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Upper Bounds on Return Predictability

Dashan Huang and Guofu Zhou*

Abstract
Can the degree of predictability found in data be explained by existing asset pricing
models? We provide two theoretical upper bounds on the R2 of predictive regressions. Us-
ing data on the market portfolio and component portfolios, we find that the empirical R2s
are significantly greater than the theoretical upper bounds. Our results suggest that the most
promising direction for future research should aim to identify new state variables that are
highly correlated with stock returns instead of seeking more elaborate stochastic discount
factors.

I. Introduction
In the past 4 decades, financial economists and investors have found

hundreds of economic variables that can predict stock returns. Examples
include short-term interest rate (Fama and Schwert (1977)), dividend yield
(Fama and French (1988)), earnings-to-price ratio (Campbell and Shiller (1988)),
term spreads (Campbell (1987)), book-to-market ratio (Kothari and Shanken
(1997)), inflation (Campbell and Vuolteenaho (2004)), corporate issuing activity
(Baker and Wurgler (2000)), consumption-to-wealth ratio (Lettau and Ludvigson
(2001)), stock volatility (French, Schwert, and Stambaugh (1987)), investor senti-
ment (Huang, Jiang, Tu, and Zhou (2015)), and short interest (Rapach, Ringgen-
berg, and Zhou (2016)), among others. The evidence of return predictability has
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led to the development of new asset pricing models, such as the habit formation
model (Campbell and Cochrane (1999)), the long-run risks (LRR) model (Bansal
and Yaron (2004)), and the rare disaster model (Barro (2006), Wachter (2013)).
Although these models allow for time-varying expected returns and explain vari-
ous stylized facts, such as the high volatility of the market, it is unclear whether
they can explain the degree of predictability found in the data.

This article provides two model-driven upper bounds on the predictive R2,
assuming that a class of asset pricing models is true. To the best of our knowledge,
we are the first to apply such bounds to various asset models, including the habit
formation model, the LRR model, and the rare disaster model. Using data on the
market portfolio and component portfolios, we find that the theoretical bounds
are violated. This implies that these three models cannot explain the degree of
predictability in the data. Moreover, all models, under certainty regulation condi-
tions, cannot explain the degree of predictability so long as they rely on the same
state variables.

Ross (2005), (2015) is the pioneer of providing a bound on return
predictability. His bound is applicable to all asset pricing models under the no-
arbitrage condition. Because his bound is so general, it is necessarily large. For
example, Ross’s bound on the market portfolio is about 20% with monthly data.
If a variable generates an R2 of 25%, the degree of predictability cannot be
explained by any rational asset pricing model. In practice, however, no predictor
can yield an R2 of more than 20%. In fact, the best predictor cannot generate an
R2 consistently exceeding 5% at a monthly frequency (see, e.g., Rapach and Zhou
(2013) for a recent survey of stock return predictability). Zhou (2010) provides an
improvement on Ross’s bound, but it is still large in many cases.

In contrast, our bounds are much tighter than the existing bounds and are
binding in most of our applications. To derive our bounds, we consider only asset
pricing models that use a fixed set of state variables. Therefore, our bounds are
a function of the state variables. In addition, we derive the bounds by using the
conditional information of the predictor, following similar insight from Hansen
and Richard (1987). Our article is in the same spirit as Bekaert and Liu (2004),
who show how conditional information can be used to optimally tighten Hansen
and Jagannathan’s (1991) original volatility bound. In short, by focusing on state
variables of asset pricing models and by using conditional information of the pre-
dictor, we are able to refine Ross’s (2005), (2015) bound substantially.

To apply our bounds, we consider a smaller set of asset pricing models, all
of which use the same state variables x . For this set of models, the bounds on
the monthly R2 can be much smaller than 20%. For instance, suppose we find the
upper bound to be 2%. If one predictor has an R2 of 3% in an empirical setting,
we can claim that all asset pricing models with the same state variables, x , cannot
explain the degree of predictability in the data.

