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LOCALIZATION IN NON-COMMUTATIVE 
NOETHERIAN RINGS 

BRUNO J. MÛLLER 

1.1 Introduction and summary. To construct a well behaved localization 
of a noetherian ring R at a semiprime ideal 5, it seems necessary to assume 
that the set ^ (S) of modulo S regular elements satisfies the Ore condition ; 
and it is convenient to require the Artin Rees property for the Jacobson radical 
of the quotient ring Rs in addition: one calls such 5 classical. To determine 
the classical semiprime ideals is no easy matter; it happens frequently that 
a prime ideal fails to be classical itself, but is minimal over a suitable classical 
semiprime ideal. 

The present paper studies the structure of classical semiprime ideals: they 
are built in a unique way from clans (minimal families of prime ideals with 
classical intersection), and each prime ideal belongs to at most one clan. We 
are thus led to regard the quotient rings Rs at the clans 5* as the natural local­
izations of a noetherian ring R. We determine these clans for rings which are 
finite as module over their centre, with an application to group rings, and for 
fflVP-rings, and provide some preliminary results for enveloping algebras 
of solvable Lie algebras. 

1.2. Terminology. By a ring, we mean a not necessarily commutative ring 
with identity; and unless stated otherwise, a module is a unitary right-module. 
Terms like noetherian, ideal, etc. mean left- and right-noetherian, -ideal, etc. 
unless specified by one of the prefixes left- or right-. A regular element is a 
non-zerodivisor. 

E(M) is the injective hull of the module M ; J(R) is the Jacobson radical 
of the ring R. A ring R is semilocal if R/J(R) is semisimple artinian. 

A (hereditary) torsion theory on the category mod R of i^-modules may be 
described by its torsion c l a s s a , torsion-free class J^, torsion radical p, Gabriel 
filter £iï of right-ideals, or equivalence class (qua mutual cogeneration) of 
injective modules; cf. [27]. A monomorphism (or submodule) is called dense/ 
closed if its cokernel is torsion/torsionfree. The closure cl N = c\MN of a 
submodule N of M is the smallest closed submodule of M containing N. 
With any multiplicative subset 2 of R is associated, the torsion theory deter­
mined by J ^ s = {X £ mod R: for each x £ X there is s £ 2 with xs = 0} or 
9v = {D right-ideal of R: r~lD C\ 2 ^ 0 for all r £ R\. 
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NOETHERIAN RINGS 601 

1.3 Semiprime ideals. A proper ideal / of a ring R is (semi) prime if 
aRb C I implies a G / or b G / (if aRa C I implies a G P) ; a semiprime ideal 
is the intersection of prime ideals. An ideal is said to have the right-,4P-
property, if for every right-ideal A there exists a number n such that 
ACMnCAI. 

In a right-noetherian ring R, a semiprime ideal has a unique representation 
as a finite irredundant intersection of prime ideals, and this establishes a 
one-to-one correspondence between semiprime ideals 5 = Pi?=i Pt and non­
empty finite sets {Pi, . . . , Pn) of mutually incomparable prime ideals. Termi­
nology like localizable, clan, etc. will be used to refer simultaneously to a 
semiprime ideal and its associated set of prime ideals. 

For a semiprime ideal S of a right-noetherian ring P , the torsion theories 
determined by the injective module E(R/S) and by the multiplicative set 
*$ (S) = {c G R: ex G 5 implies x G S} coincide; this is called the S-torsion 
theory $~s with quotient ring Rs (respectively sR if left-modules are con­
sidered). If S = nU P<, then E(R/S) ^ ®U E(R/Pi), V (S) = HU^iPi) 
and for given elements ct G ^ (Pi) there exist rt G R with YTi=i ctri £ ^CS) 
([15; 12; 17]). 

A prime ideal P of a right-noetherian ring P is either dense or closed, for 
any torsion theory 3T. (If R/P g J r , then there is a uniform P/P-right-ideal 
in J^~; then all uniform P/P-right-ideals lie in JT~ since they are mutually subiso-
morphic; then there is an essential P/P-right-ideal in $~, which contains a 
regular element; hence R/P G ^- This observation was communicated to us 
by R. Richards.) It follows for S = Dl=i Pi that a prime ideal Q is 5-closed 
if and only if Q CU?=i Pu and that 5 -^^s is a meet-semilattice embedding 
from the set of semiprime ideals S (ordered inverse to the set-inclusion of 
U?=i Pi) into the lattice of all torsion theories. 

