the pull back[N ]�Ma

is a strictly�-unipotent'-r-module inM�ret
E†

y;bKun
;�

. Here[N ]: E†
x;bKun

! E
†
y;bKun

is the natural map which is defined byx 7! yN . One can easily see that the
induced Frobenius� on E†

y;bKun
satisfies the condition(�(y)=yq) 2 H

†

y;bKun
for

p6 jN . Therefore, there is a basisfeig of [N ]�Ma such that it is strictly�-unipotent
andC[N ]�Ma;e is contained inx�1Mr(H

†
x;bKun

) by (3.2.14).

We define the irregularity ofM as follows. IfK(�) = cKalg and ifM has a
r-rational basis, our irregularity coincides with the irregularityi0(L;1) which is
defined by Robba [Ro2, 10.1.] from (6.3.7).

(7.1.1) DEFINITION. Under the above situation, we define the irregularity ofM

oncKun(�) with respect toN by

ibKun(�)
(M;N) = �

1
N
�bKun(�)

(L[N ]�(Ma);e;H
†

y;bKun(�)
):

Our definition of irregularity is independent of the choice of the strictly�-
unipotent basisfeig of [N ]�Ma by (3.3.2) and (6.3.6). From (3.3.5) we have

(7.1.2) LEMMA. Let

0!M1 !M2 !M3 ! 0

be an exact sequence inM�ret
E†
x;K

;�
. Assume that[N ]�Ma

2 is �-unipotent for

a positive integerN (p6 jN). If two of ibKun(�)
(M1; N), ibKun(�)

(M2; N) and

ibKun(�)
(M3; N) are finite, then the rest is also finite and the identity

ibKun(�)
(M2; N) = ibKun(�)

(M1; N) + ibKun(�)
(M3; N)

holds.

Our definition of irregularity depends a priori on the choice of the positive
integerN and the fieldcKun(�) of coefficients of connection in a glance. However,
one can easily see that it is independent of the extension of the coefficient field�
of representations.

Let�0 be a finite extension of� such that the pair(�0; k) satisfies the condition
(2.1.1). Denote by�0 = �f the induced Frobenius onE†

x;K0, then�0 satisfies the

condition�0(x)=xq
0

2 H
†
x;K0. Hereq0 = qf is the cardinal of the residue class

field of �0. PutK 0 = K(�0; k), �0 = Autcont(cKalg=K�0) \ � andcKun(�0) = the
(Autcont(cKalg=cKun�0) \ �0)-invariant subfield ofcKalg.

(7.1.3) LEMMA. Keep the notation as above and as in(3.1.6). For an object
M in M�ret

E†
x;K

;�
and for an integerN (p6 jN) such that[N ]�Ma is �-unipotent,
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ibKun(�)
(M;N) is finite if and only ifibKun(�0)

(��0=�(M); N) is finite. If they are
finite, then

ibKun(�0)
(��0=�(M); N) = ibKun(�)

(M;N):

Proof. The assertion follows from the definition of the functor��0=� and (6.2.3)

(cKun(�0) is finite overcKun(�)):

(7.1.4) REMARK. In our definition of irregularities we omit the tame part. The
author does not know how to define irregularities without pull backs to the cases of
�-unipotent (i.e. the case of a totally wild ramification on the Galois representation
side). Of course, if one can define irregularities over the fieldE

†
x;K of definition

of '-r-modules, then it is expected that they coincide with those of (7.1.1). (See
(8.3.2).) In the case of rank one, we can define irregularities over the fieldE

†
x;K of

definition and they coincide with those of our irregularity. (See (8.2).)

(7.1.5) REMARK. Our irregularity must be related to the local terms of the Euler
characteristic of overconvergent unit-rootF -isocrystals on a curve via the theory
of canonical extension as same asl-adic theory in [KN]. In the case of rank one it
is studied in [Be] [Ga].

(7.2) Keep the notations as in (7.1) and assume that the Frobenius� onE†
x;K satisfies

the condition that�(x)=xq 2 H†
x;K in (7.2). Now we state our main theorems.

(7.2.1) THEOREM.Let M be an object inM�ret
E†
x;K

;�
Then the irregularity

ibKun(�)
(M;N) is finite and independent of the choice of the positive integerN

(p6 jN) such that[N ]�Ma is �-unipotent.

