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Abstract. The goal of this paper is to carry out some explicit calculations of the actions of Hecke
operators on spaces of algebraic modular forms on certain simple groups. In order to do this,
we give the coset decomposition for the supports of these operators.We present the results of
our calculations along with interpretations concerning the lifting of forms. The data we have
obtained is of interest both from the point ofview of number theory and of representation theory.
For example, our data, together with a conjecture of Gross, predicts the existence of a Galois
extension of Qwith Galois group G2ðF5Þ which is rami¢ed only at the prime 5.We also provide
evidence of the existence of the symmetric cube lifting from PGL2 to PGSp4.
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1. Introduction

Let G be a connected reductive group over Q with GðRÞ compact. We will keep this
assumption on all groups over Q in this paper. We denote by Q̂Q ¼ Q� ẐZ the ring
of ¢nite ade' les of Q.
We will be studying certain spaces of modular forms forG. The weight of the forms

will be an algebraic representationW of G over a number ¢eld E and the level will be
an open compact subgroup K of GðQ̂QÞ. Following [10, 13] we de¢ne the space of
modular forms of weight W and level K on G to be the E-vector space

MðW ;KÞ ¼ fF :GðQ̂QÞ=K ! W ðEÞ : F ðggÞ ¼ gF ðgÞ; for all g 2 GðQÞg;

When W ¼ Q is the trivial representation this is simply the space of Q-valued
functions on the (¢nite) double coset space GðQÞnGðQ̂QÞ=K .
Let Kp 
 GðQpÞ be an open compact subgroup and let dg be the Haar measure

giving Kp volume 1. The Hecke algebra, HðGðQpÞ;KpÞ, is the convolution algebra
with respect to dg of compactly supported Q-valued functions on GðQpÞ which
are bi-invariant by Kp. When there is no confusion, we will denote this algebra

*Partially supported by a Department of Defense NDSEG fellowship.

Compositio Mathematica 130: 21^48, 2002. 21
# 2002 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1023/A:1013715231943 Published online by Cambridge University Press

https://doi.org/10.1023/A:1013715231943


HKp . If Kp is hyperspecial maximal compact, HKp is often called the spherical Hecke
algebra.
If the levelK is a product of local factorsK ¼

Q
p Kp then there is an action of each

HKp on MðW ;KÞ. If T 2 HKp and f 2 MðW ;KÞ we have Tf 2 MðW ;KÞ given by

Tf ðhÞ ¼
Z

GðQpÞ

T ðgÞ f ðhgÞdg:

This integral is actually a ¢nite sum, taken over the cosets of Kp contained in the
support of T . Indeed, if the support of T is

S
i aiKp then

Tf ðhÞ ¼
X

i

T ðaiÞ f ðhaiÞ: ð1Þ

Although we will not make direct use of it, it is worth pointing out the close con-
nection between these modular forms and automorphic representations. If W is
absolutely irreducible, it follows from [10, Prop 8.5] that the irreducible HK -
submodules of MðW ;KÞ �C correspond to the irreducible automorphic repre-
sentations p ¼ p1 � p̂p with p1 ffi W �C and p̂pK 6¼ 0. In fact if the irreducible
submodule N corresponds to the automorphic representation p, then N and p̂pK

are isomorphic as Hecke modules. Thus knowing the action of the Hecke algebra
HKp on the irreducible pieces of MðW ;KÞ �C allows us to identify the local com-
ponents of the automorphic representations with in¢nite component W and having
K-¢xed vectors.
The goal of this paper is to carry out some explicit calculations of the action of

local Hecke algebras on certain spaces of modular forms. In Section 4 we discuss
some aspects of modular forms that can be read off from our data. In Section 5
we present the results of our calculations along with interpretations of these results
in light of the discussion in Section 4. The data we have obtained are of interest
both from the point of view of number theory and of representation theory. For
example, our data, together with a conjecture of Gross, predicts the existence of
a Galois extension of Q with Galois group G2ðF5Þ which is rami¢ed only at the
prime 5 [11, ‰2, ‰5]. We also provide evidence of the existence of the symmetric cube
lifting from PGL2 to PGSp4 (see Section 4.3).
The ¢rst step in making these calculations is purely local. We determine coset

representatives ai of the various cosets of Kp in the support of an operator
T 2 HKp . We work this out in Section 2, for G split over Qp and Kp either a
hyperspecial maximal compact or an Iwahori subgroup. The analysis there closely
follows [17]. We also handle the case where G is a form of PGSp4 not split over
Qp and Kp is the Iwahori subgroup.
We then give an overview of the global aspects of our algorithm, especially the

issue of ¢nding double coset representatives for GðQÞnGðQ̂QÞ=K . This, along with
some comments on the reliability of the computer calculations, appears in
Section 3.2.
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We performed our calculations for compact forms of G2 and PGSp4, but the
methods are fairly general and can be applied in other cases, subject to constraints
on computer speed and memory.

2. Double Cosets in Groups over Local Fields

2.1. PRELIMINARIES

Throughout this section, G will denote a connected semisimple algebraic group that
is split over a non-Archimedean local ¢eld F with ring of integers OF and prime
ideal p. (We will apply the results of this section to theQp points of various rational
algebraic groups.) Let p in p denote a uniformizing parameter, let k be the residue
¢eldOF=p, and let R 
 OF be a set of representatives for k containing 0. Let q denote
the cardinality of k.
We select a hyperspecial maximal compact subgroupK ofGðF Þ. The groupK gives

rise to a Chevalley group scheme G over OF such that K ¼ GðOF Þ 
 GðF Þ ¼ GðF Þ
(cf. [23, 3.4.1,3.8.1]) and such that the special ¢ber G of G is semisimple of the same
type as G.
Let T 
 G be a split maximal torus scheme, and let T be its general ¢ber. We de¢ne

NT to be the normalizer of T in G. Denote by X�ðT Þ the character module
HomðT ;GmÞ of T and by X�ðT Þ the co-character module HomðGm;T Þ of T . Let
F 
 X�ðT Þ be the set of roots of T , Fþ 
 F a subset of positive roots, and
D 
 Fþ the corresponding set of simple roots. Also, let F_ 
 X�ðT Þ be the coroots
of T and a 7! a_ the standard bijection between F and F_.
For each a 2 F let Ua be the one-dimensional unipotent subgroup scheme of G

corresponding to a. Denote the general ¢ber of Ua by Ua. We choose for each a
an isomorphism xa:Ga�!Ua: When considered as a map F ! UaðF Þ, xa restricts
to an isomorphism of OF with UaðOF Þ ¼ UaðF Þ \ K .
Let W be the Weyl group NT=T ¼ ðNT ðF Þ \ KÞ=T ðOF Þ of G and ~WW the extended

af¢ne Weyl group NT ðF Þ=T ðOF Þ. Then W and ~WW act as groups of af¢ne
transformations on the space X�ðT Þ �Z R. The stabilizer in ~WW of 0 2 X�ðT Þ �R

is W , and there is an isomorphism ~WW ffi X�ðT Þ W , where X�ðT Þ is embedded in
~WW as a group of translations on X�ðT Þ �R. We denote by e the identity element
of ~WW and by tðlÞ the element of ~WW corresponding to l in X�ðT Þ We can and will
choose the above isomorphism so that the image of lðpÞ is tðlÞ. Observe that in this
notation wtðlÞw�1 ¼ tðwlÞ: We let h ; i:X�ðT Þ � X�ðT Þ ! Z be the usual W -
invariant pairing, and we de¢ne Xþ 
 X�ðT Þ to be the set of all co-characters l such
that ha; li > 0 for all a in Fþ.
Denote by wa the re£ection in W through the vanishing hyperplane in X�ðT Þ �R

of the root a. Let F ¼ F1 [ � � � [ Fm be the decomposition of F into irreducible root
systems. (Each Fi corresponds to the root system of an almost simple normal
subgroup of G.) Also, let Di ¼ D \ Fi, and put li ¼ #Di. Then l1 þ � � � þ lm ¼ l,
the dimension of T , i.e., the rank of G. Let a0;i be the highest root of Fi with respect

�
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to the basis of simple roots Di. Then the Coxeter group with set of involutive gen-
erators

~SS ¼ waja 2 Df g [ wa0;i tða
_
0;iÞj1W iWm

n o

is isomorphic to the af¢ne Weyl group Waf of F ([23, Prop. 1.1]). Via this
isomorphism, we will view Waf as a subgroup of ~WW .
Let I be the Iwahori subgroup of K generated by T ðOF Þ, the subgroups

xaðOF Þ ¼ UaðOF Þ for all a in Fþ, and the subgroups xaðpÞ for all a in F�. If we denote
by G the semisimple algebraic group over k obtained by taking the special ¢ber of G
then (as in [23, ‰3.5]) the reduction mod p map K �!GðkÞ is surjective, and I is
the inverse image in K of the Borel subgroup of GðkÞ corresponding to Fþ. The
triple ðGðF Þ; I ;NT ðF ÞÞ is a generalized Tits system in the sense of [16], a fact which
will be used in 2.3 to study the structure of GðF Þ.
Denote the normalizer of I in GðF Þ by ~II and let O 
 ~WW be the group

ðNT ðF Þ \ ~IIÞ=T ðOF Þ. The group O is ¢nite Abelian and canonically isomorphic to
X�ðT Þ=Lr, where Lr is the submodule of X�ðT Þ generated by F_ (cf. [16, ‰2]).
Moreover, O normalizes Waf and there is an isomorphism ~WW ffi Waf O.
For w in ~WW , let lðwÞ denote the standard combinatorial length of w with respect to

the set ~SS. If w0 2 ~WW then we can write w0 ¼ w1 � � �wdr for some w1; . . . ;wd in ~SS and r
inO, and we say that the expression w0 ¼ w1 � � �wdr is reduced if lðwÞ ¼ d. (Under this
de¢nition, the expression e ¼ e is also to be considered reduced.)