It is worthwhile to point out that our bounds are semiparametric in the sense
that no knowledge of the specific functional form of the stochastic discount fac-
tor (SDF) of an asset pricing model is needed to compute the bounds and carry
out the inference. In this regard, they are similar to Hansen and Jagannathan’s
(1991) original volatility bound. The difference is that the former bound focuses
on predictability, whereas the latter bound focuses on the volatility of the SDF.

https://doi.org/10.1017/S0022109017000096  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109017000096


Huang and Zhou 403

Kirby (1998) is the first to propose a joint test that relates the SDF to the R2 of
predictive regressions. However, his approach is parametric, as it requires the spe-
cific functional form of the SDF and the estimation of all the model parameters. In
contrast, the functional form and estimation of parameters are unnecessary in the
application of our bounds. For example, our bounds only require the same state
variables used in the LRR models of Bansal and Yaron (2004) and Bansal, Kiku,
and Yaron (2012), among other models. Once the bounds are violated, this is an
indication to reject all these models and potential new models that are based on
the same set of state variables.

Although Ross’s (2005) bound is developed in a frictionless market (as is
typically done with standard asset pricing models and other bounds, such as the
variance bounds of Hansen and Jagannathan (1991) and Bakshi and Chabi-Yo
(2012)), we explore the role of market frictions on R2 bounds. Following Nagel
(2013), we augment the SDF in the frictionless case with an additional state vari-
able that captures different notions of transaction costs, such as the trading costs
of Acharya and Pedersen (2005), the funding liquidity of Brunnermeier and Ped-
ersen (2009), or the leverage constraint of Adrian, Etula, and Muir (2014). When
the liquidity factor of Pástor and Stambaugh (2003) and the leverage factor of
Adrian et al. are used as proxies for transaction costs, the proposed bounds im-
plied by some of the well-known asset pricing models become larger, as might
be expected. However, they are still lower than the predictive R2s found in the
data. Hence, accounting for transaction costs or market frictions does not help the
aforementioned three major models to explain the degree of predictability found
in the data.

The rest of the article is organized as follows: Section II provides two upper
bounds on the predictive R2 based on maximum risk aversion or market Sharpe
ratio. Section III presents the data and econometric method. Section IV reports
the empirical results for common predictors and some of the well-known asset
pricing models, and Section V concludes.

II. Bounds
In this section, we show that the SDF of a rational asset pricing model im-

poses a constraint on the predictive regression, suggesting that the predictive R2

cannot be arbitrarily large. An asset pricing model can potentially explain re-
turn predictability found in the data if its theoretical upper bound is above the
empirical R2.

A. Return Predictability
Predictive regression is widely used in the study of return predictability,

(1) rt+1 = α+βzt + εt+1,

where rt+1 is the excess return and zt is a predictive variable known at the end of
period t . The degree of predictability is measured by the regression R2,

(2) R2
=

var(α+βzt )
var(rt+1)

.
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When R2>0, rt+1 can be forecasted by zt . Otherwise, zt is not a predictor of rt+1.
Welch and Goyal (2008) and Harvey, Liu, and Zhou (2016) provide the references
for hundreds of predictors.

B. Bounding R2 with Maximum Risk Aversion
An important aspect of an asset pricing theory tells us the degree of pre-

dictability that is possible. Intuitively, the degree of predictability of an asset own-
ing a risk premium cannot be close to 1. If so, the risky asset is too predictable
and one can easily arbitrage between this asset and the risk-free asset. In practice,
the R2 allowed by asset pricing models is much smaller than 1 for monthly and
quarterly data.

An asset pricing model typically implies that, as shown in Cochrane (2005),
the price of any asset is uniquely determined by a Euler equation, and hence its
return must satisfy

(3) E[m(xt+1)rt+1|It ] = 0,

where m(xt+1) is the normalized SDF with state variables xt+1 such that
E(m(xt+1))=1, rt+1 is the return on the asset in excess of the risk-free rate, and It

is the information set available to investors up to time t .
Because zt belongs to It , we condition on zt and rewrite (3) as

(4) E(rt+1|zt ) = −cov(m(xt+1),rt+1|zt ).

