

ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 1689

INTERNATIONAL DESIGN CONFERENCE – DESIGN 2022
https://doi.org/10.1017/pds.2022.171

Concept of a Multi-Agent System for Optimised and Automated
Engineering Change Implementation

O. Radisic-Aberger , T. Weisser, T. Saßmannshausen, J. Wagner and P. Burggräf

University of Siegen, Germany

 ognjen.radisic@uni-siegen.de

Abstract

Engineering changes are necessary to stay competitive, unavoidable and occur more frequently with

increased product complexity. Currently, scheduling of engineering changes into production and supply

chain is a manual process. With new possibilities in the field of artificial intelligence, this publication

presents the vision of a flexible multi-agent system with four agents and a single shared database. By

autonomously scheduling changes and predicting KPI impacts of implementation dates, the agent-system

provides additional capacity and decision-making support to the organisation.

Keywords: engineering change, artificial intelligence (AI), change management, multi-agent systems

1. Introduction
To remain competitive, to remove quality issues, or due to legislative reasons, continuous changes to a

product are inevitable. Although companies try to minimise or fully avoid these engineering changes

(EC), there is an observable increase in frequency and amount due to changed customer behaviour. A

therefore necessary change to a component of a product can propagate to other components, possibly

resulting in an avalanche of further changes (Eckert et al., 2004). When implementing ECs into the

production environment, multiple process partners need to ensure that a variety of changes are

introduced simultaneously at the assembly line. With increasing complexity of the product, in the

aeronautical or automotive industry for example, coordinating multiple supply streams becomes

pivotal to maintain a steady production process output.

To cope with the increasing complexity, frequency, and volume of EC, automating EC and its

associated management is seen as an opportunity (Sharp et al., 2021). While research on automated

problem assessment (Weißer et al., 2021), solution finding (Beroule et al., 2014) and impact

assessment (Ma et al., 2017) is available, the EC implementation process proves difficult as it remains

a communication-intensive process. With the increasing size of global production networks, the

optimal implementation of changes becomes increasingly complex. Besides the problem to define an

optimal implementation date (Barzizza et al., 2001) and multiple changes being introduced

simultaneously (Bhuiyan et al., 2006), the workload during peaks leads to prioritisation losses

(Wänström et al., 2006), failing some changes. However, to prevent malfunction in digitalised

products for software and hardware compatibility it is necessary to have full match of actual and

planned bill of materials. Hence, to improve scheduling of changes a digitalisation of the EC process

while retaining a degree of flexibility for handling variety is necessary.

With advances in artificial intelligence (AI), this paper provides a concept, key requirements, and

logic for an automated EC implementation control via a multi-agent system (MAS). Our system

consists of four agents that build upon a single shared database. The interplay between these agents

optimises and partly automates the EC process. The remainder of this contribution is structured as

https://doi.org/10.1017/pds.2022.171 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.171

1690 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN

follows: chapter 2 provides the theoretical background on EC implementation and insight on related

publications. Chapter 3 introduces the MAS, whose components are subsequently discussed in

chapter 4. Chapter 5 concludes with an outlook on future work and research activities.

2. Theoretical Background

2.1. Engineering Change and Engineering Change Implementation

ECs are any change or modification to the function, behaviour, or structure of a technical artefact

(Hamraz et al., 2013). As such, they can occur at any point in a product's lifecycle. The handling of

these ECs is further defined as engineering change management, with its goals defined as Less,

Earlier, More Effective, More Efficient, and Better (Fricke et al., 2000). Depending on the product's

lifecycle phase, the focus shifts. During early product development, changes are frequent and on short

notice to enable earlier experience with the modified product. During series production effectiveness

and efficiency come into focus.

From a process view, EC handling can be described in six distinct process steps (Jarratt et al., 2005).

As seen in Figure 1, following the emergence of a change trigger an EC request is raised and resolved

accordingly through the process steps. Upon approval of a solution, the EC request is transformed into

an EC notice. Though the process itself is not linear, as there are iteration loops, once a definitive

solution is decided on, the implementation phase is mostly linear. Multiple process partners are tasked

with activities such as material planning and homologation. To enable coordination, most companies

use a form of change coordination board or committee (Huang et al., 2003). As automating other

process steps is already being researched, (e.g. (Sharp et al., 2021; Arnarsson et al., 2021)), this paper

focuses on an automated implementation process.