2.2. THE GROUPS W AND ~WW

LetW 0 be a subgroup ofW which is generated by a subset of involutions S0 
 S. We
will refer to such a subgroup as a special subgroup of W . Note that the stabilizer
W l ¼ fw 2 W j wðlÞ ¼ lg of l in W is special. For any special W 0, de¢ne
½W=W 0� to be the set

fw 2 W jlðww0Þ ¼ lðwÞ þ lðw0Þ for all w0 2 W 0g:

The elements of ½W=W 0� are the representatives for W=W 0 of minimal length (cf. [5,
‰2.5]).
For the coset decomposition of 2.4, we will need a result on the additivity of

lengths of certain elements of the extended af¢ne Weyl group similar to that of
Howlett in [6, ‰2.7]. This lemma will follow from the geometric interpretation of
~WW as a group of af¢ne transformations on the space X�ðT Þ �R. The key idea is
the connection between the length of an element s of ~WW and the inner products
of the translation part of s with certain roots as given in [17, ‰1.9]. We summarize
the relevant facts in the following propositions.

�

24 JOSHUA LANSKYAND DAVID POLLACK

https://doi.org/10.1023/A:1013715231943 Published online by Cambridge University Press

https://doi.org/10.1023/A:1013715231943


PROPOSITION 2.1. For all l in X�ðT Þ and w in W

lðtðlÞwÞ ¼
X

a2Fþ\wFþ
jha; lij þ

X
a2Fþ\wF�

jha; li � 1j:

In particular, lðwÞ ¼ #ðFþ \ wF�Þ.

PROPOSITION 2.2.Let l 2 X�ðT Þ. Then, there is a unique element sl in W such that
lðtðlÞslÞ ¼ minw2W tðlÞw, and, in fact, lðtðlÞslwÞ ¼ lðtðlÞslÞ þ lðwÞ for all w in W.
Moreover, if we put

F1 ¼ fa 2 Fþ j ha; liW 0g; F2 ¼ fa 2 Fþ j ha; li > 0g;

then

lðtðlÞslÞ ¼
X
a2F1

jha; lij þ
X
a2F2

ðha; li � 1Þ: ð2Þ

Let l be an element of Xþ, and let sl be as in Proposition 2. The length additivity
result that we wish to prove is the following: for all w in W and t in ½W=W l�,
lðttðlÞslwÞ ¼ lðtÞ þ lðtðlÞslÞ þ lðwÞ:
We will need the following auxiliary lemma on ½W=W l� for the proof of the

additivity result.

LEMMA 2.3. Let l 2 Xþ, t 2 ½W=W l�, and b 2 Fþ \ t�1F�. Then hb; li > 0.
Proof. Since l 2 Xþ, we have that hb; liX 0. Thus, we need only rule out

hb; li ¼ 0. If this is the case, then wbðlÞ ¼ l so wb 2 W l. Let J 
 D be the set of
simple roots a such that ha; li ¼ 0. Then the special subgroup W l equals
hwaja 2 Ji. As shown in [5, ‰2.5], t 2 ½W=W l� if and only if tðaÞ 2 Fþ for all a
in J. Furthermore, since wb 2 W l, b is a sum of roots in J, and therefore
tðbÞ 2 Fþ. This contradicts b 2 t�1F�. &

We now state and prove the length additivity lemma.

LEMMA 2.4. Suppose l 2 Xþ, w 2 W, and t 2 ½W=W l�, then

lðttðlÞslwÞ ¼ lðtÞ þ lðtðlÞslÞ þ lðwÞ:

Proof. By Proposition 2.2, we have that lðtðlÞslwÞ ¼ lðtðlÞslÞ þ lðwÞ. Therefore, it
suf¢ces to show that

lðttðlÞsÞ ¼ lðtÞ þ lðtðlÞsÞ ð3Þ

for any s in W :
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By Proposition 2.1 we have

lðtÞ þ lðtðlÞsÞ ¼
X

b2Fþ\tF�
1þ

X
b2Fþ\sFþ

jhb; lij þ
X

b2Fþ\sF�
jhb; li � 1j: ð4Þ

On the other hand, we also have

lðttðlÞsÞ ¼ lðtðtðlÞÞtsÞ

¼
X

a2Fþ\tsFþ
jha; tðlÞij þ

X
a2Fþ\tsF�

jha; tðlÞi � 1j

¼
X

a2Fþ\tsFþ
jht�1ðaÞ; lij þ

X
a2Fþ\tsF�

jht�1ðaÞ; li � 1j

¼
X

b2t�1Fþ\sFþ
jhb; lij þ

X
b2t�1Fþ\sF�

jhb; li � 1j

ð5Þ

In order to show that (5) equals (4), we will break up the sets over which the sums in
(5) are taken and rearrange the resulting sums.
First, we note that

ðt�1Fþ \ sF�Þ � ðFþ \ sF�Þ

¼t�1Fþ\sF�\F�¼F� \ t�1Fþ \ sF�;

ðFþ \ sF�Þ � ðt�1Fþ \ sF�Þ

¼Fþ\sF�\t�1F�¼Fþ \ t�1F� \ sF�:

It follows that the ¢rst term of (5) is

X
t�1Fþ\sFþ

jhb; lij ¼
X

Fþ\sFþ
jhb; lij þ

X
F�\t�1Fþ\sFþ

jhb; lij�

�
X

Fþ\t�1F�\sFþ
jhb; lij

ð6Þ

while the second term of (5) is

X
t�1Fþ\sF�

jhb; li � 1j

¼
X

Fþ\sF�
jhb; li � 1j þ

X
F�\t�1Fþ\sF�

jhb; li � 1j�

�
X

Fþ\t�1F�\sF�
jhb; li � 1j:

ð7Þ
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Adding (6) and (7), we obtainX
t�1Fþ\sFþ

jhb; lij þ
X

t�1Fþ\sF�
jhb; li � 1j

¼
X

Fþ\sFþ
jhb; lij þ

X
Fþ\sF�

jhb; li � 1j þ

þ
X

F�\t�1Fþ\sFþ
jhb; lij �

X
Fþ\t�1F�\sFþ

jhb; lij þ

þ
X

F�\t�1Fþ\sF�
jhb; li � 1j �

X
Fþ\t�1F�\sF�

jhb; li � 1j:

ð8Þ

Therefore, in order to show that (4) equals (5), we must prove that the sum of the last
four terms of (8) is

P
Fþ\tF� 1.

Replacing b with �b in the third and ¢fth terms, we ¢nd that the sum of the last
four terms of (8) isX

Fþ\t�1F�\sF�
jhb; lij � jhb; li � 1jð Þ þ

X
Fþ\t�1F�\sFþ

jhb; li þ 1j � jhb; lijð Þ:

By Lemma 2.3, the set of b in Fþ \ t�1F� which satisfy hb; li ¼ 0 is empty. Thus for
b 2 Fþ \ t�1F� \ sF�, hb; li > 0 so that jhb; lij � jhb; li � 1j ¼ 1 and jhb; li þ 1j�
jhb; lij ¼ 1.
This means that the sum of the last four terms of (8) equalsX

Fþ\t�1F�\sF�
1 þ

X
Fþ\t�1F�\sFþ

1 ¼
X

Fþ\t�1F�
1 ¼

X
Fþ\tF�

1;

since lðtÞ ¼ lðt�1Þ. This gives (3) and completes the proof. &

The following corollary follows easily from Lemma 2.4

COROLLARY 2.5. If l 2 Xþ then the unique element of shortest length in the double
coset WtðlÞW is tðlÞsl.

