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Abstract

This paper describes a data-intensive application written in a lazy functional language: a server
for textual information retrieval. The design illustrates the importance of interoperability, the
capability of interacting with code written in other programming languages. Lazy functional
programming is shown to be a powerful and elegant means of accomplishing several desirable
concrete goals: delivering initial results promptly, using space economically, and avoiding
unnecessary I/O. Performance results, however, are mixed.

Capsule Review

The re-implementation of a component of a real application in a lazy functional language
is described. The component, Funser, performs the data-intensive task of textual information
retrieval. The perceived advantages of a non-strict program are that initial results can be
delivered to the user quickly, and both unnecessary work and space allocation can be avoided.

At the time the construction of Funser was begun, the authors had first to implement their
own language to interoperate with existing foreign-language application components. The
functional Funser achieves the stated goals: initial results are produced promptly, space-usage
is good and overall execution time is comparable with, and often better than, the original
imperative implementation. Users appreciate the prompt delivery of results.

Unfortunately, absolute performance is disappointing, and a shell script Funser-emulator
was written which consistently outperforms the functional Funser. The script delivers early
results into a file that can be browsed by the user. The major reason for the poor performance
is that the interpreter is very slow: approximately 6 times slower than the Gofer interpreter.

* Programs and documentation related to this work are available at the following addresses:
• ftp ://cs.uchicago.edu/pub/software/funser
• gopher ://cs-gopher.uchicago.edu/11 /software/funser
• http://cs-www.uchicago.edu/software/funser
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In effect the functional program is a prototype for the shell-script implementation which is
now used in the application.

1 Introduction

Is it possible to write a 'real' application in a pure functional language? This ques-
tion has been asked many times, at conferences, on Internet newsgroups, and in
papers, and perhaps the answer is beginning to be yes. This paper describes work
that attempts to answer the question in the context of full-text information retrieval;
for this kind of 'real' application, we have found the answer to be, for now, maybe.

The researchers at the Center for Information and Language Studies (CILS) at
the University of Chicago had a unique opportunity to explore this issue. From
1990-1992, CILS was also the home of ARTFL (American and French Research on
the Treasury of the French Language), a cooperative project between the University
of Chicago and France's Centre National de Recherche Scientifique. It distributes ac-
cess to the Tresor de la Langue Frangaise database (TLF), a 700 Mbyte collection of
full texts of French literature (Morrissey and del Vigna, 1983). CILS researchers had
already developed and were supporting ARTFL's primary means of giving dial-up
and Internet users access to the TLF: the 'PhiloLogic' (ARTFL, 1989) system. This
system had been available to ARTFL subscribers since 1989, and attracted a steady
following.

There were several strong reasons to consider the possibility of replacing this
system. First, there were certain features that the old system lacked. Second, the
ARTFL project had reached an agreement with their French collaborators to
embark on a project to demonstrate the feasibility of a CD-ROM based system.
Since the raw size of the database is around 700 MByte, slightly greater than the
capacity of a CD, and indices typically range in size from half to the equal of the
bulk of the database itself, it was clear that special attention would have to be
paid to data compression. Third, and partly in response to this, CILS researchers
had done significant work on data compression for textual information retrieval
systems (Bookstein et al., 1991). Fourth, an independent CILS project, a system for
manipulation of text as a collection of abstract structured objects, was ready for
testing (Deerwester et al, 1992). Finally, there had been continuing interest at CILS
in using lazy functional programming techniques for textual information retrieval
(Deerwester et al., 1990). It was natural to attempt to unite all these efforts in a
single system on which the ARTFL Project's base of users could then be set loose.

2 System architecture

With this opportunity came several important constraints that shaped the project.
Most important of these was the necessity of distributing the task of implemen-
tation among the available personnel, using different implementation languages as
appropriate. It would have been impractical (and perhaps impossible) to require
that all the programming be done in a lazy functional language. First, as we shall
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see in more detail, it was not clear that a lazy functional programming language
implementation could be found at that time which met the requirements of even
the part of the project to which its proponents thought it most naturally suited:
the retrieval engine itself. Second, there were perhaps even greater difficulties in
matching a lazy language to other parts of the project. The compression algorithms,
for example, relied heavily on bit-field manipulation and array access, both of which
would have to be implemented extremely efficiently in a real system. Moreover, the
backgrounds of the programmers involved, and the existing software resources they
could draw on, pointed towards encouraging each group to use the implementation
language they found most natural to the task at hand, while maintaining a rigid
discipline of abiding by clean interfaces designed in advance.

It should be noted, however, that the motivation for the use of other programming
languages was not the desire for impure features. One of the reasons that textual in-
formation retrieval is so well suited to pure functional programming is that the data-
base is essentially static. There is no question of desiring side-effects. In fact, from the
system designers' perspective, other programming language implementations were
used to stand in for future pure functional implementations. Our goal was, eventually,
to write the entire system in a pure functional language; so even those components
which were not so written initially were designed to be compatible with this approach.

In such a context, the pure functional style would seem to be the least common
semantic denominator for interfacing, and the only option for future migration. But
in fact, bringing the functional programming perspective to the interfaces proved
to be of more direct benefit. Designing as though each side of each interface was
to be implemented in a pure functional language, regardless of whether this was
the immediate plan for either, we found that the elegance of functional interfac-
ing techniques provided a robustness and power that greatly smoothed the overall
implementation process.

The architecture of the new system was also profitably simplified and controlled
by retaining the top-level structure of the original system, which had two major
components: a user interface (the 'PhiloLogic' program itself, known as 'Philo'), and
an underlying retrieval server, 'Philis' (ARTFL, 1989a). In fact, other user interfaces
also communicated with Philis, but Philo was the most heavily used, and it is the
only one with which we shall be concerned here. Philis and Philo were implemented
as separately compiled programs, communicating via network link; the interface
between the two was a desk-calculator style textual command language.

Building on this foundation, the redesign effort could center on Philis, the server,
rather than on the user interface, Philo. The initial design strategy was to provide a
compatible reimplementation of Philis. In fact, since new features were introduced,
some changes to Philo were eventually necessary to take full advantage of the new
system.

Within Philis, we may distinguish the following components:

• The retrieval engine, called the Funser for/unctional server.
• The index access method: in this implementation, the GNU project's widely

available 'gdbm' hashed indexing package (FSF, 1989).
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Fig. 1. System architecture overview

• The index compression (properly, decompression) software, by means of which
the stored indices can be read from the CD.

• The Textual Object Management System (or TOMS), used for resolving en-
coded index entries into pointers into abstract text files.

• The text decompression software, which further resolves these pointers into
textual input from the CD, expanding it as it is read in.

• The extensions module, which services certain special queries that need not
concern us here.

• The Philis emulator, which reads commands in the Philis language, dispatches
the work to the other components, and assembles the results.

Figure 1 is a schematic diagram of the system. In this diagram, arrows denote
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an interprocess communication link; adjacency denotes communication via direct
procedure call.