Change Trigger

EC request raised

Identification of

possible

solution(s)

Implementation of

solution

Review of

particular change

End

Approval of

solution

Impact

assessment of

solution(s)

Figure 1. The generic EC process as defined by Jarratt et. al (2005),

with the focus area highlighted

EC implementation is a complex process, with different stakeholders involved, each with their own

objective. With case studies from the automotive industry, Potdar and Jonnalagedda (2018), as well as

Shivankar et al. (2015) provide insights and process flow charts with detailed activities described.

Both contributions can be summarised as a change coordinator distributing an approved change to

various departments within the plant and waiting for their feedback. Upon approval, a material planner

organises the logistics for changed parts into production. A generic process for EC implementation

however is difficult to define, due to a high degree of customisation triggered by the EC itself.

Additionally, EC implementation has been an overlooked research field in the past (Hamraz et al.,

2013). Hence, only a few sources describe standardised processes, as well as tools and methods for

this step. Thus, in a first step, the MAS should support two specific functions within an EC process,

the material planner and the change coordinator.

The objectives of the agents developed for this task can be derived from theory in combination with

the case studies described. Two main research paths were discovered within EC implementation

research, namely implementation date optimisation and process optimisation (Radisic-Aberger, 2021).

On the one hand, some researchers focused on calculating the optimal change effectivity date defining

when and how to implement the EC. Focusing on theoretical exploration, Barzizza et al. (2001) and

Wänström et al. (2006) for instance built on previous work by Diprima (1982) and calculated the

optimal dates for an EC to reduce rework and obsolescence cost respectively. On the other hand,

research addressed by Bhuiyan et al. (2006) as well as Ouertani (2008) among others, simulated

efficiency gains through parallelisation of tasks and batching of multiple ECs into one change

https://doi.org/10.1017/pds.2022.171 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.171

ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 1691

occurrence. However, EC implementation remains a manual task. For integrating both theoretical

research streams into a potential solution, an MAS is proposed, providing the benefit of automatic EC

scheduling, optimising the effectivity date while being adaptable to EC variance.

2.2. Applied Methodologies and Related Work

This contribution is built on two methodologies namely the design science research methodology

(Hevner et al., 2004) for the development of artifacts as well as the Gaia methodology (Wooldridge et

al., 2000) for detailling of the MAS.

The first methdology is used to define the overarching procedure and develop potential future

information systems (IS), which are going to be embedded in the industry. The environment according

to Figure 2 has been described in chapter 2.1., the EC implementation process.

The second methodology is used for conceptualisation and development of the MAS. As the

methodology demands the requirements on the agents first, these are initially developed by usage of

the design science research methodology. The role model and function model is further described in

chapter 3.

IS Research

Business

Needs
Applicable

Knowledge

Environment Knowledge Base

People

Organisations

Technology

Develop / Build

Foundations

Methodologies

Justify / Evaluate

Application in the appropriate Environment Additions to the Knowledge Base

Assess Refine

Relevance Rigor

Figure 2. Design science research methodology according to Hevner (2004)

As a proposition for the objectives of the agents the following business needs (BN) are given,

according to the tasks described by Potdar and Jonnalagedda (2018) in combination with the

theoretical research streams:

BN1: Define a cross-company optimal EC effectivity date on part level

BN2: Provide a prediction whether the part will be introduced accordingly, depending on data

from other stakeholders

BN3: Provide an EC schedule, according to the outcome of BN1 and BN2

BN4: Provide the organisation with feedback

BN1 is a combination of the two theoretical research streams: defining an optimal date for

implementation and usage of EC batching to reduce complexity. With the digitalisation of the process,

an additional benefit can be raised, as through advanced AI applications, the introduction date of ECs

can partly be predicted. This results in BN2, targeted at the industry observations (cf. chapter 2.1) and

incorporating data from multiple sources. BN3 is the potential for automating the scheduling of

changes, enabling better usage of resources compared to the manual process today. Finally, to remain

in control of the process, feedback to the organisation is necessary, resulting in BN4.