For any objectM in M�ret
E†
x;K

;�
, we denote byibKun(�)

(M) the irregularity on

cKun(�) which is determined independently of the choice ofN .

(7.2.2) THEOREM.Let V be an object inRepfin
�
(GF ) and putM = D†

�(V )

the corresponding etale'-r-module with respect to(E†
x;K ; �). Then, we have an

identity

ibKun(�)
(M) = Swan(V ):

HereSwan(V ) is the Swan conductor of the representationV .

We remark that, if we denote bya[N ] the extensionF = Fx;k ! Fy;ka which

corresponds to the extensionE†
x;K ! E

†
y;bKun

, then D†
�(a

�
[N ]
V ) �= [N ]�(Ma).

The irregularity is independent of the choice of the coefficient fieldcKun(�) of
differential structures by (7.2.2). Especially, we have the identity

ibKalg(M) = ibKun(M) = Swan(V ):
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In the case of rank one, Matsuda showed this comparison theorem ifp is an
odd prime [Ma, 5.4, 5.5]. Using the Kummer–Artin–Schreier–Witt complex, he
constructed a differential equation with polynomial coefficients explicitly for ap-
adic representation of rank one, which is minimal in some sense. Then he applied
Robba’s calculation of local indices to the explicit formula.

We can easily reduce (7.2.1) and (7.2.2) to the following case.

(7.2.3) LEMMA.Assume that, for any�-unipotent'-r-moduleM with D†
�(V ) =

M , iK(�)(M;1) is finite and the identity

ibKun(�)
(M;1) = Swan(V )

holds in the case thatk is algebraically closed. Then the assertions of(7.2.1)and
(7.2.2)are true.

Proof. One can easily reduce (7.2.1) and (7.2.2) to the case thatk is alge-
braically closed and thatM is �-unipotent (in other word, the image im(GF !

GL(V )) is a finitep-group by (3.5.1)) since the functor D†
� commutes with pull

backs. Ifk is algebraically closed and ifM is �-unipotent, theniK(�)(M;N) =

N�1iK(�)([N ]�M;1) by definition. On the other hand, we know that Swan(V ) =

N�1Swan([N ]�V ) by [Fo1, II. Prop. 6.1.]. 2

We will prove (7.2.1) and (7.2.2) in Section 8. First we will show the theorem in
the case of rank one. Then we will prove thatibKun(�)

(M;N) is finite and coincides
with the Swan conductor using the method of Brauer induction. It is important that,
for any irreducible�-unipotent'-r-module, there is a basis which isr-rational
in the proof.

(7.3) Fix a Frobenius� on E†
x;K arbitrarily. For anyr-moduleM overE†

x;K , we
define aK(�)-connection

rM;RK(�)
:Rx;K(�)

O
E†
x;K

M ! !Rx;K(�)

O
E†
x;K

M

by the extensionE†
x;K ! Rx;K(�). It can be calculated using any basis ofM over

E† by (7.3.6).
The theorem below is related to the Robba’s conjecture [Ro2, 3.12.].

(7.3.1) THEOREM.For any objectM in M�ret
E†
x;K

;�
,rRK(�)

has an index and we

have

�K(�)(rM;RK(�)
) = 0:

We will prove (7.3.1) in the Section 8. We prove the following assertions which
are useful to prove our main theorems in the next section.
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(7.3.2) PROPOSITION.LetM be an object ofrankr in M�ret
E†
x;K

;�
, If kerrM;RbKalg

is of finite dimension overcKalg, then the natural map

kerr
M;E†

K(�)

! kerrM;RK(�)

is bijective. Herer
M;E†

K(�)

is the inducedK(�)-connection by the extension

E
†
x;K ! E

†
x;K(�)

.

Proof.The injectivity is trivial. By the same method of the proof (6.2.1) one can
show that the natural mapcKalg
K(�) kerr

M;E†
K(�)

! kerr
M;E†bKalg

is bijective.

