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Abstract. In this paper we study local indices of systemspeddic linearly differential equations
which arise fromp-adic representations of the absolute Galois group of local field of characteristic
p with finite monodromy. We show the induction formula of the local indey-@fdic differential
equations and prove the equality between the local index of differential equations and the Swan
conductor ofp-adic Galois representations by inductive methods.
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1. Introduction

Letp be a prime. In [TN2] we showed that the categoryfdic representations
with finite monodromy on a local field of positive characterigtics equivalent
to that of overconvergent etaje V-modules, which are differential modules with
etale Frobenius structures. In this paper we show that the Swan conductor of a
p-adic representation with finite monodromy coincides with the irregularity of the
corresponding-adic differential module. Here the irregularity is a generalization
of that of Robba which is defined using local indices [Ro2]. In the case of rank
one, Matsuda showed the equality for an odd prinfiela].

Let F' be a complete discrete valuation field of positive characteristigth a
perfect residue class fieldand denote by+ » the absolute Galois group &f. Let
K be the field of fraction of the Witt vector ring with-coefficients and denote by
| | an absolute value d'. Put

et — i ana” | an € K, |ay,| is bounded, |
|an|p" — 0 (n — —o0) forsome 0< p < 1

n=—0oo

then&' is a henselian discrete valuation field with residue class fielth [Tn2]
we showed an equivalence of categories

p-adic reprsentations off ¢ Dt overconvergent eta
with finite local monodrom v-V-modules

Here finite local monodromy means that the inertia subgrou@ofacts through
a finite quotient and an overconvergent etal&-module is argT-module with
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Frobeniusp, all of whose slopes are 0, and with a connecfibnFor any over-
convergentp-V-module M of rank one, there always exists a base such that the
differential operator which is associated to the base has a coeffici&itip([Ma,

5.2, 5.3] or (8.2.1)). So one can define an irregularitbby the irregularity of
Robba [R02, 10.1]. In the case of general rank, however, it is not known that there
exists a good basis such that the coefficients of the corresponding differential oper-
ator are matrices oK (z)-coefficients, so that we can not define the irregularity of
overconvergent etale-V-modules directly.

Let us explain how to define the irregularity. Assume thas algebraically
closed. An overconvergent etalemodule M is w-unipotent if and only if the
action of Frobeniug is unipotent modulo the maximal ideal (3.2). We show that
M is w-unipotent if and only if the correspondipgadic representatioW is totally
wild ramified (3.5.1). In this case there is a basis such that the coefficients of the
corresponding differential operatérare matrices o™ = {3, Qanz" € £7}-
coefficients and all morphisms of overconvergent etagodules comes from
those ag{-modules (3.3). We define the irregularity &f on K by

i(M) = —dimg ker(L: (H")" — (H")") + dimg coke( L: (H)" — (11",

wherer is the rank ofM. i(M) is independent of the choice of such a basis. In
general case, first we pull back to the case tha algebraically closed. Then,
for any overconvergent etaje V-module M, there is a positive integéy (p /N)
such that the pull badkV]* M by the magN]: £T — £ (z — 2V) is w-unipotent.
Define the irregularity by;lvi([N]*M) (7.1.1). Our irregularity coincides with that
of Robba if L has coefficients itk (z).

One of our main theorems is as follows;

THEOREM (7.2.2) etV be ap-adic representation aff » with finite local mono-
dromy and putM = DT(V). Then, the irregularityi (M) is finite and

i(M) = Swar(V).

Here Swar(V) is the Swan conductor &f [Og, II.].

To prove the theorem, we use an inductive methodl: F — F” is a finite sep-
arable extension, we denote (&)’ the corresponding finite unramified extension
over &', For an overconvergeni-V-modulesM over (£T), we define a direct
imagef,M (5.1). The functor of direct image commutes with the functéythat
is, if V is a representation of’, then O (f,V) = f,.DT(V) (5.2.1).

Assume that is algebraically closed. If the extensiéty/ F is an Artin—Schreier
extension of degrgeand if M is ar-unipotent overconvergegtmodule ove(&E™)’
with a basis such that the corresponding differential opeiatoas coefficients in
rational functions, therf, M also has such a good basis (5.6). Moreovei it )
is finite, theni( f. M) is also finite and the inductive formula

i(f«M) =rankM)length, wo,, 0 +i(M),
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holds (8.1.2). Herep , /0. is the logarithmic differential module @ overOp
[KK, (1.7)]. The formula above corresponds to the formula for Swan conductor as
follows. LetV be a potentially unipotent representatiorGyf:, then

Swar(f.V) = rankV)length, wo,,/0, + Swar(V).

Therefore, the formula ‘irregularity- Swan’ holds for the paitf. M, f.V) if it
holds for the paif M, V') by the commutativity off, and D'

Tofinish the proof, we use Brauer induction. Inthe case of rank one we give a new
proof which in cludes the casepf= 2 (8.2.2). Ifk is algebraically closed, andif
is absolutely irreducible and totally wild ramified, is an induced representation
of a representation of rank one. Then we can calculate the irregulait wding
the formula (1.0.1) inductively and show that it coincides with Swan conductor
of V. In general case, we can reduce to the preceding case. We calculate a local
index not only in the case when the field of coefficients of differential structures
is the p-adic completionf(\""'g of an algebraically closure ok, but also in the
case when it ig<. Because it is useful for applying to the Euler characteristic of
overconvergent unit-rodt-isocrystals on a curve. (See [Be] [Ga].)

Our method of calculation of local indices relies on the finite monodromy
theorem for overconvergent etaleV-modules [TN2]. If we consider irregularities
for overconvergenip-V-modules with arbitrary slopes, we need such a type of
monodromy theorem. (See [Cr, 4.16.2.].)

The category op-adic representations on a local field of residue characteristic
p is large. In this paper we treat only those with finite local monodromy. It is a
future problem that what kinds of phenomena happen on the side of differential
structures which correspond to infinitely ramified representations.

The author would like to thank Shigeki Matsuda for useful discussion.

2. Notations

In this section we fix notations.

(2.1) Letp be a prime number. Fdr andk such that

A is a finite extension over the fiet@, of p-adic numbers;
k is a perfect field of characteristig (2.1.1)
the residue class fielg, of A is included ink,

we define a complete discrete valuation fiéld= K (A, k) by A @y ,) W (k).
HereW (A) is the ring of Witt vectors of a ringt.
For a fieldQ2 and for an indeterminant, denote byF), o the field2((z)) of
formal power series. We use the notatinfor F, q if there is no ambiguity.
For any field(2, we denote by2%¢P a separable closure 6f in a fixed alge-
braically closed field2?9 and byG, the absolute Galois group GarFe?/Q).
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LetQ be a valuation field. Denote by, (resp.Q“", resp£) the valuation ring
(resp. the maximal unramified extensiofffF, resp. the completion under the val-
uation) of(2. We denote bRep, (Gq) the category of continuous representations
of finite dimension with coeff|C|ents in of the absolute Galois group 6fand by
Repf'n (Gq) the full subcategory oRepA Gq) which consists of representations
with flnlte local monodromy, that is, the inertia subgroupsf acts via a finite
quotient.

(2.2) Denote byR ¢ the set of non-negative real numbers. For a complete fleld
under a non-Archimedean absolute value©2? — R and for an indeterminant
x, we define severdl-algebras as follows:

Sz,0 = Oq

o
Aro= Z anz" | ap € Q, |ay|p™ — 0 (n — oo) forany 0< p < 1},

anz” | ap € Q,lap| — 0 (n — —oo)},

oo —0o0
Z anx" | an € Q, Sup|a,n|<oo Zanx E’ng}

n=—00 n=0

[oe] —0Q
5;,9 = Z anzr" € &0 | Z anx” € ’H;,Q} ,

n=-—00 n=0

’HTQ:{XO:O anz" | ap € Q, |ay|p" — 0(n — oo)forsome0<p<1}

00 00 -
Z anz” | Z anz” € Az, Z anz" € ,HLQ} ’

=—00 n=0 n=0

Log = {a— | a(x) € O], alx) 0, b(x) € sx,g} .

Here we regardC,. o as a subring of;‘;r o Since a nonzero element Ok, [z] is a
unit of 5; o- We have several sequencegbalgebras;

and so on, via the natural inclusion. The rifigq, A, o, . . . is functorial inQ2. We
use the notationS;, ... instead ofS; q, ... if there is no ambiguity.

(2.2.1) REMARK. OurA, o (resp.H;Q, resp.R; o) coincides withAg(1) (resp.
HJ(1), resp.Ro(1)) in [Ro2, 2].
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(2.2.2) LEMMA. We haveC, N H, C Q(z) in &,.

For formal Laurent power series= }_ a,z", we definda|c € RyoU {oo} by
sup,|ar|. Denote byOr, the subalgebra ak, which consists of elementse R,
suchthata|qc < 1forR, = A,,....

If Qis a complete discrete valuation field, th&p (resp.£)) is a complete
discrete valuation field (resp. a henselian discrete valuation field) under the absolute
value| | and a uniformizer of2 is also that of, (resp.£)). The residue class
field of &, (resp.€)) is F,.x,, by the natural projection, where, is the residue
class field ofQ2. (See [Cr, 4.2] [Ma 3.2].) By the Weierstrass preparation theorem
we have

(2.2.3) LEMMA. If Q2 is a discrete valuation field, then the fiefd coincides with
the quotient field FragS,) of S, in £

(2.2.4) REMARK. IfQ2 is not a discrete valuation field,. (resp.£]) is not a field.
Let{a, }»>1 be a sequence imq such thaja, | — 1. Consider an element

o0
a= Z anx" € Sz.0,

n=1

thena has infinitely many zeros in the digk0,1~) = {¢ € Q%9 |¢| < 1} and
there is a sequenégof zeros ofa such thaté;| — 0 (i — oo). Thereforeg(z)~1
is not contained i€ (See [DGS, 11.2, 3].)

IyQaIg'

(2.3) For formal Laurent power seriés a,,z™ of indeterminantz, we define an
additive map), = z(d/dz) by

Oz (Z anas”) = Z na,z".

Thend, is anQ2-derivation onS, o, Az q, ... .

Let R, be one ofS,, A;, H, . ... We define a freé?,-modulewr, of rank one
by
d
WR, = Rx—x
T

We define an additive map R, — wg, byd(a) = §,(a)(dz/z) fora € R,. Then
d is anf)-derivation onR,,.

(2.3.1) DEFINITION We say that a fre®,-module M of finite rank with an
additive mapV: M — wg, ®g, M is aV-module overR, if and only if V is an
Q2-connection, that isV(am) = da ® m + aV(m) fora € R, andm € M. A
morphism ofV-modules overR, is anR,-homomorphism which commutes with
connections. We denote the categorywefnodules overR?, by ME-
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For aV-moduleM of rankr and for a basiqe;} of M, we define a matrix
Cwme € M, (R;) (€= (e1,€2,...,€r)) by

Ve =— ®eCMe

We also define a differential operatbf; e € M, (R;[0,]) bY Layre = 0z + Chrre.

(2.4) Fix A andk which satisfy the condition (2.1.1). Denote bya uniformizer
of A. PutK = K(A, k) and fix the algebraic closuré9 (resp.K29) such that
the residue class field df9 is k29, Define an endomorphismon K by o =
idy ® Frob/, where id, is an identity map or\, Frob is the usual Frobenius on the
ring of Witt vectors and; = p/ is the cardinal of the residue class field/of By
the condition (2.1.1)y is well-defined and the fixed subring efis A. We callo
Frobenius. Itis easily seen thaextends uniquely on any unramified extension
in K™ of K and on itsp-adic completion/.. We use the same notatienfor this
extension. .

Let I be an unramified extension &f or its p-adic completion ink9, We say
aring endomorphism on&; 1, is a Frobenius if and only if

o(a) =a? (modr),

for a € OF and the Frobenius on L. We say that is a Frobenius o] if
and only ifo is a Frobenius o8, with o(£]) C £I. A Frobeniuss oné&, 1, is a
Frobenius org] if and only if o () € &].

For a Frobenius on £ (resp.£7), define an element(z, o) (simply, x(z) or
p)in & (resp.ENY by u = 6,(o(z))/o(z). Then|u|e < 1 and we have an equality
dz(o(a)) = po(d5(a)), equivalentlyd(o(a)) = o(d(a)) in we (resp.wgt) for any
a € & (respET). Hereo(a(dz/z)) = po(a)(dz/x). Later, we often use Frobenius
o with

or especiallyr(z) = 7. Then,u € H', orp = q.