Definition. A semiprime ideal S of a right-noetherian ring R is right-localiz-
able if *$ (S) is a right-Ore set. It is right-classical if it is right-localizable and 
if in addition the Jacobson radical J(Rs) of the quotient ring has the right-
ylP-property. A non-empty finite set {Pi, . . . , Pn) of mutually incomparable 
prime ideals will be called a clan if its associated semiprime ideal is classical 
but the associated semiprime ideals of all proper subsets are not. 

If S = n?=iP* is right-localizable, then Rs is right-noetherian and semi-
local with J(Rs) = SRs- IRs is an ideal of Rs for every ideal / of P , and the 
spectrum of Rs consists precisely of the ideals PRs for the prime ideals P 
of R contained in U?-i Pt ([3, 2.10]). If S is localizable, then SR = Rs-

Criteria for 5 to be right-localizable or right-classical, are to be found in 
[13] and [17]; in particular 5 is right-localizable if and only if ^ (S) operates 
regularly on E(R/S), and it is right-classical if and only if in addition each 
element of E(R/S) is annihilated by some power of S. Over FBN- and HNP-
rings, localizable semiprime ideals are automatically classical, and there 
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seems to be no example known of a semilocal noetherian ring whose Jacobson 
radical doesn't have the 4̂ improper ty. 

2.1 Artinian rings. 

LEMMA 1. The following are equivalent for a semiprime ideal S of a right-
artinian ring R: 

( 1 ) 5 is right-classical. 
(2) S is right-localizable. 
(3) S has the right-AR-property. 
(4) eR(l - e) = 0, where e = e2 £ R and S = Re + J(R) = eR + J(R). 

Proof. (1) implies (2) trivially. If (2) is given, then Rs is right-artinian, 
hence 0 = J(Rs)n = SnRs for some n. If A is any right-ideal of R and if 
a Ç A H Sn, then ac = 0 for some c £ & (S) since â G SnRs = 0. Since c is 
regular hence invertible in the semisimple artinian ring R/S, cr — 1 — 5 for 
suitable r £ R and s £ S, hence 0 = acr = a(\ — s) or a = as (zAS, demon­
strating (3). 

Given (3), note first that in any right-artinian ring R there exists an idem-
potent e, unique and central modulo J(R), with S = eR + J(R)- Using the 
right-^4improperty on the ideal A = fR + J(R) where / = 1 — e, one gets 
n with A H Sn C ^45. Now ^ 5 " and Rf C A yield ei?/ C 4̂ Pi Sn C ^45 = 
(fR + J) (Re + J) CfRe+fJ + Je + J2, which produces by multiplica­
tion by e and / the inclusion eRf C ej2f C J(eRe)eRf + eRfJ(fRf), hence 
&R/ = 0 by the nilpotence of J(eRe) and J(fRf). 

That finally (4) implies (1), is checked by computation: one has the matrix 

representation R = \ ._, with S = hence ^ ( 5 ) = 

s , : c is invertible in fRf > . The right-Ore-condition is easily verified 

explicitly; and the quotient ring is the right-artinian ring Rs = fRf, whose 
Jacobson radical, being nilpotent, has obviously the ^i^-property. 

COROLLARY 2. The only localizable semiprime ideal of a ring-directly inde­
composable artinian ring is the Jacobson radical. 

Remark. An indecomposable artinian ring may have many semiprime 
ideals which are one-sided localizable. For instance for the ring of n X n-
upper triangular matrices over a field, there are n prime ideals Pt (defined by 
putting a zero in the i-t\\ diagonal position), and the right-localizable semi-
prime ideals are precisely the P\ C\ . . . C\ Pt for i = 1, . . . , n. 