In the present paper, we are concerned primarily with the Funser, the portion of
the system that was implemented with a lazy functional language. Thus we will be
especially interested in the nature of its communication with those components with
which it interacts directly, and we need not concern ourselves much with the details
of the other components.

3 Database and query model

To understand the task of the Funser, we must first describe the database model
used. For retrieval purposes, the database is modeled by a tree of textual objects
which correspond more or less to the natural structure of the texts: thus a database
contains documents, each document contains chapters, chapters contain sentences,
etc. Word occurrences are associated with their paths in the database tree; these
in turn are represented as tuples of integers, called coordinates. Thus (10,4,2,22) is
associated with the twenty-second word of the second sentence of the fourth chapter
of document ten (the ARTFL database, unfortunately, does not contain paragraph
markings).

Note that the hierarchy is of uniform depth throughout the database. This is
by design; the section mark-up collapses deeper structures such as the acts and
scenes of a play. Thus, given the coordinate tuple of a textual object, one knows its
type immediately from its length; word objects, for example, always correspond to
quadruples, and sentences to triples. Using this model, it is simple to decide whether
two words are in the same sentence; one just tests to see if the leading coordinates
are the same. If they are, it is also easy to determine how many words they are
apart, by subtracting the last coordinate. However, it is not easy to determine, from
their coordinates, how far apart two arbitrary words are. These facts are reflected in
the query model.

Let us note in passing that the coordinates for a word occurrence are originally
created, when the database is loaded, by a separate application which interacts with
the text through the TOMS. Hit-lists - the internal results of queries - are lists of
these coordinates, and can be translated back to disk addresses and actual text using
the TOMS, which in turn relies on our text decompression software. Coordinate
lists known as concordances are what is actually stored, in compressed form, in
each word's index entry, and these provide the ultimate basis for all of the Funser's
computations.

Our query model is a variant of that discussed by Choueka et al. (1987), and
is a generalization of that implied by the Philis command language. We consider
two query types: the co-occurrence search and the phrase search. The co-occurrence
search takes a tuple of sets of words {s$\,s£2,...$2k), where each J / , represents a
set of words which are considered synonymous for that query. The solution is a list
of/c-tuples of coordinate tuples, t\ = {cit\,c\t2,---C\ji),t2 = (c^i.c^.-.-c^),..., such
that each c,j is the coordinate tuple for the occurrence of some word in s/j, and all
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the occurrences in each U differ only in the last position, and hence fall in the same
sentence.

A phrase search is a variation of a co-occurrence search. The input and the solution
are formally the same, with the additional restriction that each t, consists of coordi-
nates of words that immediately follow each other in a sentence. Thus the query is a
request to find all the sentences in which a given phrase occurs, allowing perhaps for
grammatical or semantic variants. In practice, wild-carding is permitted; formally,
this is a shorthand for one of the sets J / ; being the set of all words. In this work
we refer to the sets s/t as disjunctions, and to the entire query as a conjunction of
disjunctions. The main task of the Funser, then, is solving queries of these two kinds.

4 Why a lazy functional language?

It was the opinion of the system designers that lazy functional programming lan-
guages would be particularly appropriate for implementing this kind of retrieval.
There were several potential benefits we hoped to demonstrate through the use of
such a language:

• To do no unnecessary work. With a lazy language, we hoped that the evaluation
mechanism could be exploited to save work at run-time, while leaving the
program clean, clear and elegant. In our implementation, we concentrated on
minimizing disk I/O; we attempt to read a block of information only if at
least part of that block is needed to answer a query. Buneman et al. (1982)
explored a similar approach in connection with relational database systems.

• To deliver initial results promptly. It is a commonplace of user-centered design
that the most important speed measure of any system is how long it takes
to deliver its first result to the user. If the user can be given an initial result
to look at while the rest of the result is being computed, then the perceived
performance of the system will be enhanced. In a database system, early initial
results can be particularly important, since it is frequently only after seeing
a few results that the user realizes that the query was badly posed. Again,
this effect could be achieved using any programming language, with sufficient
programming effort; it was our hope that lazy evaluation would provide it
without any effort at all.

• To use memory economically. Friedman and Wise (1976) point out, in one
of the earliest papers on lazy evaluation, that one potential benefit of lazy
evaluation might be space efficiency. In a computation whose result is a list,
a lazy evaluator would spend the space necessary to produce just the head
of the list; then, only after a consumer had examined the head (so its space
could presumably be reclaimed), would it expend the space to evaluate the
next element, and so on. This is contrasted with an eager evaluator, which
would use all the space (and time) necessary to calculate the entire list before
allowing the consumer to examine any of it. With a 700 Mbyte database, this
can be a disaster. Again, this effect could be achieved using any programming
language, but with a lazy system, it could in principle be achieved without any
special programming effort.
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5 Index interface

One of the most important design questions was the choice of index interface.
Both the index decompression software and the associational mechanism were
implemented in C; how should they be packaged to interact with a pure functional
system? One way to view the range of possibilities we confronted is in terms of
granularity: how much work is accomplished, and how much data manipulated, by
single primitives. There are two extremes:

• Fine grain. We might consider primitives at the lowest level appropriate to the
data being decompressed; since each index entry contains a list of coordinates,
we might consider primitives operating at the coordinate level.

• Coarse grain. We might consider a single index primitive, taking a word as
an argument and evaluating to its entire concordance, the list of all the
coordinates for all of its occurrences.

Each approach has advantages and disadvantages. Speaking for fine grained
primitives is the observation that much work might be avoided through the lazy
evaluation paradigm. The coarser the grain, the more work each primitive does, and
the more likely it is that we didn't really need all of it. Similarly, lazier retrieval
entails an overall reduction in the amount of I/O performed.

On the other hand, to achieve the laziest decompression of our index files, we
would have had to write those algorithms entirely in the functional language - which
as we have already noted might pose insurmountable efficiency problems, given the
nature of the calculations - or set up an elaborate family of primitives which
map to small amounts of work accomplished outside of the language. Similarly,
a fine-grained interface would have limited our ability to interface with existing
code libraries. In particular, while we initially employed the widely available gdbm
hashed indexing package (FSF, 1989) as our associational mechanism, we wanted to
be free to experiment with other techniques, such as the perfect hash code system
developed by Fox et al. (1992) (whose developers tested it on keys drawn from the
ARTFL database). Finally, we were driven towards coarser granularity by our desire
to conceal our decompression algorithms and our associational mechanism.

Fortunately (or so we thought), there is a natural middle ground. Since the smallest
physical unit in which the operating system can perform I/O is the disk block, there
is a sharp knee in the savings resulting strictly from lazier input at this scale. At the
same time, holding approximately a thousand entries, a disk block is large enough
to amortize the setup time for decompression and any fragmentation losses that
arise from discarding all compression state on block boundaries (thus simplifying a
block-based interface). These interacting concerns led us to base our index access
interface closely on the actual layout of the index on disk.

