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Since the advent of cluster computing over 10 years ago there has been a steady
output of new and better direct numerical simulation of homogeneous, isotropic
turbulence with spectra and lower-order statistics converging to experiments and many
phenomenological models. The next step is to directly compare these simulations
to new models and new mathematics, employing the simulated data sets in novel
ways, especially when experimental results do not exist or are poorly converged. For
example, many of the higher-order moments predicted by the models converge slowly
in experiments. The solution with a simulation is to do what an experiment cannot.
The calculation and analysis of Yeung, Donzis & Sreenivasan (J. Fluid Mech., this
issue, vol. 700, 2012, pp. 5–15) represents the vanguard of new simulations and new
numerical analysis that will fill this gap. Where individual higher-order moments
of the vorticity squared (the enstrophy) and kinetic energy dissipation might be
converging slowly, they have focused upon ratios between different moments that have
better convergence properties. This allows them to more fully explore the statistical
distributions that eventually must be modelled. This approach is consistent with recent
mathematics that focuses upon temporal intermittency rather than spatial intermittency.
The principle is that when the flow is nearly singular, during ‘bad’ phases, when
global properties can go up and down by many orders of magnitude, if appropriate
ratios are taken, convergence rates should improve. Furthermore, in future analysis it
might be possible to use these ratios to gain new insights into the intermittency and
regularity properties of the underlying equations.

1. Introduction

Since 1972, direct three-dimensional simulations of the incompressible
Navier–Stokes equations have been providing insights into the statistical properties
of turbulence. Even the first calculation of Orszag & Patterson (1972) was able to
reproduce the simplest third-order moment of the velocity derivative, the velocity
derivative skewness S3, obtained experimentally from hot-wire anemometers. That is,
for

p= 3 : −Sp =−(∂u/∂x)p/
(
(∂u/∂x)2

)p/2 ∼ 0.4–0.5. (1.1)
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This value showed that the rate of enstrophy production (production of the mean-
square vorticity) was in the fully developed turbulent regime, a clear sign that these
simulations were generating a turbulent flow, even if the simulations were far from the
regime needed to see a k−5/3 Kolmogorov inertial subrange.

This calculated skewness is only one example of the role that moments of the
dissipation and vorticity fields play in our understanding of the statistics and structure
of turbulence. Furthermore, mathematics of the Navier–Stokes equations now provides
some precise bounds for some of these and with recent advances in computing power,
the time has come to make some direct comparisons between this mathematics and
high-Reynolds-number numerical data. One goal of these comparisons will be to
provide insight into further mathematics that should eventually lead us to a solution of
the Navier–Stokes question, as posed by the Clay Foundation (Clay 2012), which is:
Are these equations well-posed mathematically, without singularities, or do they have
unphysical singularities?

The mathematical questions usually address the vorticity, but what an engineer needs
for modelling are the strength and location of the kinetic energy dissipation, the
associated strain field, fluxes and the role of pressure gradients. What can simulations
tell us here? Accomplishing these goals will require more than the largest highest-
Reynolds-number calculations, it will also require innovative use of those results in
ways suggested by the latest mathematical results. The paper being highlighted (Yeung,
Donzis & Sreenivasan 2012) represents a first step in that direction.

2. Overview

Besides the skewness, another early observation (Siggia 1981) was that vorticity
was largely concentrated in vortex tubes, not vortex sheets. This concentration of
vorticity is one manifestation of intermittency, the tendency for turbulent flows to
have patches of intense fluctuations separated by quiescent regions. The spatial
and statistical relationships between vorticity and the dissipation rate were then
investigated. In the first detailed analysis of the strain, both its structure and its
higher-order statistics (Kerr 1985), it was clearly demonstrated that the most intense
dissipative/strain structures were sheets, not tubes, as seen in the figure by the title
(Schumacher, Eckhardt & Doering 2010, reproduced with permission) with vorticity
isosurfaces in blue and dissipation in red. Dissipation was concentrated either around
the vortex structures, or where vortex tubes were interacting most strongly. Overall,
the higher-order strain moments were less intermittent than those of vorticity. The
highest-order (m> 3) statistics converged very slowly and were not included.

In the following discussion, the single-times moments of the enstrophy will be
denoted as 〈Ωm〉 = ω2m and of the dissipation by 〈εm〉 = (2ν)m (SijSij)

m, where the
vorticity is ω =∇ × u and the strain rate is Sij = (1/2)(∂ui/∂xj + ∂uj/∂xi). In addition,
〈Ω ′m〉 = 〈Ωm〉/ (〈Ω〉)m, and similarly for 〈ε ′m〉. Finally, curly brackets {·} indicate
ensemble (that is time) averages.