2.2 Completions. We collect a number of facts on the completion of a 
semilocal right-noetherian ring R with respect to the 7-adic topology, 
/ = J(R). They seem to be generally known, but we couldn't locate a sys­
tematic source of reference (cf. however [29; 16; 17; and 13]). 
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For simplicity assume C\n=i Jn — 0 ; then R may be regarded as a subring 
of its Hausdorff completion R. Ê is semiperfect with J(R) = J. The ideals 
(Jny determine the completion topology, and R/(JnY = R/Jn\ there results 
a one-to-one correspondence between the open right-ideals of R and R. For 
an arbitrary right-ideal A of R, the completion A in the relative topology 
coincides with the topological closure of A in R\ and the completion in the 
J-adic topology (which is denned by the AJn) is AR. 

If / has the right-^4i^-property, then every right-ideal A of R is closed, 
and the relative and the J-adic topologies on A agree. Hence (A BY = ÂB 
for right-ideals A and B\ in particular (JnY = (J)n hence the completion 
topology on R coincides with the J(R)-adic topology. R is the bicommutator 
of E — E(R/J), since the latter is the E-adic completion of R, and since the 
E-adic topology coincides with the /-adic one due to the right-^4P-property. 
Note also that the right-^4P-property implies our assumption P\ Jn = 0. 

Whether R is right-noetherian, and whether / possesses the righWlP 
property if / does, seem to be open questions. 

2.3 Main theorems. 

LEMMA 3. Let R be a right-noetherian ring with the right-localizable semiprime 
ideal S = Dl=i Pu and let T = f \ U Pu t ^ n. Then <€ (T) is right-Ore in R, 
if and only if & (TRS) is right-Ore in Rs. 

Proof. One shows first that c £ <é (T) if and only if cb~l 6 V (TRS) for 
one/all b G ^(S); then the lemma is easily verified. 

THEOREM 4. Let R be a noetherian ring with the classical semiprime ideal 
S = Dl^iPi- Then there is a one-to-one correspondence between the central 
idempotents of Rs and the localizable subsets of {Pi, . . . , Pn}. Such subsets are 
automatically classical. 

Proof. Note that sR = Rs is a semilocal noetherian ring with Jacobson 
radical J = J(Rs) = SRs- Let {Pi, . . . , Pt) be a localizable subset, and put 
T = n/=iP*- Then TRS is localizable by Lemma 3, hence so is TRs in 
Rs = Rs/Jn for all n. Hence by Lemma 1, since the factor rings Rs are 
artinian, there is a unique central idempotent en G Rs with TRS = enRs + J] 
i.e. TRs = enRs + / . By uniqueness, the sequence en G Rs of (arbitrary) 
inverse images is Cauchy, hence e = lim en exists in RSj and is a central 
idempotent. 

Conversely for a given central idempotent e G Rs, define T = e^ieRs +J) 
for the natural map e : R —> Rs —* Rs] T is a semiprime ideal of R; moreover 
TRs = Rs F\ (eRs + J). Clearly ë is a central idempotent of the artinian 
ring Rs/(J

nT ^Rs/J\_hence (eRs + J)/(JnT = TRS/J
n is localizable by 

Lemma 1, hence & (TRs) = W(TRS) is an Ore-set in Rs/Jn, for every n. 
Thus for given c Ç ^ (TRs) and r Ç Rs, there exist cn Ç ^ ' (TR S ) , rn Ç Rs 

and hn Ç Jn with crn — rcw = hn. For the right-ideal A = X)n=i W^s of Rs, 
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there is by the r i g h t s P-property of J, a number N with hN Ç A C\ JN C A J = 
2 n - i *n^. Therefore hN = £^=1 ^Jn with j n <E / , hence r(cN - Y!Z-i cnjn) = 
«V - hN - 2 ^ , i (crn - AJin = cftv - En- i '«in), where 

since j n £ J C. TRS. Therefore TRs, and consequently P by Lemma 3, are 
localizable. 

That T corresponds to a subset of {Pi, . . . , Pn\, and that both constructions 
are inverse, is readily checked. If P = f\-=i Pi is localizable, then PkRT = RT 
for t < k S n, since P& (2 U;=iP*; hence .SP^ = TRT. Then for 
e 6 E(R/T) C £(J î /5 ) there is eSN = 0, hence 0 = eSNRT = ^P^P^ hence 
0 = eTN, using that E(R/T) is an P r-module. This proves that P is classical 
(cf. Section 1.3). 

