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1. Introduction
Let M be a closed Riemannian manifold. Recall that a diffeomorphism f : M → M is
called Anosov if it satisfies the following conditions.
(1) There is a splitting of the tangent bundle TM = Es ⊕ Eu which is preserved by the

derivative df .
(2) There exist constants C > 0 and λ ∈ (0, 1), such that for all n > 0, we have

‖df nv‖ ≤ Cλn‖v‖ for all v ∈ Es

and

‖df−nv‖ ≤ Cλn‖v‖ for all v ∈ Eu.

Classification of Anosov diffeomorphisms is a well-known open problem. Examples are
only known on tori, nilmanifolds and infranilmanifolds. The very first examples of Anosov
diffeomorphisms are hyperbolic automorphisms which are given by hyperbolic matrices
in GL(d , Z) whose action on R

d descends to the torus T
d . Franks [3] proved that every

Anosov diffeomorphism which is homotopic to a hyperbolic automorphism is, in fact,
conjugate to this automorphism. Manning [9] then completed the classification on tori
(and more generally on infranilmanifolds) by proving that every Anosov diffeomorphism
on the torus is homotopic to a hyperbolic automorphism. We would usually refer to such a
property as the global structural stability. More precisely, there is a linear model for every
Anosov diffeomorphism. The word ‘global’ is in contrast to the local version of structural
stability, where we consider whether two diffeomorphisms that are close in Cr -topology
for some r ≥ 0 are conjugate.
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Now suppose p : E → B is a C1 principal torus bundle where E and B are smooth
compact manifolds. Roughly speaking, E is a topological space endowed with a free
action of the torus Td = R

d/Zd . We will include a more detailed definition and properties
of this object in §2. Fix a Riemannian metric ‖ · ‖ on E. Then the tangent space splits
T E = V ⊕H , where V = ker(dp) denotes the vertical bundle tangent to the fibres and
H the horizontal bundle which is its orthogonal complement. We call aC1 diffeomorphism
F : E → E a fibrewise Anosov diffeomorphism if it satisfies the following conditions.
(1) There exists a splitting of the vertical bundle V = V s ⊕ V u which is preserved under

the derivative dF . (In particular, V is dF -invariant.)
(2) There exist constants C and λ ∈ (0, 1), such that for all n > 0, we have

‖dFn(vs)‖ ≤ Cλn‖vs‖ for all v ∈ V s ,
and

‖dF−n(vu)‖ ≤ Cλn‖vu‖ for all v ∈ V u.

IfG : E → E is a fibre-preserving map on a principal Td bundle that satisfiesG(e.g) =
G(e).Ag, for some A ∈ GL(d , Z) and all e ∈ E, g ∈ T

d in the structure group, then we
call G an A-map. In particular, when A is hyperbolic, we call G a fibrewise affine Anosov
diffeomorphism.

We took this notion of fibrewise hyperbolicity from [2] where Farrell and Gogolev
mainly studied the bundles that support such dynamics. There is also a more general
notion of ‘foliated hyperbolicity’ by Bonatti, Gómez-Mont and Martínez that appeared
in [1] where the authors studied diffeomorphisms that are hyperbolic along the leaves of a
foliated manifold and proved elementary dynamical properties, e.g. the strong stable and
unstable distributions are integrable.

We are interested in this class of fibrewise Anosov examples also partially because
of the new class of partially hyperbolic systems constructed by Gogolev, Ontaneda and
Rodriguez-Hertz in [6] with simply connected total spaces, although note that here a
fibrewise Anosov diffeomorphism is not necessarily partially hyperbolic unless the base
dynamics are ‘dominated’ by the dynamics in the fibres.

In this paper, we prove the global structural stability for fibrewise Anosov diffeomor-
phisms, generalizing the results of Franks and Manning. Namely, we prove the following
theorem.

THEOREM 1.1. Let p : E → B be a compact C1 principal torus bundle and let
F : E → E be a fibrewise Anosov diffeomorphism. Then there exists a fibrewise affine
Anosov diffeomorphism G : E → E and a homeomorphism h : E → E, which is
homotopic to idE and fibres over idB , such that h ◦ F = G ◦ h.

Remark 1.2. Note that because the structure group of a compact principal torus bundle
only contains translations, a fibre-preserving map induces the same automorphism on the
homology of the torus fibre over each point, provided that the base is connected. This
is because the restrictions of the map to nearby fibres are homotopic, and then we can
conclude by going from neighbourhood to neighbourhood.

We will get the semiconjugacy from the following proposition.
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PROPOSITION 1.3. Suppose F is a continuous fibre-preserving map on a compact
principal torus bundle whose base is connected, which induces an automorphism A :
H1(T

d) → H1(T
d) on the first homology of the torus fibre. Then it is fibrewise homotopic

to an A-map.
If, in addition, we assume the bundle is C1 and A is hyperbolic, then F is semi-conjugate

to a fibrewise affine Anosov diffeomorphism.

We give some definitions in §2 and examples of fibrewise Anosov diffeomorphisms in
§3. We will first prove in Proposition 4.1 that every fibrewise Anosov diffeomorphism is
homotopic to a fibrewise affine Anosov diffeomorphism by topological arguments in §4.
Then we prove in Proposition 5.1 that there is a semiconjugacy from each map covering the
same map in the homotopy class of a fibrewise affine Anosov diffeomorphism, by applying
a similar argument as in Franks’ proof. Last, we establish the global structural stability at
the end of §5, by showing that the fibrewise lift of each pair of stable and unstable leaves
has a unique intersection.

2. Preliminaries
In this section, we give definitions and properties that will come into use.

Definition 2.1. [8] Let G be a Lie group and E a metric space where G acts continuously,
freely and properly on the right. Let B = E/G. Then we call the projection p : E → B a
principal fibre bundle over B with group G, and E the total space, B the base space, p−1b

the fibre for each b ∈ B and G the structure group.

In Theorem 1.1, by a C1 principal torus bundle, we mean that p : E → B is a C1 map.

Property 2.1. [10] The principal bundle E defined as above is locally trivial, that is, every
point x ∈ B has a neighbourhood U where there exists a homeomorphism ϕ : U ×G →
p−1(U) and a map ψ : p−1(U) → G so ϕ−1(e) = (p(e), ψ(e)) and ψ(e.g) = ψ(e).g,
where e ∈ E and g ∈ G.

From now on, we assume E is a smooth manifold and the chart ϕ is smooth.

Property 2.2. The fibres of a principal bundle with group G are diffeomorphic to G.

Property 2.3. We fix trivializations {(ϕi , Ui)} for the fibre bundle p : E → B with
structure group G and fibre F. Restricting ϕi and ϕj to Ui ∩ Uj , there exists a unique map
gji : Ui ∩ Uj → G such that ϕ−1

j ϕi(b, x) = (b, gji(b)x) for (b, x) ∈ (Ui ∩ Uj )× F .
The functions gji satisfy the following properties.
(1) For each b ∈ Ui ∩ Uj ∩ Uk , we have gki(b) = gkj (b)gji(b).
(2) For each b ∈ Ui , gii(b) = idG.
(3) For each b ∈ Ui ∩ Uj , gij (b) = g−1

ji (b).

From now on, we will use additive notation ‘+’ for the torus action.