By (6.2.1) and this fact we may assume that� = f1g, that is,K(�) = cKalg. So one
can easily see that we may assume thatk is algebraically closed. Denote byV the
representation ofGFx such that D†(V ) = M . By [Sel, IV.2.] there is a sequence
Fx;k = F0 � F1 � � � � � Fn of finite separable extensions ofFx;k such that

GFn = Gal(F sep
x;k=Fn) acts trivially onV ;

F1=F0 is totally tamely ramified;
Fi+1=Fi is an Artin–Schreier extension of degreep with wild ramification
(1 6 i < n).

Then we can inductively determine a sequence of unramified extensionsE
†
x0;K

�

E
†
x1;K

� � � � � E
†
xn;K

(x0 = x) which corresponds to the sequenceF0 � F1 �

� � � � Fn as in (5.5) and (5.6). In this situation we know that an elementa 2

R
xi;bKalg is contained inE†

xi;bKalg
if and only if a is contained inE†

xi+1;bKalg
by (6.4.1).

So, for an elementm 2 kerrM;RbKalg
, we have only to checkm is contained

in E
†

xn;bKalg


E†
x;K

M . SinceGFn acts trivially onV , there is an isomorphism

E
†
xn;K



E†
x;K

M ! (E†
xn;K

)r of r-modules overE†
xn;K

and, therefore, we have

kerrM;RbKalg
= (cKalg)r = kerr

M;E†bKalg
: 2

(7.3.3) COROLLARY.LetM be an object inM�ret
E†
x;K

;�
. If rM;RbKalg

has an index,

thenrM;RK(�)
has an index and we have

�K(�)(MRK(�)
) 6 0:

Proof.By (6.2.1)rM;RK(�)
has an index. If kerrM;RK(�)

= 0, then we obtain
the formula by definition. Assume that kerrM;RK(�)

6= 0. We show the assertion by

the induction on the rank ofM . Since the Autcont(cKalg=K)-invariant field ofcKalg is
K [Ta, 3.3 Thm.1], the natural mapK(�)
K kerr

E†
K
! kerrM;RK(�)

is bijective
by (6.2.1) and (7.3.2). (Compare both vector spaces inR

x;bKalg
KM ). By definition
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of '-r-modules and the theory of slopes, we know thatM 0 = E
†
x;K 
K kerr

E†
K

is a subobject ofM in M�ret
E

†
x;K

;�
. Since the connectionM 0 is d 
 id, we have

�K(�)(M
0
RK(�)

) = 0 by easy computations. So we reduce to the case of the

quotientM=M 0. 2

8. Brauer induction

In this section we prove our main theorems in (7.2). In (8.1) we give the formula
of indices of direct images of overconvergent'-r-modules. In (8.2) we prove our
main theorems for the object of rank one. In (8.3) we show (7.2.1) and (7.2.2). In
(8.4) we prove (7.3.1). Keep the notations as in the Section 7.

(8.1) Consider the following situation. LetF 0 be a finite separable extension of
F = Fx;k such that there is a sequenceF = F0 � F1 � � � � � Fn = F 0 of finite
separable extensions ofF which satisfies the conditions thatFi+1=Fi is either (1)
unramified, (2) totally tamely ramified or (3) an Artin–Schreier extension of degree
p with a totally wild ramification for alli. Then we can inductively determine a
sequence of finite unramified extensionsE

†
x0;K0

� E
†
x1;K1

� � � � � E
†
xn;Kn

(x0 = x,
K0 = K)which corresponds to the sequenceF0 � F1 � � � � � Fn as in (5.3), (5.5)
and (5.6). Hereki is the residue class field ofFi and we putKi = K(�; ki). We
also use the notationx0 (resp.k0, resp.K 0) for xn (resp.kn, resp.Kn). We denote
by f (resp.fi) both extensionsF ! F 0 andE†

x;K ! E
†
x0;K0 (resp.Fi ! Fi+1 and

E
†
xi;Kl

! E
†
xi;Kl

). Denote byd (resp.di) the degree of the extensionF 0=F (resp.
Fi+1=Fi).

Fix a Frobenius� on E†
x;K arbitrarily and we also use the notation� for

the unique extension of the Frobenius� on E
†
x0;K0 (resp. E†

xi;Ki
). Put �0 =

Autcont(cKalg=K 0) \ � andK(�0) = (cKalg)�
0

.