Fix an algebraic closur&?9 of Fy 1, such that:29 is the residue class field of
F39. Puté = A @y r,) W (F39). For a Frobenius on&, there is an embedding
is:& — € such that (i)a|g = |is(a)| for a € £, where] | is the unique valuation
on &£ which is the extension of that of, (i) the map on residue class field
induced byi,, is the injectionF ¢ F9 and (jii) i, (o (a)) = (idxy ® Frob)(is(a))
[TN2,2.5.1]. By [Ma, 3.3], for any finite separable extensiby)y, over F ; in
F39, there is a unique finite unramified extension afgk (resp.£ il ».x) Which is
isomorphic to&, 1, (resp. Al £)in &. HereL is the finite unramified extension of
L over K whose residue class field isThen the derivatioa, and a Frobenius
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ooné, i (resp.é‘;’K) are uniquely extended to that @ ;, (resp.é’;’L) and the
relationd, (o(a)) = u(xz)o(d(a)) is preserved on it. It = a(y), then we have
the following relations

__aly)
T dylaly)

- (45 5o

Of courseg (y) is not always contained iH,, (resp.’H;) evenifo(z) is contained
in #, (resp.H!). If F,, is Galois overF, , then GalF, /F, ) acts on&,
(resp.] ;) via the canonical identification Gdl, 1. /&, k) = Gal(&] | /€] ) =
Gal(F,,;/F, ) andéd, (resp.c) commutes with the Galois action.

(2.4.1)

(2.5) For a matriXa;;) and for an applicatiorf, we definef ((a;;)) = (f(asj)).

3. m-unipotent etale o-V-modules

In this section we define the notion of (strictly}unipotentyp-V-modules and
show some properties of them.

Fix A andk asin (2.1.1) and puk’ = K (A, k). Let 7 be a uniformizer ofA.
Denote bys (" eitheré, x or £] ;. and leto be a Frobenius ofi(". We use the

notation# (" for #, x or H, ;. which respects ("

(3.1) First we recall the definition @f-V-modules and some properties of them
[TN1] [TN2].

(3.1.1) DEFINITION. We say a&(")-vector spacé\/ of finite dimension with a
morphismy is ap-module ove£(") with respect tar if and only if they satisfy
the condition

(1) the applicationp: M — M is a o-linear endomorphism such that( M)
generates/ over£(H). The mapy is called Frobenius.

A morphism ofp-modules is arf("-homomorphism which commutes with
Frobeniusp. For ap-module M of rankr and for a basige; } of M, we define a
matrix Ayre € GL.(EM) (e = (e1, €2, ... ,e,)) by

p(e) = eAM,e-
We denote the category gtmodules ove€ (") with respect tar by M&®.) ,.

(3.1.2) DEFINITION. We say a&("-vector space\/ with a Frobeniusy and a
connectiorV is ap-V-module ove€ () with respect ter if and only if they satisfy
the conditions
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(1) (M, ) is ap-module and M, V) is aV-module;
(2)Vop=(c®@¢p)oV.
A morphism ofp-V-modules is aif () -homomorphism which commutes with
Frobeniusp and connectioiv. We denote the category @tV-modules ove€ (")
with respect tar by MZU .

(3.1.3) DEFINITION. (1) The slope of @-module (respy-V-module)M is the
slope off ®gm M as a usual sense dkspace ovee, wheref is defined in (2.4).

(2) A p-module (resp. &-V-module) M is etale if and only if all slopes of/
are 0.

We denote the category of etalemodules (resp. etalg-V-modules) oveg ()
with respect tar by M @em (respM <I>V($§ ). Itis afull subcategory d1 @1, ,

(resp.M <I>gm’g).

(3.1.4) REMARK. In [TN1] [TN2], we use the terminology ‘overconvergenV -
module’ (resp. ¢-V-module’) for o-V-module overE™ with respect tar (resp.
©-V-module ovel with respect tar). We will use both in this paper.

All categoriesM ®7;,, M&7, ... are abelian and have tensor products and

duals. The natural functar from the category ovef™ to that over§ commutes
with tensor products and duals.
Let A € GL,(£M) andC € M, (£M) which satisfy the relation

50(A) + CA = p(w, o) Ac(C). (3.1.5)
We define ap-V-moduleM 4 ¢ over€ (™ with respect tar by

pler,ez,...,e,) = (e1,€2,...,6e,)A,

dz
V(617627 s 767‘) = ; ® (617627 s 761“)07

where{e; } is a basis ol 4 . We sayA is etale if and only if theo--module whose
Frobenius is defined by is etale.

Let A’ be a finite extension af and letk’ be an extension of such that the
pair A’ andk’ satisfy the condition (2.1.1). Denote B (resp. bye(™') K (A’, k')
(resp.ggl),(,). Define the Frobenius’ on&(M’ by

o = gf(A’/A)’
wheref(A’/A) is the degree of extension of the residue class fiell’ aver that
of A. We define a functor
LA’/A: Mg(f), - M @8@)/’0,

(3.1.6)
(resp tar/a:MBFy) = MBTy, ),
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by (M, ¢, (V) = (EN @0 M, o' @p! NN (V). ForA € GL,.(£M)andC €
M, (€M) which satisfy the relation (3.1.5), ifwe pdt = Ao (A) ... o/ AN/M-1(4),
then one can easily see that the equation

5(A) + CA' = p(a, o) A'o’ (),

holds. Hence, if we putl = Ay for a basis ofM, then we have,, /(M) =
M . The functor ./ /, is exact, and commutes with tensor products and duals.
Moreover, if M is etale, then,,,, (M) is also etale.

(3.2) We define the notion of-unipotenty-V-modules. Pub = S k.

(3.2.1) DEFINITION. (1) We say that a matrit € GL,(£(") is 7-unipotent if
and only if A belongs to GL(O@) and

1 *
A= (mod).

(2) We say that @-moduleM overE (™ with respect tar is w-unipotent if and
only if there exists a basig; } of M such that the matrixd /¢ is w-unipotent. We
say such a basis is-unipotent.

(3.2.2) DEFINITION. (1) We say that a matrix € GL,.(£(M) is strictly 7-
unipotent if and only if4 is 7-unipotent and4 is contained in GL(H (D).

(2) We say that @-moduleM over€ (™ with respect ta is strictly 7-unipotent
if and only if there exists a basig;} of M such that the matrixd ;e is strictly
m-unipotent. We say such a basis is striethynipotent.

If a matrix A is w-unipotent, therd is etale.
(3.2.3) PROPOSITIONIf a matrix A € GL,(£M) is w-unipotent, then there

is a matrix@ € GL,(S) such thatQ is 7-unipotent andQ ~1Ao(Q) is strictly
m-unipotent.

(3.2.4) COROLLARY.If M is a 7-unipotenty-module ove€ (™ with respect to
o, thenM is strictly w-unipotent.

(3.2.5) REMARK. Ifk is algebraically closed, then there is a matghe GL,.(S)
such thatQ is w-unipotent andQ1A0(Q) € 1 + Wx_er(Og)) for any n-
unipotent matrixA.

Before proving (3.2.3), we prove two lemmas.
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(3.2.6) LEMMA. Let A be a matrix inGL,(k((z))) such thatd = (. }).

For any elementr = (a1, a2, ..., ;) € k((z))", thereis avectof = (£1,&o,. ..,
&) € k[[z]]" such that

Aoy (t¢) =t +ta € K[z,
(resp o4(¢) — €A+ o € K[z 71]7).

Hereo, is agth power map and¢ is the transpose af.

Proof.In the case = 1, puter = ) + o) (o4 € zk[[z]], oy € K[z 1]).
Seté = 37000, (a4)). Sinceayy € zk[[z]], the right-hand side is convergent
ando,(¢) — € + a € k[z—1]. The rest is easy by induction en O

(3.2.7) LEMMA. If a matrix A € GL,(Ox /(7" *1)[[z]][z~1]) satisfies the con-

ditions thatA = (é ’i) (modn) and thatA (modn™) belongs toM, (Ox/

(z™)[z~1]) for a non-negative integet (in the case that = 0, we assume only

m-unipotent forA), then there is a matrix),, € GL,(Ox /(7"+1)[[z]]) such that

Qn = 1(modn") (inthe casethat = 0,Qo = (é a1)) andthatQ,, 1Ao(Q,)

is contained inM,. (O /(7" 4)[z~1]).

Proof. The assertion is easily seen from (3.2.6) in the case whenl. We
use induction on-. Decomposed = (ﬁi iii) Ajp of size(r — 1) x (r — 1),
Ajp of size (r — 1) x 1, A of size 1x (r — 1), and A, of size 1x 1. We
may assume thatl,; € (Og /(7" ™H)[z71])"L In fact by (3.2.6), there exists
¢ € k[[z]]"~! such that the (2, 1)-component@rf%£ 1) Ao (W:,Eg f) is contained
in (Og /(7" 1) [z~1])"~1. SinceAz; = 0 (modr), the(2, 1)-component does not
change afterd — (Q') 140 (Q’) for Q' = 1+ 7" (Q(;“ g:;) i € M (K[[z]]).
By the assumption of induction, we may assume that all coefficients, paind

Az belong toOx /(7™ 1) [z~1] modulo 7"+, Then we have the assertion by
(3.2.6). 0

Proof of (3.2.3). By (3.2.7) there is a sequenceAf € GL,«(Og)),Qn €
GL,(S) such that

AO:A An:QrzllAn 10'(Qn 1)7
Ap(modn™) € M, ( OK/T['

Qo = (modr),

Qn =1 (modn™) (n
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Then the infinite produdo@1Q . . . is convergent in GL(.S) and this product is
the desired). O

We show some properties afunipotentp-modules.

(3.2.8) PROPOSITIONLet M;, M> be w-unipotenty-modules. The direct sum
M, @ My, the tensor product/y @ M>, and the dual//y’ are alsor-unipotent.

(3.2.9) PROPOSITIONLet
00— M —- M, — M3z3—0

be an exact sequence@fmodules .M is w-unipotent if and only if bottd/; and
M3 are w-unipotent.
Proof. Assume thaf/, is w-unipotent. Let{e; } be ar-unipotent basis oy.

Let L3 be anOg)-submoduIe inM3 which is generated by the images {of; }.
ThenLs is a lattice of M3, that is,& NG L3 = Ms, and L3 is stable under the
£

action of Frobenius. Put L3 = L3/nL3 and denote by; the image ofe; in
L3. Take a subséf of {ey, e, ..., e, } such thak; belongs tdr if and only if e;

and(e;,1,...,¢e,) are linearly independent ové)g)/(w). ThenT generated.s

overOgr> by Nakayama’s Lemma and the representation matrix of the Frobenius
with respect to the basisisunipotent. Therefore\/s is w-unipotent. Considering
duals,M; is m-unipotent by (3.2.9). The converse is easy. O

Let A’ be a finite extension aof and letk’ be an extension df in k29 such that
the pair(A’, k') satisfies the condition (2.1.1).

(3.2.10) PROPOSITIONJnder the notation as i3.1.6) if {e;} be ar-unipotent
basis ofp-moduleM over£™, thenl ® e; is am-unipotent basis ofy/ /4 (M).

(3.2.11) REMARK. Ifk is algebraically closed, then the converse is also true.
(Use (3.5.1).)

Let k' be a perfect field ove and putk’ = K (A, k') andE(M' = ﬁ(, Let

f:£M — £ be aK-algebra homomorphism such that the absolute vilgés
preserved and that the Frobeniusxtends t&€(")’. Then, for ap-moduleM over
M, the pull backf*M = M ®.4 M is also ap-module. Moreover)/ is etale
if and only if f*M is so. (See [TN2, (3.2)].)

(3.2.12) PROPOSITIONJNder the situation as above, |ét;} be ar-unipotent
basis ofp-moduleM over£(M. Thenl ® e; is ar-unipotent basis of * M.

(3.2.13) REMARK. We obtain such an extensigf)’ /£(7) as in (3.2.12) by the
corresponding finite unramified extension to afinite separable exteRgioNF, ;..
Assume thak is algebraically closed and the degree of the extenBjgry F, ;. is
a power ofp. Then, the converse of (3.2.12) is also true by (3.5.1).
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(3.2.14) LEMMA. Assume that the Frobenius on £(") satisfies the condition
o(z)/z9 € HD. Let M be ap-V-module ove€ () with respect tar and let{e;}
be a basis of\/. If Ay e is a strictly 7-unipotent, therCy,e € m:—er(ng).

Proof. Note that the condition that(z)/z? € H(") is equivalent to that
p = p(z,0) € HM. Define a linear map): M, () — M,(E) by 4(Q) =
pAc(Q)A~L. Theny is a contraction in the-adic topology and)(M, (Oy)) C
7M,(Oy) for |pla < 1. Sinced, (Aue) € 7M,(OL), we have

Crre = —(1— ) H(0a(Apre)Aple) € T2 M (O5) NED
— 7z M, (O)),
by the relation (3.1.5). |

(3.3) Assume that the Frobeniussatisfies the condition that(z)~1 € H( in
(3.3.1) and (3.3.2).