Remark 2.4. Recall the definition of a fibrewise Anosov diffeomorphism F : E → E on
a principal torus bundle from §1. The assumption that F preserves the vertical bundle
implies that F is also fibre preserving. This can be seen as follows.
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Let e0 ∈ E, p(e0) = b, and suppose ψ(e0) = 0 with the notion in Property 2.1. The
fibre T

d is a connected compact Lie group where the exponential map is globally surjec-
tive. We identify the Lie algebra of left invariant vector fields on T

d and the tangent space
T0T

d . For any e1 ∈ p−1b, we have an integrable curve γ (t) = exp(tX) in p−1b, where
X ∈ T0T

d , such that γ (0) = e0 and γ (1) = e1. Since dF(d/dt |t=t0(e0 + exp(tX)) =
d/dt |t=t0F(e0 + exp(tX)) ∈ VF(e0+exp(t0X)) for all t0 ∈ R, and V is integrable whose
integrable manifold at a point e is just the fibre at pF(e), we have F(e0 + exp(X)) =
F(e1) ∈ p−1(p(F (e0))).

We denote the map covered by F as f : B → B.
We would also like to recall the following lemma from general topology which we will

refer to as the tube lemma.

LEMMA 2.5. (Tube lemma) Consider the product space X × Y , where Y is compact. If N
is an open set of X × Y containing the slice x0 × Y of X × Y , then N contains some tube
W × Y about x0 × Y about x0 × Y , where W is a neighbourhood of x0 in X.

THEOREM 2.6. (Pugh closing lemma, [11]) Let f be a C1 diffeomorphism of a compact
manifold M and let x ∈ M be a non-wandering point of f. Then any C1-neighbourhood U
of f contains a diffeomorphism g ∈ U such that x is a periodic point of g.

Remark 2.7. The stable and unstable distributions of a fibrewise Anosov diffeomorphism
along the fibres are integrable following Theorem 2.6, [1].

Remark 2.8. (Local product structure) Consider a pair of transverse foliations. If the
foliated manifold is compact, there exists a constant ε, such that any open neighbourhood
of diameter < ε can be thought of parametrized by the plaques of the leaves.

The fibrewise leaves of a fibrewise Anosov diffeomorphism also have the local product
structure. More precisely, for b ∈ B and any e, e′ ∈ T

d
b (or ẽ, ẽ′ ∈ R

d
b ) which denotes the

fibre over b, there exists a constant ε > 0 such that if d(e, e′) < ε (or d(ẽ, ẽ′) < ε), then
Ws
b (e) ∩Wu

b (e
′) and Wu

b (e) ∩Ws
b (e

′) (or W̃ s
b (ẽ) ∩ W̃u

b (ẽ
′) and W̃u

b (ẽ) ∩ W̃ s
b (ẽ

′)) each
contains exactly one point.

Now there is also such a constant even if we lift the leaves to the covering space. Since
the bundle is compact and a sufficiently small neighbourhood of Tdb for each b is evenly
covered, by definition of the covering map R

d
b → T

d
b , there is a uniform ε for the bundle

with which the local product structure is satisfied. We would refer to ε as ‘the constant of
the local product structure’ just to save a letter.

3. Examples of fibrewise Anosov diffeomorphisms
Example 3.1. (Trivial example) Let E = B × T

d . Then G : E → E, G(b, t) =
(f (b), A(t)+ v(b)), where f : B → B is a diffeomorphism and v : B → T

d is a
differentiable function, is a fibrewise affine Anosov diffeomorphism.

Example 3.2. (Nilmanifold automorphisms) Let E = N/� be a nilmanifold where N
is a simply connected nilpotent Lie group and � ⊂ N a discrete subgroup that acts
cocompactly on N. Let Z(N) denote the centre of N. ThenZ(N)/(Z(N) ∩ �) is a compact
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abelian Lie group and thus a torus group. It acts continuously, freely and properly on E.
Thus, E is a principal bundle with torus fibres.

SupposeA : N → N is an automorphism andA(�) = �. If the restriction of A toZ(N)
is hyperbolic, it induces a hyperbolic toral automorphism on Z(N)/(Z(N) ∩ �), and thus
a fibrewise affine Anosov diffeomorphism on E.

Remark 3.3. There are criteria given in [6] whether a bundle would support fibrewise
Anosov diffeomorphisms. We want to point out that one is able to construct many
examples, with some algebraic topology.

Example 3.4. (K3 surface, [6]) Let the base be a K3 surface by Kummer’s construction
[12, 3.3]. It is given by X := T

2
C

#16CP
2
/ι, where CP

2
is the complex projective plane

with reversed orientation and ι is the involution induced by the involution of T2
C

, which

gives rise to 16 singularities where we attach the CP
2

terms.
Identify T

2
C

= T
4, the usual real torus. For any given hyperbolic matrix A ∈ SL(2, Z),

we are able to take a perturbation A′ of A, such that A′ ⊕ A′ : T2
C

→ T
2
C

descends to a
diffeomorphism f of the quotient space X, and there exists a principal T2 bundle with
simply connected total space that admits a fibrewise affine Anosov diffeomorphism with
matrix A2 as specified in the definition, which covers f : X → X. In particular, the above
fibrewise affine Anosov diffeomorphism is partially hyperbolic by this construction.

We would also like to remark that from [5], we are able to construct more examples
from the above Examples 3.1, 3.2 and 3.4 by connect-summing along invariant tori.

More precisely, in these examples, the base dynamics (up to a finite order) already
have or can be perturbed to have a hyperbolic fixed point, near which the map has
a local form (x, y) �→ (Ax, fx(y)) in a tubular neighbourhood D × T

d . Then, by
replacing D × T

d of the invariant fibre by D̃ × T
d where D̃ := {(x, l(x)) : x ∈ D, x ∈

l(x), l(x) is the line passing through x}, we obtain what we call a blow-up of the original
bundle, with boundary S

k × T
d for some k.

Now if we have examples of different types, with the same fibre and base dimensions,
whose base dynamics have hyperbolic fixed points where the local forms of the maps as
described above are the same, then we can take the blow-ups and glue along the boundaries
to get new examples of fibrewise affine Anosov diffeomorphisms. We get partially
hyperbolic diffeomorphisms from gluing partially hyperbolic diffeomorphisms by [5].

4. The homotopy
In this section, we let F : E → E be a C1 fibrewise Anosov diffeomorphism on the prin-
cipal Td bundle p : E → B that covers f : B → B. We prove the following proposition.

PROPOSITION 4.1. There is a fibrewise affine Anosov diffeomorphism G : E → E such
that F is homotopic to G.

We will prove the above proposition by the end of this section.

LEMMA 4.2. There is a fibre-preserving map F̂ : E → E that is C1 close to FN for some
N ∈ N>0 and covers a map f̂ : B → B such that f̂ has a fixed point.
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Proof. We construct such a map F̂ . Let b ∈ B denote a recurrent point of f. Consider the
horizontal distribution of our choice H ⊂ T E. Take a small neighbourhood of U ⊂ B

that contains b such that for every e ∈ p−1b, b ∈ U , there is a small disc De ⊂ He so we
have exp : De → P(e) is a diffeomorphism where P(e) is a disc of the dimension of the
base but in the total space E. There exists an N ∈ N>0 such that f N(b) ∈ U . Then take a
smaller neighbourhood V ⊂ U containing b such that f N(V ) ⊂ U . Now, by Theorem 2.6,
there is a map f ′ that is C1 close to f on V, f ′ = f outside V and has b as a periodic point.
Without loss of generality, assume (f ′)Nb = b and (f ′)NV ⊂ U . Denote f̂ = (f ′)N .

