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SUMMARY

Following Moran's (1962) method, it was shown that the fixation
probability of a mutant gene is not altered by the subdivision of a popula-
tion into partially isolated colonies, if the following conditions are
met; fitness is additive, samplings and selection is done separately in
each colony, and migration between colonies does not change the gene
frequency in the whole population. This conclusion was checked by simula-
tion experiments.

In evolutionary theory, and in animal and plant breeding, the fixation probability
of genes plays a very important role. Kimura (1957 and 1962) has solved this prob-
lem for a randomly mating polpuation of finite size. He considers a locus with two
alleles Ax and A2 segregating, and assumes that the relative fitnesses of the A1A1,
AYA2 and A2A2 genotypes are 1, l + 2hs and l + 2s respectively. If the initial
frequency of A 2 is p and the effective size of the population is N, Kimura has shown
that the diffusion approximation to the ultimate fixation probability of allelle A2 is

/1

J o

G(x)dx
(1)

G(x)dx

where G(x) = exp[ — 4Ns(2h— l )x ( l — x) — <±Nsx].
Robertson (1960) used this fixation probability in his theory of selection limits.

Kimura & Ohta (1969) used also this probability in the calculation of the time
required for mutant genes to reach fixation. Hill & Robertson (1966) studied the
fixation probability for two linked loci in a finite panmictic population. They in-
vestigated, in particular, the effect of one locus on the fixation probability of the
other locus, and obtained interesting conclusions. Ohta (1968) also studied the
problem for two linked loci, with special reference to the effect of initial linkage
disequilibrium on the fixation probability. Kimura has solved the problem for
a case of two independent loci with epistatic effects (see Ohta, 1968).

Since all natural populations are geographically distributed, it is an important
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problem to consider the fixation probability in a population with geographical
structure. Although they may be usually continuously distributed, the two-
dimensional stepping stone model should be agood approximation to their structure.
In this report I will consider a population consisting of a finite number of partially
isolated colonies and obtain an approximation formula for the fixation probability
for one locus with two alleles Ax and A2 which are additive in fitness.

Moran (1962) gave an alternative method hi obtaining the fixation probability
U(p) in (1) for a special case of additive gene action. Let -if® be the random variable
describing the number of A2 genes at the t-th. generation in the population. Moran
considers the quantity 2?[exp (22/(t))], where E is the expectation operator and z is
a real number. He shows that if z = — 2s, then i?[exp (— 2s?/0)] is almost invariant
with time, i.e. 2?[exp (— 2s]/t))'] x J/[exp (— 2s?/t+1))] & .... Considering this quantity
at time zero and at time infinity we have

exp ( - 2s2Np) = U(p) exp ( - 2s2N) + (1 - U(p)),

where p and U(p) are the initial frequency and fixation probability of A2. Therefore
we have

l-exV(-±Nsp)
KF> l - e x p ( - 4 J V s ) '

which is a special case (h = £) of the expression for U(p) given in (1).
This can be extended to more general situations, still assuming additive fitnesses

{h = \). Suppose that we have a large population of size N and that the population
is subdivided into colonies. Let Nt be the size of colony i, Yty be the number of A2

alleles hi colony i at the t-th. generation and T(t) be the total number of A2 alleles at
the t-th. generation, i.e. F(t) = 2 Y{P and N = 2iVf. Assume that the samplings of

i i

gametes from one generation to the next is done independently in each colony.
Then we have,

( - 2s Y^)] x #[exp ( - 2s Y$>)] x ... = #[exp ( - 2s7<«)]. (2)

Now suppose that selection is done independently in each colony. Then

#[exp ( - 2s 7(^)] a #[exp ( - 2s 7^t+1))] (3)

for all i, as Moran has shown. Thus

x #[exp ( - 2sr(
2

t+1))] x ... = #[exp ( - 2s(S F*t+1)))]

= #[exp ( - 2s7<t+1>)]

follows from (2) and (3). Therefore .E7[exp( — 2sY(t))] is invariant over splitting of
a population and selection within colonies. The invariance still holds over migration
of individuals between colonies since this does not change the total number of A2

alleles. If each colony can be reached from any other colony by migration in one
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generation or several generations, either Ax or A2 will be eventually lost from the
whole population. For such a situation, as above, we have

exp ( - 2s7<°>) x U(p) exp ( - 2s2N) + (1 - U(p))

in which U{p) is the fixation probability of A2 in the population with the initial
frequency,

where pt is the initial frequency in colony i. Therefore we have

1 - exp ( - iNsp)
U(p) =

l-exp(-4iVs)
(4)

This is equal to the fixation probability in a panmictic population of size N =

However it should be noted that if the subdivision of the population prolongs the
time of fixation very much formula (4) may not be valid.

In order to check the validity of formula (4), I have performed a number of Monte
Carlo simulations by computer. The scheme of the experiment is as follows. A popu-
lation is divided into colonies of equal size, N{. At the beginning of each generation
each colony produces infinite number of Ax and A2 gametes whose relative fre-
quencies are equal to those of Ax and A2 alleles in the colony at the end of the

Fig. 1. (a) Linear stepping stone model, (6) circular stepping stone model and
(c) Island model. Open circles indicate colonies and lines indicate migration. In the
stepping stone models migration is only between geographically adjacent colonies.
In the island model migration occurs between any pair of colonies and the rates are
equal for every pair.
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previous generation. After production of gametes, migration of gametes takes place
at certain rates. After the migration, the gametes mate at random in each colony,
and selection occurs separately in each colony. After the selection, 2Nt gametes
are chosen for the next generation by binomial sampling in each colony separately.
The actual sampling of 2Nt gametes in colony i is done as follows: We draw 2Nt

pseudo-random numbers uniformly distributed in (0,1) and compare them with
the frequency, xt, otA2 gene after selection in colony i. The number of A2 alleles in
colony i at the beginning of the next generation is set equal to the number of the
pseudo-random numbers drawn which are less than xt. This procedure is repeated
for each colony for each generation. The population structures used in the simula-
tions are illustrated in Fig. 1. The results of the simulation experiments are pre-
sented in Table 1. The numerical results agree well with the theoretical values,
and in fact there is no case in which the experimental result deviates significantly
from the theoretical value.

I wish to thank Dr Motoo Kimura, who suggested the subject of this paper, Dr Joseph
Felsenstein, who corrected the English and offered useful criticisms, Dr William Hill and the
referee, who gave many useful suggestions.

REFERENCES

HILL, W. G. & ROBERTSON, A. (1966). The effect of linkage on limits to artificial selection.
Genet. Res. 8, 269-294.

KTMUBA, M. (1957). Some problems of stochastic processes in genetics. Ann. Math. Statist.
28, 882-901.

KIMUBA, M. (1962). On the probability of fixation of mutant genes in a population. Genetics,
Princeton 47, 713-719.

KiaruBA, M. & OHTA, T. (1969). The average number of generations until fixation of a mutant
gene in a finite population. Genetics, Princeton 61, 763-771.

MOBAN, P. A. P. (1962). The Statistical Process of Evolutionary Theory. Oxford: Clarendon
Press.

OHTA, T. (1968). Effect of initial linkage disequilibrium and epistasis on fixation probability
in small population, with two segregating loci. Theor. and Appl. Genetics 38, 243-248.

ROBERTSON, A. (1960). A theory of limits in artificial selection. Proc. Soy. Soc. Lond. B
153, 234-249.

https://doi.org/10.1017/S0016672300001543 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300001543