Physically, our index consists of two portions: an associative file and a concordance
file. The associative file is managed by the associational mechanism: in this case,
gdbm. Although, in principle, gdbm allows any amount of data to be associated
with a key, performance is better in practice if the amount of data stored with
a key is limited. Since some words are extremely frequent, their concordances are
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stored indirectly, with the coordinates kept in one or more blocks of an external
concordance file, with only less common words stored directly in the associational
file. Our goal with the indirectly stored entries was then to minimize the number of
external concordance blocks actually read.

Thus, from the C language side, the index interface looks like this. There are two
entry points: one for access to the word look-up mechanism, and one for reading
concordance blocks. The word look-up mechanism takes a single word (a C string)
as input and returns differently depending on the word's index type. There are three
cases:

1. Not Found. If the word does not exist in the index, a special flag value is
returned.

2. Immediate Concordance. If the word is rare, so that its concordance is stored
directly in the associative file, then its entire concordance is decompressed and
placed in memory.

3. Indirect Concordance. If the word is frequent, its sorted concordance is stored
indirectly in some number of concordance blocks. In this case, the associative
file contains the concordance starting address and a block directory for the
word; that is, for each block, it has the coordinates of the first occurrence in
that concordance block. In this case, this directory is placed in memory.

The concordance-block reading mechanism takes as input the information from an
indirect concordance directory entry. It decompresses the entire concordance block
for that word, and puts all the resulting coordinates in memory. This can result in
the transfer of a fair amount of data, 10 Kbytes or so. This is exactly the operation
we wanted to minimize. In principle, using the directory, it should be possible to
plan which blocks are actually needed for a given query.

This description of the C interface conceals some implementation details; for
example, the input to the concordance-block reading mechanism. Concordance
blocks are not always full; they are packed so that more than one word may have
its concordance in a given block. Therefore the concordance-block reader requires
two arguments: a block number and an offset at which to begin reading. The end
of a concordance is flagged in the concordance file, so that the decompression
algorithm knows to stop at the end of the block or the end of the concordance for
that word, whichever comes first.

In addition, there are actually two classes of indirect concordance. Roughly half of
the 450,000 or so words in the index are rare enough that direct concordances may
be used. Almost all of the remaining words are stored indirectly as described above.
The hundred or so most frequent words (which many systems just fail to index)
are treated differently; for these hyper-frequent words, different concordance block
compression tables are appropriate, and since even the directory of concordance
blocks is too large to fit comfortably in the index file, their concordance is made
doubly indirect. The index file contains only the total frequency and a pointer to
a directory file. A second disk access is needed to read the directory from this file.
Therefore, although the difference in layout is concealed by the C index interface,
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interface Indexm where {

type Word = [Char];
data Hit = HitCons Int Int Int Int;
type HitBlock = Array Int Hit;
type Freq = Int;
data IndexResult = NotFound I

Immed HitBlock I
Indir Freq [(Hit, HitBlock)];

indexm :: Word -> IndexResult;

Fig. 2. Interface to index, as a Haskell module

the concordance-block reader actually takes one more argument; a flag indicating
whether this word is hyper-frequent.

Given this C interface, the problem becomes how to present it to a lazy functional
language. We shall discuss this in detail when we discuss implementation. For
now, so that we may concentrate on retrieval algorithms, let us imagine that
the implementation language were Haskell (Hudak et al., 1991). How should the
functionality just described be presented as a module?

We chose the interface shown in figure 2: access to the index is given through
the indexm function: it takes a word and returns a value of type IndexResult.
This type models the three possible responses from the associational mechanism.
NotFound is just a flag value. Immed bears the actual concordance as a HitBlock,
which is an array (indexed by integers) carrying Hit; note that, in this case, the
frequency of the word is available as the size of the array. The third case, Indir
is more complicated. In this case, the total frequency of the word, Freq, is directly
available as the first component of the constructor. The second component provides
the directory and the concordance, represented as a list of pairs, Hit and HitBlock.
The Hit is guaranteed to be the same as the first array element in the corresponding
HitBlock, so it is redundant semantically. However, in implementation, evaluation
of the indexm function only forces the first elements of this list of pairs into memory.
The second elements, the concordance blocks, remain as suspended calls to the C
concordance reader. Thus, if a Standard-ML programmer were to look at this type
declaration, it might seem that the entire concordance of even a very frequent word
is loaded into memory as soon as one looks it up, but thanks to lazy evaluation,
only the portions of the concordance that are needed are actually read from disk.

6 Retrieval data structures and algorithms

6.1 The 'Sequence' data structure

The intention of the indirect concordance directory was that it would act as a
one-level search tree; the elements of type Hit serve as guards to the nodes which
are concordance blocks. At the functional programming level, we augmented these
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interface Seqs where {

data (Ord a) => Seq a;

seq2List :: (Ord a) => (Seq a) -> [a] ;
seqEmptyP :: (Ord a) => (Seq a) -> Bool;
seqFirst :: (Ord a) => (Seq a) -> a;
seqGuard :: (Ord a) => (Seq a) -> a;
seqLength :: (Ord a) => (Seq a) -> Int;
seqSplit :: (Ord a) => (Seq a) -> a -> (Seq a, Seq a);

Fig. 3. Interface to sequences, as a Haskell module

structures to full search trees, implemented through a data structure called the
sequence. Sequences represent concordances and all intermediate stages of query
computation.

The interface to the sequence datatype is shown in figure 3. Abstractly, a sequence
is a sorted collection of data of an arbitrary ordered type. Of course, sequences
were designed to carry the Hit type, for which lexicographic component order
corresponds to natural database order. The public interface to sequences is through
the following functions; all but the last take a single sequence as input, and return
as follows:

• seq2List returns the contents of the input sequence as a sorted list.
• seqEmptyP, an emptiness predicate, returns true if the sequence contains no

elements.
• seqFirst returns the first element of the sequence.
• seqGuard returns an item of the carrier type which is < all items in the

sequence. Note that the guard is not necessarily an element in the sequence.
Thus seqGuard is not the same as seqFirst, and pragmatically it is assumed
to be cheaper.

• seqLength returns the number of items in the sequence. It is semantically
equivalent to the length of the list produced by seq2List but is again assumed
to be cheaper.

• seqSplit takes a sequence and a second argument, called the split-point, a
value of the carrier type of the sequence. It splits the input sequence into a
pair of sequences, the first containing just those items < the argument, the
second containing those >.