Recall that we have defined P(e) for e ∈ p−1b. Now let P(e′) = P(e) if P(e) ∩
p−1(pe′) = e′ (there is a unique P(e) because the neighbourhood is foliated by these
discs). Now P(FN(e)) is also well defined for all e ∈ p−1V . Then we define

F̂ (e) = P(FN(e)) ∩ p−1(f̂ (b′))

for each e ∈ p−1b′ and b′ ∈ V . We can check that F̂ covers f̂ and is C1 close to FN

because V is small enough.

Now, by a classical cone field argument, the F̂ is fibrewise Anosov. As b is a fixed
point of f̂ , the restriction F̂b : p−1b → p−1b is an Anosov diffeomorphism. Recall that
p−1b is canonically identified with T

d up to a translation. Thus, F̂ induces a hyperbolic
automorphism (F̂b)∗ on H1(T

d ; R) = R
d [9]. However, (FNb )∗ = (F̂b)∗ because they are

C1 close.
By continuity of F, we know that if b, b′ are close enough points in the base, Fb and Fb′

are homotopic, and thus induce the same automorphism on H1(T
d ; R). By compactness,

we are able to extend this to the entire B, so for all b ∈ B, (Fb)∗ = A for a fixed A, which
is also hyperbolic. We state this fact as the following lemma.

LEMMA 4.3. For any b ∈ B, the induced homomorphism (Fb)∗ : H1(T
d ; R) →

H1(T
d ; R) is the same hyperbolic automorphism.

Now suppose F , G : E → E are two arbitrary continuous maps that cover f. We can
define r : E → T

d to be such that F(e) = G(e)+ r(e). Note that morally r is defined as
the amount we need to translate from G to get F. Because the action is free, r is well
defined and unique. We show that it is continuous.

LEMMA 4.4. For two continuous maps F , G : E → E on a principal bundle with
fibre H that cover the same map, we have a continuous map r̄ : E → H such that
F(e).r̄(e) = G(e).

Proof. We use charts. Suppose for a fixed b, f (b) ∈ Uj . Define rj = (ψjF )
−1.ψjG :

E → H . We show rj is independent of charts.
This is because if, at the same time, f (b) ∈ Uk for some k �= j , then ψk = hjk .ψj .

We have rj = rk . These rj terms are continuous as compositions of continuous functions.
Thus, we get a globally defined continuous function r̄ : E → H that agrees with the rj
terms everywhere.
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Now suppose we have a fibre-preserving map F : E → E that induces the same matrix
A on the homology of every fibre. From [6], if E admits an A-map (we will show it does),
then we have the following commutative diagram. Here, A(E) means E with cocycles
{A ◦ gji} as in the notation of Property 2.3. For the existence and well definedness of such
bundles and A-maps, we refer to Proposition 4.6 and Theorem 6.2 in the same paper.

E E f ∗E A(E) E

B B B B B

F id
Td

-map id
Td

-map A−1-map

f f−1 idB idB

(4.1)

Denote the composition in the upper row F̄ . Then the restriction of F̄ to each fibre
clearly induces the identity on H1(T

d ; R).

LEMMA 4.5. Let F : E → E be a fibre-preserving map that induces the same auto-
morphism A, which is not necessarily hyperbolic, on the homology of each fibre. Let
r : E → T

d be such that F̄ = idE + r , where F̄ is as the above. Then r is homotopic
to v ◦ p, where v : B → T

d is a translation in the fibre and p : E → B is the projection,
that is, the following diagram commutes up to homotopy.

E T
d

B

r

p
v

(4.2)

Proof. We have the following diagram.

π1(T
d) π1(E) π1(B) 1

π1(T
d)

i#

trivial map

p#

r#
v#

(4.3)

The upper row comes from the long exact sequence. The trivial map on the left comes
from the fact that the restriction of r to each fibre induces the zero map on H1(T

d ; R).
Our goal is to define v#. Once it is defined, from the K(π , 1)-spaces fact (see, for

example, Hatcher [7, 1B.9]), we get a unique v, up to homotopy, from any homomorphism
π1(B) → π1(T

d).
For α ∈ π1(B), because p# is surjective, there is a β ∈ π1(E) such that p#β = α. We

define v#α = r#β.
To show this is well defined, suppose there is another β ′ such that p#β

′ = p#β = α, we
need to show that r#β ′ = r#β.

We know p#(β
′β−1) = 1 so β ′β−1 ∈ ker p# = im i#. There is a γ ∈ π1(T

d) such that
i#γ = β ′β−1. However, r#i#γ = r#β

′β−1 = 1.

LEMMA 4.6. Let G : E → E be a map that induces the identity idy∗ on H1(T
d). Then E

admits an idTd -map.
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Proof. We prove the statement by induction on k for principal torus bundles over S
k .

After showing for spheres, a general statement is true because manifolds have CW
approximations and we can just do inductions on the dimension of skeletons.

For k = 1, the bundle must be trivial, so there is trivially an idTd -map.
Now suppose the statement for the bundle over Sk is true. Then for a bundle over Sk+1,

we consider the clutching construction. The bundle splits into two trivial bundles over
discs D+ and D

− of dimension k + 1. The restrictions of the torus bundle to the boundary
spheres Sk of D+/− and each admits an idTd -map.

Let us denote the idTd -map g : Sk × T
d → S

k × T
d . Parametrize the disc D

k+1 by
(ρ, θ), where ρ gives the radius and θ is a k-dimensional vector of angles. In this
coordinate, ρ = 1 is the boundary sphere, and g(θ , y) = (θ , id + v(θ)) on the boundary.
The problem actually reduces to the extension of v(θ) to the entire disc.

However, because the pair (Dk+1 × T
d , Sk × T

d) is a good pair, which has the
homotopy extension property, we are able to find a homotopy h : D × T

d × I → D × T
d

such that h(1, θ , y, 0) = g(θ , y). Thus, V (ρ, θ) = h(ρ, θ , 0, 0) is a map that restricts to
v(θ) on the boundary, where y = 0 is just the zero section of the trivial bundle. Now
idD×Td + V is an idTd -map on half of the bundle. We can glue via the clutching map.

As a consequence, we have the following proposition.

PROPOSITION 4.7. If F : E → E is a fibre-preserving map that induces the same
automorphism A on the homology of each fibre, then F is homotopic to an A-map.

Proof. From the previous lemmas, we have found a homotopy H̄ : E × I → T
d such that

H̄ (e, 0) = r(e), where F̄ (e) = idE(e)+ r(e), and H̄ (e, 1) = v ◦ p(e). Then, if we define
H̃ : E × I → E as H̃ (e, t) = idE(e)+ H̄ (e, t), it gives a homotopy such that H̃ (e, 0) =
F̄ (e) and H̃ (e, 1) = idE(e)+ v ◦ p(e).

If we name the maps in Diagram (4.1), from the left to right, the first idTd -map g1, the
second idTd -map g2 and the A−1-map g3, then H := g−1

1 g−1
2 g−1

3 H̃ : E × I → E gives a
homotopy such that H(e, 0) = F(e) and H(e, 1) = G(e) for some A-map G.

Then Proposition 4.1 follows.