THEOREM 5. A prime ideal of a noetherian ring belongs to at most one clan. 

Proof. Let S = H?=i P< and P = H7=i (?j be two clans of the noetherian 
ring P , and assume Pi C (?i- Let Pi , . . . , P s be precisely the P / s contained 
in U7=i (?;> a n d P u t ^ = C\i=iPt. Since P* (£ Qj ior i > s and arbitrary j , 
P , P r = RT hence SRT = n?= iP*Pr = C\UPiRT = ^4P r . 

Suppose that 4̂ is not right-localizable; then there exist 

« 6 E(R/A) C £ ( £ / S ) and c Ç ? ( i ) with ec = 0. 

Since 4̂ is P-closed, E(R/A) is an P r-module; therefore 0 = eSn for suitable 
n implies 0 = eSnRT = eAnRT hence eAn = 0 (cf. Section 1.3). 

c f ^ 0 4 ) implies £ £ ^(ARs)', hence c is regular in RS/ARS, which is a 
factor of Rs/SRs = Rs/J(Rs) hence semisimple artinian. Consider Rs = 
Rs/A

nRS) one has J(RS) = ARS since RS/ÂRS = Rs/ARS is semisimple 
artinian, and since ARs

n = 0. Thus Rs is artinian; and c regular in Rs/ARS = 
Rs/J(Rs) implies that c is invertible in Rs/J(Rs) hence in Rs: cq = Ï where 
q Ç Ps , or eg — 1 = z£ £ ^4nPs. Then g = fr/-1 and u = a/ -1 with b £ P , 
a (E ^4n and / Ç ^ ( 5 ) , hence cb — t = a. Therefore 0 = ec yields 0 = ecb = 
e(t + a) —et since ea Ç evln = 0, contradicting the localizability of S. 

Consequently A is localizable, hence A = S by Theorem 4, hence 
U?-i P< C U7-i Qi\ i.e. ^ D ^ V In particular if P = P i = Qx belongs to 
both clans, then symmetry implies^~s = ^~T, completing the proof. 

If every prime ideal of a noetherian ring belongs to a clan, we say that the 
ring has enough clans. 

By Theorem 4, every classical set of prime ideals of a noetherian ring is 
uniquely partitioned into clans (since the identity element of the semiperfect 
ring Rs has a unique decomposition into central and centrally indecomposable 
orthogonal idempotents), and the corresponding torsion theory if the meet 
^~s — A $~sic- Moreover by the proof of Theorem 5, the prime ideals of any two 
clans are either all incomparable, or the two torsion theories are comparable. 
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Therefore the meet of two classical torsion theories (i.e. torsion theories 
corresponding to classical semiprime ideals) $~\ and ^ 2 is again classical: write 
both as meets of torsion theories ^~sk corresponding to clans and delete the 
non-minimal ones among these; the union {Pi, . . . , Pn) of the remaining 
clans is incomparable, hence for 5 = H?=i-Pi one has ^ i A ̂ 2 = <&~s, ^ (S) = 
H <if(Pt) = pi &(Sk) and E(R/S) maps injectively into ® E(R/Sk). If 
e Ç E(R/S) and c £ & (S) with ec = 0 are given, and if e maps to (eu . . . , em), 
then ekc = 0 hence ek = 0 since cG *% (S) C ^(Sk) operates regularly on 
E(R/Sk) ; hence e = 0 and ^ ( 5 ) is an Ore set. Moreover for any e G E(R/S) 
one has ekSk

N = 0 for suitable N and all & since all Sk are classical, hence 
eSN = 0 and S is classical as desired. 

From these and the observations in Section 1.3 follows readily a lattice-
theoretical formulation of our results. 

COROLLARY 6. For any noetherian ring, the classical torsion theories form a 
sub-meet-semilattice of the lattice of all torsion theories. In this meet-semilattice, 
the meet-irreducible elements are the torsion theories corresponding to clans, and 
each element is uniquely a finite irredundant meet of meet-ir reducible s. 

