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Doubly transitive permutation

groups involving the one-dimensional

projective special linear group

Cheryl E. Praeger

Let G be a doubly transitive permutation group on a finite set

ft , and for a in ft suppose that G has a set £ of non-

trivial blocks of imprimitivity in ft - {a} If G is

2-transitive but not faithful on Z , when is it true that the

stabiliser in G of a block of E does not act faithfully on

that block (that is, there is a nontrivial element in G which

fixes every point of the block)? In a previous paper this

question was answered when G~ is the alternating or symmetric

group, or a Mathieu group in its usual representation. In this

paper we answer the question when PSL(2, q) £ GT £ PFL(2, q) ,

permuting the q + 1 points of the projective line, for some

prime power q . We show that the only groups which arise

satisfy either

(i) PSL(3, q) £ G £ PrL(3, q) in its natural representation,

or

(ii) G is a group of collineations of an affine translation

plane of order q , and contains the translation group.

This paper is a continuation of an investigation of permutation
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groups G , doubly transitive on a finite set Q , such that the stabiliser

G of a point a of fi is multiply transitive on a set of nontrivial

blocks of imprimitivity in Q. - {a} . In [6] it was shown that apart from

a few small cases, the setwise stabiliser in G of one of the blocks acts

faithfully on that block whenever G permutes the set of blocks as the

alternating or symmetric group or as one of the Mathieu groups in its

natural representation. Our aim is to prove the following theorem.

THEOREM. Let G be a doubly transitive permutation group on a finite

set il j and for a in £2 suppose that the stabiliser G has a set

Z = {B1, — , B,} of nontrivial blocks of imprimitivity in U - {a} ;

that is, IB. I > 1 , |£| = t > X . Further suppose that

PSL(2, q) £ u — PFL(2, q) in its natural representation for some prime

power q , and that G is not faithful on Z . Then one of the following

is true:

(a) the setwise stabiliser in G of B is faithful on B ;

(b) PSL(3, q) S G £ PrL(3, q) in its natural representation;

(o) JJ with the translates under G of B u {a} as lines is an

affine translation plane of order q and G contains the

group of translations.

In the first section some preliminary results are proved which give

information about groups satisfying more general conditions than those of

the theorem (Lemma l.U and Corollary 1.5) • The theorem is proved in the

second section.

NOTATION. Most of the notation used follows the conventions of [2]

and [73. If a group G has a permutation representation on a set Z then

the constituent of G on Z is denoted by (T ; the set of fixed points

of G in Z is denoted by fix_G and simply by fix G if the set Z is
id

clear from the context; and orbits of G containing more than one point

are called long G^orbits.

DEFINITION. A block design consists of a set of v points and a set
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of b blocks with a relation called incidence between points and blocks,

such that any block is incident with k points and any two points with X

blocks, where X > 0 and 2 5 k < v-1 . The number r of blocks incident

with a given point is also constant. If k > 2 it is called a proper

design. By easy counting arguments we have

vr = bk and v(v-l)\ = bk(k-l) .

Also it is well known that b - V , or equivalently, r > k .

1. Preliminary results

Throughout the paper we shall assume the following hypothesis.

HYPOTHESIS (*). (a) G is a 2-transitive permutation group on a set

!1 of n points. For a in fi , the stabiliser G has a set

Z = {B., , B.} of nontrivial blocks of imprimitivity in Q - {a} ,

where |Z| = * > 1 , |s.| = fc > 1 , and n = 1 + tb .

(b) We denote by K. the subgroup of G fixing the block B.

setwise, by K. the subgroup of G fixing 5. pointwise, and by H the

subgroup of G fixing all blocks of £ setwise.

(c) H * 1 , I n .

Is

(d) CT is 2-transitive.

The first result is an easy consequence of [6], Lemma 1.1.

LEMMA 1.1. If Hypothesis (*) is true then G is a group of

automorphisms of a block design with X = 1 , the blocks of which are the

translates under G of the set B u {a} . Moreover, either

(a) PSL(m, q) s G £ PrL(m, q) in its natural representation for

some m 2 3 and prime power q , or

(b) H is 8emiregular on ft - {a} .

Proof. If (a) holds then clearly G is a group of automorphisms of

the design which has the points and lines of the protective geometry as

points and blocks respectively.
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By O'Nan [4], Proposition k, if (a) does not hold then H acts

faithfully on each of i t s orbits in fi - {a} . In particular H n K is

t r iv ia l . Hence #T = K H/H ̂ K is a nontrivial normal subgroup of XT

which is transitive on Z - {B } . It follows that fiXr.X = {B } and

hence that fiXfX = B v {a} . The rest follows from [6], Lemma 1.1,

which in turn is an application of various results of O'Nan.