Proof of Proposition 4.1. By the remarks we made right after the proof of Lemma 4.2, if
F : E → E is fibrewise Anosov, then F induces the same hyperbolic automorphism A on
the homology of the fibre T

d . Therefore, F is homotopic to G for some fibrewise affine
Anosov diffeomorphism G from Proposition 4.7.

5. Proof of Theorem 1.1
From the last section, we get a homotopy H between F , G : E → E, where G is a fibrewise
affine Anosov diffeomorphism. First, we construct the h as stated in Theorem 1.1. This is
very similar to [4, Proposition 2.1].

For any two maps F , G : E → E on a principal torus bundle that covers the same
map f : B → B, again we let r : E → T

d be the map such that F(e)+ r(e) = G(e).
If F � G and we let H : E × I → E denote the homotopy such that H(e, 0) = F(e)
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and H(e, 1) = G(e), then we can let R : E × I → T
d be the map such that H(e, t)+

R(e, t) = G(e). This is well defined, and continuous in e also by Lemma 4.4 and in t
because H is continuous. We have R(e, 0) = r(e) and R(e, 1) = c where c : E → T

d

denotes a constant map.
Thus, in the case where F is homotopic to G, r is nullhomotopic and it lifts to a map r̃ :

E → R
d . Now if G is fibrewise affine Anosov with the matrix A, we can write r̃ = r̃ s + r̃u,

where r̃ s and r̃u take values in the stable and unstable subspaces of A, respectively.

PROPOSITION 5.1. SupposeG : E → E is a fibrewise affine Anosov diffeomorphism with
the matrix A as specified in the definition. For any F : E → E that is homotopic to G and
covers the same map on the base with G, there is a continuous surjective map h : E → E

homotopic to idE which fibres over idB such that h ◦ F = G ◦ h.

Proof. We define w̃s , w̃u : E → E,

w̃s(e) = −
∞∑
n=0

Anr̃s(F−(n+1)(e)) and w̃u(e) =
∞∑
n=0

A−(n+1)r̃u(F n(e)).

Then we have

Aw̃s(e)− w̃s(F (e)) = −
∞∑
n=0

An+1r̃ s (F−(n+1)(e))+
∞∑
n=0

Anr̃s(F−n(e)) = r̃ s (e).

Similarly, we can check that Aw̃u(e)− w̃u(F (e)) = r̃u(e). Let w̃ = w̃s ⊕ w̃u. Then we
have Aw̃(e)− w̃(F (e)) = r̃(e).

We show that w̃ : E → E is continuous. Let Rd be endowed with the Riemannian
metric lifted from T

d . Let dE denote the metric on E and dRd the metric on R
d . Since E

is assumed to be compact, there is a uniform bound M of the distance from r̃(e) to 0 ∈ R
d

for all e ∈ E. For a given ε > 0, take N ∈ N so we have
∑
n>N λ

nM < ε/4. Then, since
both − ∑N

n=0 A
nr̃s(F−(n+1)(e)) and

∑N
n=0 A

−(n+1)r̃u(F n(e)) are uniformly continuous,
there is a δ > 0 such that if dE(e1, e2) < δ for any e1, e2 ∈ E, we have both

dRd

( N∑
n=0

Anr̃s(F−(n+1)(e1)),
N∑
n=0

Anr̃s(F−(n+1)(e2))

)
< ε/4

and

dRd

( N∑
n=0

A−(n+1)r̃u(F n(e1)),
N∑
n=0

A−(n+1)r̃u(F n(e2))

)
< ε/4.

Then dRd (w̃(e1), w̃(e2)) < ε.
We can then project w̃ : E → R

d and get p1w̃ = w : E → T
d , where p1 : Rd → T

d

denotes the covering projection. Note p1 : Rn → T
n is linear. Then,

Aw(e)− w(F(e)) = Ap1w̃(e)− p1w̃(F (e)) = p1Aw̃(e)− p1w̃(F (e)) = p1r̃(e) = r(e).
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Let h : E → E be such that h(e) = e + w(e), which obviously covers the identity. We
have

G ◦ h(e) = G(e + w(e)) = G(e)+ Aw(e) = G(e)+ r(e)− r(e)+ Aw(e)

= F(e)+ w(F(e)) = h ◦ F(e).
Since w̃ is bounded, it is homotopic to a constant map E → R

d , and thus h is homotopic
to the identity via a homotopy that preserves each fibre. Then h induces a map of non-zero
degree on the top homology, and thus it is surjective.

We denote F̃b : Rdb → R
d
f (b) the lift of the restriction Fb : Tdb → T

d
f (b). We use W̃ s

F̃b
(ẽ)

and W̃u

F̃b
(ẽ) to denote the stable and unstable leaves of F̃b passing through a point ẽ in R

d
b .

We will also use W̃ s

F̃b
(F̃ nb (ẽ)) and W̃u

F̃b
(F̃ nb (ẽ)) to denote the leaves along an orbit of b

lifted fibrewise. If the leaves of which map we are talking about are clear, we would also
write W̃ s

b (ẽ) and W̃u
b (ẽ).

Let d(s; ·, ·) and d(u; ·, ·) denote the distance between two points along stable and
unstable leaves, respectively.

If any pair of stable and unstable leaves of F̃b has a unique intersection, we say that we
have the global product structure (GPS) of the leaves of F̃b in the fibre over b.

We want to show the global product structure at all b ∈ B to prove the injectivity of
h (see Lemma 5.10). Before that, we check the following properties of either h or the
fibrewise lift h̃b : Rdb → R

d
b , which we will use repeatedly.

Property 5.2. The restriction hb of h to a fibre maps a stable (or an unstable) leaf of Fb to
a stable (or an unstable) leaf of Gb.

Proof. It is sufficient to show that hb takes a local stable disk to a local stable disk, that is
for any e ∈ T

d
b , if e′ ∈ Ws

Fb ,ε(e), we will have hb(e′) ∈ Ws
Gb ,ε(hb(e)) for some ε > 0.

Suppose the statement is not true, say hb(e′) /∈ Ws
Gb ,ε(hb(e)). Then,

d
T
d
f n(b)

(Gnb(hb(e)), G
n
b(hb(e

′))) = d
T
d
f n(b)

(hf n(b)F
n
b (e), hf n(b)F

n
b (e

′)) → 0,

as n → ∞. However, the Gb is the fibrewise affine Anosov diffeomorphism which has
straight leaves in the eigen-direction of A, so the left-hand side of the equation goes to
infinity. We have reached a contradiction.

Remark 5.3. From the the above, we also have that the lift h̃b takes a stable (or an unstable)
leaf of F̃b to a stable (or an unstable) leaf of G̃b.

Property 5.4. [4] Since h̃b is homotopic to the identity along the fibres, it is proper.

We claim that the existence of an intersection for any pair of stable and unstable leaves
in the fibrewise covering spaces follows exactly from Lemma 1.6 of Franks [3], which we
include for completeness. Since the proof there is rather long, we only include a sketch.
Note that we are only going to use the local product structure and the semiconjugacy. This
works for any point b ∈ B.

https://doi.org/10.1017/etds.2023.4 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.4


344 D. Zhang

ρ ⊂ W̃ s

F̃b
(x)

γ ⊂ W̃u

F̃b
(y)

θ(1, t) ⊂ W̃ s

F̃b
(z)

θ(r , 1) ⊂ W̃u

F̃b
(x)

x

y
z

t0

r0

J

FIGURE 1. Definition of θ .