3.1 Rings which are finite over their centre. Let R be a noetherian ring 
which is finitely generated as module over a subring A of its centre T. By [6], 
A and V are (commutative) noetherian rings. Such a ring R can be satis­
factorily localized at the prime ideals of A or T; and it is reassuring that our 
non-commutative approach leads to these very same localizations. 

For any prime ideal Q of A, there exists at least one and at most finitely 
many (automatically mutually incomparable) prime ideals P of R lying over 
Q, i.e. with P C\ A = Q. They arise as the inverse images of the maximal 
ideals of RQ/QRQ, which is a finite-dimensional algebra over the field A Q/QA Q. 
If S is the intersection of these prime ideals, then SQ is the Jacobson radical 
of RQ, and the latter is semilocal (cf. [8; 24; 26]). 

For any c (z ^(S), c is regular in R/S hence in (R/S)Q = RQ/SQ = 
RQ/J(RQ), hence invertible in this semisimple artinian ring, hence invertible 
in RQ. Consequently *$ (S) is an Ore set and RQ = Rs, in fact the two torsion 
theories coincide. From the commutative Artin Rees Lemma ([29, p. 255]) 
follows that 5 is even classical. 

THEOREM 7. Let R be a noetherian ring which is finitely generated as module 
over its centre T. Then the clans are the sets of prime ideals of R lying over the 
various prime ideals U of T. In particular, R has enough clans. 

Proof. The preceding consideration has shown that the sets in question are 
classical; it remains to see that they are minimal such. By Theorem 4, this 
amounts to proving that Rs = ^ n contains no nontrivial central idempotent. 
Since ^ n = ^ n 0 r n f n , and since r n —> fn is flat, the lemma on p. 432 
of [8] yields centre(i?n) ^ cen t r e ( i ? n $1^11 ) ^cen t re ( i ? n ) ® r n f n = fn, 
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since centre (Ru) = r n follows readily. As f n is a local ring, the claim follows. 

Remark. Examples for the present situation are separable algebras and 
classical maximal orders. In both cases, there is exactly one prime ideal P 
of R over each prime II of T (cf. [1] and [28]), hence all clans are trivial (i.e. 
one-element sets). Nontrivial clans arise plentifully from the next example, 
which we discuss in some detail. 

3.2 Group rings. Consider the group ring R = AG of a finite group G 
over a commutative noetherian ring A. The centre of AG is T = 
I S aog: aQ = an if g> ̂  ai*e conjugate}. The (probably well known) next lemma 
describes the relevant features of the spectrum of AG. 

LEMMA 8. Let Q be a prime ideal of A, and let K be the quotient field of A/Q. 
Then the prime ideals U of T over Q correspond to the blocks of KG, and the prime 
ideals P of AG over any such II correspond to the maximal ideals of the block. 

Proof. According to the consideration at the beginning of Section 3.1, the 
prime ideals of R respectively Y over Q correspond to the maximal ideals of 
RQ/QRQ respectively TQ/QTQ. Now 

RQ/QRQ = AQG/QAQG ^ (AQ/QAQ)G = KG, 

hence the prime ideals of R = AG over Q correspond to the maximal ideals 
of KG. The restriction of the map RQ —> RQ/QRQ —> KG to TQ induces an 
isomorphism T Q/QT Q = centre (KG), using the explicit description of the 
centre of a group ring. Thus prime ideals of T correspond to maximal ideals 
of centre (KG), i.e. to blocks of KG. 

Remark. If a block of KG is simple, it produces a trivial clan. Hence by 
Maschke's Theorem, nontrivial clans can arise only if the characteristic of K 
divides the order |G| of G, i.e. if \G\ Ç Q. In particular if A is a Dedekind 
domain of characteristic zero (hence A/\G\A is artinian), there are only 
finitely many such prime ideals Q, and consequently at most finitely many 
nontrivial clans of AG. 

A group is called q-nilpotent for a prime number q, if G contains a normal 
subgroup N whose order is not divisible by q, such that G/N is a ç-group [10]. 
Formally, we call every group also O-nilpotent. A group is nilpotent in the 
usual sense, if and only if it is g-nilpotent for all q. For any prime ideal Q of A, 
define the Q-augmentation ideal of AG by AQ = {^ agg\ $Z aQ G Q) ; it is a 
prime ideal of AG. 