In developing the Funser program, sequences were implemented in several different
ways. First a basic implementation was written: sequences as sorted lists. Here the
split method is implemented by sequential search through the list. Next, operations
were denned, such as union and intersection, implemented using only the selectors
above. Then, more specialized implementations of the same abstract type were
provided, for greater efficiency. Finally, certain operations were optimized to be
sensitive to the implementation type of their arguments.
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The system ultimately used four implementations for the sequence datatype,
represented by the following data declaration:

data (Ord a) => Seq a = BVSeq a Int (BnddVec a) I
ListSeq a Int [Seq a] I
ItemListSeq a Int [a] I
EmptySeq;

Each of the constructors (except the last) carries a guard and the length of the
sequence as the first two components. The elements of the sequence are stored
differently in each case, as follows:

• BVSeq. Here the elements of the sequence are stored in a special type called a
BnddVec, for "bounded vector". A BnddVec is a section of an array, given as
an array and a pair of bounds (not the same as the bounds of a Haskell array):

data BnddVec b = MakeBnddVec (Int, Int) (Array Int b)

The bounds of the array section are given externally to facilitate the seqSplit
operation. A BVSeq may be split by binary searching the section of the array
contained in its BnddVec; the portions before and after the split-point may
each be made into a BnddVec using the same underlying implementation array,
but with different bounds. In this way, the overhead of copying elements is
avoided. The other sequence operations are easy to implement. This imple-
mentation is used for the concordance words with an Immed index type, and
for each HitBlock of the concordance of words with an Indir index type.

• ListSeq. This is a sequence of sequences, and behaves as a search tree. Every
member of each child sequence is required to precede all members of subse-
quent sequences; that is, as in a search tree, the contents of a left sub-tree must
precede those of the right sub-tree. The seqSplit function is implemented
by searching the guards of the child sequences sequentially, then splitting that
child (if any) whose elements span the split-point. seq2List is implemented
by tree-recursion. The other functions are similar. This implementation is used
to represent the entire concordance of a frequent word, and to represent most
intermediate results of query processing.

• ItemListSeq. Here the elements are stored simply as a list. seqSplit is imple-
mented by sequential search; thus, this implementation can be slow. However,
it can be used as a default, when nothing else is appropriate.

• EmptySeq. A special nullary constructor is used to represent sequences that
are known a priori to be empty. The seqGuard function returns an error when
given EmptySeq as input.

The index is integrated with the sequence datatype by the following function:

searchAsSequence :: Word -> Seq Hit;

This function calls indexm and converts the IndexResult value to a Seq. Thus, if
the word is NotFound, an EmptySeq is returned; if it is Immed, a BVSeq is returned;
if it is Indir, a ListSeq is returned. It is important to note that, since the total
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mergeSeqs : : (Ord a) => (Seq a) -> (Seq a) -> Seq a

mergeSeqs si s2 I seqEmptyP s2 = si
mergeSeqs si s2 I seqEmptyP si = s2
mergeSeqs si s2 I (seqFirst s2) < (seqFirst si) = mergeSeqs s2 si
mergeSeqs si s2 = makeListSeq (mSeqHelp si s2)

where mSeqHelp si s2 = if (seqEmptyP after)
then [before, s2]
else (before:(mSeqHelp s2 after))

where (before,after) = seqSplit si (seqFirst s2)

Fig. 4. A function for merging two sequences

frequency of any word is directly represented in the associative file, it always possible
to know the length of the corresponding sequence, without forcing the evaluation
of any of the concordance decompression which might be embedded in it.

The public interface to the sequence datatype does not include the concrete
constructors, but does include construction functions, which are used as intermediate
query results are created. The most important of these is:

makeListSeq : : (Ord a) => [Seq a] -> Seq a

In implementation, this corresponds fairly directly to the ListSeq constructor.

6.2 Programming using sequences

The operation of merging two sequences is an easy example of how sequences are
manipulated. Figure 4 shows a Haskell implementation of this operation. Note that
this implementation uses only the public interface to sequences; it can be optimized
by specializing to particular implementation types.

In this example, we assume for simplicity that the two sequences to be merged
carry distinct elements; this is usually the case in our application, since they rep-
resent occurrences of different words. Essentially, this algorithm is the same as the
straightforward method of merging two sorted lists, but seqSplit is used to find the
points where the two sequences interleave. The result is constructed from a list of
sequences produced by the recursive helping routine mSeqHelp. Assuming, without
loss of generality, that the sequences are not empty and that the first element of si
precedes the first element of s2, s i is split at the first element of s2, and the two
parts are called before and after, before is the first sequence of the result list,
and the remainder is produced by a recursive call using s2 and after.

Recall the co-occurrence search query. Here we have sets of words s&u s&2, • • • sdk-
Each of the j / , is a disjunction; in the degenerate case, when there is only one set
stf, the solution is simply the merged list of all the occurrences of words in si. Each
disjunction can be handled by the following simple function (f oldll and map are
from the Haskell standard prelude):

dis junct : : [Word] -> Seq Hit;
dis junct wl i s t =

fo ld l l mergeSeqs (map searchAsSequence wlist)
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Fig. 5. A bad search tree

That is, the searchAsSequence function is mapped over the list of words to get the
sequence of coordinates for each word, then the sorted union of all these occurrences
is accumulated by applying mergeSeqs to the sequences in the list.

Now, an entire query can be solved by solving all the disjunctions, then reducing
the result by an intersectSeqs function. Actually, the operation is not extensional
intersection, since the input is sequences of word occurrences, and the output is a
sequence of tuples of word occurrences: those occurrences which group together in
sentences. Still, let us call this intersectSeqs. A simple version of intersectSeqs
can be written that is very similar in structure to mergeSeqs: the result is a list
constructed recursively by using the two sequences to index into each other; but
here only the common part is saved. Given intersectSeqs, a function for solving
an entire query is simple (here the input, query, is a list of disjunct queries, that is,
a list of lists of words):

conjunct :: [[Word]] -> Seq Hit;
conjunct query =

foldll intersectSeqs (map disjunct query)

6.3 Distribution over structure

The algorithm just given is correct, but is not as efficient as one would like. Consider
a disjunction of two frequent words. The act of merging the sequences for their
concordances creates a structure like that shown in figure 5; a deep, sparse tree.
When such a tree is intersected with a rare term, the algorithm must sequentially
traverse the tree, until the first part near the rare word is found. This forces the
computation of the merge of the two frequent words, even in areas nowhere near
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the infrequent word. The problem is that the implementations of mergeSeqs and
intersectSeqs tend to flatten the structure of their input. It would be better if the
sequence that resulted from a merge retained the bushiness of its input.

This effect is achieved by optimizing mergeSeqs and intersectSeqs to be sensi-
tive to the implementation type of their sequence arguments. In fact, this optimization
does not depend on the particular operations mergeSeqs and intersectSeqs; it
can be expressed as a 'functional', that is, as a function which takes an operation as
one of its arguments. In particular, a binary operation that distributes over sequence
structure (as we shall define below), can be performed in a structure-preserving way
by a process analogous to tree recursion.

To be formal, let us denote sequences by capital letters A,B,... and elements by
small letters, a,b,... Let us write the result of splitting sequence A at element x
as A<x and A>x, for the sequence of elements in A before x, and the sequence of
elements in A after x, respectively. Finally, for the list sequence construction function
makeListSeq let us simply write sequences in parentheses. Thus, by (A,B) we mean
the list sequence with child sequences A and B. Then we will say that an operation
© distributes over sequence structure if for any sequences A and B and arbitrary
element z, A © B contains the same elements as (A<z © B<Z,A>Z ffi B>z).