LEMMA 5.5. For any points ẽ, ẽ′ ∈ R
d
b , we have W̃ s

F̃b
(ẽ) ∩ W̃u

F̃b
(ẽ′) �= ∅ and W̃u

F̃b
(ẽ) ∩

W̃ s

F̃b
(ẽ′) �= ∅.

Sketch of proof. Fix a stable leaf S of F̃b, and we want to show that the set

Q := {ẽ | W̃u

F̃b
(ẽ) ∩ S �= ∅}

is Rdb . Because of the local product structure, there is an open set O that contains S such
thatQ = {ẽ | W̃u

F̃b
(ẽ) ∩O �= ∅}. If ẽ ∈ Q, there is a foliated neighbourhood U containing ẽ

which we could extend to a path of foliated neighbourhoods whose union contains W̃u

F̃b
(ẽ),

so U ⊂ Q. Thus, Q is open. We want to show that Q is also closed.
Suppose x is a point in the closure of Q but not in Q. We show that W̃u

F̃b
(x) ∩ S �= ∅.

Because of the local product structure, we are able to find a sequence of points in Q
approaching x which is also contained in the same stable leaf W̃ s

F̃b
(x). We pick one point

from the sequence and denote it by y. Pick another point z in W̃u

F̃b
(y) ∩ S. We connect y

and z by a path γ : [0, 1] → W̃u

F̃b
(y) and connect x and y by a path ρ : [0, 1] → W̃ s

F̃b
(x) =

W̃ s

F̃b
(y).

We aim to define a function θ : [0, 1] × [0, 1] → R
d
b such that θ(r , 0) = γ (r) and

θ(0, t) = ρ(t), and θ(r , t) = W̃ s

F̃b
(γ (r)) ∩ W̃u

F̃b
(ρ(t)). If we are able to define θ at (1, 1),

then W̃ s

F̃b
(z) ∩ W̃u

F̃b
(x) = W̃u

F̃b
(x) ∩ S �= ∅ (see Figure 1).

Because of the local product structure, the set where θ can be defined is open. Now let

t0 = sup{t̂ | θ(r , t) is defined for 0 ≤ r ≤ 1 and 0 ≤ t ≤ t̂}, and

r0 = sup{r̂ | θ(r , t0) is defined for 0 ≤ r ≤ r̂}.
If we let J := {(r , t) | t < t0}, h̃b(θ(J )) is bounded because the projections of it to the
linear leaves W̃u

G̃b
(h̃b(y)) and W̃ s

G̃b
(h̃b(y)) are bounded. Then, θ(J ) is bounded because

h̃b is proper. Next pick a sequence {(rn, tn) | rn ≤ rn+1} in J converging to (r0, t0) such
that θ(rn, tn) converges to a point w ∈ R

d
b . We define θ(r0, t0) := w by continuity. What

is left is to check that θ is well defined.
Let N be a product neighbourhood of w. We can assume θ(rn, tn) ∈ N for all n > 0 (see

Figure 2).
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w
N

θ(r1, t1)

θ(r1, tn)

r-coordinate; unstable

t-
co

or
di

na
te

;s
ta

bl
e

FIGURE 2. Extending θ to (r0, t0).

Since θ is defined at (rn, tn) for n > 0 and is, by definition, W̃ s

F̃b
(γ (rn)) ∩ W̃u

F̃b
(ρ(tn)).

Thus, θ(r1, tn) lies on W̃ s

F̃b
(γ (r1)) for all n > 0. Then, θ(r1, tn) converges to

W̃ s

F̃b
(θ(r1, t1)) ∩ W̃u

F̃b
(w). (Suppose not. If θ(r1, tn) converges to w̄ := W̃ s

F̃b
(θ(r1, t1)) ∩

W̃u(w′) for a point w′ �= w, then θ(rn, tn) would converge to a point inside W̃u

F̃b
(w̄) �=

W̃u

F̃b
(w).) Similarly, θ(rn, t1) converges to W̃ s(w)

F̃b
∩ W̃u

F̃b
(θ(r1, t1)). Thus, it is either

defined already so we have, or we could define that,

θ(t1, r0) = W̃ s

F̃b
(θ(r1, t1)) ∩ W̃u

F̃b
(w), θ(t0, r1) = W̃ s(w)

F̃b
∩ W̃u

F̃b
(θ(r1, t1)).

Now suppose somehow we are able to define for another sequence {(r ′n, t ′n)} that
converges to (r0, t0) such that θ(r0, t0) = limn→∞ θ(r ′n, t ′n). Then, we have

lim
n→∞ θ(r ′n, t ′n) = lim

n→∞ W̃u

F̃b
(θ(r1, t ′n)) ∩ W̃ s

F̃b
(θ(r ′n, t1))

= W̃u

F̃b
(θ(r1, t0)) ∩ W̃ s

F̃b
(θ(r0, t1)) = w.

This is saying that we could always extend θ to a limit point, so Q is closed.

Next we are going to show the uniqueness of the intersection for each pair of stable and
unstable leaves.

Remark 5.6. Since we have already shown the existence of the intersections, if we take
any pair of stable and unstable leaves, they must intersect, say at a point ẽ ∈ p−1b. It is
then sufficient to show that this pair of stable and unstable leaves has no other intersections
besides ẽ.

However, for any point ẽ ∈ p−1b, there is a pair of stable and unstable leaves that
intersects at ẽ, namely, W̃ s

F̃b
(ẽ) and W̃u

F̃b
(ẽ), which are exactly the pair of leaves that we

considered in the above paragraph.
Therefore, to show the unique intersection for an arbitrary pair of leaves, we only need

to show that for any ẽ, W̃ s

F̃b
(ẽ) ∩ W̃u

F̃b
(ẽ) = {ẽ}.

The steps of the proof can be summarized as follows.
(1) If b is a recurrent point of f in the base, then in p−1b, any pair of stable and unstable

leaves has a unique intersection. This is Lemma 5.7.

https://doi.org/10.1017/etds.2023.4 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.4


346 D. Zhang

(2) We show that the set

{b ∈ B | the foliations induced by Fb has the global product structure}
is open (with a uniform constant δ such that at every point where we already have
GPS, any point in a ball with radius < δ has GPS). This is Corollary 5.14.

(3) Corollary 5.14 also implies that the above set is closed because the δ is uniform. This
is Corollary 5.15.

Now we proceed with the proof.

LEMMA 5.7. Let b ∈ B be a recurrent point of f. Then W̃u

F̃b
(ẽ) ∩ W̃ s

F̃b
(ẽ) = {ẽ}.

Proof. We use the fact that the leaves are ‘very close’ to the leaves of an Anosov
diffeomorphism.

Assume W̃u

F̃b
(ẽ), W̃ s

F̃b
(ẽ) intersect at two points, say ẽ, ẽ′. Then, F̃ nb (ẽ

′) ∈ W̃u

F̃b
(F̃ nb (ẽ)) ∩

W̃ s

F̃b
(F̃ nb (ẽ)), which means the leaves along the orbit also intersect twice.

We are able to find a subsequence {f nk (b)} that converges to b. By Lemma 4.2, for
each large enough nk , there is an F̂ (k) such that Fnkb is C1 close to F̂ (k)b . Denote F̄ nb =
ϕb ◦ ψ ◦ Fnb : p−1b → p−1b, the projection of Fn at b to the fibre p−1b. Since Fnkb and
F̂
(k)
b are C1 close, the vectors in the distributions of F̄ nkb at a point in p−1b lie in the
γk-cones of the distributions of F̂ (k)b for some small γk , that is, the angles between the
respective stable and unstable distributions are small. To suppress notation, let us still use
ẽ, ẽ′ for the projection of ẽ, ẽ′ to the fibre p−1b.