The conclusion that enstrophy might be more intermittent than the dissipation
was qualitatively confirmed by the next set of direct numerical simulation (DNS)
of homogeneous, isotropic turbulence (Chen et al. 1997) using both moments and
structure-function exponents, even though these results were inconsistent (at larger
scales) with both the experiments and statistical arguments (Nelkin 1999; Kerr,
Meneguzzi & Gotoh 2001) available at that time. Ultimately, the only way to resolve
this discrepancy was to do bigger and better numerical calculations.
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FIGURE 1. (a) Data on spatially-averaged moments of normalized dissipation and enstrophy
for each snapshot, with different symbols for five simulations at Rλ = 140, 240, 380, 600 and
1000: �, N, 4, • and ◦, respectively. The moments are plotted against each other (inset shows
second moments). Note that despite many orders of magnitude in the range, the ratios of these
fourth-order moments are nearly proportional to each other. P.d.f.s of normalized dissipation
(solid lines) and enstrophy density (dashed lines) from two 40963 simulations. (b) Rλ ≈ 240,
kmaxη ≈ 11; (c) Rλ ≈ 1000, kmaxη ≈ 1.4. (Figure adapted from Yeung et al. 2012.)

These started to arrive with the use of cluster computing. Over the past 10 years
there has been a steady output of new and better DNS of homogeneous, isotropic
turbulence, largely summarized by Ishihara, Gotoh & Kaneda (2009). Results include
improved numerical spectra, structure function exponents and (up to order 〈ε2〉 and
〈Ω2〉), are consistent with the phenomenology that at sufficiently high Reynolds
numbers the scaling properties of ε and Ω should converge.

However, what has not been completely answered is whether the higher-order
longitudinal and transverse structure-function exponents converge and whether the
higher-order dissipation 〈ε〉 and enstrophy 〈Ω〉 moments converge. Unfortunately,
while it is the higher-order enstrophy moments that are needed for comparing with
mathematical bounds, these have the poorest convergence properties.

Yeung et al. (2012) begins by addressing the poor convergence properties at higher
orders. The solution is in how ratios of these moments of dissipation and enstrophy are
distributed in time, shown in figure 1a (from Yeung et al. 2012). This shows that their
magnitudes are strongly correlated over a very wide range of scales. As a result, the
ensemble average of the ratios converges, even when the individual moments do not.
Once good statistics were available, Yeung et al. (2012) considers whether these ratios
change as the Reynolds number increases. What is found is that at the highest Rλ, the
ratio of {〈Ω ′m〉/〈ε ′m〉} decreases between m= 3 and m= 4, whereas at lower Reynolds
number it does not. Why?

The answer to this question is shown in figures 1b–c (also from Yeung et al.
2012) which compares the tails of the two distributions at two Reynolds numbers.
For Rλ = 240 the tails do not converge, but for Rλ = 1000 they do, even though the
magnitudes of the dissipation and enstrophy flatness factors still differ due to the
differences in the middle portion of the distributions.

These results seem to resolve whether dissipation and enstrophy statistics converge.
Leaving us with: Why are the statistics of dissipation and enstrophy converging and
why do the ratio statistics converge more rapidly? The answer to both might lie in new
mathematical results on temporal intermittency, which could be tested numerically.
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3. Future

The underlying principle of the new mathematics for temporal intermittency is
that there will be ‘bad’ regions with structures that could be reconnections, near
singularities of the inviscid equations, or multi-fractal events. These events might be
sparse, but their intensity can be bounded rigorously (Gibbon 2009). For example, it
can be shown that {〈Ωm〉1/(4m−3)}6 cm1ν

2m/(4m−3)L−1Re3, (3.1)

where ν is the viscosity and Re is the Reynolds number.
The details of these bounds are not important here. What is important is that the

bounds for different orders are related to the forcing in a well-defined way, and
therefore, with the appropriate power-law scaling, these moments could be ordered in
the manner predicted by these bounds. This is similar to how the higher moments
of dissipation and enstrophy converge in Yeung et al. (2012), with even more hints
of this ordering in the magnitudes of the moments in their table 2. What we need
is more and better statistics like this. It is likely that this ordering is connected
with a well-known upper bound for the growth of enstrophy in the Navier–Stokes
equations ˙〈Ω〉 6 C 〈Ω〉3/ν3, which could be identified by short periods during which
〈Ω〉6 Cν3/2/ (Tc − t)1/2 (Schumacher et al. 2010).

Simulations such as Yeung et al. (2012) could test these possibilities, which
suggests that we could be on the verge of answering some of the important questions
about the scaling and intermittency properties of turbulence and hopefully gaining new
insight into how to solve the regularity question for the Navier–Stokes equations.
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