In Haskell, this is the same as saying that the operation op distributes over
sequence structure if the two expressions:

seq2List (seqA ' op ' seqB)

and

l e t

(seqAbefore.seqAafter) = seqSplit seqA z
(seqBbefore, seqBafter) = seqSplit seqB z

in
seq2List (makeListSeq [(seqAbefore 'op' seqBbefore),

(seqAafter 'op' seqBafter)]

evaluate to lists with the same elements, for arbitrary sequences seqA and seqB and
any element z.

An operation that distributes over sequence structure is one which works locally on
the elements of the sequences that are near each other. Notice that both mergeSeqs
and intersectSeqs are distributive in this sense (intersectSeqs is, in fact, a bit
tricky: it distributes over the sequences of sentence objects, rather than word objects).

Now we may define a function lSeqRec (for 'list sequence recursion'), which
applies a distributive operation to two sequences, while preserving as much as
possible of their structure. To see this, let us consider an example: two sequences, A
and B, and a distributive binary function ©. Let us suppose that both A and B are
list sequences with A = (Ai,A2,Ai,A4,A$) and B = (Bi,B2,Bi). Let a, be the guard
value of At and bt be the guard of B, and let us suppose that if we merge the two
lists of guards we discover that:

a\ < ai < 03 < b\ < b^ < b^ < a$ < as

https://doi.org/10.1017/S0956796800001386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001386


Funser: a functional server for textual information retrieval 331

lSeqRecHelp op opC xs ysQ(yl:moreYs) lastY =

let

(xsUptoPivot, (pivot:moreXs)) = (splitUpto CseqLE' yl) xs)

(pivBefore,pivAfter) = seqSplit pivot (seqGuard yl)

thisChild = makeListSeq (xsUptoPivot ++ [pivBefore]) 'op' lastY

rest = if (null moreXs)

then [pivAfter 'op' (makeListSeq ys)]

else lSeqRecHelp opC op ys moreXs pivAfter

in

thisChild : rest

Fig. 6. List sequence recursion function

Then it is clear that none of the elements in A\ and Ai can interact by © with any
of the elements of B\ (or any of the other 5, that follow) since all the elements of
A\ and A2 must precede a^, which itself is < b\. In fact, only the elements of A$ that
follow b\, that is A^bl, may have any interaction with B\ and following. Thus, the
first term in the result is (Ai,A2,Afbl) © E, where E is the empty sequence.

Now, by the same reasoning, only the sequences B\, B2 and BfA can interact with
A^b\ so the next term in the result is A\bx © (BuB2,B^a4). Similarly, the last term
is(AA,As)®Bfa*.

In general, this can be implemented quite neatly. Figure 6 shows the recursive
helping function that does the real work of finding the list of sequences that constitute
the result. The first time this function is called, it is passed as its first two arguments
both the operation op and the same operation with its arguments reversed opC (since
the operation need not be commutative, but the recursive structure exchanges the
roles of the two sequences with each call). Its next two arguments are the two lists of
sequences, with the list whose leftmost child is further to the left ([Ai,A2,A},A4,A5]
in the example) first. We shall discuss the last argument, lastY later.

The function splitUpto is like the standard prelude function span, which breaks
a list according to a predicate, returning as a pair the maximal prefix all of whose
members satisfy the given predicate and the remainder of the list. But in order to
provide ready access to the last item satisfying the predicate (the pivot), splitUpto
cleaves the input list just before it, one position further to the left. Thus, when called
with the predicate (seqLE yl), which compares the guard of its sequence argument
with that of yl, splitUpto identifies as the pivot the sequence that needs to be
split. So, in the first call, xsUptoPivot gets bound to \A\.,A.i\, pivot gets bound to
A3, and moreXs gets bound to lA^As].

The pivot sequence is then itself split, so that pivBef ore gets bound to Afbl and
pivAfter to A^b'. Finally the current term of the result, thisChild, is computed by
applying the operation to (Ai,A2,Afb>) and the empty sequence, which is passed in
at the first call as the argument lastY. The rest of the result is produced recursively
by switching the roles of xs and ys, exchanging the operation op and its counterpart,
and passing in A^b' as lastY to interact in the next term. The recursion terminates
when splitUpto has consumed its input. Figure 7 shows the top-level structure of
the result for this example.
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A2

B

B2

A®B

(A4,A5)(BB>ai

Fig. 7. Making a good search tree

This may seem like a complicated structure to set up, especially if it's never used;
but lazy evaluation helps us here. This structure isn't really built unless it's needed.
Suppose that A and B are components in a disjunction (so © is mergeSeqs), and
suppose that A © B is then intersected with a rare term C. Say its first occurrence
is c\ and bi < c\. Then when we intersect A © B with C, we split A © B at c\, so
the portion of A © B which lies before c\ is never forced. In particular, the blocks
A\ and A2 are never read. In fact, as evaluation proceeds, B\ and B2 are not read
either; the only blocks read are the ones which contain occurrences after c\.

In practice, the system does even better than this, because we employ the standard
technique of ordering the disjunctions from smallest to largest before intersecting
them (Date, 1976). So long as a query contains at least one fairly rare disjunction,
processing is likely to be fast; at each step the size of the result is bounded above by
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the size of the current partial result, and is often much smaller. Furthermore, because
of the effect of fixed-size blocks, the larger, later disjuncts are proportionately better
indexed and precise indexing from small partial results greatly reduces their transfer
volume. This technique is effective because the frequencies of the words are stored
in the index file; thus sorting the disjunctions does not force the entire concordance.

Phrase searches proceed by exactly the same algorithm, except that the implemen-
tation of intersect is slightly different: not only must the words be in the same
sentence, they must also be at the right distance from one another.

7 Source of demand

Once the logic of the functional program had been designed, it was next necessary
to design its interface with the system that calls it, the Philis emulator. Perhaps the
controlling aspect of this design was planning the source of demand which would
drive the functional system.

For a time, we considered implementing the entire Philis language emulator in the
functional language. In this case, the demand on the system would come directly
from the user interface (when it asked to examine part of a result, only then would
it be computed). But the problem with this approach is that it doesn't provide for
simultaneous work by the retrieval system and the user. Having computed an initial
result, the system would wait until the user interface asked for more before resuming
computation. Our goal was not only to provide prompt initial results, but also, while
the user examined those results, to continue processing. But this requires a different
model of demand than just that induced by user interface actions.

Of course, this goal amounts to some form of speculative evaluation. We con-
sidered two approaches to this. One was using an implementation language with
a speculative evaluation mechanism built in, as has been described by Partridge
(1991) and Mattson (1993), among others. Another was to use a lazy language but
to provide demand to the lazy system by some external program, written in a con-
ventional, eager language. This program would mediate between the user interface
and the lazy system, by anticipating the user's demands.