For any ε > 0, we can take k large enough so we have small enough γk such that

d(s; F̄ nkb (ẽ), F̄
nk
b (ẽ

′)) · γk < ε.

This means W̃ s

F̂
(k)
b

(F̂
(k)
b (ẽ)) lies in the normal neighbourhood N(W̃ s

F̄b
(F̄

nk
b (ẽ)), ε).

Now the unstable leaf W̃u

F̂
(k)
b

(F̂
(k)
b (ẽ)) must pass through N(W̃ s

F̄b
(F̄

nk
b (ẽ)), ε) near

F̄
nk
b (ē

′) because of the existence of the unstable cone. Then, W̃ s

F̂
(k)
b

(F̂ kb (ẽ)) and

W̃u

F̂
(k)
b

(F̂
(k)
b (ẽ)) should intersect the second time because of the local product structure,

which is not the case. Thus, W̃u

F̃b
(ẽ) and W̃ s

F̃b
(ẽ) cannot intersect more than once.

Next we prove a useful technical lemma, which is implicit in [4] (Proof of Theorem 1).

LEMMA 5.8. Let F1, F2 be a pair of transverse foliations on T
d with continuous leaves

and the local product structure, such that its lift F̃i , i = 1, 2 also has the global product
structure on R

d . Let d1, d2 denote the distance along a leaf of F̃1, F̃2 between two
points in the same leaf, respectively. Then for any compact setK ⊂ R

d , there is a constant
MK > 0 such that

sup{d1(ẽ, ẽ′) : ẽ, ẽ′ ∈ (K ∩ W̃ 1(ẽ)), W̃ 1 is a leaf of F̃1} < MK , and

sup{d2(ẽ, ẽ′) : ẽ, ẽ′ ∈ (K ∩ W̃ 2(ẽ)), W̃ 2 is a leaf of F̃2} < MK ,

that is, the distance along the leaves are bounded in a compact set.
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Proof. We show it for F̃2. From the global product structure, we get a homeomorphism
α = (α1, α2) : Rd → R

l × R
d−l , where α1, α2 are the projections, F̃2 is of dimension

d − l and codimension l, and the latter Rl × R
d−l has the usual topology.

Suppose there is not such an upperbound MK for the distance along leaves. Then there
exists a sequence of pairs {(ẽn, ẽ′n)} such that ẽn, ẽ′n ∈ K ∩ W̃ 2(ẽn) and d1(ẽn, ẽ′n) > n.

By the compactness of K, there is a subsequence {(ẽnk , ẽ′nk )} that converges to a pair of
points (ẽ0, ẽ′0). Since α1(ẽn) = α1(ẽ

′
n) (because they are on the same leaf of F̃2), we know

α1(ẽ0) = α1(ẽ
′
0), that is, ẽ′0 ∈ W̃ 2(ẽ0).

Now we can cover the path between ẽ0 and ẽ′0 that realizes d2(ẽ0, ẽ′0) in W̃ 2(ẽ0) with
a finite number of cubes with length of edges smaller than the constant of the local
product structure, and denote the cubes by {P1, . . . , Pt }. Then, α(

⋃t
i=1 Pi) covers a

neighbourhood Bε × α2(W̃
2(ẽ0) ∩K), where Bε is a small l-dimensional disk. Thus,

α−1(Bε × α2(W̃
2(ẽ0) ∩K)) also covers a piece between ẽnk and ẽ′nk of W̃ 2(ẽnk ) for all

k > L for some large L, because of the local product structure. However, d2(ẽnk , ẽ
′
nk
) > k.

They cannot be all covered by a finite number of cubes of a fixed diameter. We have reached
a contradiction.

COROLLARY 5.9. Let C ⊂ B be a compact set contained in a trivialized neighbourhood
of the bundle we consider. Consider the leaves of F lifted continuously over C. Suppose we
have the global product structure at all b ∈ C. Then, for any compact set K ⊂ C × R

d ,
there is an MC > 0 such that

sup
b∈C

sup{d(u; ẽ, ẽ′) : ẽ, ẽ′ ∈ (K ∩ W̃u
b (ẽ))} < MC and

sup
b∈C

sup{d(s; ẽ, ẽ′) : ẽ, ẽ′ ∈ (K ∩ W̃ s
b (ẽ))} < MC .

Proof. We are able to run the above argument, starting with a homeomorphism α = id ×
(α1, α2) : C × R

d → C × (Rl × R
d−l ) because of the global product structure.

If we want to check for the unstable foliation, then instead of Bε × α2(W̃
2(ẽ0) ∩K),

we consider a neighbourhood A× Bε × α2(W̃
u
b0
(ẽ0) ∩K) covered by a finite number of

cubes given by the local product structure, where p−1b0 contains ẽ0, ẽ′0, A is a small
neighbourhood around b0 and Bε is an l-dimensional disk. The rest of the argument is
the same.

LEMMA 5.10. If we have the global product structure at a point b ∈ B, then the restriction
h̃b : Rdb → R

d
b is injective.

Proof. Note that if we have the global product structure at one point b, then we also have
it along the orbit of b, if considering the lifts fibrewise. We are then able to follow a similar
argument to Franks [3] to deduce the injectivity of h̃b.

Recall that h̃b preserves the stable and unstable leaves (Property 5.2). Suppose after
fixing the lifts, we can find ẽ �= ẽ′ such that h̃b(ẽ) = h̃b(ẽ

′). Let ẽ′′ := W̃u

F̃b
(ẽ) ∩ W̃ s

F̃b
(ẽ′).

We know W̃u

G̃b
(h̃b(ẽ)) ∩ W̃ s

G̃b
(h̃b(ẽ

′)) = h̃b(ẽ
′′), that is, they also intersect only once at
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h̃b(ẽ
′′). Then, h̃b(ẽ) = h̃b(ẽ

′) = h̃b(ẽ
′′). Thus, we have found ẽ, ẽ′′ ∈ W̃u

F̃b
(ẽ) such that

h̃b(ẽ) = h̃b(ẽ
′′).

Since B is assumed to be a compact manifold (which is normal), for each finite open
cover, we can find a finite refinement that contains compact sets. Now we use compact
trivialized neighbourhoods, and hb is lifted continuously over each of them, denoted as
h̃C on a compact set C. Then, h̃C is homotopic to the identity along the fibres, and thus is
proper (Property 5.4). Denote the set (id, h̃C)−1(C × [0, 1]d) as D, which is compact.

Then, by Corollary 5.9, we have an MC > 0 such that

sup
b∈C

sup{d(u; ẽ, ẽ′′) : ẽ, ẽ′′ ∈ (h̃−1
b [0, 1]d ∩ W̃u

F̃b
(ẽ))} < MC .

Then again by the compactness of B, there is a uniform bound M > 0 such that

sup
b∈B

sup{d(u; ẽ, ẽ′′) : ẽ, ẽ′′ ∈ (h̃−1
b [0, 1]d ∩ W̃u

F̃b
(ẽ))} < M .