2.3. DOUBLE COSET DECOMPOSITION FOR IWAHORI SUBGROUPS

We will now give a summary of the aspects of the structure of GðF Þ which stem
from the fact that the triple ðGðF Þ; I;NT ðF ÞÞ is a generalized Tits system (as de¢ned
in [16]). We also state a result of Iwahori and Matsumoto ([17, Cor. 2.7]) which
gives a set of representatives for the left cosets of I contained in an arbitrary double
coset of I .
We ¢rst state a result of Iwahori and Matsumoto ([17, Prop. 2.34]) concerning

double cosets of subgroups of GðF Þ containing I . For any such subgroup P, we
denote by WP the subgroup ðNT ðF Þ \ PÞ=T ðOF Þ of ~WW .
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PROPOSITION 2.6. Let P, P1 and P2 be subgroups of GðF Þ containing I. Then,

(i)
P ¼ IWPI ¼

a
w2WP

IwI :

(ii) If SP1;P2 

~WW is a set of representatives for WP1n

~WW=WP2 then

GðF Þ ¼
a

s2SP1 ;P2

P1sP2:

In particular, if g; g0 2 ~WW then P1gP2 ¼ P1g0P2 if and only if WP1gWP2 ¼

WP1g
0WP2 .

Note that if we take P ¼ GðF Þ in Proposition 2.6(i), we obtain the af¢ne Bruhat
decomposition GðF Þ ¼

‘
w2 ~WW IwI : Thus the Iwahori^Hecke algebra HðGðF Þ; IÞ is

spanned by the characteristic functions charIwI ðw 2 ~WW Þ so in order to decompose
the support of a Hecke operator into left cosets of I , it suf¢ces to obtain a
decomposition for each double coset IwI .
The following proposition summarizes the structure of InGðF Þ=I ([17, Prop 2.8,

Theorem 3.3]).

PROPOSITION 2.7. Let w;w0 be elements of ~WW. Then

(i) For all s 2 ~SS
(a) IsIwI ¼ IswI if lðswÞ > lðwÞ,
(b) IsIwI ¼ IswI [ IwI if lðswÞ < lðwÞ.

(ii) If lðww0Þ ¼ lðwÞ þ lðw0Þ then

IwIw0I ¼ Iww0I : ð9Þ

In particular, if s1; . . . ; sd 2 ~SS, r 2 O and w ¼ s1 � � � sdr is a reduced expression,
then

Is1I � � � IsdIrI ¼ IwI : ð10Þ

In addition to the information resulting from the fact that the triple
ðGðF Þ; I;NT ðF ÞÞ is a generalized Tits system, we will also need the following state-
ment (cf. [17, Cor. 2.7]) concerning representatives for the left cosets of I inside
certain double cosets of I (namely, those corresponding to the elements of ~SS). Recall
that R is a set of representatives in OF for k containing 0.

PROPOSITION 2.8. Suppose a 2 D and i 2 f1; . . . ;mg, where m is the number of
irreducible root systems into which F decomposes. Then

(i) IwaI ¼
‘

n2R xaðnÞwaI;
(ii) Iwa0;i tða

_
0;iÞI ¼

‘
n2R x�a0;i ðpnÞwa0;i tða

_
0;iÞI.
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Remark 2.9. While we have restricted our attention thus far to split groups, a result
similar to Corollary 2.8 holds even when G is not split. We will need this result for
forms of PGSp4 over Qp of split rank one. In this case, the corresponding Iwahori
double cosets will contain either p or p2 (easily enumerated) single cosets.
We now develop notation which will allow us to derive a formula for represen-

tatives of the left cosets of I in an arbitrary double coset in InGðF Þ=I . This formula
will follow easily from the above results. For each s in ~SS, we ¢x a lifting �ss of s
to NT ðF Þ. We de¢ne elements gsðnÞ 2 GðF Þ for all s in ~SS and n in R by setting

gsðnÞ ¼
xaðnÞ�ss if s ¼ wa for some a in D;
x�a0;i ðpnÞ�ss if s ¼ tða_0;iÞwa0;i for some i in f1; . . . ;mg:




In this notation, Proposition 2.8 says that for each s 2 ~SS, IsI ¼
‘

n2R gsðnÞI : For each
r in O we also choose some lifting �rr of r to NT ðF Þ.
For each w in ~WW we ¢x an ðlðwÞ þ 1Þ-tuple eðwÞ ¼ ðsw;1; . . . ; sw;lðwÞ; rwÞ in ~SSlðwÞ � O

such that w ¼ sw;1 � � � sw;lðwÞrw. We de¢ne gw:RlðwÞ�!GðF Þ to be the function which
assigns to each ðn1; . . . ; nlðwÞÞ in RlðwÞ the element gsw;1 ðn1Þ � � � gsw;lðwÞ ðnlðwÞÞrw; using
the notation of the previous paragraph. Then we have the following fact concerning
the coset space IwI=I .

COROLLARY 2.10. Suppose that w 2 ~WW and that w ¼ s1 � � � sdr is a reduced
expression (i.e., d = l(w)), where s1; . . . ; sd 2 ~SS and r 2 O. Then the index
½IwI : I � is qlðwÞ. In fact,

IwI ¼
a
ni2R

gs1ðn1Þ � � � gsd ðnd Þ �rrI ¼
a

n2RlðwÞ

gwðnÞI :

Proof. By Proposition 2.7(ii), IwI ¼ Is1I � � � IsdIrI : It follows (cf. [7, ‰3.5]) that

½IwI : I � ¼ ½Is1I : I � � � � ½IsdI : I �½IrI : I � ¼ qlðwÞ:

To complete the proof it suf¢ces to show that the union of the qlðwÞ cosets given
above is all of IwI . This also follows from Propositions 2.7 and 2.8 since

IwI ¼ Is1s2 � � � sdrI ¼ Is1Is2I � � � IsdIrI

¼
[
n12R

gs1 ðn1ÞIs2I � � � IsdIrI

¼
[

n1;...;nd2R

gs1 ðn1Þgs2 ðn2Þ � � � gsd ðndÞ �rrI : &

2.4. DOUBLE COSET DECOMPOSITION FOR K

As stated earlier, the explicit determination of the action of a spherical Hecke
operator on a modular form necessitates the decomposition of the support of
that operator into left cosets of K . The Cartan decomposition states that
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GðF Þ ¼
‘

l2Xþ KlðpÞK : Therefore, the local Hecke algebraHðGðF Þ;KÞ is spanned by
the characteristic functions charðKlðpÞKÞ ðl 2 XþÞ. As a result, we now concentrate
on decomposing a given double coset KlðpÞK ¼ KtðlÞK into a union of left cosets
of K .
Fix l in Xþ. We begin by considering the decomposition of KlðpÞK into cosets

IgK.

LEMMA 2.11. The double coset KlðpÞK ¼ KtðlÞK is the disjoint union of the cosets
IttðlÞK as t ranges over ½W=W l�.

Proof. Since WK ¼ ðNT ðF Þ \ KÞ=T ðOF Þ ¼ W we have by Proposition 2.6(i) that
K ¼

‘
w2W IwI : (This is simply the lifting of the Bruhat decomposition for the group

GðkÞ to K .) It follows that KtðlÞK ¼
S

w2W IwItðlÞK : We will show that this last
expression is equal to

S
w2W IwtðlÞK.

By Equation (10) in Proposition 2.7, if we write w0 in W as a reduced expression
w0 ¼ s1 � � � sd where s1; . . . ; sd 2 S, we have that

Iw0ItðlÞI ¼ Is1 � � � sdItðlÞI ¼ Is1I � � � IsdItðlÞI :

By Proposition 2.7(i) and induction on d, it follows that

Iw0ItðlÞI ¼ Is1I � � � IsdItðlÞI  Is1 � � � sdtðlÞI ¼ Iw0tðlÞI

and hence that[
w2W

IwItðlÞK ¼
[

w2W

IwItðlÞIK  
[

w2W

IwtðlÞIK ¼
[

w2W

IwtðlÞK :

On the other hand, we know by Proposition 2.7 that for any s in S and g in ~WW ,

IsIgI 
 IgI [ IsgI 

[

w2W

IwgI :

Thus if w0 ¼ s1 � � � sd 2 W is a reduced expression, we have, by induction on d again,

Iw0ItðlÞI ¼ Is1I � � � IsdItðlÞI 

[

w2W

IwtðlÞI :

Hence, it follows that[
w2W

IwItðlÞK ¼
[

w2W

IwItðlÞIK 

[

w2W

IwtðlÞIK ¼
[

w2W

IwtðlÞK

so that[
w2W

IwtðlÞK ¼
[

w2W

IwItðlÞK :

Thus

KtðlÞK ¼
[

w2W

IwtðlÞK : ð11Þ
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We must now determine which of the terms in the above union are the same. To
this end, we apply Proposition 2.6 to the subgroups I and K of GðF Þ. Since
WI ¼ hei and WK ¼ W , it follows that for any w;w0 in W , IwtðlÞK ¼ Iw0tðlÞK if
and only if wtðlÞ ! w0tðlÞðmodW Þ, that is, if and only if tðwðlÞÞ ¼ tðw0ðlÞÞ. Thus
the two double cosets are equal if and only if w ! w0ðmodW lÞ. Therefore, to obtain
a disjoint union in (11) we take the union over the set of representatives
½W=W l�. We therefore obtain

KtðlÞK ¼
a

t2½W=W l�

IttðlÞK : & ð12Þ

It remains now to express each coset IttðlÞK as a union of distinct left cosets of K .