PROPOSITION 9. Let Q be a prime ideal of the commutative noetherian ring A, 
and let q be the characteristic of the quotient field K of A/Q. Then the following 
statements on the group ring AG of a finite group G are equivalent: 

(1) all prime ideals of AG over Q are classical, 
(2) the Q-augmentation ideal is classical, 
(3) G is q-nilpotent. 
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Proof. By Maschke's Theorem, the proposition is trivial unless q divides 
\G\. (1) implies (2) trivially. If AQ is classical, then the principal block of KG 
has only one irreducible representation by Lemma 8, which must be the 
trivial one, and consequently G is g-nilpotent by [22]. If G is g-nilpotent, 
then every block of KG has a unique simple module by [23, Corollary 3.6], 
hence every clan of AG is trivial by Lemma 8 and Theorem 7. 

COROLLARY 10. All clans of a group ring AG are trivial, if and only if G is 
q-nilpotent for all prime numbers q which are not invertible in A. In particular 
all clans of ZG are trivial, if and only if G is nilpotent. 

Remark. These considerations generalize slightly results of Smith [26] 
obtained by a different method avoiding representation theory. A combination 
of his and our approach should produce ring-theoretical proofs of the represen­
tation-theoretical results used above. 

3.3 Hereditary noetherian prime rings. 

THEOREM 11. A nonzero semiprime ideal of an HNP-ring is classical/local-
izable if and only if it is invertible. 

Remarks. Consequently for HNP-rings, the clans coincide with the cycles 
defined in [7]. The result in [18] that bounded HNP-r'mgs have enough 
invertible ideals, establishes that such rings have enough clans. For prime 
ideals, our theorem is in [5]. 

Proof. That an invertible semiprime ideal is classical, was proved in [14] 
for fflVP-rings, and holds true for arbitrary noetherian rings: the standard 
argument (cf. e.g. [4]) for invertible prime ideals, which shows that they 
have the ./Iimproperty, and that ordinary and symbolic powers coincide, 
goes through. 

Conversely if A is localizable, then SR = Rs is a semilocal HNP-r'mg with 
J(RS) = SRS ?* 0. Then by [21, Satz 4.5] or [7, Theorem 4.13] J(RS) is 
invertible. By [7], 5 = X H Y = XY = YX where X is an invertible and Y 
is an eventually idempotent semiprime ideal. Then J(Rs)

m+1 = Sm+1Rs = 
X™+iYm+lRs = Xm+lYmRs = XJ(Rs)

m hence J(RS) = XRS, hence S = X 
is invertible. 

3.4 Enveloping algebras of Lie algebras. We consider finite-dimensional 
Lie algebras L over an algebraically closed field K of characteristic zero, and 
their enveloping algebras U(L) which are noetherian domains. If L is nil-
potent, then all prime ideals of U(L) are classical [20], hence U(L) has enough 
clans and all of them are trivial. We study first the two-dimensional non-
commutative Lie algebra L2, with basis x, y and [x, y] = x, and use then the 
fact that each non-nilpotent solvable Lie algebra L maps onto L2 ([3, Lemma 
on p. 71]) to deduce that no such algebra has enough clans. 
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LEMMA 12. The spectrum of U(L2) consists of the prime ideals 0, (x), (x, y — a) 
for all a G K. 0 and (x) are classical, while no other semiprime ideal is even 
right- or left-localizable. 

Proof. The determination of the spectrum is routine. 0 is trivially classical, 
and (x) is so since x is a normal element ([20; 19]). Any other semiprime ideal 
must be of the form 5 = H?=i (x, y — a*)î then there exists b £ K, different 
from all the a{ but equal to a suitable aù• — 1, since the characteristic is zero. 
Then y - b G & (S) ; and if & (S) is right-Ore, then there exist c G & (S) 
and r G U(L2) with (y — b) r — xc G (x). As y — b (t S hence y — b G (x), 
and as prime ideals are here completely prime, r G (x) hence r = xr' hence 
xc = (y — b) r = (y — b) xr' = x(y — 1 — b)r' — x(y — af)r'. Cancellation 
of x yields c = (y — û^)r' G (x, 3/ — a i), a contradiction. 