Denote w̃n := h̃f n(b)F̃
n
b (ẽ) = h̃f n(b)F̃

n
b (ẽ

′′). We can always use deck transformations
to translate the w̃n terms to [0, 1]d . Thus, we should also have d(u; F̃ nb (ẽ), F̃

n
b (ẽ

′′)) < M

for all n. We have reached a contradiction.

Note again the above shows that if at b we have the global product structure, h̃b is
a homeomorphism. It is surjective for free because it has non-zero degree on the top
homology. In particular, h̃b is a homeomorphism for all recurrent points b ∈ B now.

Then we show that the property of having the global product structure is open.

Remark 5.11. Our main idea of the next proof is just to approximate the leaves where we
do not know if they have the global product structure, with the leaves that already have the
global product structure, with the existence of the cones.

However, since the universal cover is non-compact, we could quickly lose control of the
error. Thus, we emphasize the use of the semiconjugacy (now already a diffeomorphism at
a nearby point where the GPS exists), which is bounded from the identity, so the nonlinear
leaves is of a bounded distance from the linear leaves of our fibrewise affine Anosov
diffeomorphism, which is essential to make the approximation work.

PROPOSITION 5.12. Let F1, F2 be a pair of transverse foliations on T
d with C1 leaves

and the local product structure. Suppose the lifts F̃i of Fi , i = 1, 2 have the global
product structure on R

d . Let F ′
1 and F ′

2 be another pair of transverse foliations.
Then there exists an α > 0 such that, if

(1) maxx � (TFi (x), TF ′
i (x)) < α for i = 1, 2;

(2) there is a homeomorphism h : Td → T
d which is homotopic to the identity and takes

Fi , i = 1, 2 to another pair of linear foliations F ′′
i , i = 1, 2,

then the pair of lifts F̃ ′
i of F̃ ′

i , i = 1, 2 has the global product structure.

Remark 5.13. We tried to state this in a more general manner. In our setting, the Fi terms
are the foliations of the fibrewise Anosov diffeomorphism at a point, say b, where we do
not have the GPS yet, the F ′

i terms are the foliations of F at a point that is close to b where
we have the GPS, and the F ′′

i terms are the foliations of G with straight leaves.

https://doi.org/10.1017/etds.2023.4 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.4


Fibrewise Anosov diffeomorphisms 349

Note that this is purely a statement about the foliations which has nothing to do with the
dynamics.

Proof of Proposition 5.12. We first fix the notation. We will denote leaves at ẽ of F̃i by
W̃ i

1(ẽ) and leaves of F̃ ′
i by W̃ i

2(ẽ), i = 1, 2. Then, for any ẽ0 ∈ R
d , we want to show that

W̃ 1
2 (ẽ0) ∩ W̃ 2

2 (ẽ0) = {ẽ0}. We start from selecting the following constants.
• ε: Let ε > 0 be smaller than the constant of the local product structure.
• M1: Let M1 be the constant such that ‖h− id‖ < M1.
• D: We fix a D > 10(M1 + ε).
• M2: Suppose K is a compact set of diameter ≤ D. There is an M2 such that

sup{d1(ẽ, ẽ′) : ẽ, ẽ′ ∈ (K ∩ W̃ 1
1 (ẽ)), W̃

1
1 is a leaf of F̃1} < M2, and

sup{d2(ẽ, ẽ′) : ẽ, ẽ′ ∈ (K ∩ W̃ 2
1 (ẽ)), W̃

2
1 is a leaf of F̃2} < M2,

from Corollary 5.8.
• M: Let M = 10 max{M2, D}.

We could choose α < ε/10M .
We denote O := h̃(ẽ0) and the linear leaves of F̃ ′′

i , i = 1, 2 passing through O by
W̃ 1

0 , W̃ 2
0 . There is then a natural coordinate of every point if we consider the projection of

it onto these straight leaves. For a point ẽ ∈ R
d , we want to denote the distance between

the projection of ẽ to W̃ 1
0 and O along W̃ 1

0 as ‖ẽ − O‖1 and the distance between the
projection of ẽ to W̃ 2

0 and O along W̃ 2
0 as ‖ẽ − O‖2.

We claim that for any point ẽ1 ∈ W̃ 1
2 (ẽ0) and any point ẽ2 ∈ W̃ 2

2 (ẽ0) of the foliations
F̃ ′
i ,

either ‖ẽ1 − ẽ2‖1 > 0 or ‖ẽ1 − ẽ2‖2 > 0.

Case 1. We start with the special case when ‖ẽ1 − O‖1, ‖ẽ1 − O‖2, ‖ẽ2 − O‖1 and
‖ẽ2 − O‖2 are all ≤ M1 + ε.

There exist points ẽ′1 ∈ W̃ 1
1 (ẽ0) and ẽ′2 ∈ W̃ 2

1 (ẽ0) such that ‖ẽ1 − O‖1 = ‖ẽ′1 − O‖1,
‖ẽ2 − O‖2 = ‖ẽ′2 − O‖2. With the α we chose, W̃ 2

2 (ẽ1) stays in a cone of slope ≤ ε/10M
around the leaf W̃ 2

1 (ẽ0) for at least a distance of M2, which is the upperbound of the
distance along a leaf of F̃i inside a set of diameterD > 10M1. We then have ‖ẽ2 − ẽ′2‖1 ≤
2M2(ε/10M) << ε/2. Also, ‖ẽ1 − ẽ′1‖1 = 0.

Note that either ‖ẽ′1 − ẽ′2‖1 ≥ ε or ‖ẽ′1 − ẽ′2‖2 ≥ ε because of the local product structure
and the fact that W̃ 2

1 (ẽ0) and W̃ 1
1 (ẽ0) (with the GPS) do not meet a second time besides at

ẽ0. If both ‖ẽ′1 − ẽ′2‖1 < ε and ‖ẽ′1 − ẽ′2‖2 < ε, this means Wi
1(ẽ0) have entered a product

neighbourhood where they must intersect for another time, contradicting the global product
structure.

If ‖ẽ′1 − ẽ′2‖1 ≥ ε, then we have

‖ẽ1 − ẽ2‖1 ≥ ‖ẽ′1 − ẽ′2‖1 − ‖ẽ1 − ẽ′1‖1 − ‖ẽ2 − ẽ′2‖1 ≥ ε − 2M2
ε

10M
> 0.

Similarly, if we have ‖ẽ′1 − ẽ′2‖2 ≥ ε, then ‖ẽ1 − ẽ2‖2 ≥ ε.
Case 2. When any of ‖ẽ1 − O‖1, ‖ẽ1 − O‖2, ‖ẽ2 − O‖1 or ‖ẽ2 − O‖2 is greater than

M1 + ε, we can prove this claim by a double induction. See Figure 3.
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FIGURE 3. Leaves.

A brief idea of this is that we show leaves of F̃ ′
i follow along the leaves of F̃i for

distance D with an error < ε. Then we switch to other leaves of F̃i to follow, to keep the
error of our estimate small. At the same time, note that the pair of leaves of F̃i is far apart,
so they never meet again by GPS, and hence the leaves of F̃ ′

i would not meet neither.
Here, we see the necessity of the existence of the homeomorphism. If it is not injective,

it may take a entire leaf to a bounded subset of the linear leaf. Then, we would not have
the leaves of F̃ ′

i terms separating from each other.
The detailed induction is as follows.
First, for the base case, we let ẽ1, ẽ2 be points such that

M1 + ε < ‖ẽ1 − O‖1 ≤ M1 + ε +D and M1 + ε < ‖ẽ2 − O‖2 ≤ M1 + ε +D.