THEOREM 2.12. Let l 2 Xþ and let sl be as in Section 2.2. Then the double coset
KtðlÞK is equal to the disjoint uniona

t2½W=W l�

a
n2RlðttðlÞsl Þ

gttðlÞslðnÞK;

where R is a set of representatives for OF=p containing 0.
Proof. Let t 2 ½W=W l�. Clearly, IttðlÞK ¼ IttðlÞslK ¼ IttðlÞslIK and by Corol-

lary 2.10, this is equal to

a
n2RlðttðlÞsl Þ

gttðlÞsl ðnÞI

 !
K ¼

[
n2RlðttðlÞsl Þ

gttðlÞsl ðnÞK : ð13Þ

Because of Lemma 2.11, the theorem will follow if we show that the cosets in the
union (13) are distinct for distinct n. So suppose that gttðlÞsl ðnÞK ¼ gttðlÞsl ðn

0ÞK
for some t 2 ½W=W l� and n; n0 2 RlðttðlÞslÞ. We will show that n ¼ n0: The main idea
of the argument is to transfer the problem from K-cosets in GðF Þ to W -cosets in
~WW and then to bring to bear our results on Coxeter groups from Section 2.2.
First, we note that by Proposition 2.6(i) and Corollary 2.10,

gttðlÞslðnÞK ¼
a

w2W

gttðlÞsl ðnÞIwI

¼
a

w2W

a
n002RlðwÞ

gttðlÞslðnÞgwðn00ÞI
ð14Þ

and similarly

gttðlÞslðn
0ÞK ¼

a
w2W

a
n002RlðwÞ

gttðlÞsl ðn
0Þgwðn00ÞI : ð15Þ

Since these two K-cosets are equal, each I-coset in (14) must also appear in (15). In
particular, gttðlÞslðnÞgeð0ÞI ¼ gttðlÞsl ðnÞI and gttðlÞsl ðn

0Þgwðn00ÞI must be equal for some
w in W and n00 in RlðwÞ. We will show that this equality can only hold if w ¼ e. Then
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we will have that gttðlÞsl ðnÞI ¼ gttðlÞslðn
0ÞI , which immediately implies that n ¼ n0 by

Corollary 2.10.
So suppose that gttðlÞsl ðnÞI ¼ gttðlÞslðn

0Þgwðn00ÞI , where w 2 W and n00 2 RlðwÞ. By the
de¢nition of gttðlÞsl ðnÞ, we have that

gttðlÞslðnÞI 
 IttðlÞslI : ð16Þ

Similarly, for each n00 in RlðwÞ,

gttðlÞslðn
0Þgwðn00ÞI 
 IttðlÞslIwI :

We are now able to use Section 2.2 since l 2 Xþ, t 2 ½W=W l� and w 2 W . By
Theorem 2.4, we conclude that lðttðlÞslwÞ ¼ lðttðlÞslÞ þ lðwÞ. This implies via
equation (20) in Proposition 2.7 that IttðlÞslIwI ¼ IttðlÞslwI . Hence,

gttðlÞslðn
0Þgwðn00ÞI 
 IttðlÞslwI : ð17Þ

Since the double cosets in (16) and (17) both contain the left coset

gttðlÞslðnÞI ¼ gttðlÞsl ðn
0Þgwðn00ÞI;

we conclude that they must be equal. But IttðlÞslI ¼ IttðlÞslwI implies w ¼ e since
InGðF Þ=I is represented by ~WW (Proposition 2.6). &

The following corollary follows easily from Theorem 2.12 and Lemma 2.4.

COROLLARY 2.13. The number of left (or right) cosets of K in KlðpÞK is

qminw2W lðtðlÞwÞ
X

t2½W=W l�

qlðtÞ ¼
X

g2WtðlÞW

qlðgÞ
X
w2W

qlðwÞ

,
:

2.5. AN EXAMPLE

In later sections, we determine the actions of local Hecke algebras on spaces of
modular forms on the compact form of G2 over Q and on certain compact forms
of PGSp4 overQ. To do this we need to know the coset representatives ai appearing
in the sum (1) in the introduction. Below we illustrate the use of Theorem 2.12 to
compute these representatives for the split group G2 over an arbitrary non-
Archimedean local ¢eld F .
The rank of G2 is 2, and a set of simple roots consists of a long root a1 and a short

root a2. We let a0 be the corresponding highest root. The Weyl group W , which is
dihedral of order 12, is generated by the re£ections w1 ¼ wa1 and w2 ¼ wa2 , while
Waf is generated by these re£ections and w0 ¼ wa0tða

_
0 Þ. Since G2 is both simply con-

nected and adjoint, O is trivial and it follows that ~WW ¼ Waf . Let �oo1; �oo2 be the fun-
damental co-characters (i.e., those satisfying hai; �ooji ¼ dij).
We have that W �oo1 ¼ hw2i and ½W=W �oo1 � is the set fe;w1;w2w1;w1w2w1;

w2w1w2w1;w1w2w1w2w1g. Also, tð �oo1Þ can be shown to have the reduced expression
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w0w1w2w1w2w1, while a reduced expression for tð �oo1Þs �oo1 is w0. Hence, it follows from
Theorem 2.12 that K �oo1ðp�1ÞK is the union of the

qþ q2 þ q3 þ q4 þ q5 þ q6 ¼ q �
q6 � 1
q� 1

left cosets

gw0 ðn1ÞK ðn1 2 RÞ

gw1w0ðn2ÞK ðn2 2 R2Þ

gw2w1w0 ðn3ÞK ðn3 2 R3Þ

gw1w2w1w0 ðn4ÞK ðn4 2 R4Þ

gw2w1w2w1w0ðn5ÞK ðn5 2 R5Þ

gw1w2w1w2w1w0 ðn6ÞK ðn6 2 R6Þ:

For the short co-weight �oo2, we have W �oo2 ¼ hw1i and ½W=W �oo2 � ¼ fe;w2;w1w2;
w2w1w2;w1w2w1w2;w2w1w2w1w2g. A reduced expression for tð �oo2Þ is w0w1w2w1w0
w2w1w2w1w2, and for tð �oo2Þs �oo2 is w0w2w1w2w0. Hence, the double coset
K �oo2ðp�1ÞK is the disjoint union of the

q5 þ q6 þ q7 þ q8 þ q9 þ q10 ¼ q5 �
q6 � 1
q� 1

cosets

gw0w2w1w2w0ðn1ÞK ðn1 2 RÞ

gw2w0w2w1w2w0 ðn2ÞK ðn2 2 R2Þ

gw1w2w0w2w1w2w0 ðn3ÞK ðn3 2 R3Þ

gw2w1w2w0w2w1w2w0ðn4ÞK ðn4 2 R4Þ

gw1w2w1w2w0w2w1w2w0 ðn5ÞK ðn5 2 R5Þ

gw2w1w2w1w2w0w2w1w2w0 ðn6ÞK ðn6 2 R6Þ:

3. The Calculations

We now return to the global setting. We take G to be a connected reductive group
overQ and as above we assume that GðRÞ is compact. We let K ¼

Q
Kp where each

Kp is a parahoric subgroup of GðQpÞ, with all but ¢nitely many Kp hyperspecial
maximal compact. We also letW be an algebraic representation of G over a number
¢eld E.
Our goal is to compute the actions of various Hecke operators on the space

MðW ;KÞ ¼ fF :GðQ̂QÞ=K ! W ðEÞ : F ðggÞ ¼ gF ðgÞ; for all g 2 GðQÞg
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of modular forms of weightW and level K on G. We begin with an overview of these
calculations and then indicate how to carry out some of the steps for the particular G
in which we are interested.