While we preferred the first solution for its elegance, we chose the second for
pragmatic reasons. To a large degree, this decision was shaped by the design goal of
remaining basically compatible with the original Philo/Philis interface. In this sys-
tem, the query results are read as a linear stream. But query results, as we have seen,
have a natural tree structure which the Philo/Philis interface chose to ignore. We
wanted, eventually, to address the problem of speculative evaluation in this context.
If users may browse query results in a tree-oriented fashion, which sub-trees should
be speculatively evaluated first, and how? Arranging for an external program to pro-
vide demand according to this structured model would have been difficult, perhaps
difficult enough to make a true speculative evaluator the clear choice. But since Philo
simply reads the fringe of the query tree from left to right, there is no difficulty in
the present system in deciding which redex to evaluate. Simulating linear speculative
evaluation is simple: one need only to provide a mediator program that continually
asks the lazy system for more output, while serving the user's requests in parallel.
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For this and other reasons, we decided to implement the Philis emulator in C, and
give to it, rather than to the user interface, the responsibility of regulating demand
on the functional system. We simply decided that the user's act of posing a query
should be interpreted as a demand for all (or at least a lot) of the results of that
query. But what if, as we anticipate, after a user examines initial results of a query, he
or she decides to abandon it? If the system has already been supplied with demand,
there has to be some way of telling it to stop. In our design, the interface between
the functional system and the Philis emulator includes two channels: one, an I/O
channel, for supplying demand in the usual way and reading results, and the other
an out-of-band channel for carrying the 'stop!' message. As we shall see below, this
was implemented rather crudely.

8 Implementation

Given the constraints of the overall system design, what functional language should
be chosen for the functional server portion? The most important constraint was in-
teroperability, the possibility of interacting with software written in other languages.
At the time this work was done we came to the sad conclusion that no language
implementation was available that even began to support the interoperability we
needed, so we reluctantly began to consider writing our own, or hacking an existing
implementation.

There is no question that designing and implementing a programming language
for the sake of writing a single application is a drastic measure indeed, and our
experience does little to advertise for this approach. Still, there are several factors
which mitigate this. One was that one of the goals of this project was explicitly to
show functional language implementors what they need to provide in order for it
to be possible to write this kind of application. Thus we were willing to put up
with more pain than we would have if our goal was simply to have a working
program. Another was our interest in perhaps eventually placing a sophisticated
and somewhat 'self-optimizing' language in the hands of the users and seeing what
use they would make of it.

Crucially, though, the structure of pure functional programming languages is such
that simple implementations are quite easy. This has been demonstrated by several
"toy" languages whose implementations have been available for study for several
years; see, for example, Augustsson's Small (Augustsson, 1985), which we used in
an earlier phase of our research (Deerwester et ah, 1990) and Ramsdell's Alonzo
(Ramsdell, 1989) (the design and name of our language are derived from this work).
Indeed, the very first version of our interpreter, with an integrated compiler (later
discarded), was implemented by one person (the second author) in the space of
about four days.

8.1 Alfonzo

The design of our implementation language, Alfonzo (Ziff and Waclena, 1991), was
not intended to be innovative; our main goal was to have an implementation which
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permitted easy extension and interoperability. Thus we based Alfonzo on well-known
models; basically, Alfonzo is a pure Lisp, the purely functional portion of Scheme
(Clinger and Rees, 1991), with lazy evaluation semantics, integer and character data
types only, and a few enhancements for Information Retrieval data which will be
discussed below.

Indeed, much of our implementation was rudimentary, as compared with the state
of the art. We used one of the oldest and (with respect to the performance of the
compiled code) slowest methods: combinator reduction. We translated from Alfonzo
to combinators via the A-calculus, a trivial transformation for our subset of Scheme,
then from A-calculus to combinators essentially by Turner's algorithm (Turner, 1979).
The combinator code was interpreted by an indirectly threaded (Dewar, 1975) graph
reduction machine written in standard C. In our implementation of this technique
each object was tagged with a pointer to a descriptor holding the addresses of
functions providing the output functions, garbage collection support (Spackman,
1992), and reduction rules (Koopman and Lee, 1989) for its class. The interpreter
itself is reduced to a simple dispatch loop.

Certainly, by using simple combinator reduction, we greatly constrained the
processing efficiency of our programs in this initial implementation. Still, we dared
to hope that the resulting program might be practical, based on the intuition that
Information Retrieval is essentially I/O bound, so that some gross CPU inefficiencies
might be tolerable.

The key feature of our implementation in this context was that it is, as far as is
possible, table-driven. In particular, the primitive functions (combinators) used in the
combinator code were specified in tables of C preprocessor macros, and associated,
when the interpreter was linked, with arbitrary object modules. In this way we were
free to change the set of true combinators used by the compiler as experience with
the system grew, but more importantly we could access pre-existing libraries written
in other languages by designing a pure functional interface to them, wrapping them
as combinators (actually, they are more analogous to arithmetic primitives), and
recompiling the interpreter. The ease with which this could be done allowed us not
only to experiment with various interfaces, but to add semi-official primitives for
such purposes as debugging.

One important technical difficulty with this system was the interface between the C
code and the functional system's heap. As we have already observed, the evaluation
of a single retrieval primitive can result in the introduction of a tremendous amount
of data into the heap. An appropriate interface had to be designed to allow the C code
to present the data to the functional program, so that the heap management system
knew about it. Also, there was the possibility that the heap would overflow during
the evaluation of a primitive, triggering a garbage collection, which might result
in important pointers losing their currency. Fortunately, all of our primitives can
predict, after doing a little work, how much heap space they will need. A procedure
was provided which reserved an arbitrary amount of heap space, triggering a garbage
collection if necessary, so that no further checks for storage availability would be
needed as data subsequently entered the heap.

Another feature of the implementation that became important was our heap
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management and garbage collection schemes. We used a simple semi-space, stop
and copy collector, but this was supplemented by a one-bit reference count, a
mechanism that distinguishes shared and unshared pointers, as suggested by Wise
and Friedman (1977). This allows operations to detect operands that have never
been shared and can be reused or returned to a free list as soon as they have been
used, reducing the frequency of garbage collection.

In the case of our application, it was particularly our wish that the enormous
amount of data that enters and leaves the heap in the course of servicing a single
query would, much of it, never become shared. In this respect we were successful. This
effect, however, came at the cost of considerable code complexity in the interpreter
and ultimately cost more time than it saved. Such sharing-detection requires almost
as much work as full reference-counting, and is furthermore extremely difficult to
get right by hand; indeed, errors in updating the shared bits led to most of the
serious bugs in the interpreter implementation.