After identifying the BN, design science research methodology proposes the establishment of a

knowledge base. For this, we performed a systematic literature search (Radisic-Aberger, 2021), and

allocated discovered literature in the framework developed by Hamraz et al. (2013), with an additional

layer of AI usage. Hence, the foundations of the knowledge base are formed by literature on EC and

EC management, with supportive literature on MAS. Through the literature search, five related works

have been identified, each providing an MAS for solving a distinct EC problem.

From a chronological perspective, the first identified agent-based EC management approach by Moon

and Wang (2009), models consumers, producers, and suppliers. By simulating the EC process on a

macroscopic level, they were able to show the positive impact of an effective EC process on market

shares. To support engineers with the challenging task of finding the optimal configuration after an EC

https://doi.org/10.1017/pds.2022.171 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.171

1692 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN

trigger, Beroule et al. (2014) developed consensus-seeking agents. They were able to provide potential

new configurations based on requirements, functions, and manufacturing, built around robust and

flexible components. Automatic mapping of product data was identified by Bender et al. (2015) as a

potential of improving the EC process. Thus, they designed a concept for an MAS for mapping

geometrical and logistical data, discussed different architectures and arrangements of active and

passive agents, and proposed developing a running prototype. Similar to the objective of Beroule et al.

(2014), Camarillo et al. (2017) used case-based reasoning agents to identify potential solutions based

on past data. Their system was orientated towards problem solution finding and in comparison to

human engineers their prototype achieved 80 % solution accuracy. Finally, Ma et al. (2017) used an

MAS to better predict change propagation. Comparing it to the change prediction model, their system

performed better when calculating propagation paths with multiple changes occurring on multiple

parts at once. These five contributions show that MAS can be used to model the complex EC process,

as well as to support those involved with EC. However, an MAS in support of EC implementation has

not been identified in the literature.

3. Multi-Agent System Approach
As introduced, the EC implementation process involves multiple stakeholders and departments across

a company, loosely collaborating through the actions of a change coordinator. Representing loose

collaboration between autonomous entities becomes possible through MAS (Kehl et al., 2015; Ma et

al., 2017). Hence, we propose to model and handle the EC implementation process via an MAS. As

introduced, we employ the Gaia methodology (Wooldridge et al., 2000), to detail the design of the

agents. As a initial step, we describe the roles and interactions model of the MAS, as shown in

Figure 3. Accordingly, neither the roles nor the interactions model describe the actual function, but

rather a general description of responsibilites of the agents, which are then further expanded on as the

MAS is developed. The roles and general architecutre of the four agents are afterwards discussed in

detail in chapter 4.

EC process data

EC configuration EC schedule

Process Flow

Information Flow

Prediction

on KPI

Requestes a

calculation

Requests a prediction for

a calculated date

Provides

feedback

Negotiator Agent

Registers a

deviation
Optimal

date

Optimizer Agent

Predictor Agent

Supervisor Agent

Logistical data

Design data

Commercial data

Figure 3. Schematic overview of the role model of the proposed multi-agent system for EC

implementation

We envision four agent roles, each responsible for one of the BN in chapter 2.2, and a data source that

all agents can access. According to the definition of Russell and Norvig (2016, p. 36ff.) an agent is an

autonomous entity, that perceives its environment through sensors, upon which it can act through

actuators. Depending on the task, the agent's structure varies. As such, the MAS employs goal-based,

utility-based as well as model-based reflex agents (Russell and Norvig, 2016, p. 50ff.). Each agent

solves its given task with regard to optimising the performance fulfilling their objective, with their

orchestrated procedure defining the MAS. For each agent, a task environment is necessary, defined by

https://doi.org/10.1017/pds.2022.171 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.171

ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 1693

performance measure, environment, actuator, and sensor (PEAS) (Russell and Norvig, 2016, p. 40),

provided in Table 1.

Within the generic EC process, the proposed MAS starts after the finished approval process and is

only tasked with the EC implementation process. The resulting EC configuration document is taken

by the 'Negotiator Agent' as the input for its process, starting an optimise-predict-schedule (OPS)

sequence.