3.1. OVERVIEW

A function f 2 MðW ;KÞ is determined by its values on a system of representatives of
GðQÞnGðQ̂QÞ=K. We ¢x such a system fgag. Note that for f 2 MðW ;KÞ each f ðgaÞ lies
in WGa where Ga is the ¢nite subgroup GðQÞ \ gaKg�1a of GðQÞ stabilizing gaK . Con-
versely, any function f : fgag ! W with f ðgaÞ 2 WGa for all a extends uniquely to an
element ofMðW ;KÞ. We pick bases fva;kg of theWGa and de¢ne dk

a to be the modular
form such that

dk
aðgbÞ ¼

va;k if b ¼ a,
0 otherwise.

n

Then the dk
a form a basis ofMðW ;KÞ. We will do all of our calculations with respect

to this basis.
Now consider the action of a Hecke operator T 2 HðGðQpÞ;KpÞ:We wish to com-

pute Tdk
aðgnÞ. Using Equation (1) and writing the support of T as a disjoint union of

cosets alKp we see

Tdk
aðgnÞ ¼

X
l

T ðalÞd
k
aðgnalÞ: ð18Þ

Note that Tdk
aðgnÞ 2 WGn , so once we have computed it we can write

Tdk
aðgnÞ ¼

X
l

mkl
anvn;l;

so that

Tdk
a ¼

X
n;l

mkl
and

l
n: ð19Þ

These mkl
an are the entries in the matrix for T with respect to the basis dk

a ofMðW ;KÞ.
So once we have seen how to carry out each step of this outline, we will be able to
compute matrices for the actions of our Hecke operators.
We discuss our computation of the ga in 3.2, pointing out aspects particular to

some individual examples. Once we have the ga, computing the groups Ga and
the ¢xed spaces WGa is straightforward, and gives us our explicit basis fdk

ag.
We will only be interested in Hecke operators T supported at primes where Kp is

Iwahori or GðQpÞ is split and Kp is hyperspecial and so Corollary 2.10,
Remark 2.9 and Theorem 2.12 allow us to ¢nd the ai we need for decomposition
of the support of T .
All that remains then to complete the calculation is to evaluate the dk

a at various
points h. To do so, it suf¢ces to write h as a product h ¼ rgak with r 2 GðQÞ,
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k 2 K , and ga one of our ¢xed coset representatives. Our method for ¢nding this
product decomposition is essentially brute force. In each case it amounts to
analyzing the congruence constraints placed on r by insisting that g�1a r�1h be integral
and searching through the solution space of these congruences.

3.2. GLOBAL DOUBLE COSETS

We will begin with a general description of the space GðQÞnGðQ̂QÞ=K which is ¢nite
since K is open and GðQÞnGðQ̂QÞ is compact [2].
Suppose ¢rst that G is the general ¢ber of a group scheme G over Z and each Kp is

the group GðZpÞ of Zp points of G. In this case, the size h of GðQÞnGðQ̂QÞ=K is called
the class number of G. In [9] Gross compiles a table of some values of the class
number when G is simply connected and the Kp are all hyperspecial.
If K 0 ¼

Q
K 0

p 
 K is any deeper level, the following easy proposition relates
GðQÞnGðQ̂QÞ=K to GðQÞnGðQ̂QÞ=K 0:

PROPOSITION 3.1. Let G be a connected reductive group over Q arising as the
general ¢ber of a group scheme G over Z. Suppose that GðRÞ is compact and that
GðQÞnGðQ̂QÞ=GðẐZÞ has representatives g1; . . . ; gh. For each i, let G0i be the ¢nite group
g�1i GðQÞgi \ GðẐZÞ.

For each p, let Kp be a parahoric subgroup o f GðZpÞwith Kp ¼ GðZpÞ for p outside a
¢nite set S. Then there is a natural bijection between GðQÞnGðQ̂QÞ=K and

a
i

G0in
Y
p2S

F pðFpÞ

 !

where F p is the £ag variety of parabolics of the same type as the reduction of Kp in
GðFpÞ.

Proposition 3.1 reduces our problem of ¢nding systems of representatives for
GðQÞnGðQ̂QÞ=K for various K to ¢rst doing so once with K the integral points on
a model of G and then simply enumerating £ag varieties over ¢nite ¢elds. We will
now discuss each of these issues in two examples.

3.2.1. Double Cosets for the Group G2

There are only two forms ofG2 overQ, one is split and the other is compact atR [22].
We describe the compact form below. If we replace the Cayley octonions with the
split octonions in the construction, we would obtain the split group.
Let O be a maximal order in the Cayley octonions over Q. O has an

anti-involution given by e0 ¼ e0 and ei ¼ �ei for 1W iW 7. We have the trace given
by Tr x ¼ xþ �xx and the norm given by Nx ¼ x �xx: The trace allows us to de¢ne
an inner product x; y

� �
¼ Tr x�yy:Note that the norm, trace and inner product all take
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integral values onO and so can be extended toO� R for any ring R. Note also that
R embeds in O� R as Re0.
We de¢ne a group G over Z by letting GðRÞ be the group of R-algebra auto-

morphisms ofO� R. Then G is a model of G2 overZ in the sense of [9]. In particular
for all p, GðQpÞ is G2ðQpÞ, the split group of type G2 overQp, and GðZpÞ 
 GðQpÞ is a
hyperspecial maximal compact subgroup. Further GðRÞ is compact, and so GðZÞ is
¢nite, being a discrete subgroup of GðRÞ. In fact GðZÞ is the group G2ðF2Þ, and
has size 12096. Additionally, G has class number one, that is GðQ̂QÞ ¼ GðQÞGðẐZÞ
[9].
If M ¼ O� k for k a ¢eld of characteristic not 2, we de¢ne M0 to be the ortho-

gonal complement of e0 in M, namely the elements of trace 0 in M. Automorphisms
of M preserve M0, as well as both the norm and trace [18, ‰3].
Suppose G is split over k with the characteristic of k still not 2. Then a Borel

subgroup of GðkÞ is the stabilizer of a £ag 0 
 V1 
 V2 in the 7-dimensional space
M0 with V1 spanned by a vector of norm, and hence square, 0 (a null line) and
V2 such that xy ¼ 0 for all x; y 2 V2 (a null plane). Note that any such £ag can
be extended uniquely to a complete null £ag by setting

V3 ¼ fy: xy ¼ 0 for all x 2 V2g

Vi ¼ V?
7�i for 4 W i W 7;

so that a Borel is the stabilizer of a complete £ag.
The other two types of parabolics stabilize partial £ags. They are P1, the stabilizer

of a null line, and P2, the stabilizer of a null plane. The collection of null £ags (resp.
lines, resp. planes) exactly parametrizes the space of Borel subgroups (resp.
parabolics of type P1, resp. parabolics of type P2). If k is the ¢nite ¢eld Fp, there
are ðp6 � 1Þ=ðp� 1Þ parabolic subgroups of types P1 and P2 and ðp6 � 1Þðpþ 1Þ=
ðp� 1Þ Borel subgroups in GðkÞ.

3.2.2. Double Cosets for the Groups PGSpH
4

Let H be a quaternion algebra over Q, and let u 7! �uu be its canonical involution.
Then we de¢ne an algebraic group GH over Q whose R points are

fg 2 M2ðH �Q RÞ: g�ggt ¼ nðgÞI; nðgÞ 2 R�g

for any commutativeQ-algebra R. IfH splits over R, then GH is isomorphic toGSp4
over R. Thus GH is a form ofGSp4 overQ. We will henceforth denote GH byGSpH

4 .
We then let PGSpH

4 be the quotient ofGSpH
4 by its center. IfH is rami¢ed at1 then

PGSpH
4 ðRÞ is compact. We will assume this is the case from here on.

If we choose a maximal orderM inH we can giveGSpH
4 and PGSpH

4 the structure
of algebraic groups over Z as we did for G2. If H is split at p, so that PGSpH

4 is split
over Qp, then PGSpH

4 ðZpÞ is a hyperspecial maximal compact subgroup of
PGSpH

4 ðQpÞ ¼ PGSp4ðQpÞ. If H is not split at p, then PGSpH
4 has split rank 1 over
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Qp. Kp ¼ PGSpH
4 ðZpÞ is still maximal compact, but is not hyperspecial (PGSpH

4 ðQpÞ

has no hyperspecials).
The global situation is more complicated for PGSpH

4 than for G2, in that PGSpH
4

need not have class number 1 (with respect to the integral structure given by a
maximal order M). Following Shimura [21] we consider the action of PGSpH

4 ðQ̂QÞ

on the set of M-lattices in H2. We see that the stabilizer of M2 is PGSpH
4 ðẐZÞ, so

that PGSpH
4 ðQ̂QÞ=PGSpH

4 ðẐZÞ is the orbit of M2, called the principal genus of
M-lattices. PGSpH

4 ðQÞ acts on the principal genus, its orbits are called classes.
So the class number of PGSpH

4 is the number of classes in the principal genus.
In [14, Theorem 2] Hashimoto and Ibukiyama give a formula for this class number

and they tabulate some small values in their ‰5-3. In ‰6-1 they give an algorithm for
¢nding representative of the various classes in the principal genus, which amounts
to ¢nding representatives for

PGSpH
4 ðQÞnPGSpH

4 ðQ̂QÞ=PGSpH
4 ðẐZÞ:

IfH is rami¢ed only at 2 and1 or only at 3 and1, the class number of PGSpH
4 is

1. If H is rami¢ed at 5 and 1 the class number is 2. We represent this H by the
algebraQþQi þQj þQkwith i2 ¼ �5, j2 ¼ �2, and i,j,k satisfying the usual prod-
uct formulas. We take here the maximal order spanned by

1; j;
2þ j � k

4
;
2i þ j þ k

4

and then a choice of representative for the nontrivial double coset is

2þ k �2i � 9j
�2i � 9j 2þ k

� �
:

We now ¢x a quaternion algebra H rami¢ed at 1 and at some ¢nite set S0 of
primes and choose a maximal orderM inH. We letG ¼ PGSpH

4 with theZ-structure
induced by M.
We must again look at the £ag varieties GðFpÞ=Bp. For an unrami¢ed prime (i.e.

p 62 S0), G is isomorphic to the split group PGSp4 over Fp. The Borel subgroups
are again parametrized by £ags consisting of a null line contained in a null plane
(now with respect to the symplectic inner product on Fp

4
Þ, and the parabolics by

partial £ags. For a rami¢ed prime, the Borels are parametrized by the projective
line over Fp in a computable way. That is, GðFpÞ acts transitively on P1, with
stabilizer Bp.