PROPOSITION 13. If L is any non-nilpotent solvable Lie algebra, then U(L) 
does not have enough clans. 

Proof. Select a surjective Lie homomorphism L —• L2, and consider the 
induced ring homomorphism U(L) —» U(L2) ; let P a be the inverse image of 
the maximal ideal (x, y — a) of U(L2) in U(L). Suppose that one of them, 
say P0, belongs to a clan S. Then fâ (S) is a right-Ore set of U(L) hence its 
image 2 = fë (S) is a right-Ore set of U{L2). Only finitely many Pa belong 
to the clan S; let a± = 0, . . . , aw be the corresponding a G K. Then 
Pai H ^ ( 5 ) = 0 hence (x, y — a<) Pi 2 = 0; but if a ^ ai, . . . , am then 
since P a is maximal, Pa O ^CS) ^ 0 hence (x, 3/ — a) C\ 2 ^ 0. 

Select again some b £ K, different from all a,\, . . . , am but equal to a 
suitable a, — 1. Then (x, y — 5) C\ 2 3 5, which can be written as 5 = 
x0(x, y) + (y — b)\f/(y). Then sx = x0x + (j — b)\f/(y)x = x#x + x(y — 
1 - b)\l/(y - 1) = xs* with s* = </>x + (y - 1 - ft)^(y - 1) = <£x + 
(y "" aj)xl/(y — 1) (z (x,y — af). By the right-Ore condition on 2 there are 
r G U(L2) and 5' G 2 with sr = xs' G (x), hence r G (x) since s G 2 implies 
s G (x, y) hence s G (x). Thus xs' = sr = sxr' = xs*r' hence s' = s*r' G 
(x, 3> — a;-) r\ S = 0, a contradiction. 

Remarks. (1) The argument actually shows that there is no right- or left-
localizable semiprime ideal 5 of U{L) over which any of the Pa is minimal. 

(2) Enveloping algebras of solvable Lie algebras L differ from the rings 
considered in the preceding sections insofar as they are never fully bounded, 
unless L is commutative. This follows for nilpotent Lie algebras from the facts 
that primitive factor algebras are Weyl algebras and that 0 is the intersection 
of primitive ideals, and for non-nilpotent solvable Lie algebras L from the 
existence of a surjective map U(L) —• U(L2) and the fact that R = U(L2) 
is not bounded; indeed the right-ideal yR does not contain any nonzero ideal. 

(3) From investigations of low-dimensional non-nilpotent solvable Lie 
algebras, several common features emerge which might hold true in general: 
all clans are trivial ; if P belongs to a clan and if P 3 Q, then Q belongs to a 
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clan; primes of codimension one never belong to a clan; primes of height one 
always belong to a clan. 

= [o*o] i s r i i 3.5 Two counterexamples. (1) The nngR = r / X i s rign t-noe the rian> 

with polynomial identity hence fully bounded, and with Krull dimension one. 
(Though it is not left-noetherian, our main results can be deduced from these 

properties.) There are three prime ideals P 0 = 

and P 2 = n
P

 n , only one clan {P0, P2} and 

0 0 
.0 0. 

P i = 
pZP Q 
. 0 OJ 

the additional localizable 

set {Pi, P2}. Thus R doesn't have enough clans, while P2 belongs to two dif­
ferent localizable sets of prime ideals, illustrating that the assumption of the 
ylP-property is essential in Theorem 5. 

(2) The split extension R = A X N of a commutative noetherian ring A 
by a bimodule N with iV2 = 0, is noetherian if N is finitely generated on both 
sides, and satisfies the polynomial identity 52

2. The prime ideals of R corre­
spond naturally to the prime ideals of A. If N is the bimodule A, with the 
natural module structure modified by an automorphism a of A on one side, 
then a prime ideal P of R belongs to a clan if and only if the set {an (P) : n G Z} 
is finite, and then the clan containing P is just the set of corresponding prime 
ideals of R. For instance for A = K[x] where K is a field of characteristic 
zero, <r(x) = x + 1 and P = xA, one has <rn(P) = (x + n)A hence P doesn't 
belong to a clan. (Though these facts may be verified directly, they follow 
naturally from a detailed study of the links between prime ideals in FBN-
rings which we intend to describe elsewhere.) 