According to the definition of Russell and Norvig (2016, p. 36ff.) an agent is an autonomous entity,

that perceives its environment through sensors, upon which it can act through actuators. Depending on

the task, the agent's structure varies. As such, the MAS employs goal-based, utility-based as well as

model-based reflex agents (Russell and Norvig, 2016, p. 50ff.). Each agent solves its given task with

regard to optimising the performance fulfilling their objective, with their orchestrated procedure

defining the MAS. For each agent, a task environment is necessary, defined by performance measure,

environment, actuator, and sensor (PEAS) (Russell and Norvig, 2016, p. 40), provided in Table 1.

This agent takes over the coordinating tasks, usually performed by the human change coordinator,

with the goal to schedule an EC. From the EC configuration, an 'Optimiser Agent' is triggered,

replacing the material planner in the process of Potdar and Jonnalagedda (2018), calculating the

optimal change effectivity date based on not only EC process data but logistical, design, and

commercial data es well. Having identified a global optimum, the date is provided to the 'Negotiator'.

Upon receiving this data, the 'Negotiator' requests a prediction from a 'Predictor Agent', how

implementing on this effectivity date, in combination with the EC notice and configuration will

impact key performance indicators (KPI), e.g. scheduling accuracy. Based on the reply from the

'Predictor', the 'Negotiator' decides whether it is satisfied with this potential outcome and confidence

interval, or whether it retriggers the calculations, demanding to search for a different, this time local,

optimum. In case the effectivity date is satisfactory, the EC notice is scheduled for production and

assembly, upon which a 'Supervisor Agent' watches over the EC schedule and informs the human in

the loop and retriggers the 'Negotiator' in case any deviations or reitariton in the process are

registered. Once the EC is implemented, the 'Supervisor' adds the EC notice to the historical EC

process database.

Each agent has its own objective and performance measure. Accordingly, the actuators and sensors

for each agent differ, reacting to its environment. Chapter 4 discusses these agents and their logic in

detail.

Table 1. Performance, environment, actuators, and sensors overview

Agent Performance Measure Environment Actuators Sensors

Negotiator Scheduling Accuracy EC Data Calculation request,

prediction request,

comparison

algorithm, EC

scheduling, request

manual override

EC configuration,

calculation,

prediction,

implementation

information,

scheduling check

Optimiser Implementation cost

and time

Current

commercial, design,

logistical, EC Data

Classifier algorithm,

calculation algorithm

EC configuration,

calculation requests,

supply chain data,

product data,

production schedule

Predictor Prediction quality Past & current

logistical, design,

EC Data

Prediction algorithm Prediction requests,

EC configuration, EC

process data, EC

timing data

Supervisor Manual intervention EC schedule Scheduling check

request, feedback

distribution

EC schedule data,

prediction data, EC

process data, EC

timing data

https://doi.org/10.1017/pds.2022.171 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.171

1694 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN

4. Framework and Service Model of the Agents

4.1. Negotiator Agent

The central agent of the MAS, the 'Negotiator', coordinates tasks and providing an EC schedule,

fulfilling BN3. Designed as a learning goal-based agent, the logic follows the flowchart in Figure 4.

The decisions depicted do not occur in a sequential matter, but rather simultaneously and represent

sensors, that enable him to perceive the environment, and act upon it depending on the acutal state.

Upon initialisation, the agent is in an idle state, waiting for a new EC to become available. Once

received, the 'Negotiator' requests to calculate optima for EC effectivity date in regards to time and

cost. Additionally, a prediction on KPI impact is requested for the EC case. When available, the

'Negotiator' checks whether every optimum has a prediction. If the conditions are met, the agent

compares the predicted KPI and the identified date against a rule set. If the resulting comparison

returns a result within the acceptability limits of the agent, the EC is scheduled into the production

network. In case the result is deemed unsatisfactory, the 'Negotiator' retriggers the 'Optimiser' by

requesting to search for the next best local optimum, restarting the OPS sequence.