(3.3.1) LEMMA. LetA € GL, (M) andB € GL,(£") be strictlyz-unipotent. If
amatrixQ € M, (M) satisfies the relatio A = Bo(Q), thenQ is contained
in My (HM).

Proof. We may assume th& belongs toMsX,«(Og)). Assume that there is
a non-negative integer such thatQ (modz") € M., (Ox/(7")[z~1]) but Q
(modn™*1) & Myy, (Ok /(7™ +1)[z~1]). Order the compone® = (g;;) by

451,452y - - - 5 qsry q(s—l)la ces Qe

and letg; is the first component @ such that;; (modn™*1) ¢ Ok /(z"*+1)[z71).
SinceA andB are strictlyr-unipotent, the only terms of positive powenoiodulo
7"+ which appear in the both sides of equation

> gikar; =Y biro(qrj),
k k

are the positive power af in ¢;; (mod="*1) in the left-hand side and the positive
power ofz in o(g;;) (modz"*1). The minimal positive orders af in both sides
are different. Therefore, we have the assertion. O

(3.3.2) LEMMA. Let A € GL,.(£M) and B € GL,(£M) be strictlyr-unipotent.
If amatrix@Q e GL, (€M) satisfies the relatio) A = Bo(Q), thenQ is contained
in GL,(H().

Proof. One knowsR € M, (H(") by (3.3.1) and the rest is to check (@} €
(H(M)*. Hence we have only to check the assertion in the case wherel.

Multiplying a suitable power of, we may assume thél is contained ir()g) and
# 0 (modr). Comparing the valuation of both sides&((x)), @ (modr) must
belong tok by (3.3.1). ThereforeQ is a unit in#£ (1. O
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From now until the end of (3.3) the Frobeniussatisfies the condition that
o(z)/z9 € HD.

For a spacé/ over£(" and for a basige;} of M, define aH("-submodule
Unr e of M by theH(D-module which is generated ly's.

Let M be ar-unipotenty-module (respy-V-module) oveE () with respect
to o and let{e;} be a strictlyr-unipotent basis. Then the Frobenipgresp. the
connectiorV) preservesd/, e by (3.2.14).Uxs e is independent of the choice of a
basis{e;} by (3.3.2) and we use the notatibi, for it.

(3.3.3) DEFINITION. For ar-unipotentp-module (resp. &-V-module M), we
call U, a lattice overH (") with respect ta.

By (3.3.1) we have

(3.3.4) PROPOSITIONFor a morphismy: My — M> of m-unipotentp-modules
(resp.p-V-module}, there exists a uniquei(D-linear homomorphismy: U, —

Uwm, such thatp; commutes with the Frobeniys (resp the connectiorV) and

that the scalar extensiad.+, ® ny coincides withy.

(3.3.5) PROPOSITIONLet
0— My — My — M3z — 0,

be an exact sequence ofunipotentp-modules(resp.¢-V-module$. Then the
induced sequend®.3.4)of #(-modules

0—=Uny, = Unm, = Upy = 0,

is exact

Proof. Let e, ep,...,e, (resp fi, fo,..., fs) be a strictlyr-unipotent basis
of M, (resp. a system of elements df, such that the image /3 is a strictly
m-unipotent basis). Then one can easily check thatey, ..., e, f1, f2,..., fs)

(10" ﬂ91 ) is am-unipotent basis o/, for a suitable non-negative integer By

the argument as in (3.3.2) there is a matgx= (10 ]*;) in GLs,,(S) such that
(e1,€2,...,ep, " f1, " fo, ..., 7" f5)Q IS a strictlyr-unipotent basis oM. 0O

(3.4) LetF' be a discrete valuation field of characterigtiwith a perfect residue

class fieldk. Fix a uniformizerz of F'. ThenF = F, ;, andF is the residue class

field of £ = Sﬂ( by the natural projection. By [Fo2, A.1.2.] [TN2, Sect. 4] there

are canonical equivalences of categories
Dy:Rep, (Gr) = MBS,
DI:Rep(Gr) = M®F:.

The functors depend on the choice of the Frobeaiuzut the structure of connec-

tions does not rely on the choice of the FrobenriusVe will now explain why the
structure of connection does not rely on the choice of Frobenius.

(3.4.1)
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Fix a Frobeniugr on £. Then the embedding C tz is determined as in (2.4).
Let £“" be the maximal unramified extension®&in £ and let&*" be thep-adic
completion of£*". Thend, extends uniquely ofi*" and commutes with the action
of Gr on&"" since the extension @f, on £" is continuous by (2.4.1). i1 is a
Frobenius or€, theno; can also extend ofi*™ and commutes with the action of
Gron gun, Moreover, the relation that

0z(01(a)) = p(z, 01)01(0z(a)),

holds for anya € £U.
Let p: Gr — GL,(A) be a continuous representation. By [Fo02,1.2.4.] there
exists a matrixX € GL,.(£“™) such that

p(r) = X~ 17(X),

for all 7 € Gr. For a Frobeniusr; on &, put A; = Xo1(X)™t andC =
—§(X)X 1. We have

(3.4.2) LEMMA. A1 (resp.C) isincluded inGL, (€) (resp M,.(£)) and the relation
0z (A1) + CAy = p(z,01) A101(0),

holds.
Let M4, c be ap-V-module ovel€ with respect tar; which corresponds to
the pairs4; andC. Sinced; = Xo1(X) ™1, My, c is etale.

(3.4.3) PROPOSITIONUNder the equivalence

5,0’1’

Dg,:Rep, (Gr) - MBS

of categories, there is an isomorphidng, (p) = My, c inM @Zﬁ‘l.
Proof. Let V, (resp.{v;}) be a corresponding representation (resp. a basis of

V,). Define arg“"-linear map
g\un ® Vp N g\un ®MA1,Ca
A £

by (v1,v2,...,v,) = (e1,ez,...,e,)X, where{e;} is the canonical basis of
M, c. Then the map above is an isomorphism which is equivariant to the action
of Galois groupG  and Frobenius. Therefore ,[{V,) = M4, ¢ by definition.O

In the case of-V-modules oveE™, we have only to replacé“” into

(ER)".

ET =lim
—
E
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Here E runs through all finite separable extensionstFoind (5;)“ is the field
of composition ofS,fj and thep-adic completion??“" of the maximal unramified
extension ofK in €. Then the same assertions (3.4.2) and (3.4.3) hold for the
functor D'.

We point out that to find( for a representatiol is independent of the choice of
the Frobenius. Hence, the connection is independent of the choice of the Frobenius.

(3.4.4) COROLLARY.Let A € GL,(&) (resp GL,(£T) andC € M, () (resp.
M,.(M)) which satisfy the relatior§3.1.5)and the condition that is etale for
a Frobeniuss. Then, for any Frobenius; (resp.for any Frobeniusr; such that
o1(z) € €M), there existsA; € GL,.(€) (resp. GL.(£T)) such thatd; is etale and

(595(141) +CAL = /L(:E,Ul)Alal(C).

Moreover, ifA is w-unipotent, then we can choode which isw-unipotent

Proof. The former part follows from (3.4.3). IfA is w-unipotent, then we can
choose a matrixX € GL,(Og,,) (resp.X € GL,(Og)) of Ao(X) = X such
thatX is w-unipotent by the proof of [F02, 1.2.4.] [TNZ2, (4.2)]. Therefore, we have
A1 = Xo1(X)™Lis m-unipotent. |

(3.4.5) COROLLARY.Let M be ay-V-module of rank- over £ with a z-
unipotent basige;}. Then, there is a matrix) € GL,(S) such thateQ is -
unipotent and the matri&’s; ep belongs tmx*er(O,(,P).

Proof. The assertion follows (3.2.3), (3.2.14) and (3.4.4). O

We mention the extension of coefficients of representations. We do not treat it in
[TN2]. Let A’ be a finite extension of and letk’ be a separable extensionioin

k39 such that the paifA’, k') satisfies the condition (2.1.1). PEY = K (A', k'),

F' = F,p ande® = M There is a natural m-injection A’ @, £ — &,
whereGp+ acts naturally on the left-hand side and via the natural Gap— Gp

on the right-hand side. For a Frobenius®h, puto’ = o/(A'/A) asin (3.1.6). We
have

(3.4.6) PROPOSITIONT he following diagram is commutative

&P

Rep™ (G r) M&S
AN® LAT/A

T

0',

(3.5) Keep the notations as in (3.4).
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(3.5.1) THEOREM Assume that the field is algebraically closed. LeY be an
objectinRep, (Gr) (resp.@i”(Gp)) and denote by the p-V-module over
£ (resp.£M) which corresponds t& through the equivalenc@®.4.1) ThenM is
m-unipotent if and only if the image 6fr — GL(V') is a prop group.

Proof.Assume thal/ is 7-unipotent. Choose&-unipotent basige; }. Let X €
GL;(0g,,) (resp.X € GL;(Og)) be a solution of the equatiofiyseo(X) = X
such thatX is w-unipotent. Then the representatigns given by

7€ Gp— X 7(X) € GL,(A). (3.5.2)
The image of the map (3.5.2) is included in the prgroup
1+7A A

A 1+7A

(multiplicative). By the continuity the image of pro-finite groafy- is closed, so
that the image is pro-

Assume that the image 6fr — GL(V') is proo. LetT be anO,-lattice of V.
Since the image offr — GL(V) is prop andT'/=T is a finitep-group, there is

a basisvy, v, ..., v, of T such thatr € G acts onT by the matrix(é ’i)

modulor with respect to the bas{s; }. Then we can chooseraunipotent matrix
X in GLT(OQM) (resp. GL(OgT)) as in (3.4) which is determined by the repre-

sentation’”. Hence, D (V) (resp.D}(V)) is -unipotent. O

For a positive integeNV, denote by[N]:EéT) — S?ST) the endomorphism which
is defined by — y”.

(3.5.3) COROLLARY Assume that is algebraically closed. Led be ap-V-

module oveﬁg). Then, there is a positive integ@ such thatp /N and that the
pull back[N]* M is m-unipotent ovee,.

Proof. Let V' be the corresponding representationidf SinceA is a finite
extension 0Q, andV is a continuous representation, there is a finite Galois and
tamely ramified extensio” of degreeN over F' such thatV is totally wild
ramified as a representation@f:. O

4. Criterion of connection with coefficients of rational functions

In this section we give a criterion for a connection to be defined over a field of
rational functions.

(4.1) Let2 be a complete field of characteristic O under a non-Archimedean absolute
value| |: 2 — R0 and denote by, R, H, andL the ringS; o, Rs.0, Hz0, and
Ly, respectively.
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(4.1.1) DEFINITION. LetM be aV-module of rank- overR.

(1) We say that a basig; } of M is V-rational if and only if the associated dif-
ferential operatoL s e (2.3) belongs td/, (2(z)[d,]). We sayM has a connection
with rational coefficients if and only if there existSarational basige;} of M.

(2) We say that a basis of M is V-formally rational if and only if the associated
differential operatol. s ¢ belongs taV/,.(L[d,]). We sayM has a connection with
formally rational coefficients if and only if there exist&aformally rational basis
{ei} of M.

Now we give a criterion of connection with rational coefficients.

(4.1.2) LEMMA. Let L be a differential operator inM, (L[d.]). If there is a
matrix P € GL,(£) such thatP~1LP is contained inM, (#[6,]), thenP~LP is
contained inM,.(2(z)[dz]).

Proof.SinceP~1L P belongs to both\V,. (L[6,]) and M, (H][d,]), the assertion
follows from (2.2.2). O

(4.2) We apply (4.1.2) tar-unipotentp-V-modules. The notations are as in Sec-
tion 3.

(4.2.1) PROPOSITIONAssume that the Frobeniussatisfies the condition that
o(z)/z? € HD. Let M be ar-unipotente-V-module of rank- over £ with
respecttar and let{e; } be ar-unipotent basis ai/. If {e; } is V-formally rational,
then there is a matrix) € GL,(S) such thatQ is w-unipotent and thaeq is a
strictly w-unipotent andv-rational basis of)M. In particular, if {e;} is a strictly
w-unipotent andv-formally rational basis, thefe; } is V-rational.

Proof. By (3.2.3) there is a matrig) € GL,(S) such thatQ is w-unipotent and
eq is a strictly r-unipotent basis. By (3.2.14J,1.e0 = Q 1LQ is contained in
M, (HM[s,]). Therefore, the assertion follows (4.1.2). O

Now fix a Frobeniugr on (") arbitrarily.