REFERENCES 

1. M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. 
Math. Soc. 97 (1960), 367-409. 

2. H. Bass, Finitistic dimension and a homologuai generalization of semiprimary rings, Trans. 
Amer. Math. Soc. 95 (1960), 466-488. 

3. W. Borho, P. Gabriel und R. Rentschler, Primideale in Einhùllenden auflosbarer Lie-
Algebren, Lecture Notes in Mathematics 357 (Springer 1973). 

4. A. W. Chatters and S. M. Ginn, Localization in hereditary rings, J. Algebra 22 (1972), 82-88. 
5. A. W. Chatters and A. G. Heinicke, Localization at a torsion theory in hereditary noetherian 

rings, Proc. London Math. Soc. 27 (1973), 193-204. 
6. D. Eisenbud, Subrings of artinian and noetherian rings, Ann. Math. 195 (1970), 247-249. 
7. D. Eisenbud and J. C. Robson, Hereditary noetherian prime rings, J. Algebra 16 (1970), 

86-104. 
8. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448. 
9. A. W. Goldie, The structure of noetherian rings, Lecture Notes in Mathematics 246 (Springer 

1972), 213-321. 
10. B. Huppert, Endliche Gruppen I (Springer 1967). 
11. A. V. Jategaonkar, Infective modules and classical localization in noetherian rings, Bull. 

Amer. Math. Soc. 79 (1973), 152-157. 
12. The torsion theory at a semiprime ideal, A. Acad. Brasil. Cienc. ^5 (1973), 

197-200. 

https://doi.org/10.4153/CJM-1976-059-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-059-x


610 BRUNO J. MULLER 

1 3 . —• • Injective modules and localization in non-commutative noetherian rings, Trans. Amer. 
Math. Soc. 188 (1974), 109-123. 

14. J. Kuzmanovich, Localization in HNP rings, Trans. Amer. Math. Soc. 173 (1972), 137-157. 
15. J. Lambek and G. O. Michler, The torsion theory at a prime ideal of a right-no ether ian ring, 

J. Algebra 25 (1973), 364-389. 
16. Completions and classical localizations of right noetherian rings, Pacific J. Math. J+8 

(1973), 133-140. 
17# Localization of right noetherian rings at semiprime ideals, Canad. J. Math. 26 (1974), 

1069-1085. 
18. T. H. Lenagan, Bounded hereditary noetherian prime rings, J. London Math. Soc. 6 (1973), 

241-246. 
19. A. T. Ludgate, A. note on non-commutative noetherian rings, J. London Math. Soc. 5 (1972), 

406-408. 
20. J. C. McConnell, Localization in enveloping rings, J. London Math. Soc. J+3 (1968), 421 -

428; erratum and addendum, ibid. 3 (1971), 409-410. 
21. G. O. Michler, Primringe mit Krull-Dimension Eins, J. Reine Angew. Math. 239-2%0 

(1970), 366-381. 
22. The kernel of a block of a group algebra, Proc. Amer. Math. Soc. 37 (1973), 47-49. 
23. The blocks of p-nilpotent groups over arbitrary fields, J. Algebra 24- (1973), 303-315. 
24. L. W. Small, Orders in artinian rings, J. Algebra 4 (1966), 13-41. 
25. P. F. Smith, Localization and the Artin-Rees property, Proc. London Math. Soc. 22 (1971), 

39-68. 
26. Localization in group rings, Proc. London Math. Soc. 22 (1971), 69-90. 
27. B. Stenstrôm, Rings and modules of quotients, Lecture Notes in Mathematics 237 (Springer 

1971). 
28. R. G. Swan, K-theory of finite groups and orders, Lecture Notes in Mathematics 149 

(Springer 1970). 
29. O. Zariski and P. Samuel, Commutative algebra II (Van Nostrand 1960). 

McMaster University, 
Hamilton, Ontario 

https://doi.org/10.4153/CJM-1976-059-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-059-x