(8.1.1) PROPOSITION.Under the situation as above, letM be ar-module
of rankr over E†

x0;K0 with a r-formally rational basisfeig. If feejg is a basis
f�M which is induced from the basisfeig of M by the method as in(5.3.1),
(5.5.1)and (5.6.2) inductively(here we use(5.1.6))and if LM;e has an index in
(Ax0;K(�0))

r (resp.in (Rx0;K(�0))
r),Lf�M;~e also has an index in(Ax;K(�))

dr (resp.
in (Rx;K(�))

dr) and

�K(�)(Lf�M;~e; (Ax;K(�))
dr)

= [k0: k](r lengthOF 0
!OF 0=OF

+ �K(�0)(LM;e; (Ax0;K(�0))
r));

�K(�)(Lf�M;~e; (Rx;K(�))
dr) = [k0: k]�K(�0)(LM;e; (Rx0;K(�0))

r):
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Proof. The formulas follow from the fact that the sequence

0! OF 0

O
OFi+1

!OFi+1=OFi
! !OF 0=OFi

! !OF 0=OFi+1
! 0

of OF 0-modules is exact for alli and also (5.1.6), (6.5.3), (6.5.4), (6.5.5) and
(6.6.1). 2

(8.1.2) COROLLARY.Under the situation as above, assume furthermore that the
extensions of type(1) and type(2) appear only inF1=F0 or in both the extensions
F1=F0 andF2=F1. LetM be an object of rankr of M�ret

E†
x;K0

;�
, with a�-unipotent

andr-formally rational basisfeig. Thenf�M has ar-rational basis. Moreover,
if LM;e has an index in(Ax0;K(�0))

r (resp.in (Rx0;K(�0))
r) and if ee is ar-rational

basis off�M , thenLf�M;~e also has an index in(Ax;K(�))
dr (resp.in (Rx;K(�))

dr)
and

�K(�)(Lf�M;~e; (Ax;K(�))
dr)

= [k0: k](r lengthOF 0
!OF 0=OF

+ �K(�0)(LM;e; (Ax0;K(�0))
r));

�K(�)(Lf�M;~e; (Rx;K(�))
dr) = [k0: k]�K(�0)(LM;e; (Rx0;K(�0))

r):

Proof.By (5.4.3) and (5.1.6) there is a�-unipotent andr-rational basis in the
direct image ofM for successive extensions of type (3) ifM has a�-unipotent and
r-rational basis. (If an extension either of type (1) or of type (2) appears in some
extensionFi+1=Fi (i > 2), thenfyjeig as in (5.5.1) (resp.fujeig as in (5.3.1) is
not �-unipotent)). Hencef�M has ar-rational basis by (5.3.1) and (5.5.1). The
formulas follow from (8.1.1) and (6.3.7). 2

If F 0=F is a finite Galois extension, then there is a sequence of finite separable
extensions ofF as in the above situation. IfF 00 is a middle field of a finite Galois
extensionF 0=F such thatF 0=F 00 is totally wild ramified, then there is a sequence of
finite extensions ofF 00=F as above, because a finitep-group is nilpotent [Se2,II.9.3.
Thm. 18.].

Let us introduce the corresponding formula for Swan conductor. Letf :F ! F 0

be a finite separable extension as above and letV be a representation of the absolute
Galois groupGF 0 of F 0 over the field of characteristic 0. Assume that the image
im(GF 0 ! GL(V )) is finite. Then we know the following formula for the induced
representationf�V [Sel, VI.2. Prop. 4., Cor.] [Fol, II.6. Prop. 6.1.].

(8.1.3) PROPOSITION.Under the above assumption, we have

Swan(f�V ) = [k0: k](rankV lengthOF 0
!OF 0=OF

+ Swan(V )):

(8.2) We prove the theorem in the case of rank one. In this case Matsuda’s results
imply (8.2.1) and (8.2.2) for odd primep. Here we give a new proof and show it
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for generalp. Fix a Frobenius� on E†
x;K arbitrarily in (8.2.1) and (8.2.2). Denote

by Z(p) the localization of the ringZ of rational integer at the prime ideal(p).

(8.2.1) PROPOSITION.LetM be a'-r-module of rank one overE†
x;K . ThenM

has a basee such thatCM;e 2 Z(p)+�x
�1OK [x

�1]. Moreover, ifM is�-unipotent,
thenM has a�-unipotent basee such thatCM;e 2 �x

�1OK [x
�1].