COROLLARY 1.2. If Hypothesis (*) is true then 1 + b S t and

1 + b divides t{t-l) .

Proof. From the definition of a block design we have 1 + b 5 t , and

1 + b divides nt = (l+tb)t = £2(fc+l) - t(t-l) , so that 1 + b divides

t(t-l) .

The rest of this section is concerned with the case where H is

semiregular.

LEMMA 1.3. Assume Hypothesis (*) and assume that H is semiregular

on Q - {a} . Then

(a) K is a weakly closed subgroup of G „ with respect to

G , where 6 € B j that is, if W < G . for some g in

G then ^ = K^ ,

(b) N = ̂ ff(^,) is the setwise stabiliser of B u {a} in G ,

and is 2-transitive on B. u {a} ,

(c) C = CG(K^) is transitive on B u {a} .

Proof. (a) Let g € G be such that ^ < G~ . Then f i x ^ and

fix,J£j are both blocks of a design with X = 1 , by Lemma 1.1, and both

contain a and 3 • Hence fiXjJjf = f i x j A = S l u ^ ' a n d s o *l i s

contained in the pointwise stabiliser K of B, u {a} . Thus 1& = X- .

(b) By Witt [«], N is 2-transitive on B1 u {a} . If I is the
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set stabiliser of Bn u {a} in G then N £ L , and N £ L = X, . Since1 a a 1

H. is normal in K , then N = K, . So

1 + b = \N : Na\ = \N : X.J £ \L : K±\ £ 1 + b ,

that is, N = L .

(c) C is normal in N , and since C contains H , C acts non-

trivially on B. u {a} . Thus C is transitive on B. u {a} since N is

2-transitive.

LEMMA 1.4. Assume that Hypothesis (*) is true and that H is semi-

regular on Q - {a} . Assume also that {K ) contains its centraliser in

GZo i where 3 € B . Then C = C^{K.) acts as a Frobenius group on

B u {a} j 1 + b = r for some prime r and positive integer o s and C

B.u{a}
has a normal subgroup A such that A is elementary abelian and

regular.

Proof. Set K = K^ . Since C o £ G o = Ko and since H n Ko = 11 up up p p

(for H is semiregular on ft - {a} ), then c o- icag) - (
G
ag) •

 T h e n

as C o centralises X it follows from our assumptions that
up 1

[C Q) £ 1C , that is, C OH £ X.fl . Further, fromap j. otp ±

B B B
[Ca&H]

 L £ {KjH) = ff ,

that is to say C OHK. £ H% , it follows that C o ± HK. and hence thatotp ± i ap i

C o £ X, . Thus C acts on B, u {a} as a Frobenius group. By [7], 5.1,
up l -i-

B, u{a}
C has a normal subgroup A containing C o such that A is a

otp

characteristic subgroup of C and is regular. Then A is

normal in N twhich is 2-transitive, and so by [7], 11.3,

\B. u {a}I = 1 + b = r for some prime r and positive integer c , and
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A is elementary abelian.

COROLLARY 1.5. Assume that Hypothesis (*) is true with t > 3 and

that H is semivegular on Q - {a} . Then the conclusions of Lemma l.k

hold if one of the following is true:

(a) K has an abelian subgroup which is transitive on

(b) GT is 2-transitive and the only blocks of T. fixed setwise

by K n #„ are B and B^ ;

(a) Cr is 3- transitive.

Proof. (a) Assume f i r s t t h a t K has an abe l i an subgroup Y which

i s t r a n s i t i v e on 2 - {B.} . Then by [ 7 ] , k.h, Y i s s e l f - c e n t r a l i s i n g

in Cr a . Thus t h e c e n t r a l i s e r of KZ , which i s contained i n t h e
otp 1

c e n t r a l i s e r of x , l i e s i n x and hence in ^T , and the assumptions of

Lemma l.U ho ld .

(b) If CT is 2-transitive then flxJi = {B.} and the centraliser

of f in (T fixes B . If also H n K fixes only 3 and S2

setwise, then the centraliser of r in <J7 , which also centralises

(K n K„) , fixes B . Similarly the centraliser of XT fixes each

block of Z setwise, since K normalises K and is transitive on

E - [B,\ . Hence the centraliser of #7 in (T„ is trivial.

(c) If CT is 3-transitive, then X, is 2-transitive on I - {#.} ,

and hence (by [7], 12.1, 11.3, 10.1*, 5.1) ^ is either primitive and not

regular on E - {B.} or contains an abelian subgroup transitive on
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I - {B } . In the former case (b) holds by [7], 8.6, and so in either case

the assumptions of Lemma l.U are true.