8.2 The retrieval primitives

To implement the index interface described as a Haskell module in figure 2, we first
extended the Alfonzo interpreter with two new primitives:

indexrdblk. This primitive reads a block of concordance. It takes arguments that
map directly to calls to the corresponding C interface.

indexm. This is the associational primitive. It takes a word and returns according
to the cases described above: if the word is not found, it returns n i l ; if it has
an immediate concordance, it returns a vector of its coordinates; if it has an
indirect concordance, it returns three values: the total frequency of the word,
a vector containing its directory, and a parallel vector containing applications
of the indexrdblk primitive.

In practice, the indexrdblk primitive is not part of the Alfonzo language, nor of
the intermediate code, since no Alfonzo language construct translates to a use of
indexrdblk. The only way it can arise is as the result of evaluation of an indexm
primitive. Of course, since evaluation is lazy, if an indexm primitive is evaluated and
results in the creation of one or more invocations of indexrdblk primitives, these
are not evaluated until there is demand for them.

8.3 Handling output: the interface to Philis

We considered several ways of allowing the Philis emulator to control the demand
placed on the Funser. One approach was to design a simple command interpreter
to be written in Alfonzo, which would accept two kinds of commands: queries,
and requests for the the next hit in the result; a wait loop would then be built
in to the Philis emulator, so that if it was not busy servicing a request from the
user interface, it would continue to issue 'next' commands to the Funser, and each
new query command would signal that any remaining results of the last query were
no longer needed. But this presents difficulties. Should the Philis emulator wait for
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the response to a 'next' command? What if there were no more results, but it was
computationally expensive to find that out? It would be undesirable to have the
emulator freeze until it got some response from the Funser, so it would still be
necessary to have an out-of-band channel for a 'stop' message.

The solution we finally adopted was glorious in its brutal simplicity: the Philis
emulator started up a new Funser process for each query, instructing it to write
all of its result to a file. In this way, the Funser had continuous demand, as soon
as the query was started. Then, in response to user interface commands, the Philis
Emulator allowed the user to browse as much of the results file as had so far
been written. The out-of-band 'stop' command was implemented by sending an
interprocess 'kill' signal. Coincidentally, this is similar to a technique Turner used
in the read-eval-print loop of SASL (Turner, 1981). This approach worked quite
smoothly, although it certainly is not elegant.

Lazy browsing was the source of most of the significant changes to the original
user interface program, Philo. It had been oriented toward conventional eager
evaluation: the very first information about a query which it posted to the user was
the total number of hits in the result. Naturally, under the new system, this is the last
thing the interface knows. Instead, it was changed so that, if Philo became idle, it
would ask the Philis emulator how many hits were then available, so that a running
total of the number of hits found so far was maintained in a corner of the screen.
Meanwhile, it allowed the user to browse the hits that were available in exactly the
same manner that had been possible with the original Philo. Since this included
looking at Bibliographic references and browsing the full text near hits, this could
keep the user busy while the Funser continued to compute (these services, by the
way, are examples of the responsibilities of the Philis emulator which it performed
without using the Funser). An interesting question to be evaluated was how the user
community would react to lazy browsing.

8.4 The Funser program

Implementing the Funser program, using the Alfonzo language and interpreter
augmented by the retrieval primitives, was not an easy task. This was largely
because the Alfonzo system lacks so many useful features that are commonly
found in functional programming systems. At the Alfonzo level, the most troubling
difficulties were the lack of a type system, pattern-matching and separate compilation.
At the system level, the biggest problem was the lack of debugging support.

These problems interact. It is easy to make mistakes in decomposing a complicated
structure such as a list of pairs of a pair and a quadruple; anyone who, programming
in Lisp, has mistaken cadr for cdadr is familiar with this sort of difficulty. A partial
reimplementation of the Funser using Haskell B (Augustsson, 1994) showed how
helpful typing and pattern-matching are in this regard. Because of these lacks, long
hours were spent debugging problems that could have been caught as type errors.

Because so many errors were detected only at run-time, the lack of run-time
debugging was particularly troublesome. Some makeshift debugging support was
added to the system, such as a warning pseudo-combinator that evaluates its first
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argument, prints it, throws it away, then returns its second argument. But this was
very clumsy.

In this context, the difficulty of writing formatting functions to make the various
intermediate results readable for debugging became quite annoying. We developed
a library of typed show functions, inspired by Lazy ML's show.int, show_char,
show_pair, etc. (Augustsson and Johnsson, 1994), but a typed language would have
noticed during type-checking when the types of the formatting functions did not
match those of the data being formatted. In Alfonzo, these type errors were detected
as further crashes during run-time. Again, the partial reimplementation of the Funser
in Haskell B showed how convenient derived instances of Haskell's Text type class
can be.

All these factors combined to make writing and debugging the Funser much more
difficult than it would have been in a more modern functional language. Finally,
the fact that separate compilation was never implemented meant that a five minute
delay was incurred each time a bug was corrected, as the 2000 lines of the Funser
were run once more through the rather slow Alfonzo compiler (itself written in
Scheme).

9 Performance

9.1 The good news

In many ways, the system's performance was surprisingly good. Most of the quali-
tative goals were achieved.

Transient space usage was good. Our heap monitoring tools showed that the space
usage was essentially determined by the total number of terms in the query. This is
understandable since at least one block of concordance for each term would have
to be present in memory in order to decide which one is next in a disjunct; this
situation is analogous to merging n sorted lists, since at least the head of each list
must be forced. Moreover, the heap usage was not related to the total amount of
data which had to be processed to compute the total query result.

Initial results were delivered promptly, certainly more promptly than the entire
result. In fact, for many queries, the system performed better than the original Philis.
Table 1 shows some performance comparisons. The first two columns compare the
Funser with the original Philis. The queries are simple co-occurrences: in each case
a single word is searched against another single word. The timings are averages over
three runs. The first two queries involve a frequent word, aspects, and a rare word,
aboieront. Philis is sensitive to the order in which the words are specified, particularly
so in this situation. Naturally, Funser performs about the same regardless of order.
The tests were all run on a Sun SparcStation with no local disk; the indices were on
remote conventional disk. The timings are as reported by the Unix time command:
'R', 'U' and 'S' stand for real, user and system time. 'Real' times should be taken
with a grain of salt: they are affected by system load. User time is time spent in the
user program, while system time is time spent doing system calls. The latter is an
approximate measure of I/O time. For the Funser, the time until the first response
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Query

aboieront &
aspects

aspects &
aboieront

privileges &
libertes

libertes &
privileges

passion &
amour

amour &
passion

Philis
R(F) U

0.4

48

58

40

0.1

4.7

7

4.7

exhausts
memory

exhausts
memory

S

0.2

6.1

8.9

6.6

R

3.6

3.7

13.8

5.5

322

317

Funser
F U

(3.6)

(3.7)

3

3

4

4

2.9

2.7

5.1

4.7

269

264

S

0.3

0.3

1.7

0.3

10.3

13

R

3.2

3.2

3.2

3.2

19.9

23.5

Emulator
F U

(3.2)

(3.2)

3

3

5

14

1.0

1.2

1.2

1.3

6.7

14.9

S

0.5

0.6

0.6

0.5

1.3

3.0

Table 1. Performance of the three systems on some simple queries. 'R', 'U' and 'S' are
real, user, and system times. 'F' is real time until first response

is shown, marked 'F'. For Philis, this is the same as overall real time. First response
time is not relevant for the first two queries, since they produce a single result.