Unless a request to control the schedule is received from the 'Supervisor', the agent remains in an idle

state until receiving the EC implemented confirmation, resulting in its termination. However, if a

deviation is recorded, the 'Negotiator' requests a new prediction to reassess the situation, and

dependent on the outcome the schedule is confirmed or a new initial optimum calculation required,

effectively restarting the OPS sequence. Finally, a limit should be set on how many loops can be re-

run, and in case the global optimum never occurs, a manual override or decision is requested.

Main points to take into consideration when developing this agent are check frequency, data storage

concepts, and the ruleset. While the first and second are limited by computational resources, the

ruleset is unique according to a company's requirements. Also, the scheduling accuracy is suggested as

the performance measure (Table 1), as this metric enables the 'Negotiator' to autonomously improve

and adapt the rule set over time, increasing the accuracy and efficiency of future EC schedules. At the

core of improvement of the agent we envision a reinforcment learning algorithm, as these posses the

ability to enhance the rule-set without provision of a detailed one to start with. Initially, this agents

task are still to be supervised by a human, until enough data and experience is gathered. Thus, though

envisoned as an autonomous scheduling agent in its fully developed system, in its initial state it acts as

a recommender.

Start

Initialise

Wait

New EC

available?

Request

calculation and

prediction

y

n

Request prediction

Prediction and

calculation available?

Compare last

predicted KPI with

target KPI

y

Result

satisfactory?

n

y

Schedule ECRequest new

calculation
End

Deviation

registered?

y

EC

implemented?

y

n

Legend

Action

Decision

Control Flow

Loop count

within limits?

y

Request manual

decision

n

n
n

Figure 4. Logic architecture of the 'Negotiator Agent'

https://doi.org/10.1017/pds.2022.171 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.171

ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 1695

4.2. Optimiser Agent

The second agent to be introduced is the 'Optimiser Agent' (Figure 5), a model-based reflex agent. It

represents the theoretical research streams of EC implementation research and the material planner's

task. Accordingly, it addresses BN1 to define a cross-company optimal implementation date. Once

initialised, the agent scans through ECs with an open calculation request. Its objective is to search for

date optima regarding cost and time. However, before calculating the optima, the change needs to be

classified according to its configuration. Afterward, depending on the classification an optimum is

calculated. For calculation, a cost function comprised of all costs identified with a certain change type

is necessary. For instance, a change due to homologation changes (e.g. resale ban) will have other

costs involved than a change due to quality problems (e.g. warranty). Once a global optimum and

classification are identified, the information is provided to the 'Negotiator', and the agent returns to an

idle state. If an additional calculation request is received, the 'Optimiser' looks for the second-best, or

in repeated cases the next best, effectivity date, and returns the information. Upon notice that the EC is

scheduled, the 'Optimiser' is terminated, as in case of a full rescheduling of the EC, for the increase of

cost and time savings, a full classification-optimisation loop is suggested

On classifying EC, Diprima (1982) and Barzizza et al. (2001) each identified three types of changes

based on the EC trigger (e.g. immediate and convenient, or rework and scrap). For the classifier we

suggest re-evaluating these types, as with more granularity, a better result is possibly achieved. Hence,

for improvement of the MAS, additional classifications need to be defined. Furthermore, logistical

data, whether parts are delivered in bulk or just-in-sequence, enable different implementation

strategies, effectivley increasing the number of change types. Additionally, an investigation of whether

rule-based or machine learning (ML) classification proves better is suggested.

For the core of the 'Optimiser' agent, a suitable algorithm is required. This algorithm needs possibilites

to test different parameter sets as an actuator. For instance, a change of call-offs, acceptance of

obsolescence costs, changing of the amount of goods delivered are possible acutators for the agent to

find different optima. To model this search, a clear allocation of product and process specific costs is

required. E.g. the above discussed warranty costs are product specific, as the total costs are only

dependent on the amount of products built, and not on the change process itself. Furthermore, we

suggest developing the actuators as encoded parameters of a genetic algorithm, in combination with a

Tabu search to enable the agent to escape previously calculated optima.

Another source of complexity to keep in mind in defining the optimal date are sub-assemblies. For

instance, if a quality issue is addressed by changing both the carrier part and the attached part and

variants of the attached part exist, achieving zero obsolescence costs is only achieved if all parts have

their stock reduced. Contrary, if steered wrongly, production is halted in the worst case due to a

mismatch of carrier and attached part.