3.3. COMPUTING AND RELIABILITY

So far we have presented the algorithms for carrying out our calculations, but have
said nothing about how they are implemented. A few words on that topic are in
order.
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Most of the calculations were carried out by programs we wrote in C++ and
compiled with gcc running under SunOS on a Sun SPARCserver-1000 and separately
under egcs running under Linux on an Intel Pentium 2. Some parts (especially
processing the matrices obtained as the actions of the Hecke operators) were done
using Mathematica [19], Gap [20], and Pari [8]. All calculations were done using
exact data types (i.e. integers or rationals, rather than reals). Any p-adic numbers
were only needed modulo a ¢xed power of p, and so could be represented by an
integer. When dealing with data produced by large programs, one hopes for as many
checks as possible to verify that the program has worked correctly. Fortunately, our
data allows for a great many strong checks. For example, we know that the spherical
Hecke operators all commute as elements ofHK . So when we compute the actions of
these Hecke operators on a space of forms, the matrices we obtain ought to
commute. This is the case in every example we have computed. Since these matrices
can have several hundred rows and columns, this is a rather meaningful check.
We mention two other checks that we will come across later. In Section 4.3 we

discuss some conjectured ‘liftings’ of modular forms from PGL2. We have been
able to identify many of these lifts. Finally in an upcoming paper the second
author and S. Padowitz use some of our data, along with the stable trace formula,
to work out an explicit formula for the dimension of a certain subspace of
MðW ;KÞ. Our data over-determines the explicit formula, and the fact that the
formula ¢ts all of our data points is a very strong indication of the validity
of our calculations.

4. Interpretations of the Data

4.1. THE STEINBERG SPACE

Let p be the Steinberg representation of GðQpÞ. Then p has a one-dimensional space
of ¢xed vectors for an Iwahori subgroup I . So pI induces a character of the
Iwahori^Hecke algebra HðGðQpÞ; IpÞ called the Steinberg character.
To describe this character concretely we adopt the notation of Section 2 and let

s 2 ~SS be a standard involutive generator of Waf . Then the Steinberg character sends
the Hecke operator Us ¼ charIsI to �1. Any irreducible representation of HIp which
has a vector on which each Us acts by �1 is in fact 1-dimensional. These represen-
tations are called special characters.
If K ¼ IS ¼

Q
p 62S Kp

Q
p2S Ip with Kp hyperspecial, we call the subspace of

MðW ;KÞ on which each HIp acts by a special character the Steinberg subspace
and denote it MðW ;KÞSt. Note that this is an abuse of language as we allow
any special character, not just the Steinberg. This subspace is of particular number
theoretic interest (cf. [10, ‰12]). Our calculations of the action of the Iwahori^Hecke
algebra on various spaces of forms allows us to identify the Steinberg subspaces. We
have tabulated some dimensions of these Steinberg subspaces in Section 5.

38 JOSHUA LANSKYAND DAVID POLLACK

https://doi.org/10.1023/A:1013715231943 Published online by Cambridge University Press

https://doi.org/10.1023/A:1013715231943


4.2. SATAKE AND LANGLANDS PARAMETERS

4.2.1. Satake Parameters

Given an eigenform f for the Hecke algebra HðGðQpÞ;KpÞ we get a complex
character yf :HðGðQp;KpÞÞ ! C

�: We will describe a convenient indexing of such
characters, for Kp hyperspecial.
Let ĜG be the complex dual group of G, and let T̂T be a maximal torus of ĜG. Then G

and ĜG have the same Weyl group W , which acts on the character group X�ðT̂T Þ,
and hence on the group algebra Z½X�ðT̂T Þ�. Then the representation ring of ĜG is
the ring of formal sums of characters of representations of ĜGðCÞ: RðĜGÞ ¼
Z½X�ðT̂T Þ�W : The Satake transform gives an isomorphism [12, Prop. 3.6]

HðGðQpÞ;KpÞ �Z½p1=2; p�1=2� ffi RðĜGÞ �Z½p1=2; p�1=2�:

So our character yf induces a character on RðĜGÞ �Z½p1=2; p�1=2�, and hence on
RðĜGÞ �C. Such characters are parametrized by the semi-simple conjugacy classes
in ĜGðCÞ [12, ‰6]. In particular, if s is such a conjugacy class we de¢ne a character
os of RðĜGÞ �C which sends w ¼

P
al � l to

osðwÞ ¼
X

al � lðs0Þ

where s0 is any element of s \ T̂T . Since w is W -invariant, this sum is independent of
our choice of s0.
Thus we associate to yf , and hence to f , a semi-simple conjugacy class

spðf Þ 2 ĜGðCÞ. We call this class the Satake parameter of f . To compute spðf Þ it
suf¢ces to know the eigenvalues yf ðTiðpÞÞ of the generators of HðGðQpÞ;KpÞ on
f , and the images of the TiðpÞ under the Satake transform.
In [12] Gross works out the Satake transform in several cases. For G ¼ G2,

ĜGðCÞ ¼ G2ðCÞ and Gross ¢nds

TrðV7Þ ¼
SðT1ðpÞÞ þ 1

p3

TrðV14Þ ¼
SðT1ðpÞÞ þ SðT2ðpÞÞ þ ð1þ p4Þ

p5

where, for V a representations of ĜGðCÞ, TrðV Þ 2 ĜGðCÞ is the formal sum of the
weights that appear in V . A conjugacy class s in G2ðCÞ is determined by its traces
on V7 and V14. Since ^2V7 ffi V14 % V7 this information is encoded in the charac-
teristic polynomial of s on V7. Using also that ^3V7 % V14 ffi V7 � V7 and that
G2ðCÞ acts orthogonally on V , we can work out the characteristic polynomial of
spðf Þ on V7 given the Hecke eigenvalues ai ¼ yf ðTiðpÞÞ of f [12, cf. Eq. 6.10].
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For G ¼ PGSp4, ĜGðCÞ ¼ Sp4ðCÞ and Gross gets

TrðV4Þ ¼
SðT1ðpÞÞ

p
3
2

TrðV5Þ ¼
SðT2ðpÞÞ þ 1

p2

Once again, this information determines a conjugacy class s in Sp4ðCÞ, and is
equivalent to the information contained in the characteristic polynomial of s on V4.

4.2.2. Archimedean Parameters

If GðRÞ is compact, an irreducible representation p of GðRÞ is classically
parametrized by a dominant weight w 2 X�ðT Þ where T is a maximal torus of G
and X�ðT Þ is the character module over C. Note that X�ðT Þ ffi X�ðT̂T Þ where T̂T is
the corresponding maximal torus of ĜG, so we may view w as an element of
X�ðT̂T Þ. Let m ¼ wþ r, where r is half the sum of the positive weights. Then, viewing
m 2 X�ðT̂T Þ �R we have a map C

�
! T̂T ðCÞ 
 ĜGðCÞ given by z 7! zm �zz�m (see [3, ‰9.1,

‰10.5] for details).
This map is the Archimedean Langlands parameter of p. If f is a modular form for

G of weight W we denote the Langlands parameter of W by f1ðf Þ.