It is interesting to examine the implication of return predictability via this relation.
If an asset pricing model can explain the predictability, the right-hand side of
equation (4) must generate the same magnitude of time variation as α+βzt in
expression (1). There are two approaches to test this implication. The first is to
specify both m(·) and xt+1. The second is to develop bounds by specifying xt+1

alone, and this is the approach we take.
Kirby (1998) is the first to use the first approach by specifying m(·) and xt+1

for testing equation (4), and finds that the power utility, the Abel (1990) habit
utility, the Epstein and Zin (1991) recursive utility, the conditional capital asset
pricing model (CAPM), and the Fama and French (1993) 3-factor model cannot
explain the degree of size portfolio predictability. However, the weakness of the
first approach is that it is unable to determine whether the failure of a model in
explaining return predictability is due to the misspecification of m(·) or xt+1.

Ross (2005), (2015) is the first to use the second approach. In the spirit of
Hansen and Jagannathan (1991), he provides an upper bound on the predictive R2

in expression (2). Under some fairly general conditions, an investor’s utility can
be bounded by a constant relative risk aversion (CRRA) utility with risk aversion
γ . Assume for simplicity that the investor with the maximum γ has the market
portfolio as his wealth that is lognormally distributed. Then the maximum return
predictability in the economy is

(5) R2
≤ R̄2

Ross = γ 2σ 2(rmkt),

where σ 2(rmkt) is the variance of the market portfolio rmkt. This bound does not
depend on any specification of the SDF, m(·), and is, therefore, nonparametric. If

https://doi.org/10.1017/S0022109017000096  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109017000096


Huang and Zhou 405

the maximum risk aversion is 10, Ross’s bound will be around 20% given that the
monthly volatility of the market portfolio is about 4.5%. As mentioned earlier, a
bound of 20% is too large to be violated by any data.

To make the bound more stringent in practice, we use information about
xt+1 and conditional information about predictor zt to sharply improve the bound,
without specifying a particular functional form of m(·). For easy applications, we
state our first bound as follows:

Proposition 1. Suppose xt+1 is a K -dimensional vector of state variables in the
SDF satisfying certain distributional assumptions, such as following an elliptical
distribution. Combined with Ross’s (2005) assumptions, we have

(6) R2
≤ R̄2

RA = φ2
x ,r zγ

2σ 2(rmkt),

where

(7) φ2
x ,r z = ρ2

x ,r z

var [rt+1(zt −µz)]
var(rt+1)var(zt )

,

in which µz is the unconditional mean of zt and ρ2
x ,r z is the squared multiple cor-

relation defined as

(8) ρ2
x ,r z =

cov[xt+1,rt+1(zt −µz)]′ var−1(xt+1)cov[xt+1,rt+1(zt −µz)]
var[rt+1(zt −µz)]

.

Proof. See Appendix Section 1.

Proposition 1 provides a benchmark to evaluate whether an asset pricing
model can explain the degree of predictability found in the data. If an asset pricing
model generates an upper bound of 2%, which is larger than an R2

=1% from the
data, the model can potentially explain the degree of predictability. However, if
the data yield an R2 of 3%, it is impossible for the model to explain the degree of
predictability. As the bound is free of the functional form of m(·), all asset pricing
models with the same state variables x cannot explain the degree of predictability.
Therefore, research should aim to identify new state variables to develop a model
that explains the time-varying expected returns of the asset.

There are three terms in bound (6). The first term, φ2
x ,r z , can be broken down

further into two terms as expression (7). The first term of expression (7) is the
squared multiple correlation between the state variables and the scaled return,
which is usually very small for common state variables and predictors. Because
zt is in the time t information set, rt+1(zt−µz) can be interpreted as a position
of zt−µz units of investment in rt+1. The second term of expression (7) can be
interpreted loosely as a standardized variance, although the unit here is not 1, but
between 1 and 3 instead (see Appendix Section 3). Then, the value of φ2

x ,r z will be
largely determined by the first term of expression (7).1 If the state variables have
a zero multiple correlation with the scaled asset return, which is generally close
to the multiple correlation with the unscaled asset return, the SDF m(xt+1) will be

1zt may be replaced by any function f (zt ). It is an open question whether the function f (zt ) that
maximizes the predictability will also optimize the bound.
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uncorrelated with the asset return, and thus it will not be able to price the asset
properly and explain the predictability.