Start

Initialise

Wait

Classify EC

Calculate global

optimum

Additional calculation

request received?

n

y

Calculate local

optimum

Initial calculation

request received?y

n

Endy

EC scheduled?

n

Figure 5. Logic architecture of the 'Optimiser Agent'

https://doi.org/10.1017/pds.2022.171 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.171

1696 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN

4.3. Predictor Agent

The 'Predictor' addresses BN2, prediction of EC implementation effects. Therefore, the agent provides

the 'Negotiator' with a confidence interval on implementation accuracy and an impact assessment. Its

control flow (Figure 6) is rather simple, as upon initialisation the agent is tasked with predicting KPI

for all given dates and current EC information. Once the prediction for these KPIs is calculated, the

result is returned to be matched against the ruleset of the 'Negotiator'. As an ML-based model, the

'Predictor' is a learning agent, constantly improving its predictions with data from past changes.

From a data perspective, this agent has the highest amount of data consumption. For the prediction

algorithm at its core, a supervised ML model is suggested. For this agent to unfold its full potential,

data from past changes is necessary as input. To our knowledge, no publication in the past has

discussed what data is required for predicting KPI in an EC environment. Additionally, KPI such as

'scheduling accuracy', 'rescheduling amount', 'time to implementation', and others are not defined for

the EC process control. Once defined, research is required on what data is best used for predicting

these KPIs, and which ML algorithm to use.

Predict for

available dates

and current

information

InitialiseStart EndWait

Prediction request

identfied?

y

n

Figure 6. Logic architecture of the 'Predictor Agent'

4.4. Supervisor Agent

The last agent is shown in Figure 7, representing a suggestion for BN4 and thus providing feedback.

The 'Supervisor' is a separate entity, with the objective to monitor the EC schedule and inform a

human operator and the 'Negotiator' in case any deviations are identified. Separating its objective from

the 'Negotiator' enables the strict fulfilment of the respective objectives without interference. Its

sensory input includes current and past data of the EC configuration and EC process, giving it the

possibility to report the EC implemented notification. Initially, a basic rule set on which deviations are

deemed grave enough to necessitate a scheduling check or even a cancellation of the EC should be

provided. As it stands, the main difficulty lies in predicting the outcome of a milestone, dependent on

the time passed.

It is the only agent that is reliant on a human-machine interface and its performance measure is the

number of manual interventions of ECs. The cases with manual intervention can then be used for the

agent to learn and improve the deviation ruleset via a reinforcement learning algorithm.

Start

Initialise

Wait End

EC

implemented?

y

Changes

identified?

y

n
n

Distribute

implementation

information

Register

Deviation

Legend

User Feedback

Information Flow

Figure 7. Logic architecture of the 'Supervisor Agent'

https://doi.org/10.1017/pds.2022.171 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.171

ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 1697

5. Conclusion and Outlook
We have presented the concept for a potential MAS, designed for automatic EC implementation

scheduling. From analysing literature and associated industries, four BN for effective EC scheduling

have been defined. These four BN were addressed by introducing four distinct agents. Subsequently,

every agent's logic, architecture, and objective were discussed.

As a limitation to the optimisation and automation capabilites of the proposed MAS the focus on the

implementation step of the EC process and predefined rules are identified. Due to the late point in the

process upon which it becomes active, its optimisation capabilites are within a narrow timeframe.

Additionally, within production systems unforseen situations can happen at any time. These result in

emergency EC or highly complicated contractual obligations, not represented in data. These changes

require fast and flexible decision making and shortcuts within the system, for which the MAS is not

designed. Another limitation are responsibilities and accountabilities which need to be decided on a

case by case base for the organisation. Especially for legal or safety critical changes, the human should

always have the last call.

Once the base MAS is established, further agents could be designed, replicating other tasks. For

instance, the 'Negotiator' could also trigger a homologation-specific agent, which is then tasked to

check whether any legal testing is necessary. Another issue identified is the product and process

approval, as without prior confirmation from the customer, parts should not be sent by the supplier. An

agent could thus check whether the change is simple enough to be done without approval checks or

even automatically check the documentation provided.