4.3. LIFTINGS

If G and G0 are reductive groups over Q and r: ĜGðCÞ ! ĜG0ðCÞ, then we can use r to
‘lift’ Satake and Archimedean parameters from ĜGðCÞ to Ĝ0G0ðCÞ. If f is a Hecke
eigenform for G, then we get a collection of Satake parameters frðspðf ÞÞg and a
Langlands parameter r & f1ðf Þ for G0. It is natural to ask if these (or at least
all but ¢nitely many of these) arise as the parameters of a Hecke eigenform f 0

for G0. If G0 is quasi-split, then Langlands functoriality conjectures that the answer
will be yes [1, pg. 12]. Such an f 0, if it exists, is called a lift of f . If G0 is not quasi-split,
not all maps r are expected to yield lifts, and even when they do not all f are expected
to lift. In this section we discuss some maps of dual groups, and analyze the
corresponding lifts of modular forms.
First we look at lifts from PGL2 to G2. Recall that the dual group of PGL2 is SL2,

while G2 is its own dual. There are 4 non-trivial conjugacy classes of unipotents in G2

[15, pg. 132] and so there are 4 conjugacy classes of non-trivial maps SL2ðCÞ !
G2ðCÞ. The images of these are the long root, short root, principal and subregular
SL2’s. Of these all but the principal lie in a proper parabolic. This implies
(c.f. [4, ‰8.2]) that of these maps, only the principal homomorphism provides a lift
from modular forms on PGL2 to modular forms on the anisotropic form of G2.
(In particular, under the other maps the real components of the corresponding auto-
morphic representations do not transfer to representations on the compact form of
G2ðRÞ.) However, the long and short root embeddings can be chosen to have
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commuting images and so piece together to give a map from SL2ðCÞ � SL2ðCÞ to
G2ðCÞ. The connected centralizer of the subregular SL2 is unipotent so we can
not make a similar construction.
We ¢rst discuss the map r: SL2ðCÞ � SL2ðCÞ ! G2ðCÞ given by the short root

embedding in the ¢rst coordinate, and the long root in the second. Suppose that
fp and cp are Satake parameters for PGL2ðQpÞ (i.e. conjugacy classes in
SL2ðCÞ) given by Satake parameters with characteristic polynomials x2 � apxþ 1
and x2 � bpxþ 1. Then ðfp;cpÞ lifts to the Satake parameter for G2 whose charac-
teristic polynomial in the 7-dimensional representation is

ðx� 1Þðx2 � ða2p � 2Þxþ 1Þðx
4 � apbpx3 þ ða2p þ b2p � 2Þx

2 � apbpxþ 1Þ:

From this we can obtain the traces of the Satake parameter on the 7 and
14-dimensional representations and then use the Satake isomorphism to compute
the eigenvalues l1 and l2 of the Hecke operators T1ðpÞ and T2ðpÞ on the correspond-
ing representation of the Hecke algebra. We ¢nd

l1 ¼ p3ðapbp þ a2p � 1Þ � 1;

l2 ¼ p5ða3pbp þ a2p � 2apbp þ b2 � 2Þ � p3ðapbp þ a2p � 1Þ � p4:

We now look at the Archimedean parameters. Suppose f and c are the
Archimedean Langlands parameters of the real components of automorphic forms
corresponding to classical eigenforms of weights k and j. If k ¼ j or 3k� 2 ¼ j then
ðf;cÞ does not lift to an admissible parameter for the compact form of G2. Otherwise
it does and the lifted parameter corresponds to the representation of highest weight
in the Weyl orbit of:

j � 2
2

o1 þ
k� 4
2

o2; if j < k;

ðj � 5Þo1 þ
k� j þ 2

2
o2; if k < j < 3k� 2;

ðj � 6Þo1 þ
k� j þ 4

2
o2; if 3k� 2 < j:

8>>>>><
>>>>>:

We will consider lifting systems of parameters f and c that arise from classical
eigenforms or from the trivial representation of an anisotropic form H of PGL2.
In the former case, if f is a normalized eigenform of weight kwith Fourier expansionP

anqn then spðf Þ has characteristic polynomial x2 � p
1�k
2 ap þ 1. In the later case, at

primes p where the group H is split the Satake parameter has characteristic poly-
nomial x2 � ðpþ 1Þxþ 1 while the representation at the real place has the same par-
ameter as a weight two cusp form.
For example, there is a unique cusp form f on PGL2 of weight 4 and level G0ð5Þ,

given by

f ¼ qðZðzÞZð5zÞÞ4 ¼ q� 4q2 þ 2q3 þ 8q4 � 5q5 � 8q6 þ 6q7 þ � � �
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There is also a unique cusp form g on PGL2 of weight 6 and level G0ð5Þ, given by

g ¼ qþ 2q2 � 4q3 � 28q4 þ 25q5 � 8q6 þ 192q7 þ � � �

We let ff and fg be the corresponding parameters, and let ft be the parameter of the
trivial representation of an anisotropic form of PGL2 (say the one rami¢ed at 5 and
1).
Lifting ðff ;ftÞ to G2 we expect to ¢nd a form of trivial weight for which the short

and long Hecke operators at p ¼ 2 have eigenvalues �17 and 144, while the Hecke
operators at p ¼ 3 have eigenvalues 0 and 364. Indeed, we have seen there is such
a form of level K5. If we lift ðft;fgÞ we are then looking for a form on G2 of trivial
weight with Hecke eigenvalues 33 and 94 for p ¼ 2 and 100 and 164 for p ¼ 3. Once
again, we have seen such a form of level K5. Finally if we lift ðff ;fgÞ we are looking
for a form with weight the 7-dimensional representation with Hecke eigenvalues 3
and �16 for p ¼ 2 and �80=3 and �4004=9 for p ¼ 3. There is in fact such a form,
of level K5 (see Table V).
Now consider the map SL2ðCÞ ! G2ðCÞ corresponding to the principal unipotent.

Again let fp be a Satake parameter for PGL2ðQpÞ having characteristic polynomial
x2 � apxþ 1. Then fp lifts to the Satake parameter for G2ðQpÞ corresponding to
the character of Hecke algebra for which the TiðpÞ have eigenvalues

l1 ¼ p3ða6 � 5a4 þ 6a2 � 1Þ;

l2 ¼ p5ða10 � 9a8 þ 18a6 � 35a4 þ 16a2 � 2Þ � p3ða6 � 5a4 þ 6a2 � 1Þ � p4:

The Archimedean Langlands parameter of the real component of an automorphic
representation corresponding to a classical eigenform of weight k now lifts to the
parameter of the representation of G2ðRÞ with highest weight ðk� 2Þr, where r
as usual is half the sum of the positive roots.
For example, if f is the unique cusp form of weight 2 and level G0ð11Þ given by

f ¼ qðZðzÞZð11zÞÞ2 ¼ q� 2q2 � q3 þ 2q4 þ q5 þ 2q6 � 2q7 þ � � �

then we are looking for a form onG2 with weightC and Hecke eigenvalues�9 and 56
for p ¼ 2. Indeed, we do ¢nd such a form.
We now look at lifts to PGSp4. Here there are three conjugacy classes of

unipotents, corresponding to the long root, short root, and principal SL2’s. Once
again we do not get lifts from the root SL2’s directly, but we can choose two com-
muting long root SL2’s and get a map SL2ðCÞ � SL2ðCÞ ! Sp4ðCÞ. The reductive
part of the connected centralizer of the short root SL2 is a torus, and so does
not enable us to construct a map of dual groups whose image does not lie in the
a proper parabolic.
First consider the map SL2ðCÞ � SL2ðCÞ ! Sp4ðCÞ arising from two commuting

long root SL2’s. Again let fp and cp be Satake parameters for PGL2ðQpÞ with
characteristic polynomial x2 � apxþ 1 and x2 � bpxþ 1. Then ðfp;cpÞ lifts to
the Satake parameter whose characteristic polynomial in the 4-dimensional
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representation is

x4 � ðap þ bpÞx3 þ ðapbp þ 2Þx2 � ðap þ bpÞxþ 1:

We then ¢nd that the eigenvalues l1 and l2 of T1ðpÞ and T2ðpÞ on the corresponding
representation of the Hecke algebra are

l1 ¼ p
3
2ðap þ bpÞ; l2 ¼ p2ðapbp þ 1Þ � 1:

If f and c are the Langlands parameters for the real component of an auto-
morphic representation corresponding to classical cusp forms of weights k and j
then ðf;cÞ lifts to a parameter of a representation of compact PGSp4ðRÞ if and
only if k 6¼ j. If so, we may assume without loss of generality that k > j. In that
case the lifted parameter corresponds to the representation of highest weight
ððk� j � 2Þ=2Þo2 þ ðj � 2Þo1; where o1 and o2 are the long and short fundamental
weights.
Now we consider lifts via the principal homomorphism, SL2ðCÞ ! Sp4ðCÞ. Again

let fp be the Satake parameter for PGL2ðQpÞ having characteristic polynomial
x2 � apxþ 1. Then we ¢nd that fp lifts to the parameter whose characteristic poly-
nomial in the 4-dimensional representation is

x4 � ða3p � 2apÞx3 þ ða4p � 3a
2
p þ 1Þx

2 � ða3p � 2apÞxþ 1:

We ¢nd that the corresponding Hecke eigenvalues are

l1 ¼ p
3
2ða3p � 2apÞ; l2 ¼ p2ða4p � 3a

2 þ 1Þ � 1

The Langlands parameter corresponding to a classical cusp form of weight k now
lifts to the parameter of the representation of PGSp4 of highest weight ðk� 2Þr
where r is again half the sum of the positive roots. We should point out that
the principal homomorphism here is the symmetric cube map SL2 ! Sp4.