Proof. We may assume thatM is etale and that the Frobenius� satisfies the
condition�(x)=xq 2 H† by (3.4.4). Lete0 be a basis ofM and puta = AM;e0 and
c = CM;e0 . Thena is a unit inO†

E . Choose an integerN and an elementu 2 k�

such that(uxN )
�1
a (mod�) 2 1 + xk[[x]]. Choose a liftingv 2 Sx;K of the

element
Q1
n=0(�

�s(uxN )�1a (mod�))q
n
. Thenv�1(uxN )�1a�(v) � 1 (mod�).

By (3.2.5) there is an elementv0 2 1 + �xSx;K andu0 2 1 + �OK such that
(vv0)�1(uu0xN )�1a�(vv0) 2 1 + �x�1O†

H. So we may assume(uxN )�1a 2

1+ �x�1O†
H andc = N=(q� 1) + �x�1O†

H by (3.2.14). Now we putc = c0+ c1

such thatc0 2 OK [x
�1]; c1 2 �x�1O†

H and thatjc1jG is sufficiently small, so
that w = exp(�

R
c1(dx=x)) can be defined in 1+ �x�1O†

H. Then we have
w�1�(w) = �c1 ande = we0 is a desired base ofM . In the�-unipotent case we
begin witha � 1 (mod�). 2

In the case of rank one we have the following stronger result than (7.2.2). The
assertions of (7.2.1) and (7.2.2) for objects of rank one easily follow (6.3.7), (7.2.3)
and (8.2.2).

(8.2.2) THEOREM.LetV be an object of rank one inRepfin
�
(GF ) and putM =

D†(V ) the corresponding etale'-r-module overE†
x;K with respect to�. For a

r-rational basee ofM , LM;e has indices onK(�) and we have

�K(�)(LM;e;Ax;K(�)) = ��K(�)(LM;e;H
†
x;K(�)

) = Swan(V );

�K(�)(LM;e;Rx;K(�)) = 0:

First we reduce (8.2.2) to the case that� = f1g, that is,K(�) = cKalg,
and k is algebraically closed. Indeed, ifLM;e has indices oncKalg, thenLM;e

has indices onK(�) by (6.2.1). If �bKalg(LM;e;Rx;bKalg) = 0, then we obtain

�K(�)(LM;e;Rx;K(�)) = 0 by (6.2.1) and (7.3.3). Moreover, we have identi-

ties �bKalg(LM;e;Ax;bKalg) = �K(�)(LM;e;Ax;K(�)) and�bKalg(LM;e;H
†

x;bKalg
) =

�K(�)(LM;e;H
†
x;K(�)

) by (6.2.1) and (6.3.4). Hence, we reduce the assertion to the
case that� = f1g. Now we can easily reduce it to the case thatk is algebraically
closed.

To finish the proof of (8.2.2), we use Robba’s formula. (See [Ro2].) Let us
explain it as needed. Lettr be a(0; r)-generic point. For a differential operator of
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first orderL = �x + � 2 cKalg(x)[�x], define

�0(L; r)

= minfradius of convergence of a solution(6= 0) of L = 0 at tr; rg:

We sayL is solvable on the(0;1)-generic disk if and only if�0(L;1) = 1. By
[Ro2, 5.6.] we have

(8.2.3) THEOREM.Under the notations as above, unless simultaneouslyL is
solvable on the(0;1)-generic disk, (d log�0(L; r)=d logr)�jr=1 = 1, and
Res0(�(dx=x);1) is of Liouville[Ro2, 5.5.],thenL has indices oncKalg and

�bKalg(L;Ax;bKalg) = ��bKalg(L;H
†
x;bKalg

) =

�
d log�0(L; r)

d logr

��
jr=1� 1;

�bKalg(L;Rx;bKalg) = 0:

Here(dv=ds)� denotes the left-hand side derivative ofv with respect tos.