As a research outlook for the MAS, the components of the agents require refinement and investigation.

For a starting and testing point, we suggest the tasks of the 'Negotiator' to be performed by human

associates and building the other agents first. Research on every actuator is still needed. For instance,

the optimising agent needs development regarding classification, as a ruleset-based approach provides

limited flexibility to variety. On the goal of prediction, further research regarding learning algorithms

and data engineering is needed. As within other research, we suggest investigating which algorithms

are suited best for different EC cases and establishing standard datasets for testing. Once a reasonably

fit model is trained, it is going to be deployed in a real-world environment to support the human

coordinator. In future research, we will test and further develop the logic for each of these agents and

deploy the MAS in an industry environment to confirm the applicability through a case study.

References

Arnarsson, I.Ö., Frost, O., Gustavsson, E., Jirstrand, M. and Malmqvist, J. (2021), “Natural language processing

methods for knowledge management—Applying document clustering for fast search and grouping of

engineering documents”, Concurrent Engineering, Vol. 29 No. 2, pp. 142–152.

https://doi.org/10.1177/1063293X20982973.

Barzizza, R., Caridi, M. and Cigolini, R. (2001), “Engineering change: A theoretical assessment and a case

study”, Production Planning & Control, Vol. 12 No. 7, pp. 717–726.

https://doi.org/10.1080/09537280010024054.

Bender, J., Kehl, S. and Müller, J.P. (2015), “A Comparison of Agent-Based Coordination Architecture Variants

for Automotive Product Change Management”, in Müller, J.P., Ketter, W., Kaminka, G., Wagner, G. and

Bulling, N. (Eds.), Multiagent System Technologies, Lecture Notes in Computer Science, Vol. 9433,

Springer International Publishing, Cham, pp. 249–267. https://doi.org/10.1007/978-3-319-27343-3_14.

Beroule, B., Fougeres, A.-J. and Ostrosi, E. (2014), “Engineering change management through consensus

seeking by fuzzy agents”, in 2014 Second World Conference on Complex Systems (WCCS), 10.11.2014 -

12.11.2014, Agadir, Morocco, IEEE, pp. 542–547. https://doi.org/10.1109/icocs.2014.7060920.

Bhuiyan, N., Gatard, G. and Thomson, V. (2006), “Engineering change request management in a new product

development process”, European Journal of Innovation Management, Vol. 9 No. 1, pp. 5–19.

https://doi.org/10.1108/14601060610639999.

Camarillo, A., Ríos, J. and Althoff, K.-D. (2017), “Agent Based Framework to Support Manufacturing Problem

Solving Integrating Product Lifecycle Management and Case-Based Reasoning”, in Ríos, J., Bernard, A.,

Bouras, A. and Foufou, S. (Eds.), Product Lifecycle Management and the Industry of the Future, IFIP

Advances in Information and Communication Technology, Vol. 517, Springer International Publishing,

Cham, pp. 116–128. https://doi.org/10.1007/978-3-319-72905-3_11.

Diprima, M. (1982), “Engineering Change Control and Implementation Considerations”, Vol. 23, pp. 81–87.

https://doi.org/10.1017/pds.2022.171 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.171

1698 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN

Eckert, C., Clarkson, P.J. and Zanker, W. (2004), “Change and customisation in complex engineering domains”,

Research in Engineering Design, Vol. 15 No. 1, pp. 1–21. https://doi.org/10.1007/s00163-003-0031-7.

Fricke, E., Gebhard, B., Negele, H. and Igenbergs, E. (2000), “Coping with changes: Causes, findings, and

strategies”, Systems Engineering, Vol. 3 No. 4, pp. 169–179. https://doi.org/10.1002/1520-

6858(2000)3:4<169:AID-SYS1>3.0.CO;2-W.

Hamraz, B., Caldwell, N.H.M. and Clarkson, P.J. (2013), “A Holistic Categorization Framework for Literature

on Engineering Change Management”, Systems Engineering, Vol. 16 No. 4, pp. 473–505.

https://doi.org/10.1002/sys.21244.