5. Data

In this chapter we present some of the data from our calculations. More data, includ-
ing the matrices giving the action of the Hecke operators, can be found at the second
author’s web page at www.math.ohio-state.edu/'pollack.
In Tables I^III we tabulate the dimensions of the various spaces of modular forms

we have calculated. The entry in the row corresponding to S and the column
corresponding to W is

dimðMðW ;KSÞÞ; dimðMðW ;KSÞ
St
Þ:

Recall that KS ¼
Q

p62S Kp
Q

p2S Ip with each Kp hyperspecial and each Ip an Iwahori
subgroup.
The next three tables (Tables IV^VI) give the decompositions of MðW ;KSÞ into

irreducible representations of HðGðQ̂QÞ;KSÞ for certain W and S. We only include
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those cases where MðW ;KSÞ has relatively low dimension, but in each case we
include we do give the complete decomposition into irreducibles. We now give a
guide to reading these tables.
Each row in the table corresponds to an irreducible Hecke-submoduleN of a space

of forms MðW ;KSÞ. The ¢rst two columns specify the level KS and the weight W .
Let HI ¼ �p2SHIp be the tensor product of the Iwahori^Hecke algebras and

HHS ¼ ~��p 62SHKp be the restricted tensor product of the spherical Hecke algebras.
Then N is a module for HI �HHS and as such a tensor product NI �NHS of
two irreducible representations. Note that NI is absolutely irreducible, while
NHS decomposes over Q as a sum of characters.
The third column (labeled HI ) in the table gives the dimension of NI . If NI is a

special representation ofHIp for each p 2 S then the third column contains the entry
‘St’ rather than 1.
The next columns in the table regard the spherical Hecke operators. If NHS is

one-dimensional then the column labeled TiðpÞ contains the (unique) eigenvalue
of TiðpÞ on NHS. Otherwise, some of the TiðpÞ have eigenvalues that aren’t rational

Table I. The dimensions of MðW ;KSÞ and MðW ;KSÞ
St for G2

W1 W7 W14 W27 W64

f2g 1, 0 0, 0 0, 0 2, 0 1, 1
f3g 3, 0 0, 0 1, 0 7, 2
f5g 7, 1 13, 7 26, 11 63, 31
f7g 29, 13 82, 54 194, 120
f11g 187, 134
f13g 523, 385
f2; 3g 43, 1
f2; 7g 2532, 252
f3; 5g 2956

Table II. The dimensions of MðW ;KSÞ and
MðW ;KSÞ

St for PGSp4
H2

W1 W5

f2g 1, 0 0, 0
f2; 3g 3, 0 3, 1
f2; 5g 11, 2
f2; 7g 28, 5
f2; 11g 99, 34

Table III. The dimensions of MðW ;KSÞ

and MðW ;KSÞ
St for PGSp4

H5

W1

f2; 5g 13, 2
f3; 5g 36, 9
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Table IV. Irreducible Hecke submodules for PGSpH5
4

Level Weight HI T1ð3Þ T2ð3Þ T1ð7Þ T2ð7Þ Lifted?

K f2;5g Q 1 40 120 400 2800 **
2 4 ^24 52 16 ðS4ðG0ð10ÞÞ; tÞ
4 ^4 ^8 ^4 ^96
4 14 16 62 96 ðS4ðG0ð5ÞÞ; tÞ
St 1 3 10 ^86
St 7 3 ^26 58

Table V. Irreducible Hecke submodules for G2

Level Weight HI T1ð2Þ T2ð2Þ T1ð3Þ T2ð3Þ T1ð5Þ Lifted?

K2 Q 1 � � 1092 88452 19530 **
W27 2 � � 140

3
�9884
9

4914
5 ðt; 10Þ

W64 St � � �28 1988
9

1638
25

K3 Q 1 126 2016 � � 19530 **
2 9 �90 � � 810 ðt; 6Þ

W14 1 �18 180 � � � 2214
25 ð6; tÞ

W27 2 81
2

711
4 � � � ðt; 10Þ

3 0 �126 � � � ðt; 10Þ
St NHS is 2-dimensional

K5 Q 1 126 2016 1092 88452 � **
St �3 �38 28 �196 �

2 33 94 100 164 � ðt; 6Þ
3 �17 144 0 364 � ð4; tÞ

W_7 2 � 19
2

111
4 �10 � 143

3 �

3 3 �16 � 80
3 � 4004

9 � (4,6)
1 6 �104 52 �988 � ðt; 8Þ
St NHS is 7-dimensional

W14 1 �2 24 � 380
9

28748
27 � ð6; tÞ

3 � 33
4 � 133

8
65
3 � 1850

9 �

3 21 11 � 104
3 � 572

9 � (4,8)
4 NHS is 2-dimensional (4,8)
St NHS is 2-dimensional
St NHS is 9-dimensional

K^7 Q 1 126 2016 1092 88452 19530 **
3 �14 126 �48 1212 610 ð4; tÞ
3 �3 �134 60 �816 438 ðt; 6Þ
6 �3 �6 �4 �240 �138
2 NHS is 2-dimensional ðt; 6Þ
St NHS is 2-dimensional
St NHS is 10-dimensional

K11 Q The full space of forms here is187-dimensional.Wewill only comment here that there is
a form in the Steinberg space here that seems to be lifted from S2ðG0ð11ÞÞ via the
principal SL2: We have only checked that the Satake parameter at 2 is what the lift
predicts.
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and we simply record the dimension of NHS. In some cases the characteristic
polynomials of the TiðpÞ on NHS can be found on the second author’s web page.
Finally, the last column regards apparent lifting of forms. Note that in no cases

have we proven that a form is lifted from a smaller group. Rather we have located
forms that appear to be lifts, in that the Satake parameters we have computed agree
with ones predicted by a lift. In the lifting column of the PGSp4 tables there are
three types of entries. An ordered pair ðSkðG0ðNÞÞ; tÞ indicates that the forms in
the corresponding irreducible Hecke submodule appear to be lifted, via the
SL2 � SL2 embedding discussed in Section 4.3, from a classical cusp form of weight
k and level N together with the parameter, t, of the trivial representation of a
compact form of PGL2. Next, we mark the forms corresponding to the trivial auto-
morphic representation with ‘**’. These forms are lifts in two ways. Namely they
arise from the pair ðE4; tÞ via the SL2 � SL2 lift and from t via the principal lift,
where E4 is the classical Eisenstein series of weight 4. Finally one entry indicates
that the forms are lifted via the principal SL2.
In the G2 tables (Table V) we use similar notation. Recall that the SL2 � SL2

embedding has the short root in the ¢rst coordinate and the long root in the second.
We record only the weight of the cusp forms being lifted; in each case the level

Table VI. Irreducible Hecke submodules for PGSpH2
4

Level Weight HI T1ð3Þ T2ð3Þ T1ð5Þ T2ð5Þ T1ð7Þ T2ð7Þ T1ð11Þ T2ð11Þ Lifted?

K f2g Q 1 40 120 156 780 400 2800 1464 16104 **
K f2;3g Q 1 � � 156 780 400 2800 1464 16104 **

2 � � 36 60 40 �80 144 264 ðS4ðG0ð6ÞÞ; tÞ
W5 St � � �84

5
156
5

�80
7 �80 24 �1416

11
2 � � 156

5
156
5

352
7

16
7

888
11

�5448
11 ðS6ðG0ð3ÞÞ; tÞ

K f2;5g Q 1 40 120 � � 400 2800 1464 16104 **
2 4 �24 � � 52 16 144 264 ðS4ðG0ð10ÞÞ; tÞ
2 �4 �8 � � �4 �96 �16 �120
4 14 16 � � 62 96 164 504 ðS4ðG0ð5ÞÞ; tÞ
St 1 3 � � 10 �86 �18 �42
St 7 3 � � �26 58 6 �186

K f2;7g Q 1 40 120 156 780 � � 1464 16104 **
2 0 �20 �4 �40 � � �16 �136
2 20 40 16 �60 � � 104 �216 ðS4ðG0ð14ÞÞ; tÞ
2 10 0 18 �48 � � 180 696 ðS4ðG0ð14ÞÞ; tÞ
4 10 0 46 120 � � 124 24 ðS4ðG0ð7ÞÞ; tÞ
4 �8 12 16 24 � � �8 120
4 �8 12 �12 24 � � 48 120
St 0 4 �16 8 � � �64 104
St 0 0 16 20 � � 24 �136
St �8 6 �6 �12 � � �30 84
St 4 �12 0 24 � � 0 120 S2ðG0ð14ÞÞ, princ.
St 0 �26 �10 20 � � 50 20
2 NHS is 2-dimensional
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is the prime appearing in the level of the forms on G2. Again we mark the forms
corresponding to the trivial representation with ‘**’. Here these forms are lifts
in three ways: from ðE4; tÞ and ðt;E6Þ under the SL2 � SL2 lift and from t under
the principal lift.
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