(4.2.2) COROLLARY.Let M be anr-unipotenty-V-module of rank- over £(7)
with respect tar and let{e;} be ar-unipotent basis oM. If {e;} is V-formally
rational, then there is a matrig) € GL,(S) such thatQ is w-unipotent and that
e() is ar-unipotent andv-rational basis ofM .

Proof. Choose a Frobenius such thaw(z)/z? € H(D. By (3.4.4) there is a
matrix 4; € GL,(£M) such that

0z(A1) + CrreAr = p(x,01)A101(Chre)

andA; is m-unipotent. Define a Frobenius structyreon M by p(e) = eA;. Then
the triple (M, ¢1, V) satisfies the assumption of (4.2.1). O
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5. Direct image ofy-V-modules

In this section we define direct images@fV-modules and show some properties
of direct images.

(5.1) Fix a pair(A, k) as in (2.1.1). Denote byéﬂ (resp.w;) one of the fields
Er,x and SIT’K (resp.wgmm). The residue class field (ﬂg) is F, = Fpp. Let
[ Fy — Fy, = F, ;» be afinite separable extensionAig?. Then the unique finite
unramified extension ove}g@ in £ (2.4), which corresponds 8, is isomorphic
to EZST) = 515?(’ for some elementand forK’ = K (A, k'). We also denote by the

incIusionEéT) C SZST). The Frobenius (resp.d,) onggr) extends uniquely oﬁZST).

We have anisomorphismy, = w1 = wy ® E?ST) bydy/y — dz/z@x/6(x).
Y x

Let M be ayp-module (resp. &/-module, resp. ap»-V-module) overé‘lST).
Denote byM, the £ -module M via the inclusionf. Define a Frobeniug on
M, by ¢ itself (resp. a connectioW: M, — w, ®eh M, by V(m) = dz/z ®
(z/0y(2))V(y)(m), whereV (m) = dy/y ® V(d,)(m)). One can easily see that,
for ap-V-module M overS(T), the diagram

B My

M
M

Wy ®5£T) M,

is commutative.

(5.1.1) PROPOSITIONFor a p-moduleM over (", the pair (M,, ¢) is a ¢-

module oveﬁg).

Proof. To prove that the induced mag' (M,) — M, by ¢ is bijective, it is
enough to show that the natural map(M,) — o*M is bijective Herea*M
(resp.c* M) is the scalar extension @ff,. (resp.M) by o onS (resp 5 ) One
can easily see that the lemma below implies the assertion.

(5.1.2) LEMMA. The O.”-homomorphisnid o © 00 “(0f)a) — o is

bijective. Here we denote tﬁ{l)g )« the naturalog) moduIeO( )

Proof. Denote byo, the gth power map. Consider the perfectlonIQf andF,
and dimensions over,, o (F,), — F), isinjective, hence bijective. The assertlon
holds by Nakayama'’s Lemma. O
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We know that thep-module M over £ is etale if and only if there is a sub
OgT)-moduIeL of M such thatp(L) is included inL and generateb over(’)g).

(5.1.3) PROPOSITIONIf M is an etalep-moduleM on &, then(M,, p) is
also etale.
Proof. Denote byL, the OgD)-moduIeL via the inclusionf. Let L be a sub

(’)gr)-module of M such that the induced map @ y: o*L — L is isomorphic. It
is easy that we have only to show the natural m&p, — o* L is bijective, where

o* L, (resp.c*L) is the scalar extension @f,, (resp.L) by o on (’)g? (resp.(’)g?).
This follows from (5.1.2). |

(5.1.4) REMARK. The converse of (5.1.3) is also true siffés naturally embed-
ded into the etale-modulef*M,. (See (5.1.8).)

By (5.1.1) we define direct image functors
f*mgé‘r)ﬂ — M&g),a,

MBV. — MY
f*—S§T>,a =gt 5

for the morphismy by f.M = (M,, ¢, (V)) as above. If we restrict, to the etale
object, we get
M (}_?ZST):U - M®P éziT)yga

f*M @Vet M @V(et

SZST),J —SmT),a’
by (5.1.3).
We denote by the natural functoM ®¢1 — M ®¢. Sincef, = £, @+ EJ, we
have ’

(5.1.5) PROPOSITIONThe functorf, commutes withy.

Let g: F, — F, be a finite separable extension#'® and denote byl" the
finite unramified extension i with the residue class fielfl,. By our definition

we have
(5.1.6) PROPOSITION(gf)« = f«Gx-

Denote byC- one of the categoridd & (1), M <I>§(T), M®. ), andM <I>§($§ for

?=uz,y.

(5.1.7) PROPOSITIONL.et M be an object irC,. Then we have

fo(MY) = (fLM)".
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Proof. Define a map
fe(MY) ®f*M - 5:5:1-)7
gM
by m1 ® ma — trac%y)/gg)((ml,mz)cy). Here we denote byZéT) the trivial
object inC, and( , )¢, is the non-degenerate pairing ai" ®.n M into EJ.
Yy

SinceS?ST)/&ST) is a finite separable extension and by (5.1.2), the above pairing is
a morphism irC, and non-degenerate. O

For an objectM of Cy (resp.C;) the natural mapf*f,.M — M (resp.M —
f«[*M), which is defined by, ® m +— am (resp.m — 1® m), is a morphism of
Cy (resp.C;). By the standard arguments we have

(5.1.8) PROPOSITIONThe functorsf* and f, are adjoint. In other words, there
is a natural isomorphism

Hom, (f* M, Mz) = Hon, (My, f.M>).
By definition we have

(5.1.9) PROPOSITIONThe functorsf* and f. commute with the functar ,
(3.1.6).

(5.2) We describe the relation between the functor of directimages and the functor
D, (resp. O).

(5.2.1) THEOREMLetV be an objectirRep, (Gr,) (resp.@ﬂi”)(pr)) and
put M = D, (V) (resp.M = D} (V)). Then we have

Do(fV) = fu(M)  (respDL(f.V) = f.(M)).

Here f.V is the induced representatiof{G , | ®niGr,] V of V.

Proof. SinceM @' is a full subcategory oM &', [TN1, (4.2.1)], it is suffi-
cient to show the case of DSinceM = D,(V), there is a canonical pairing

() MY RV — &,
A

which is &,-linear, Frobenius- and-r,-equivariant and non-degenerate. Here
Frobenius acts by,,;v ® id on the left-hand side andon the right-hand side, and
7 € G, acts id® 7 on the left-hand side. We define a pairing

()i f(MY) Q) [V — €,
A

https://doi.org/10.1023/A:1000243409360 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000243409360

THE LOCAL INDEX AND THE SWAN CONDUCTOR 265

by (m,g ® v), = g(m,v), form € f,(MY) = MY andforg@v € f,V =
AGFR,] ®AlGr,] V. Since (m,gh ® h™ 1), = gh(m,hilv)y = g(m,v), for
h € GE,, (, ). is well-defined. One can easily see that the paifing, is &,-
linear, Frobenius- an@ ;, -equivariant, and non-degenerate. Therefore, we obtain

Dy (feV) = (fu(MY))Y = f.(M),
by (5.1.7).

(5.3) PutF = F,;, and€™M = &) In the rest of this section we study direct
images ofp-V-modules for a morphisnfi: £ — £ which corresponds to a
finite separable extensigh ' — F".

First we discuss the unramified case. In this case also a uniformizer of
F’" and, if we denote by’ the residue class field df’ and putK’ = K (A, k).

ThenF' = F, 1, EM" is isomorphic toS(T}(, andf is the natural injection. In this

T

situation, if we denote by, . .., uy. ) @ basis oV (k') overW (k), the subfield
K'(z) (resp.Ly k) Of ES}(, is an extension of degrék': k] over the subfield( ()
(resp.L, ) of Sﬁ( with a basis{u;}.

(5.3.1) PROPOSITIONUNder the above situation, |/ be a V-module over
EQ}(,. If {e; } is aV-rational basis(resp.a V-formally rational basi$, then{ue; }
is a V-rational basis(resp.a V-formally rational basi$ of f. M.

(5.4) From now we see the case of a totally ramified extenBigi#’. Hence the
field of coefficients of differential structures is alwa¥s and we omitK from
the notation. First we forget the extensiBhover F' and discuss in the following
situation. Letf:£(M — £ = S;T}( be a morphism withf(z) = a(y) =
Yo gany™ € Sy (aqg € O;) for some positive integet. One can easily see that
the fieldZ, includes the field,, and there is a relation

byt 4 by =0 (b €S, forall i),

such thatb,|¢ = 1 andby = —a;lx + (higher terms orx). The above equation
modulor is an Eisenstein polynomial, so that the extension of residue class fields
is totally ramified of degreé or an inseparable extension.

(5.4.1) LEMMA Under the above situatiort;, is a finite extension of degree
overL,.

Proof.Let M = L, + Ly + - + L,y 1in L£,. By the above relation foy
M is a domain. SinceM is finite over the fieldZ,, M is a field. One can easily
see thatS, is contained inM. Hence, we havé, = M. ]

(5.4.2) REMARK. In generalf, is not a Galois extension over, evenif Fy, is a
Galois extension ovef,. For examples, i,/ F, is an extension witiy )P —
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y~1 = 271, thenL, is not a Galois extension ovel,. Putu, = yr(y~1) for

T € Gal(F,/F,). Thenu? — y? 1y, = 1 — yP~ L1 If u, is contained inC,, u, is
contained inS, x by the normality. One can easily see that we find only 1 which
is a solution of the equatios? — y? 1u, = 1 —yP 1foru, in S, k.

(5.4.3) PROPOSITIONUNder the notation as above, |18 be aV-module over
S?ST). If {e;} is a V-formally rational basis, thedy’e;} is a V-formally rational
basis off, M.

Proof.Let L, be aL,-subspace o#/ which is generated by;, thenL,, is stable
under the connectiol. Denote byL, the £,-spaceL, as anl,-module . Then
{yle;} generated., over L, by (5.3.2) ance) Qr, Ly = f«M. Sincez/d,(x)
is contained inC,, (2.2.3),V(Ly) C wg, ®¢, Lg.

(5.4.4) REMARK. In the case that the extensi®if F' is an inseparable extension,
we can define the direct image under the assumptio@(gnand (5.4.1-3) also
make sense.

(5.5) Assume that the extensidrl/F is totally tamely ramified of degre&
(p /N). In this case we can choose a uniformizey af F’ with z = uy” for some
u € k. (If k is algebraically closed, then we can chogseich that: = 1.) If we

denote byu a lifting of u in O, there is an element € Og) which satisfies the
equationz = ay™ since0g> is henselian. Hence&("' (resp.F”) is canonically
isomorphic toé‘lgﬂ (resp.F,) and f is given byz — ay" (a(y) = ay" in the
notation of (5.4)). Moreover, the subfieki(y) in £ is an extension of degree
N over the subfield< (z) in £1 with a basis 1y, ...,V 1.

(5.5.1) PROPOSITIONLet M be aV-module ove€". If {¢;} is a V-rational
basis(resp.a V-formally rational basi$, then{y’e;} is a V-rational basis(resp.
a V-formally rational basi¥ of f,. M.

(5.6) We consider an Artin—Schreier extensidii F' of degree with a totally wild
ramification. Then?” = F(z) with

2P — 2z = uz~" + (a polynomial of degre& — 1 in k[z~1]),

for someu € £* and a positive integeN (p /N). SinceOg) is henselian, there is
alifting z € 09 which satisfies the relation

2P — z =z~ + (a polynomial of degre&’ — 1 in Ox[z~Y]),

where the right-hand side of the equation is a lifting of the equation above into
Ox[z~1]. Denote byv (resp.?) the unique element ik with v» = w (resp. a
lifting of v in Ok). Since the valuation of is —N/p in F’ (ord(z) = 1), there
is an elemeny in F’ such thayyN = v=1z~1 andz = y? (mody”*!) by an easy
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computation. So there is an elemenin 09,’ which satisfies the conditions that
yN =51zl and that = y» (mod(y*+1, r)). Hence F' = F,, £ = £V and
fis given byz — a(y) = yPw(y) for w(y) = 1+ (NoP~ 1)~ LyNe-D L Ok [y?]
(mod(y™®=D+1, 1)),

(5.6.1) LEMMA. Under the notation as above, |81 be ayp-module over&ST)
with a r-unipotent basige;}. Then,ey, zeq, ..., 2P er, ez, zea, ..., 2P te, is a
m-unipotent basis of .M.