Note that we would not need to consider cases where M1 + ε < ‖ẽ1 − O‖1 ≤ M1 + ε +
D and ‖ẽ2 − O‖2 ≤ M1 + ε, or ‖ẽ1 − O‖1 ≤ M1 + ε andM1 + ε < ‖ẽ2 − O‖2 ≤ M1 +
ε +D, since they have been dealt with in Case 1. For any such points ẽ1 ∈ W̃ 1

2 (ẽ0) and ẽ2 ∈
W̃ 2

2 (ẽ0), we again have ẽ′1 ∈ W̃ 1
1 (ẽ0) and ẽ′2 ∈ W̃ 2

1 (ẽ0), such that ‖ẽ1 − O‖1 = ‖ẽ′1 − O‖1

and ‖ẽ2 − O‖2 = ‖ẽ′2 − O‖2.
We have the estimate ‖ẽ1 − ẽ′1‖2 < 4M2α < 4M2(ε/10M) < ε, and similarly ‖ẽ2 −

ẽ′2‖1 < ε, while ‖ẽ1 − ẽ′1‖1 = ‖ẽ2 − ẽ′2‖2 = 0. We have ‖ẽ′1 − O‖2 ≤ M1 because again
h̃ has a bounded distance M1 from the identity and, as a result, any point on W̃ 1

1 (ẽ0) has a
bounded distance M1 from the linear leaf W̃ 1

0 . In this case, we always have ‖ẽ1 − O‖2 <

M1 + ε and ‖ẽ2 − O‖1 < M1 + ε because, for instance,

‖ẽ1 − O‖2 ≤ ‖ẽ1 − ẽ′1‖2 + ‖ẽ′1 − O‖2 < M1 + ε.

Then,

‖ẽ1 − ẽ2‖1 ≥ ‖ẽ1 − O‖1 − ‖ẽ2 − O‖1 > (M1 + ε)− (M1 + ε) > 0.
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Now we denote by ẽ(k)1 the point on W̃ 1
2 (ẽ0) such that ‖ẽ(k)1 − O‖1 = M1 + kD <

(1/10 + k)D; ẽ(k)2 the point on W̃ 2
2 (ẽ0) such that‖ẽ(k)2 − O‖2 = M1 + kD < (1/10 + k)D,

k ≥ 1. We then take leaves W̃ 1
1 (ẽ

(k)
1 ) and W̃ 2

1 (ẽ
(k)
2 ) for each k ≥ 1. These are the ‘new

leaves’ of F̃i we switch to track.
From the induction hypothesis: for i ≥ 1, j ≥ 1, and such selected ẽ(i)1 , ẽ(j)2 , we have

‖ẽ(i)1 − O‖2 < (2i − 1)(M1 + ε) and ‖ẽ(j)2 − O‖1 < (2j − 1)(M1 + ε).

Note that this is implicit in the base case.
Now consider the case where i ≥ 1 and j ≥ 1, and the points ẽ1, ẽ2 such that

M1 + ε + iD < ‖ẽ1 − O‖1 ≤ M1 + ε + (i + 1)D and

M1 + ε + jD < ‖ẽ2 − O‖2 ≤ M1 + ε + (j + 1)D.

For any ẽ1 ∈ W̃ 1
2 (ẽ0) and ẽ2 ∈ W̃ 2

2 (ẽ0), we could also find ẽ′1 ∈ W̃ 1
1 (ẽ

(i)
1 ) and ẽ′2 ∈

W̃ 2
1 (ẽ

(j)

2 ) such that ‖ẽ1 − O‖1 = ‖ẽ′1 − O‖1 and ‖ẽ2 − O‖2 = ‖ẽ′2 − O‖2.
Again, ‖ẽ1 − ẽ′1‖2 ≤ 2M2α < 2M2(ε/10M) < ε and ‖ẽ2 − ẽ′2‖1 < ε. Here, we have

‖ẽ1 − O‖2 ≤ ‖ẽ1 − ẽ′1‖2 + ‖ẽ′1 − ẽ
(i)
1 ‖2 + ‖ẽ(i)1 − O‖2

≤ ε + 2M1 + (2i − 1)(M1 + ε)

< (2i + 1)(M1 + ε),

where ‖ẽ′1 − ẽ
(i)
1 ‖2 ≤ 2M1 because every point on the leaf W̃ 1

1 (ẽ
(i)
1 ) is of bounded distance

< M1 from a linear leaf passing through h(ẽ(1)1 ) and then ẽ′1 can only be in a cylinder of
radiusM1 that contains this linear leaf. Similarly, we have ‖ẽ2 − O‖1 < (2j + 1)(M1 + ε).

If i ≥ j , then

‖ẽ1 − ẽ2‖1 ≥ ‖ẽ1 − O‖1 − ‖ẽ2 − O‖1

> ‖ẽ(i)1 − O‖1 − ‖ẽ2 − O‖1

≥ iD − (2j + 1)(M1 + ε)

≥ (10i − (2j + 1))(M1 + ε) > 0.

If i ≤ j , then ‖ẽ1 − ẽ2‖2 > 0.

COROLLARY 5.14. For our fibrewise Anosov diffeomorphism F : E → E, suppose at
b0 ∈ B we have the global product structure. Then, there exists a δ (uniform for all b0 ∈ B)
such that if dB(b0, b) < δ, then we also have the global product structure at b.

Proof. We apply the above proposition, where Fi , i = 1, 2 is the pair of the stable and
unstable foliations of Fb0 and F ′

i , i = 1, 2 is the stable and unstable foliations of Fb. We
get an α.

Because of the smoothness of F and thus of its induced foliations and the compactness
of the bundle, we are able to pick a δ > 0 such that if d(b, b0) < δ with b, b0 in the
same trivialized neighbourhood, then at any point e ∈ p−1b0 and e′ ∈ p−1b such that
ψ(e) = ψ(e′), we have max �

e(pi(e), dψ(p′
i (e))) < α, where {pi}di=1 and {p′

i}di=1 are
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bases of the tangent space of p−1b0 and p−1b, respectively. Also, pi , p′
i are bases

elements of the stable bundle if i = 1, . . . , l and are bases elements of the unstable bundle
if i = l + 1, . . . , d .

COROLLARY 5.15. Suppose {bn} is a sequence of points in the base B that converges to b0,
where at each bn, the stable and unstable foliations of F have the global product structure.
Then at b0, we also have the global product structure.

Proof. This also follows from Corollary 5.14, because for that fixed δ, we could find an N
such that d(b0, bN) < δ.

We prove Theorem 1.1 by showing that the h itself is a homeomorphism.

Proof of Theorem 1.1. The set

{b ∈ B | the foliations induced by Fb has the global product structure}
is non-empty by Lemma 5.7, is open by Corollary 5.14 and is closed by Corollary 5.15.
Hence, this set is the full set of B. By Lemma 5.10, h̃b is injective for all b ∈ B.

We know h is surjective from Proposition 5.1. If we take e, e′ such that h(e) = h(e′),
then e and e′ must be in the same fibre. Let b := p(e) = p(e′). Consider the lifts to R

d
b .

Then there is a deck transformation j ∈ Z
d , such that h̃b(ẽ) = h̃b(ẽ

′)+ j = h̃b(ẽ
′ + j),

so ẽ = ẽ′ + j . Thus, e = e′. Therefore, h is also injective.
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