Hevner, Alan R, March, Salvatore T and Sudha (2004), Design Science in Information Systems Research, Vol.

28.

Huang, G., Yee, W. and Mak, K. (2003), “Current practice of engineering change management in Hong Kong

manufacturing industries”, Journal of Materials Processing Technology, Vol. 139 No. 1-3, pp. 481–487.

https://doi.org/10.1016/S0924-0136(03)00524-7.

Jarratt, T., Clarkson, J. and Eckert, C. (2005), “Engineering change”, in Clarkson, J. and Eckert, C. (Eds.),

Design process improvement: A review of current practice, Springer, London, pp. 262–285.

https://doi.org/10.1007/978-1-84628-061-0_11.

Kehl, S., Stiefel, P. and Mueller, J.P. (2015), “Changes on Changes: Towards an Agent-Based Approach for

Managing Complexity in Decentralized Product Development”, DS 80-3 Proceedings of the 20th

International Conference on Engineering Design (ICED 15) Vol 3: Organisation and Management, Milan,

Italy, 27-30.07.15, pp. 219–228.

Ma, S., Jiang, Z. and Liu, W. (2017), “Multi-variation propagation prediction based on multi-agent system for

complex mechanical product design”, Concurrent Engineering, Vol. 25 No. 4, pp. 316–330.

https://doi.org/10.1177/1063293X17708820.

Moon, Y.B. and Wang, B. (2009), “Agent-Based Modeling and Simulation of Resource Allocation in

Engineering Change Management”, in Proceedings of the 11th International Conference on Enterprise

Information, 06.05.2009 - 10.05.2009, Milan, Italy, SCITEPRESS - Science and Technology Publications,

pp. 281–284. https://doi.org/10.5220/0001852302810284.

Ouertani, M.Z. (2008), “Supporting conflict management in collaborative design: An approach to assess

engineering change impacts”, Computers in Industry, Vol. 59 No. 9, pp. 882–893.

https://doi.org/10.1016/j.compind.2008.07.010.

Potdar, P. and Jonnalagedda, V. (2018), “Design and development of a framework for effective engineering

change management in manufacturing industries”, International Journal of Product Lifecycle Management,

Vol. 11 No. 4, p. 368. https://doi.org/10.1504/ijplm.2018.097880.

Radisic-Aberger, O. (2021), Engineering Change Management - Classification Appendix of Literature Review.

https://doi.org/10.17632/VNS2KP3ZT3.1.

Russell, S.J. and Norvig, P. (2016), Artificial intelligence: A modern approach, Always learning, Third edition,

Global edition, Pearson, Boston, Columbus, Indianapolis.

Sharp, M.E., Hedberg, T.D., Bernstein, W.Z. and Kwon, S. (2021), “Feasibility study for an automated

engineering change process”, International Journal of Production Research, Vol. 59 No. 16, pp. 4995–

5010. https://doi.org/10.1080/00207543.2021.1893900.

Shivankar, S.D., Kakandikar, G.M. and Nandedkar, V.M. (2015), “Implementing engineering change

management through product life cycle management in automotive field”, International Journal of Product

Lifecycle Management, Vol. 8 No. 2, p. 132. https://doi.org/10.1504/ijplm.2015.070579.

Wänström, C., Lind, F. and Wintertidh, O. (2006), “Creating a model to facilitate the allocation of materials

planning resources in engineering change situations”, International Journal of Production Research, Vol. 44

No. 18-19, pp. 3775–3796. https://doi.org/10.1080/00207540600622506.

Weißer, T., Wagner, J., Burggräf, P. and Lichtenwalter, D. (2021), “Support-vector classification of downstream

problem effects during physical product development and ramp-up”, Procedia CIRP, Vol. 99, pp. 621–626.

https://doi.org/10.1016/j.procir.2021.03.084.

Wooldridge, M., Jennings, N.R. and Kinny, D. (2000), “The Gaia Methodology for Agent-Oriented Analysis and

Design”, Autonomous Agents and Multi-Agent Systems, Vol. 3 No. 3, pp. 285–312.

https://doi.org/10.1023/A:1010071910869.

https://doi.org/10.1017/pds.2022.171 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.171