Proof PutAyse = (a;;) ands(z) = az~" + ---. Then,

j-1
p(2fej) = 2PPe; + 3 PFajje;
i=1

j—1
= (z+ s(x))kej + Z z”kaijei

i=1
= zFe; + (lower order termp (modr).

(5.6.2) LEMMA. Under the notation as ii(5.6), let M be aV-module ovet&ST)
with a V-formally rational basis{e;}. Then the basigi, zes, ..., 2" te, is a
V-formally rational basis off. M.

Proof. Since 1z,...,2P 1 is a basis ofC, x overL, r, the assertion follows
(5.4.1) and (5.4.3). O

From (5.6.1), (5.6.2), (4.2.2) and (4.2.1) we have

(5.6.3) PROPOSITIONUNder the notation as iif5.6), let M be ay-V-module

of rankr over&ST) with a w-unipotent andv-formally rational basis{e;}. Then
there is a matrix)) € GL,,(S;) such that(z*e)(Q is aw-unipotent andv-rational
basis off. M, wherez*eis the basis off. M as in(5.6.1).In particular, assume
furthermore that the Frobeniussatisfies the condition that(z) /27 € 1" then
there is a matrixQ € GL,,(S;) such that(z*e)( is a strictly 7-unipotent and

V-rational basis off, M.

6. Calculation of the difference of local indices for direct images

In this section we study the behavior of local indices for direct images. The theory
of the local index was studied by Adolphson, Dwork, Robba and many people.
Applying their theory to our situation, we calculate the difference of local indices
for direct images of differential operators.

(6.1) Following the notation of [Ro1] [R02], fdR-vector space& and F and for
Q-homomorphisni.: E — F, we sayL has an index if and only if both the kernel
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and the cokernel af. are finite dimensiondl-vector spaces. If. has an index, we
definetheindexq (L, E, F) (xa(L, E) if E = F) by dimg ker L —dimg cokerL.

(6.2) Let2 be a complete field of characteristic 0 under a non-Archimedean absolute
value| |. LetT" be a subgroup of the group of continuous automorphisfa ahd
denote byl theT-invariant subfield of2. ThenQ! is complete. Define an action

of ' onR; 0 by 7(3° anz™) = > 7(ap)z” for 7 € T'. The action of’ commutes

with the ring structures and the derivatidnand preserves the subrings o and

’HLQ. Thel-invariant subalgebrR, (, (resp.Aj, . resp.(’H;,Q)F) ISR, or (resp.

T

Az ars resp.H; or)- Define an action oiR, )" of T by 7(*(ag,...,a,)) =
Y(r(a1),...,7(ay)). Denote byR one of(A; )", (HLQ)’" and(R;.q)" and byR"
the correspondingA, or)", (’Hl qor)" or (R, or)", respectively.

(6.2.1) LEMMA. Let L be a first order differential operator inVZ,.(R"[6,]).

If the dimension oker(L, R") is finite over(, then the natural mag ®qr
ker(L, (R")") — ken(L, R") of Q-vector spaces is an isomorphism and the natural
map$ ®q,r cokelL, (R")") — coker L, R") of Q-vector spaces is an injection.
In particular, if L has an index irR", thenL has an index ir{RF)’" and we have

Xar (L, (R")") > xa(L, R").

Proof. Let uy = *(ug1,...,ukr,) (1 < k < s) be a basis of ki, R") over
Q. After an elementary modification, we may assume that there is a sequence of
pairs(k,l1), (k2,12),. .., (ks,ls) of integers such thd;, ;) # (k;,1;) fori # j
and that thée;-th coefficient ofu; ;, is 1 for all < and that the;-th coefficient of
u; k; 1S O for all j # i. Sincer(u;) is also a solution of the differential operatby
7(u;) is expressed by a linear sumf over2. Comparing coefficients, we have
7(u;) = u; forall 7 € T' by the assumption, henaeg € ker(L, (R")") for all i. We
have shown the surjectivity of the map between kernels. The injectivity is easy.

Assume that for an elemeate (R")” there is an elemet= (by,...,b,) €
R" such thatw = L(b). We may assume that tigth coefficient ofty, is O for all
1 < i < s. We know thatr(b) — b is a linear sum ofi1, . .., us over(2 for each
7 € I'. Comparing coefficients, we hav¢b) — b = O for all 7 € T". Hencep is
contained in(R")" and the map cokéf,, (R")") — cokelL, R") is an injection.
Let v1,...,v; be a system of representation of cader(R')"). Assume that,
renumbering if we needyjvy + - + apvy = 0 (v € Q) is a minimal relation
of v; in cokelL, R"). Then, one ofy;/; is not contained if2". SinceQ! is the
[-invariant field of(, there is a relation of length less th&nHence, we have
proven the assertion. O

(6.2.2) LEMMA. Under the assumption ¢6.2.1)and assume furthermore thEt
is a finite group. If a differential operatok, € M, (R'[4,]) has an index ink",
thenL has an index ifR")" and we have

Xar (L, (R")") = xa(L, R").
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Proof.SinceH (T, GL;(Q2*)) = {1} for any positive integetr[Sel, X.1.Prop. 3.],
we can choose a system, vo, . .., v; Of elements inR" such that its image is a
basis of cokeiL, (R")") and thatr (v;) — v; is contained in the image df for all

7 € I and for alli. So the image of}_,cr 7(v1),..., > .cr 7(v1)} iS @ basis of
coke(L, R"). On the other hand, . 7(v;) is contained i RY)" for eachi. The
assertion follows from (6.2.1). O

(6.2.3) REMARK. If Qg is a complete subfield d? such thafQ: Q] < oo, then
the same assertion of (6.2.2) also holds. Pick a finite Galois extefigian (g
such thatQ is included inQ21. Then, apply (6.2.2) to both extensioftg/2 and
Q1/Qo.

(6.3) Keep the notation in (6.2) and assume furthernibre algebraically closed
and complete under a valuation which is an extension of th&@ piWe recall the

fundamental results of indices in [Ro1] [Ro2] and restate them in our context. For
anelement = > apz™ INn Ry o, put

ord, (a) = min{n| |an| = |alc},
when the minimum exists | (¢ is defined in (2.2).)

(6.3.1) LEMMA. Lets # 0 be an element ofl, or. Thens has an index ind,, or
if and only if there is a unit. of A, or such thatsu € Q" [z]. If s has an index in
A, qr, ord; (s) can be defined and we have

Xor (s, Az or) = —ord; (s).

In particular, if Q' is a complete discrete valuation field under the absolute value
| |, then, fors € A, or, s has an index ind, or if and only if s is contained in
S:v,QF [p_l]'

Proof. For s € A, qor, if there is a unitu of A, or such thatsu € Q''[z], then
there exists only finitely many zero points ofn B(0,17) = {z € Q| |z| < 1}.
By the theory of Newton polygon of formal power series [DGS, 11.2.],,qrg is
defined and ord(su) = ord; (s). We may assume thatis a monic polynomial
such that de@) = ord; (s) by the definition ofQ". In the case thal = {1},

the assertion holds by [Ro2,3.4.]. Sinfg z, . . ., 2% ()1} is a representation
system of cokes, A, ), s has an index i, or and

Xqr (Sv Am,QF) = XQ(Sv AI,Q) = _Ordz_ (3)7

by (6.2.1). Assume thathas an index it4,, or. Then the intersection 61" [z] and

s Ay or contains nonzero elements. Lset (u € OEI) QF) be a nonzero polynomial

of minimal degree. By the minimality of degree has no zero iB(0, 1) andu
has no minus slopes by [DGS, I1.Thm.2.1]. Hencés a unit. O
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(6.3.2) LEMMA. For an element # 0 of H;,QF’ s has an index im;,m and we
have

Yor (s, 1] 1) = ord; (s).

Proof. We may assume tht|c = 1. Puta = ord, (s). Definepry: ’H; or —
HT or by pra(32, % anz™) = 32,2, ana™ and putQfz=1P* = ' @ ... @

T,

QP z2+1, Consider the following diagram

rHT - HT

z,0F z,QF

s{ {praos

rr,.—1 t t
Q [ZE ]>a —_— Hm’ﬂp W fL'aHm’Qp — 0.

0

To show the assertion, we have only to prove the right vertical arrow is bijective. The
injectivity can be easily shown. Now we will show the surjectivity. Pet 3 ;2

and choose 0< v < 1 such thats;| < y*~*. By definition of «, there is an
elementu,, of degreen — ain Ogr [z~ such thapr,(su,) = =" + (lower term

and that the absolute value of tita coefficient ofpr, (su, ) is less than or equal

to v~ for all n < «. For any elemenk. b;z* € xO‘HLQF such that there is a

0 < d < 1 with |b;| < 67 for all 4, definec,, (n < a) by b, if n = « and by

the nth coefficient ofy b;z* — prq (s Y772 ¢;u;) for n < a. One can easily see

that|c, | < max{~, §}*~" for all n. Thereforey" ¢, u, is convergent irH; or and
pra(sY caun) = > byz™. Thereforepr, o s is surjective. O

(6.3.3) REMARK. The number of ord(s) in (6.3.1) (resp. (6.3.2)) is the number
of zeros ofs in B(0,17) (resp.B(c0,17) = {z € Q| [¢| > 1} U {o0}).

Let L be a differential operator i, (R, or[d.]). We sayL has an index in
(Agor)” (resp.(HLQF)’") if and only if there is an element € Q'[z] (resp.
QF[z71)) such thatsL € M, (A, or[ds]) (resp.Mr(H;,QF [0:])) and thatsL has
an index. We define an index by

xar (Lv (A:v,QF)T) = Xar (SLv (A:v,QF)T) — Xaqr (37 (A:v,QF)T)a
(resp xar (L, (] 00)") = xar (5T (1] o)) = xar (5, (B o)),

The notion and the definition of index are independent of the choiedp{6.3.1)
(resp. (6.3.2)).

From [Ro2, 3.11.] we have
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(6.3.4) LEMMA. If a differential operator. € M, (2 (x)[6,]) has indices in two
of (A4, or)", (’H; or)" and(R, or)", thenL has an index in the third and we have

Xor (Ls (Ry0r)") = Xar (Ly (Ag.or)") + Xar (L, (H] or)7)-

(6.3.5) DEFINITION. We say a differential operatdr € M, (R, or[d.]) has
indices onQ" if and only if L has indices in all three df4, or)", (HLQF)T and
(Reor)".

From [Ro2, 3.14.] we have the following two lemmas.

(6.3.6) LEMMA. Let L and L be differential operators ii/,. (R, or[0.]) with a
matrixQ in GL, (R, or) such thatl/ = Q71LQ.

(1) L has an index iR, or)" if and only if L' has an index iR, or)". If SO,
we have

xXor (L', (R ar)") = xar (L, (Ryor)")-
(2) Assume that) is contained inGL, (2" (z) ®qr(z] Az,or)- Then,L has an
index in(A, or)" if and only if ' has an index irf{A, or)". If so, we have
XQF(L,a (Am,QF)T) = xaor (L, (Ax,QF)T)'

(3) Assume thaf) is contained inGL,. (Q" (x) Rary—1 ’H;’QF). Then,L has an
index in(?—[; or)" ifand only if ' has an index ir(’}-ll qor)"- If so, we have

xXqr (Lla (H;,QF)T) = Xar (La (HI-’QF)T)'

(6.3.7) LEMMA. Let L be a differential operator inVZ, (Q" (z)[6,]) and letL’ be
a differential operator inM,.(Q" (z) ®qr(z) Az,orldz]). Assume that there exists a

matrix @ in GL, (R, or) such thatl’ = Q*LQ. L has indices o' if and only
if L' has indices both iR, or and in A, gr. If so, the formulas

xXar (L,’ (,R’z',QF)T) = Xar (La (,R’z',QF)T)a
Xqr (Lla (‘A‘I,QF)T) = Xqr (La (Am,QF)r)a
hold. The assertion is also valid if we repladento 7.

(6.3.8) REMARK. (1) By [Ch, Cor.3.3]9 is decomposed inte®@das,,Q 4 for
a diagonal matridxQgiag € M,(Z), Qyu € GLT(’H;,QF) and@4 € GL(A, gr).
(Consider the Galois action defined in (6.2).)

(2) In Section 8 we use (6.3.7) whénhbelongs to GL(8;7K) for a complete
discrete valuation field<. In this case is decomposed int)4Q, such that
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Qu € 1+ 727 IM, (0], ) andQ. € GL,(L, k). We can prove (6.3.7) by the
same method of [Ro2, 3. 11] using this type of decomposition.