By [Ro2, 10.7] we have

(8.2.4) COROLLARY.Under the assumption as above, unless simultaneously
L is solvable on the(0;1)-generic disk,(d log�0(L; r)=d logr)�jr=1 = 1, and
Res0(�(dx=x);1) is of Liouville,L+ � has indices oncKalg and the formulas

�bKalg(L+ �;A
x;bKalg) = �bKalg(L;Ax;bKalg);

�bKalg(L+ �;H†

x;bKalg
) = �bKalg(L;H

†

x;bKalg
);

�bKalg(L+ �;R
x;bKalg) = 0;

hold for any non-Liouville element� 2 cKalg.

Now we return to the proof of (8.2.2). We point out that we have only to show the
assertion for ar-rational basee ofM by (6.3.7). Choose a�-unipotent basee such
thatCM;e 2 Z(p) + �x�1OK [x

�1]. (We can always do by (8.2.1)). Since rational

numbers are of non-Liouville,L has indices oncKalg and�bKalg(LM;e;Rx;bKalg) = 0
by (8.2.3). So we have only to show

�bKalg(LM;e;Ax;bKalg) = Swan(V );

for a basee as in (8.2.1).
We reduce to the caseM is �-unipotent, in other words,V is totally wild

ramified. LetN (p6 jN) be a positive integer such that[N ]�M is �-unipotent,
where we use the notation[N ] for the both mapsE†

x;K ! E
†
y;K andFx;k ! Fy;k
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defined by(x 7! yN ). We also denote bye the base 1
 e of [N ]�M . Thene is a
base of[N ]�M as in (7.2.1) and we have

L[N ]�[N ]�M;y�e =

0
BBB@
LM;e 0

...

0 LM;e +
N � 1
N

1
CCCA :

So the formula

�bKalg(L[N ]�M;e;Ay;bKalg) = N�bKalg(LM;e;Ax;bKalg);

holds by (6.5.2) and (8.2.3). On the other hand, we know that D†
�([N ]�V ) �=

[N ]�M by [TN2, 4.2.6] and Swan([N ]�V ) = N Swan(V ) by [Fol, II. Prop. 6.1.].
Therefore, we reduce to the case thatM is �-unipotent.

Assume thatM is �-unipotent. Denote byF 0 the invariant field of ker(GF !

GL(V )) in F sep and putps = [F 0:F ]. By the assumption there is a sequence of
extensionF = F0 � � � � � Fs = F 0 which satisfies the condition in (8.1) and
let E†

x0;K
� E

†
x1;K

� � � � � E
†
xs;K

(x0 = x) be the sequence of corresponding
finite unramified extensions. Denote byf (resp.fs) both extensionsF ! F 0 and
E

†
x;K ! E

†
xs;K

(resp.F ! Fs�1 andE†
x;K ! E

†
xs�1;K

). Since the extensionF 0=F
is cyclic of orderps, we have the decomposition

f�� �=
M

06i<ps
V 
i �= (fs)��

MM
p6 j i

V 
i; (8.2.5)

as�[GF ]-modules. Here� is the trivial representation andV 
i = V 
 � � � 
 V

(i-times). On the side of'-r-modules we also have the decomposition

f�E
†
xs;K

�=
M

06i<ps
M
i �= (fs)�E

†
xs�1;K

MM
p6 j i

M
i; (8.2.6)

whereE† is the trivial object inM�ret
E†;� andM
i = V 
 � � � 
 V (i-times), and

D†(V 
i) �=M
i;

by (5.2.1). SinceV 
i is totally wild ramified,M
i is �-unipotent. Lete(i) be a
base ofM
i as in (8.2.1). Pute = e(1) to be a base ofM .

We prove the identity ‘index= Swan’ by induction ons. In the case whens = 0
both sides are 0. By (8.1.2), (8.1.3), (8.2.5), (8.2.6) and the assumption of induction
we have

X
0<i<ps;p6 j i

�bKalg(LM
i;e(i) ;Ax;bKalg) =
X

0<i<ps;p6 j i

Swan(V 
i):
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Since Swan(V 
i) = Swan(V ) for all i (p6 j i) [Fol, II. Prop. 6.1.], we have only to
show

�bKalg(LM
i;e(i);Ax;bKalg) = �bKalg(LM;e;Ax;bKalg)

for all i (p6 j i). These identities follow from (8.2.3) and the lemma below.