2. Proof of the theorem

Assume Hypothesis (*) and in addition assume that

PSL(2, q) £ G£ £ PFL(2, q)

in its natural representation on the t = q + 1 points of the projective

line, where q = p for some prime p and positive integer a . If

PSL(m, r) £ G £ prL(m, r) in its natural representation for some m 2: 3

and prime power r , then G has a unique set of blocks of inrprimitivity

in ft - {a} , namely B. u {a} is a line of the projective space and

PGL(m-l, r) £ u £ PrL(m-l, r) in its natural representation. Hence

m = 3 , v = q , and the theorem is true. So we assume that this is not

the case, and from Lemma 1.1 it follows that H is semiregular on fl - {a}

and the translates of B u {a} under G form the blocks of a design with

X = 1 . First we prove:

LEMMA 2.1. Either

(a) ft together with the translates under G of B, u {a} as

lines is an affine translation plane of order q = 1 + b }

and G contains the group of translations, or

(b) 1 + b < q .

Proof. By Corollary 1.2, l+b<t=l+q. If 1 + b = 1 + q

then the design is a projective plane and by [5], Theorem 5, G contains

PSL(3, q) . We assumed above that this was not the case, so 1 + b £ q .

If 1 + b = q then (by [7]> 2.2.6, p. 71) the design is an affine plane.

By [5], Theorem 1, the plane is a translation plane and G contains the

translation group. This completes the proof of Lemma 2.1.

Thus we may assume that 1 + b < q . We shall obtain a contradiction.

Now iC has a unique minimal normal subgroup which is elementary abelian
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of order q = pa and is regular on E - {fl } . Then, since 1L. c* K , K

has a normal subgroup P which is elementary abelian of order q and

transitive on E - \B } . It follows from Lemma 1.1* and Corollary 1.5 that

1 + b = r for some prime v and positive integer o , and that

C = Cv,(F.) h a s a normal subgroup /I such that A is elementary

abelian and regular.

Suppose first that r + p . Since 4 is a subgroup of K. and

centralises P S # , then 4 <̂  /I centralises P . However, by [7],

h.k, P is self-centralising and so A is a p-group. Hence A has a

unique Sylow r-subgroup X which is elementary abelian of order r , and

acts regularly on B, , and X is normal in C . In particular X is

normalised by H . Now P has b = v° - 1 orbits of length q in ft .

Since X is an r-group, X fixes one of these orbits, say T , setwise.

Then since X is an r-group centralising P and since P is self-

centralising by [7], i».it, it follows that X fixes T pointwise. Now H

acts semiregularly on the set of long P-orbits and since H normalises

X , then X fixes at least \H\ > 2 of the orbits pointwise. Hence for a

nonidentity element x in X , (S2 u {a})* n (i?2 u {a}) contains at

least \H\ > 2 points, namely points of the long P-orbits fixed by X .

Then since B2 u {a} and (Bp u {a})X are both blocks of a design with

A = 1 , it follows that B~ u {a} = (S2 u {a})
x . However since X acts

regularly on B, u {a} , then a is a point of B^ and so does not lie

in Bg u {a} , a contradiction.

Hence r = p . As above, A 2 P so that 4 , and hence AP , is a

p-group. Since P has b = p° - 1 orbits of length q in fi and since

AP is a p-group centralising P , then .4P fixes some orbit T of P

of length q setwise. Now (AP) centralises P and by [7], h.k, P
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is self-centralising. Hence the kernel X of AP on T has index q in

AP , that is \x\ = p° , and X n P = 1 since P is faithful on T . It

follows that AP = X * P . Since P fixes B. u {ct} pointwise it follows

1 1 1

that A = (AP) = jf , and so X is elementary abelian of

order p and is regular on B, u {a} . Since G is 2-transitive there

is a conjugate X' of X contained in G „ . Since 1 + fc = p C < pa ,

then |fix~ST' | > pa > p(l+b) > 1 + 22? » so that X' fixes at least three

blocks of I setwise.

Since the stabiliser of three points in PIT, (2, pa) is cyclic of

order a and is induced from Galois automorphisms of the Galois field

GF(pa) of order pa , it follows that X' c* (X')Z is cyclic of order p

and that 1 + b = p divides a . The fixed field of X' acting as a

group of Galois automorphisms of GF[p ) has order p " (see [3],

Theorem 2, p. 191+), and it follows that X' fixes 1 + pa'P blocks of Z

setwise. Hence

P
a 5 | f i X f i r | « i + b{i+P

a/P) = p + (p - i ) P
a / P ±P + pa - P

a/p 5 P
a ,

(since for any integers x, y > 2 , it is true that xy £ yx ) . Thus

equality holds at all stages, and in particular, p.p '" = p , that is

a = p/(p-l) . Since a is an integer it follows that p = 2 , and so

b = p - 1 = 1 , a contradiction. This completes the proof.
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