(6.4) LetK be a discrete valuation field of mixed characteri@ig) with a perfect
residue class field and denote E{V"g the completion of an algebraically closure
of K under the valuation |. Let I' be a subgroup of the group of continuous
automorphisms o9 over K and putk (T') = (K29)! theT-invariant subfield
of K29, Assume that(y) = > oo any” isanelementits), x for apositive integer

d and thatay € Oj. Then theK-algebra homomorphisift R k(1) = Ry k(1)
(resp. fr Ay k() — Ay, k() Which is defined byr — a(y) is injective and
preserves the Gauss nofmy;.

(6.4.1) LEMMA. Via the injectionf as above, we have

(D) Ay k) = Aprr) @ YAz k@) @ - © ¥ A, k)
(2) Ry, k) = Rax(r) ®YRe, k) ® -+ @ ydflnx,f((r)-
Proof. (1) Consider the extensioH (T')[[z]] — K(I')[[y]] (z — a(y)). If
0+ s1y + -+ + sq—1y?~ 1 = 0 for somes; € A, k), then we havey = s1 =
= sq4-1 = 0. Sothe map from the right-hand side of (1) intg (1) is injective.

Every element = 3 tny € A, g (r) is expressed byo + s1y + - + sq_1y?t
for somes; = 3" s; ,2" € K(F)[[ ]] By the calculation of valuatlon, we have

|sin| < max{|ty,| |m < nd+ i},

foralln > O inductively. Since € A, k1), s; Is contained ind,, x ry for all i.

(2) If so+s1y+- - -+s4—1y?* = Oforsomes; € R, i, thenwe have; = 0
foralli. Indeed, if one of; is not contained i, x (1), then, considering the lowest
nagative term of alk; for x whose absolute value is largest among all absulute
values of coefficients of negative power termsxpfwe have a contradiction. So
s; is contained in4, k) and we haves; = 0O for all ¢ by (1). Therefore, the
map from the right-hand side of (2) in®®, x (r is injective. For any element

t=>tyy" € ’H;,K(F), there ares; = ) 5;,2" € ’H;,K(F) such that

t=so+ s+ +sq 1y’ + (an element ofS, sy [p~Y).

In fact, we construct; inductively on the power of;. Sincet is contained in
H;,K(F), eachs; can be defined i, k() and the rest term is convergent in
Sm,K(F)[pfl]. Of course, we use the property th&Y(T") is complete. By our
construction of;, we have

|sin| < max{|ty,| |m < nd+ i},

for all n < 0. (s;,0 = 0 fori # 0). Hence,s; is contained irﬂ-[; K(r) SO that the
assertion (2) holds by (1). O
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Let L, be a differential operator i/, (R, x[dy]). Define the direct imagé, =
f«Ly € M, (R4 k[05]) by the induced endomorphism through the isomorphism
(Ry. k)" = (Ry,k)¥ asR,,x-modules in (6.4.1).

(6.4.2) THEOREMUnder the notation as above, we have

(1) there is an element, € K|y such thats, L, € M, (A, k[d,]) if and only if
there is an element, € K[z] such thats, L, € My, (Aqy k[0z])-

(2) Ly hasanindexifA, x(r))" (resp(Ry x(r))") if and only if L, has an index
in (Ag k@)™ (resp.(Ry, k() ?"). If so, we have

X () (L, (AI,K(F))dT) = Xk(r) Ly, (Ay k1)"),
XK(T) (Lg, (Rm,K(F))dr) = XK(I) (Lya (Ry,K(F))T)-

Proof.Lets, be an elementii [y] suchthak, L, is contained inV/,. (A, x[d,]).
By (5.4.1) there is an elemen} € K|z] such thats,(a(y))L, € M, (Ay k[dy]).
(For example, we can put, = detcy,K/ﬁz,K(sy) x (some elementirs; g)). By
(6.4.1),s,L, € M,(Az k[0:]). The converse of (1) is easy. To prove (2), consider
the following diagram

(Ap )™ —tele (Ap )™
(6.4.2) (6.4.)
(Ay k)" (Ay.xm)",

sz(a(y)) Ly

is commutative, where, is an element i i [z] such that, L, € M, (A k[dz]).
Sinces; (a(y)) is contained irb; i, L, has anindexifA, xr))" ifand only if L,

has an index ir@ALK(F))d’". By the choice of, ord, (s, (a(y))) = dord; (s(z)).
We have

)
SgLa, (-Am,K(F))dr) +drord, (s(z))
sz(a(y)) Ly, (Ay,k(r)") + rord; (sz(a(y)))
Ly, (Ay k()"

by (6.3.1). The case & is same as above. O

Xre(r) (L (A i) ™)

XK(I‘)(
XK(F)(
XK(F)(

We denote bya(y)/d,(a(y))] the induced automorphism @&, x r from the
mapa(y)/dy(a(y)) onR, k(r via the isomorphismin (6.4.1).
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(6.4.3) LEMMA. [a(y)/d,(a(y))] has an index in4,, k() and we have

Xir) ([ 5((@(’;))] , Am,m)> = —ord, (aly)) + ord, (5, (a(y))

Proof. Sincea(y)/d,(a(y)) is contained inC, x, a(y)/d,(a(y)) have an index
in Ay xry by (6.3.1). Hencéa(y) /d, (a(y))] has anindex it x ry by definition
and the formula follows (6.3.1). O

(6.4.4) COROLLARY.Let L, = C16, — Cp be a differential operator of first order
in M,.(Ry,k[dy]). Ly has an index i A, xr))" (resp.(R, x(ry)") if and only if
[a(y) /6y (a(y))] L, has anindex ifA, )" (resp.(R, kr))™). If so, then we

have
¥ a’(y) L (.A )dr
KO8 a()) | RO
= —r(ord, (a(y)) — ord, (0y(a(y)))) + Xr ) (Ly, (Ay,xm)");
XK(T) (l%?&g))] L, (R ) (Ry, k()"

Proof. Sincef. ((a(y)/dy (a(y))) Ly) = [a(y)/dy(a(y))]La, (a(y)/dy(a(y))) Ly
has an index in(A, x(r))") if and only if [a(y)/dy(a(y))]L, has an index in

(Ax,K(F))d’") by (6.4.2). The formula follows (6.4.2) and (6.4.3). O

(6.5) We apply our calculation of the difference of indices for direct images of a
morphism which corresponds to a finite separable exter8iaf F = F, . The
notation follows (5.3)—(5.5).

First we study the totally ramified case. LEEt be a finite separable extension
overF. Choose a coordinate 6f = £ asin (5.4).

(6.5.1) PROPOSITIONJNnder the notation as i(b.4.3) let M be aV-module over
SJ with a V-formally rational basis{e; }. Lase has an index if A, g r))" (resp.

(Ry,x(r))")ifandonlyifLy, ys - has anindexifA, x ) (resp(Ry xr))™),
wherey*eis a basis as ir(5.4.3).If so, then we have

XK(I‘)(Lf*M,y*ea (Am,K(I‘))dr)
=rlengthy wo,,/or + Xr(r)(Lne (Ay xm)"):

dr)

XK(F)(Lf*M,y*ea (R:v,K(F)) = XK(F)(LM,ea (Ry,K(F))T)'

Herer = rankM andwo_, /0, is the logarithmic differential module @¥; over
Or [KK, (1.7)].
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Proof. By (5.4.3) y*e is a V-formally rational basis off.M and we have
L vye = [a(y)/0y(a(y))]Ls. Since the extensioR’ /F is separable, we have
|0y(a(y))|e = 1. The assertion follows from (6.4.4) and the equalities

length, ,wo,./0r = Iengtbe,OF'/ (%)

= ord, (dy(a(y))) —ord, (a(y)).
Here, fora € Og,, we denote by: the natural projection of in F”. O

(6.5.2) REMARK. The formulas in (6.4.4) also hold if the extensiéfy F is
inseparable and if we choose the coordinaté bfas in (5.4) (See (5.4.4).). But
the author does not know what these identities mean.

In the case of a totally tamely ramified extensiBfy F' of degreeN (p /N),
choose a coordinate 8" = £] as in (5.5). Then we also have

t t 1t - t
Hywewy = oy @V Ha ey @ Oy H ey

By (6.3.2) and by the same method of (6.4) we have

(6.5.3) PROPOSITIONUNder the notation as above, |8 be aV-module over
EgST) with a V-rational basis{e;} and denote by{y’¢;} a basis off.M as in
(5.5.1) Lyse has an index ir(’}-[;K(F))’" if and only if L, r7,-e has an index in

(H! wqry) " If so, we have

Xk () (Lfry-e (H;,K(F))NT) = Xk (r)(Lme (H;,K(p))r)-

In particular, L e has indices oK (T") if and only if L s, e has so

We now discuss the case of unramified extension. Fix the situation as in (5.3).
Putl’ = Auteon{ K¥9/K') N T and K (I'") = (K¥9)™. Then one can easily see
that K (I') is finite overK (T).

(6.5.4) PROPOSITIONAssume thad/ is a V-module with a&v-formally rational

basis{e; }. Then,Lys e has anindex i A, k)" (resp.(Ry, x(r)") if and only

if Ly aru.e has an index i A, () ¥ *" (resp.(R,, k) ¥ #I). If so, then we
have

Xre@) (L aru.er (Au o)™ ) = (K Klxr oy (Dage, (A i),

XK (T) (Lt M u.e (RI,K(F))W:W) = [ k]xg ) (Lase (Ry k)" )-

Assume furthermore thdt,, ¢ has rational coefficients, thef, e has indices on
K(I')ifand only if L, 5.4, has indices ok (T').
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Proof. By (6.2.3) we may assume thAY(I") = K (T'). Since{u;} is a basis of
£} over€! ., we have

Lare 0
Lf*M,u*e = .
0 Lyre
The assertion easily follows the formula above. O

(6.5.5) REMARK. If F" is at worst tamely ramified ovdr, then the logarithmic
differential modulevo , 0, = 0.

(6.6) We study the difference of local indices for a direct image which corresponds
to an Artin—Schreier extension of degreeFollow the situation and notations as

in (5.6). LetM be aV-module of rank overé‘g with a V-formally rational basis
{e;}. Denote byLs e (resp.Ly, u,.+¢) the differential operator which corresponds

to the pair(M, e) (resp.(f. M, z*€)), wherez*e is the basisy, zey, . .., 2P te,.

(See (4.1).) Theth s, ys .+¢ is contained inM,, (L, k [0]) by (5.4.2).

(6.6.1) PROPOSITIONJnder the situation abové, s ehas anindex i A, k)"
(resp. (Ry, kr))") if and only if Ly ar .« has an index in(A, xr))?" (resp.
(Re,x(r))P"). If so, we have

XK(T) (Lf*M,z*ea (Am,K(I‘))pr)

=7 Iengtbey Wor, /OF, T XK(F)(LM,ea (-Ay,K(F))r)?

XK(F)(Lf*M,z*ea (Rm,K(F))pr) = XK(F)(LM,ea (Ry,K(F))r)'
Proof. The assertion follows (5.6.2), (6.3.6) and (6.5.1). O

(6.6.2) REMARK. In (6.6.1) the length of the logarithmic differential module
wOFy/OFm is N(p — 1)

7. lrregularity for overconvergent etale p-V-modules

In this section we define an irregularity for overconvergent etataodules and
state our main theorems. Fixap@l, k) asin (2.1.1). PuF' = F, , K = K(A, k)
andK " = K (A, k?9). LetT be a subgroup of the continuous automorphism group
Auteon( K29/K). PutK (T') = (K9)T and putK*"(T") to be the subfield ok 29
invariant under Auon( K29/K"") N T.

(7.1) Fix a Frobenius on &, . such that(z)/z7 € H] .
Let M be an object oi\ﬂ}et i and denote by * the pull back ofM by

z, K’
the natural mag, . — &' ~..- ThenM* is an objectiM &7 . By (3.2.4)
5 z, Kun N

)
z, Kun
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and (3.5.3) there is a positive integhr (p /N) such that the pull backV]*M*
is a strictlyr-unipotentp-V-module inM®Y#' . Here[N]: ST = ST

y Kun

is the natural map whlch is defined by — 3. One can eaS|Iy see that the
induced Frobenius onS Fun satisfies the conditiofo (y)/y?) € ’H Fun for

p /N . Therefore, there is a badis;} of [N]*M® such that it is strictlyr- unlpotent
andCiy}- pe ¢ is contained inc =M, (11 Kun) by (3.2.14).

We define the irregularity oM as follows. If K(I') = K29 and if M has a
V-rational basis, our irregularity coincides with the irregulaigyL, 1) which is
defined by Robba [R02,10.1.] from (6.3.7).