(8.2.7) LEMMA. If r < 1 is close to1, then we have

�0(LM
i;e(i); r) = �0(LM;e; r);

for all i (p6 j i).
Proof. For any element� of E†

x;K and for any real number 0< r < 1 close
to 1, the radius of convergence of� at the(0; r)-generic pointtr is r. Therefore,
�0(LM;e; r) is independent of the choice of the basise if r is close to 1. Ifu 6= 0 is
a solution ofLM;e at tr, thenui is a solution ofLM
i;e
i . Heree
i = e
 � � � 
 e

(i-times). So we have

�0(LM
i;e(i); r) > �0(LM;e; r):

If i is prime top, then there is a positive integerj such thatij � 1 (modps), so
that(M
i)
j �=M . By the same argument as above we have

�0(LM
i;e(i); r) 6 �0(LM;e; r):

Hence, we obtain the assertion. 2

(8.3) Now we prove (7.2.1) and (7.2.2). We have already reduced to the case that
k is algebraically closed andM is �-unipotent by (7.2.3). LetF 0 be the fixed
field of the kernel ker(GF ! GL(V )) and putG = Gal(F 0=F ). SinceG is finite,
V is a successive extension of absolutely irreducible representation ofG after a
finite extension of�. By (7.1.3) and (7.1.2) we can reduce to the case thatV

is an absolutely irreducible�-representation ofG. SinceG is a finitep-group,
V is an induced representation of rank one of a subgroupH of G [Se2, II.10.5.
Thm. 20.]. Denote byW the �-adic representation of rank one ofH and put
F 00 = (F 0)H theH-invariant subfield ofF 0, andg:F ! F 00. Theng�W = V and
g�MW = g�D†(W ) �=M by (5.2.1). SinceH is ap-group,MW has a�-unipotent
andr-rational basise such that

�K(�)(LM;e;A) = Swan(W );

�K(�)(LM;e;R) = 0;

by (8.2.1) and (8.2.2). SinceG is a finitep-group, there is a sequence of extension
F = F0 � F1 � � � � � Fn = F 00 which satisfies the condition in (8.1). So there is
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a �-unipotent andr-rational basiseej such thatLM;~ej has an index onK(�) and
we have

�K(�)(LM;~ej ; (Ax;K(�))
[F 00:F ])

= rank(M) lengthOF 00
!OF 00=OF

+ �K(�)(LMW ;e;Axn;K(�));

�K(�)(LM;~ej ; (Rx;K(�))
[F 00:F ]) = 0;

by (8.1.2). Therefore, we obtain the formula

iK(�)(M;1) = Swan(V );

by (6.3.4) and (8.1.3). 2

As another consequence of the proof we have

(8.3.1) PROPOSITION.Assumek is an algebraically closed field. LetM be a
�-unipotent'-r-module. ThenrM;RK(�)

has an index and we have

�K(�)(MRK(�)
) = 0:

(8.3.2) REMARK. It is expected that, for any'-r-moduleM with ar-rational
basisfeig, the identity�(LM;ei ;A) = i(M) = Swan(V ) holds like the case of
rank one. To show this there is a difficulty which is related to Robba’s conjecture
[Ro2, 8.3.].

(8.4) We prove (7.3.1). We may assume that� = f1g, that is,K(�) = cKalg, and
thatk is algebraically closed by the same argument of the proof of (8.2.2). LetM

be an object inM�ret
E†
x;K

;�
. By (3.5.3) there is a positive integerN (p6 jN) such that

[N ]�M is�-unipotent([N ]: E†
x ! E†

y (x 7! yN )). We can regardM as a subobject
of [N ]�[N ]�M in the categoryM�ret

E†
x;K

;�
by the natural map, and denote byM 0

the quotient[N ]�[N ]�M=M . (See (5.1)). Since

[N ]�[N ]�M �=M � yM � � � � � yN�1M

asr-modules overE†
x;K ,rM;RbKalg

has an index and we have

�bKalg(rM;RbKalg
) + �bKalg(rM 0;RbKalg

) = �bKalg(r[N ]�[N ]�M;RbKalg
) = 0;

by (6.5.2), (8.3.1). We also know that both�bKalg(rM;RbKalg
) and�bKalg(rM 0;RbKalg

)

are less than or equal to 0 by (7.3.3). Therefore, we have the assertion. 2
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