Note the final two searches for which Philis produces no results. This is an
illustration of the fact that we achieved good transient space usage, and that the old
Philis did not. Philis crashes trying to read huge concordance entries into memory.

For the last searches it should be noted that the total elapsed time, some five
minutes, is quite long. However, the time until the first result is printed is much
shorter. In general, the Funser delivers initial results quite quickly, especially when
there is a lot of output to be produced. Initial response time varies somewhat with
the complexity of the query. The worst case, of course, is a query which requires a
lot of computation in order to produce no output; but this is also the worst case
for conventional systems.

Our experience with the one-bit reference count scheme was mixed. As we have
noted, we found it tricky to implement; it was the source of most of our interpreter
bugs. But the technique was shown to be applicable to our task; for simple queries,
such as single disjunctions, all the coordinate data was freed immediately after it
was examined, without ever becoming shared, so garbage collections were indeed
infrequent.

Unfortunately, the overhead of the scheme more than offset the time saved by
garbage collecting less frequently, and in consequence the timings shown were derived
with one-bit reference counts disabled. This effect may be understood by observing
that although, unlike true reference-counting, the one-bit scheme does no additional
work once an object has become shared, it still expends effort proportional to the
number of objects that it manages to free: at the end of each reduction it must
perform free-list maintenance to allow their storage to be reused (it may also have
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deleterious effects on the instruction cache and pre-fetch mechanisms by increasing
the size and the number of paths through the primitives). But the overhead of
stop-and-copy garbage collection is related only to the total amount of data live
at garbage collection time. The very fact that made the one-bit scheme attractive
for our application - that we filter a great deal of data without ever sharing it -
interacts with lazy evaluation to produce an extremely low transient space loading,
which is the very best case for the stop-and-copy mechanism.

9.2 The bad news

Unfortunately, the performance of the Funser overall was disappointing, particularly
on the simplest searches. For searches involving a single word, the Funser took much
longer overall than the original Philis, although initial results were quicker. In an
attempt to isolate where the the Funser was losing, a Funser emulator was written,
using C wrappers to the index primitives and standard Unix pipeline-oriented data
processing commands. By comparing this Funser emulator to the Funser, we hoped
to learn how much time was lost to processing overhead. The third column of
Table 1 shows the performance of the Funser emulator on the same queries.

As expected, the Funser emulator out-performed the Funser significantly on
simple queries. But more surprising was the fact that the simple Funser Emulator
out-performed the Funser on complicated queries also. This was true even though
the Funser emulator made no attempt to minimize disk I/O; it always read the entire
concordance of every word in the query. Yet, on almost all queries, it performed well.
There are two reasons for this. First, was the slowness of combinator reduction. Our
interpreter performs about six times slower than the Gofer system (Jones, 1994), a
popular interpreted lazy functional system. But second, our intuition that the entire
task was I/O-bound was to some degree wrong. Put another way, if you are going
to go to some trouble to decide to read only one disk block instead of three, but
then those three happen to be next to each other, you had better not have gone to
a lot of trouble.

Note that the timings here include the latency of starting up a new process for
each query. For both the Funser and the Funser Emulator, this is appropriate, since
in the actual Philo/Philis system, they each would indeed be re-invoked each time.
The original Philis, however, was invoked only once per user session, and so avoided
this cost. Still, this overhead is unmeasurably small in our test environment, and
the comparative success of the Funser emulator shows that it is not prohibitive in
practice.

10 Conclusions and open questions

In the working system which has been released to the public, and which is used
in more than 500 sessions per month, the Funser is replaced by the Funser emu-
lator, now somewhat cleaned up and improved. Thus, instead of producing a 'real'
application, we have demonstrated yet again that lazy functional programming can
be useful for prototyping, something that is now fairly widely accepted. By work-
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ing from the functional programming perspective, we have exposed the structure
of the information retrieval problem: the sequence data structure is both a useful
description of the task and an addition to the functional programmer's tool-box.
But although the structure of the retrieval algorithms is elegant, the Funser program
itself is not a model of clarity.

These problems are in large part consequences of having had to design and
implement our own language. This was a practical necessity at the time, given the
constraints under which we were operating, but the situation has changed, and the
time is ripe for a re-implementation of the Funser on a richer platform. Recently,
functional systems (such as Haskell B) have begun to offer some of the same features
that were so crucial to the Funser, and which we developed independently, such
as support for incorporating primitives written in C, and for interaction between
foreign code and the heap management system.

A re-implementation of the Funser in Haskell would certainly be more elegant
and easier to debug, and might well be competitive with the replacement system, the
Funser Emulator. Whether competitive or not, a re-implementation would provide
an occasion to study some of the interesting questions the Funser experience has
raised. For example, can an optimal point be found in the trade-off between the
overhead required to economize disk accesses and the overhead of doing one or two
too many? Exactly where such a point is to be found depends on the relative speed
of the application and the data source. One likely scenario, a distributed retrieval
system, where data comes from a remote server rather than a local disk, shifts the
balance in favor of a stingier approach, as does increased processor speed. Could
heuristics be developed to help tune the system to a particular setting? The model of
the database layout and the granularity of the retrieval primitives are also variables
worth studying.

Lazy browsing, too, has a lot of possibilities. Since the structure of the result
can with the techniques we have developed be arranged to follow the hierarchical
structure of the database, it would be natural to support hierarchical browsing: the
user is first presented with the (lazy) list of authors in whose works hits appear;
the user selects one and is presented with the list of documents by that author, and
so on. In a hierarchical browsing system, the simple techniques we used to simulate
speculative evaluation would no longer apply, since there is no unique next item
of output that can be precomputed. If the system is to guess, it must guess wisely,
for unpredictable performance is as annoying to users as long latency. The problem
of discarding unwanted lines of speculation also becomes more serious; killing the
evaluator is hardly an option when the base computation is still needed to supply
other streams of data. The best approach is to provide true, concurrent, speculative
execution.

The most significant result of this work has been the demonstration that this
problem domain is one in which a lazy functional approach fits very well. For while
the Funser system was replaced by an emulator, this emulator performs according
to the same specification as the lazy functional version, allowing the user to browse
query results as they are generated; and the users do perceive the advantages
of prompt delivery of initial results, especially for queries producing bulky output.
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Their response has been overwhelmingly positive, even though the emulator performs
poorly in comparison to the old, pre-Funser Philis on certain complex queries. This
should be taken as a challenge and an opportunity for language implementors: can
your system support a re-implementation of the Funser which out-performs the
current Funser emulator? If so, you may boast of an application that will be used
by more than 500 users a month.
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