(7.1.1) DEFINITION. Under the above situation, we define the irregularity/of
on K""(T") with respect taV by

. 1 t
i Runry(M, N) = NV XRun(r) (L[N (e e Hy,f(""(F))'

Our definition of irregularity is independent of the choice of the striatly
unipotent basige; } of [N]*M*° by (3.3.2) and (6.3.6). From (3.3.5) we have

(7.1.2) LEMMA. Let
0— My — My — Mz—0

be an exact sequence Mévet . Assume tha{N]*M$ is m-unipotent for
[?un(r) (M]-’N)’ Z[?un(r) (MZ?N) and
Ms, N) are finite, then the rest is also finite and the identity

a positive integerN (p fN). If two of 4

(Mz,N) =1

if(,,,n(F)
holds.

Our definition of irregularity depends a priori on the choice of the positive
integerN and the fieId?(\“"(F) of coefficients of connection in a glance. However,
one can easily see that it is independent of the extension of the coefficient field
of representations.

Let A’ be a finite extension of such that the paifA’, k) satisfies the condition
(2.1.1). Denote by’ = ¢/ the induced Frobenius d’g,K,, theno’ satisfies the

conditiono’(xz)/z? € ’H; - Hereq' = ¢/ is the cardinal of the residue class
field of A’. PutK’ = K(A', k), T' = Auteond K¥9/KA’) N T andK*"(T") = the
(Auteon( K39/ K* ') N TY)-invariant subfield of®9,

(7.1.3) LEMMA. Keep the notation as above and as(B11.6) For an object
M in M®7® and for an integerV (p fN) such that{ N]*M* is r-unipotent,

a:K’
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M, N) is finite if and only ifi - (tar/a(M), N) is finite. If they are

Z[?un(r‘) ( Kun(F/)

finite, then
if}un(p/)(LA’/A(M)v N) = if}u,n(p)(Ma N).

Proof. The assertion follows from the definition of the functer,, and (6.2.3)
(Kun(I") is finite overKu"(I)).

(7.1.4) REMARK. In our definition of irregularities we omit the tame part. The
author does not know how to define irregularities without pull backs to the cases of
m-unipotent (i.e. the case of a totally wild ramification on the Galois representation
side). Of course, if one can define irregularities over the ﬁi_e;flg( of definition

of p-V-modules, then it is expected that they coincide with those of (7.1.1). (See
(8.3.2).) In the case of rank one, we can define irregularities over théﬁq}cbf
definition and they coincide with those of our irregularity. (See (8.2).)

(7.1.5) REMARK. Our irregularity must be related to the local terms of the Euler
characteristic of overconvergent unit-raBtisocrystals on a curve via the theory
of canonical extension as samelaalic theory in [KN]. In the case of rank one it

is studied in [Be] [Ga].

(7.2) Keep the notations asin (7.1) and assumethat the Frob;eoius;r,K satisfies

the condition that () /27 € H;K in (7.2). Now we state our main theorems.

(7.2.1) THEOREM.Let M be an object inM <I>§Ft Then the irregularity
z,K’U

if(un(r) (M, N) is finite and independent of the choice of the positive intéger

(p /N) such thaf N|*M* is w-unipotent.

For any objectM in m;e‘ . we denote by'f(m(r) (M) the irregularity on

z, K’
Kun(T") which is determined independently of the choice\af
(7.2.2) THEOREM.Let V' be an object inRep"(Gr) and putM = DI (V)
the corresponding etale-V-module with respect t()EmT’K, o). Then, we have an
identity

z'f(mm(M) = Swarn(V).

HereSwar{1) is the Swan conductor of the representafion

We remark that, if we denote hyy, the extensiont” = F,  — Fy x« Which
corresponds to the extensi6f) . — 8; 2 then O (afy V) 2 [N (M),

The irregularity is independent of the choice of the coefficient ffé?ﬁ?(I‘) of
differential structures by (7.2.2). Especially, we have the identity

i 2a(M) = io,.. (M) = Swar(V).
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In the case of rank one, Matsuda showed this comparison theorgns i&n
odd prime [Ma, 5.4,5.5]. Using the Kummer—Artin—Schreier—Witt complex, he
constructed a differential equation with polynomial coefficients explicitly fpr a
adic representation of rank one, which is minimal in some sense. Then he applied
Robba’s calculation of local indices to the explicit formula.

We can easily reduce (7.2.1) and (7.2.2) to the following case.

(7.2.3) LEMMA. Assume that, for any-unipotentp-V-moduleM with DI (V) =
M, ig (M, 1) is finite and the identity

holds in the case thak is algebraically closed. Then the assertiong’aR.1)and
(7.2.2)are true.

Proof. One can easily reduce (7.2.1) and (7.2.2) to the casekthatalge-
braically closed and tha/ is w-unipotent (in other word, the image iy —
GL(V)) is a finitep-group by (3.5.1)) since the functor'lcommutes with pull
backs. Ifk is algebraically closed and ¥/ is 7-unipotent, then g (M, N) =

N~Yigr ([N]* M, 1) by definition. On the other hand, we know that S\ilah =
N~1Swar([N]*V) by [Fo1, Il. Prop. 6.1.]. O

We will prove (7.2.1) and (7.2.2) in Section 8. First we will show the theorem in
the case of rank one. Then we will prove thﬁ;n(p) (M, N) is finite and coincides

with the Swan conductor using the method of Brauer induction. It is important that,
for any irreducibler-unipotentyp-V-module, there is a basis whichY&rational
in the proof.

(7.3) Fix a Frobeniug on 891[( arbitrarily. For anyV-module M overﬁg,K, we
define aK (I')-connection

VMR Re ) @ M = wr, oy @ M

T T
gm,K gm,K

by the extensioﬁ;’K — R,k (r)- It can be calculated using any basis\d@fover
ET by (7.3.6).
The theorem below is related to the Robba’s conjecture [Ro2, 3.12.].

(7.3.1) THEOREMUFor any objectM in M <I>§Ft » VR has an index and we
z,K’U
have
XK(F)(VMyRK(F)) =0.

We will prove (7.3.1) in the Section 8. We prove the following assertions which
are useful to prove our main theorems in the next section.
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(7.3.2) PROPOSITION.et M be an object ofankr in Mévet " If kerVM,RI?alg

a:K’

is of finite dimension ovek @9, then the natural map

kerV,. .+ — kerV
M SK(F) M, Rk (r)

is bijective. HereV, .+ s the inducedK (T")-connection by the extension

K(T)
ST K E K(r)*
Proof.The injectivity is trivial. By the same method of the proof (6.2.1) one can

show that the natural maf®9 @ kerV, ot — kerV, .+ is bijective.
k() o€ falg

By (6.2.1) and this fact we may assume that {1}, thatis,K(T") = K?9.So0 one
can easily see that we may assume thatalgebraically closed. Denote By the
representation off -, such that B(V') = M. By [Sel, IV.2.] there is a sequence
F,, = FoC F1 C --- C F, offinite separable extensions Bf ;, such that

Gr, = Gal(F, 3/ F,) acts trivially onV’;

Fi/Fyis totally tamely ramified;

F;11/F; is an Artin—Schreier extension of degrgewith wild ramification
(1<i<mn).

Then we can inductively determine a sequence of unramified exterﬁsjogsc

& . C &« (z0 = z) which corresponds to the sequeriégeC Fi C
e C F as in (5 5) and (5.6). In this situation we know that an elemert

+
in,Ka'g is contained wﬁxi,Kalg if and only if ¢ is contained 'rfxiH,Ka'g by (6.4.1).

So, for an elementn € kerVM,Rgalg, we have only to checkn is contained
in & Zaig ®.r M. SinceGp, acts trivially onV, there is an isomorphism
z, K

Tn,

&N @t M = (& k)" of V-modules oveE . and, therefore, we have

Tn,

kerVarr ., = (K¥9)" =kerv, .1 . O
Falg

(7.3.3) COROLLARYLet M be an objectirM & évet f Varr~, hasanindex,
> Vgcalg

zK’

thenVy ., has an index and we have

XK(F)(MRK(F)) <O0.
Proof.By (6.2.1)V y,r ., has anindex. If keV iz, ., = O, then we obtain
the formula by definition. Assume that I@MRK(F) # 0. We show the assertion by

the induction on the rank 6. Since the Auon( K9/ K )-invariant field ofKk 29is
K [Ta, 3.3 Thm.1], the natural map(I') @k kerV+ — ketVar . .. is bijective
K

by (6.2.1) and (7.3.2). (Compare both vector spacss i@ x M). By definition
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of p-V-modules and the theory of slopes, we know thét= é’; K @K Kervg
? K
is a subobject of\ in M<I>§Tet . Since the connectioM’ is d ® id, we have

x,K’U

XK(T) (M{zmr)) = 0 by easy computations. So we reduce to the case of the
quotientM /M'. O

8. Brauer induction

In this section we prove our main theorems in (7.2). In (8.1) we give the formula
of indices of direct images of overconvergent/-modules. In (8.2) we prove our
main theorems for the object of rank one. In (8.3) we show (7.2.1) and (7.2.2). In
(8.4) we prove (7.3.1). Keep the notations as in the Section 7.

(8.1) Consider the following situation. Lét’ be a finite separable extension of
F = F, such that there is a sequenEe= Fy C Fy C --- C F,, = F’ of finite
separable extensions #fwhich satisfies the conditions tha}, 1/ F; is either (1)
unramified, (2) totally tamely ramified or (3) an Artin—Schreier extension of degree
p with a totally wild ramification for alli. Then we can inductively determine a
sequence of finite unramified extensidifs . C &1 . C - CE! (w0 =,
Ky = K) which corresponds to the sequeti¢eC Fy C --- C F, asin(5.3),(5.5)
and (5.6). Herg; is the residue class field df; and we putk; = K(A, k;). We
also use the notatiorl (resp.k’, resp.K’) for z,, (resp.k,, resp.K,,). We denote
by f (resp.f;) both extensiong” — F' and€] , — &l ., (resp.F; — Fi,1 and
]k — €L «). Denote byd (resp.d;) the degree of the extensidfl/F (resp.
Fii1/Fy).

Fix a Frobeniuss on SJ’K arbitrarily and we also use the notatienfor
the unique extension of the Frobenigson 5;,’1(, (resp.é”;i,Ki). Putl’ =

Auteond K¥9/K') N T andK (I') = (K29)™",
(8.1.1) PROPOSITIONUNder the situation as above, léf be a V-module
of rankr overE;,K, with a V-formally rational basis{e;}. If {¢;} is a basis

f+M which is induced from the basis;} of M by the method as if5.3.1)
(56.5.1)and (5.6.2)inductively(here we us€5.1.6))and if Ly, has an index in

(Ag e (rry))" (respin (R g rv))"), Ly 2 @ls0 has an index iﬂAx,K(F))d’" (resp.
in (Rx,K(F))dr) and

XK(F)(Lf*M,éa (Ax,K(F))dr)
= [k’: k](’l" |engtf‘bF,w0F,/OF + XK(F/)(LM,ea (»Ax/,K(F’))T))a

X (Lrare (Re k@)™ = K klx k) (Lae, (R xr))-
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Proof. The formulas follow from the fact that the sequence

0— OFI ® wOFi+1/OFi — wOF//OFi — wOF’/OFi+1 —0
OFiJ,-l

of Op-modules is exact for all and also (5.1.6), (6.5.3), (6.5.4), (6.5.5) and
(6.6.1). O

(8.1.2) COROLLARY.Under the situation as above, assume furthermore that the
extensions of typ@l) and type(2) appear only inFy/ Fp or in both the extensions

F1/FyandF,/Fy. LetM be an object of rank of m}et , with ar-unipotent
LKHO'

andV-formally rational basis{e; }. Thenf, M has aV-rational basis. Moreover,

if Lyre has anindexifA, k)" (respin (R, x(ry)") and if is a V-rational

basis off, M, thenL;. 5/ also has an index iQA, k)" (respin (R, r(r))®)

and

XK(F)(Lf*M,éa (Ax,K(F))dr)
= [k k)(r length, ,wo,.,/0r + XK () (Lae (A k(1))

Xre(r) (Lo Ry i) ™) = (K KX ey (Dares (Rt e rony)")-

Proof. By (5.4.3) and (5.1.6) there israunipotent andv-rational basis in the
directimage of\ for successive extensions of type (3)f has ar-unipotent and
V-rational basis. (If an extension either of type (1) or of type (2) appears in some
extensionf; 1/ F; (i > 2), then{y’e;} asin (5.5.1) (respfuje;} asin (5.3.1) is
not w-unipotent)). Hencg, M has aV-rational basis by (5.3.1) and (5.5.1). The
formulas follow from (8.1.1) and (6.3.7). O

If F'/F is a finite Galois extension, then there is a sequence of finite separable
extensions of” as in the above situation. F” is a middle field of a finite Galois
extensior¥”’ /F such thatr” / F" is totally wild ramified, then there is a sequence of
finite extensions of”’/ F as above, because a finitgroup is nilpotent [Se2,11.9.3.
Thm.18.].

Let us introduce the corresponding formula for Swan conductorf i Et— F’
be a finite separable extension as above arid &t a representation of the absolute
Galois groupG -+ of F' over the field of characteristic 0. Assume that the image
im(G g — GL(V)) is finite. Then we know the following formula for the induced
representatiotf, V [Sel, VI1.2. Prop. 4., Cor.] [Fol, I.6. Prop.6.1.].

(8.1.3) PROPOSITIONUNder the above assumption, we have
Swar(f.V) = [k":k](rankV length, wo,, /0, + Swar(V)).

(8.2) We prove the theorem in the case of rank one. In this case Matsuda’s results
imply (8.2.1) and (8.2.2) for odd prime Here we give a new proof and show it
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for generalp. Fix a Frobeniug on EJ’K arbitrarily in (8.2.1) and (8.2.2). Denote
by Z,,) the localization of the rin@ of rational integer at the prime ide@).

(8.2.1) PROPOSITIONLet M be ap-V-module of rank one ovef! ... ThenM
has a base suchthatCy,. € Z,)+mz 1Ok [z ~]. Moreover, ifM is w-unipotent,

thenM has ar-unipotent base such thatCy, . € rz~ 10k [z 7).

Proof. We may assume tha¥/ is etale and that the Frobeniussatisfies the
conditions (z)/z? € H' by (3.4.4). Let’ be a basis oM and puta = Aper and
¢ = Cyr. Thena is a unit inOL. Choose an intege¥ and an elemeni € k*
such that(ua:N)*la (modm) € 1+ zk[[z]]. Choose a liftingv € S, k of the
elemenf 22 o(7~* (uz™)~1a (modr))?". Thenv=t(uz¥)~tac(v) = 1 (modr).
By (3.2.5) there is an element € 1+ 7zS, x andu’ € 1+ 7Ok such that
(v0") " Y(uu'zNV) tao(vv') € 1+ WmflOL. So we may assumguz’¥)"ta €
147z 0} ande = N/(q — 1) + 710}, by (3.2.14). Now we put = co + ¢1
such thateg € Og[z7Y,¢1 € m—lOL and that|cy|¢ is sufficiently small, so
that w = exp(— [¢1(dz/z)) can be defined in 3 m—lOL. Then we have

w™l0(w) = —c1 ande = we' is a desired base df. In the r-unipotent case we
begin witha = 1 (modr). O

In the case of rank one we have the following stronger result than (7.2.2). The
assertions of (7.2.1) and (7.2.2) for objects of rank one easily follow (6.3.7), (7.2.3)
and (8.2.2).

(8.2.2) THEOREMLet V' be an object of rank one iRep]"(Gr) and putM =

D'(V) the corresponding etale-V-module overé‘;[’K with respect tas. For a
V-rational basee of M, Ly, has indices oK (I') and we have

XK(T) (DM es Ay k(1)) = _XK(I‘)(LM,e,,H;,K(F)) = Swan(V),
XK(F) (LM,eaRq;J((F)) =0.

First we reduce (8.2.2) to the case that= {1}, that is, K(I') = K29,
and k is algebraically closed. Indeed, Ify; . has indices onk?9, then Ly,
has indices onK (") by (6.2.1). Ifxl?alg(LM,&Rm,[?alg) = 0, then we obtain
Xr () (Lae, Ryxry) = 0 by (6.2.1) and (7.3.3). Moreover, we have identi-

ties X[?alg(LM,Cv Am’[?alg) = XK(F) (LM,67 Az‘,K(F)) and X[?alg(LM,ea Hl,[?alg)

Xr () (Lae, ’H; K(F)) by (6.2.1) and (6.3.4). Hence, we reduce the assertion to the
case thal’ = {1}. Now we can easily reduce it to the case that algebraically
closed.

To finish the proof of (8.2.2), we use Robba’s formula. (See [Ro2].) Let us
explain it as needed. Let be a(0, r)-generic point. For a differential operator of
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first orderL, = 6, +n € K¥9(z)[6,], define

pO(La ’f‘)
= min{radius of convergence of a solutidet 0) of L =0 at¢,,r}.

We sayL is solvable on th€0, 1)-generic disk if and only ifoo(L,1) = 1. By
[Ro2,5.6.] we have

(8.2.3) THEOREM.Under the notations as above, unless simultaneoilslg
solvable on the(0,1)-generic disk, (dlogpo(L,r)/dlogr)~|,=1 = 1, and
Res(n(dz/z), 1) is of Liouville[Ro2, 5.5.] then, has indices ork @9 and

dlogpo(L,r>>‘| L

X}?alg(LanJ?alg) = _X[?NQ(L’HT ) - ( dlogr

m’[?alg
X[?alg(La nyl?alg) = 0

Here(dv/ds)~ denotes the left-hand side derivativevofith respect tos.
By [R02,10.7] we have

(8.2.4) COROLLARY. Under the assumption as above, unless simultaneously
L is solvable on th€0, 1)-generic disk,(d logpo(L,r)/dlogr)~|,—1 = 1, and
Res(n(dz/x), 1) is of Liouville, L + « has indices ok 9 and the formulas

X}?alg(L + O[, ij}alg) = X[?alg(La Ag.,[?alg)a

t _ t
X[?alg(L + a, H%I’%aﬂg) = X[?alg(La ,Hx,l?a'g)’

X}?alg(L + O[, nyl?alg) = 07

hold for any non-Liouville element € K219,

Now we return to the proof of (8.2.2). We point out that we have only to show the
assertion for & -rational base of M by (6.3.7). Choosea-unipotent base such
thatCis,e € Z(p) + 72 Ok [z (We can always do by (8.2.1)). Since rational
numbers are of non-Liouvilld, has indices od(®9 andyx zag(Lase, nyl?alg) =0
by (8.2.3). So we have only to show

X[?alg(LM,ea Axyf?alg) = SW&T(V),

for abase: asin (8.2.1).

We reduce to the cask/ is w-unipotent, in other wordsl is totally wild
ramified. LetN (p/N) be a positive integer such thg¥|*M is =-unipotent,
where we use the notatidiV] for the both maps . — &) - andF, . — F,
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defined by(z — yV). We also denote by the base B e of [N]*M. Thene is a
base of N|*M as in (7.2.1) and we have

L 0

LNy N Myre = N1

So the formula
X[?alg(L[N]*M,ev Ay,f}alg) = NX[?alg(LM,ea ij}alg)a

holds by (6.5.2) and (8.2.3). On the other hand, we know tHa{/D]*V) =
[N]*M by [TN2,4.2.6] and SwaiiN|*V') = N Swar(V') by [Fol, Il. Prop.6.1.].
Therefore, we reduce to the case thatis r-unipotent.

Assume thatV/ is w-unipotent. Denote by the invariant field of keilGrp —
GL(V)) in F**Pand putps = [F": F]. By the assumption there is a sequence of
extensionF' = Fy C -- F = F’ which satisfies the condition in (8.1) and
let 5;07[( - 5;17[( C - C 5 ..k (ro = z) be the sequence of corresponding
finite unramlfled extensions. Denote yjy(resp fs) both extensiong’ — F’ and
STK — 5 L (resp.F — Fs g andé‘ K= E L.x)- Since the extensioR’ / F
is cycllc of orderp we have the decomposnlon’

fh= P v = (f) . APPV™, (8.2.5)

0<i<p pli

asA[G r]-modules. Heré\ is the trivial representation aid®’ =V @ --- @ V
(z-times). On the side gp-V-modules we also have the decomposition

FEL o= D MY =(f,).E  DPM, (8.2.6)

0Li<ps pfi

where€T is the trivial object inV & <I>vet andM® =V ®---® V (i-times), and
DT(V®2') ~ M®i,

by (5.2.1). Sincd/®" is totally wild ramified,M®* is w-unipotent. Lete(") be a
base ofM®’ as in (8.2.1). Put = ¢V to be a base af/.
We prove the identity ‘index Swan’ by induction o. In the case whesn= 0
both sides are 0. By (8.1.2), (8.1.3), (8.2.5), (8.2.6) and the assumption of induction
we have

Z X[?alg(LM®iye(i) ) Ag.,I?alg) - Z SW&I’(V@n) .

0<i<ps,pfi 0<i<ps,pfi
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Since Swafly ®%) = Swar(V') for all i (p /%) [Fol, II. Prop. 6.1.], we have only to
show

X}?alg(LMQbi,e(i) ) ‘A‘I’[/Ealg) = X[?alg(LM,ea Axyl?alg)

for all i (p /7). These identities follow from (8.2.3) and the lemma below.

(8.2.7) LEMMA. If r < 1is close tol, then we have

pO(LM‘X’i,e(i)?T) = pO(LM,ea T)a

forall i (pfi).

Proof. For any elemeniv of SIT’K and for any real number & r < 1 close
to 1, the radius of convergence @fat the (0, r)-generic point,. is r. Therefore,
po(Le,r) is independent of the choice of the basi§ r is close to 1. Ifu # 0 is
a solution ofL . att,, thenu! is a solution OfL proi cwi. Heree® =e®---®e
(s-times). So we have

po(Lysei o),7) 2 po(Lae,T)-

If i is prime top, then there is a positive integgrsuch thatij = 1 (modp®), so
that(M®*)®7 = M. By the same argument as above we have

po(Lysei o),7) < po(Lne,T)-
Hence, we obtain the assertion. O

(8.3) Now we prove (7.2.1) and (7.2.2). We have already reduced to the case that
k is algebraically closed and/ is w-unipotent by (7.2.3). LeF”’ be the fixed
field of the kernel keilGr — GL(V')) and putG = Gal(F'/F). SinceG is finite,
V' is a successive extension of absolutely irreducible representatiGnadier a
finite extension ofA. By (7.1.3) and (7.1.2) we can reduce to the case that
is an absolutely irreducibld-representation ofs. Sinced is a finite p-group,
V' is an induced representation of rank one of a subgiupf G [Se2,11.10.5.
Thm. 20.]. Denote by the A-adic representation of rank one &f and put
F" = (F")! the H-invariant subfield of*’, andg: F — F". Theng,W =V and
g My = g,DT(W) = M by (5.2.1). Since is ap-group,Myy has ar-unipotent
andV-rational basig such that

XK(F) (LM,ea A) = Swar(W)a
Xk () (Lae, R) =0,

by (8.2.1) and (8.2.2). Sindg is a finitep-group, there is a sequence of extension
F=FyC F, C---C F, = F" which satisfies the condition in (8.1). So there is
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a-unipotent andv-rational basis;; such thatl,z;, has an index o (I") and
we have

XK(F)(LM,é]-a (A:v,K(F))[F”:F})
= rank(M) Iengter,, WO [OF + XK(F)(LMW,ev Axn,K(F))a

Xk (Laé; (Rm,K(I‘))[F”:F]) =0,

by (8.1.2). Therefore, we obtain the formula
iK(F) (M7 1) = SW&I"(V),

by (6.3.4) and (8.1.3). |
As another consequence of the proof we have

(8.3.1) PROPOSITIONAssumeé: is an algebraically closed field. Le¥/ be a
m-unipotentp-V-module. TheiV %, -, has an index and we have

Xk (@) (MR ) = 0.

(8.3.2) REMARK. It is expected that, for any-V-module M with a V-rational
basis{e;}, the identityx(Las,;, A) = i(M) = Swar(V) holds like the case of
rank one. To show this there is a difficulty which is related to Robba’s conjecture
[R02,8.3.].

(8.4) We prove (7.3.1). We may assume that {1}, thatis,K (') = K39, and

thatk is algebraically closed by the same argument of the proof of (8.2.2\1 et

be an object im}et . By (3.5.3) there is a positive integ8f (p /N) such that
z,K’U

[N]*M is z-unipotent([N]: £l — & (z > y)). We can regard/ as a subobject
of [N].[N]*M in the categoryM <I>§Ft , by the natural map, and denote By

z, K’

the quotien{N].[N]*M /M. (See (5.1)). Since
[N N'M=MaoyM&--- &y 1M

asV-modules oveEIT’K, VMR =4 has an index and we have
Xgag(VMR~y) T Xgag(Var R - ) = X [?alg(V[N]*[N]*M,R;(\mg) =0,

by (6.5.2), (8.3.1). We also know that bQﬂ?(alg(VM,R;{a.g) ande(alg(vM’,R;(\mg)
are less than or equal to 0 by (7.3.3). Therefore, we have the assertion. O
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