The second term of bound (6), γ , is generally assumed to be less than 10, as
argued by Mehra and Prescott (1985). Ross (2005) uses the insurance premium
to explain that a value of 5 is large enough. Barro and Ursúa (2012) suggest that
“a γ [risk aversion] of 6 seems implausibly high.” Empirically, Guiso, Sapienza,
and Zingales (2017) find that the average risk aversion increases from 2.87 be-
fore the 2008 crisis to 3.28 after the collapse of the financial market. Paravisini,
Rappoport, and Ravina (2017) estimate the risk aversion from investors’ financial
decisions and find that the average risk aversion is 2.81 with a median of 1.62. It
should be noted that among the models to be examined below, the risk aversions
of the LRR and rare disaster models are constant, whereas the risk aversion of the
habit formation model is time varying, low in good times and high in bad times.
However, all of them, although manifested in different utility setups, should imply
a not too large γ . In this article, following Mehra and Prescott (1985) and others,
we set the maximum risk aversion to be 10 in our empirical applications.

The last term of bound (6) is the variance of the market portfolio, which
is used as the proxy of the variance of the total wealth growth of the marginal
investor who has the maximum risk aversion. Although we are aware that total
wealth consists of financial wealth and human capital, such as labor income, the
choice of focusing only on financial wealth reduces the hurdle for an asset pricing
model to satisfy the R2 bound, as the volatility of financial wealth is much larger
than that of human capital. For example, at an annual frequency, Bansal, Kiku,
Shaliastovich, and Yaron (2014) show that the volatility of the market portfolio is
5 times as large as that of the labor income growth.

It is worth emphasizing that the R2 bound (6) depends only on the state vari-
ables of the SDF, the maximum risk aversion γ , and Ross’s (2005) assumptions.
It does not depend on the functional form of m(·). For example, although Bansal
and Yaron (2004) and Bansal et al. (2012) assume different degrees of persistence
in the consumption volatility, Proposition 1 treats them as the same, as the two
models share the same state variables. Consequently, we are no longer concerned
about how to estimate the parameters of the models. We can apply the same bound
test to them with some moments information on the state variables.

Bound (6) is a substantial improvement over the bound of Ross (2005), which
is made possible because we exploit the information of xt+1 in m(·) and zt that
predicts rt+1. Comparing bound (6) with bound (5), we improve Ross’s bound by
introducing the term φ2

x ,r z . In applications, φ2
x ,r z is often less than 10%, implying

that we improve the bound by 10 times or more.
Zhou (2010), based on Kan and Zhou (2006), provides the following upper

bound:

R2
≤ ρ2

x ,m0
γ 2σ 2(rmkt),

where m0 is the minimum variance SDF in Hansen and Jagannathan (1991) and
ρx ,m0 is the multiple correlation between the state variables x and m0. Although
there is no analytical relation between φ2

x ,r z and ρ2
x ,m0

, unreported results reveal
that φ2

x ,r z is almost always smaller than ρ2
x ,m0

, and often much smaller. Hence, our
bound provided here is generally much tighter.
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C. Bounding R2 with Market Sharpe Ratio
Instead of using maximum risk aversion, the predictive R2 can be alterna-

tively bounded above by the market Sharpe ratio. Ross (1976) shows that the
market Sharpe ratio is closely related to the volatility of SDF, which implies that
extremely high Sharpe ratios are unlikely to persist. With this insight, Cochrane
and Saá-Requejo (2000) use the market Sharpe ratio to bound option prices when
there are either market frictions or nonmarket risks. Here, we use it to bound
predictability.

If there is no arbitrage opportunity, the volatility of any SDF must satisfy the
following constraint:

(9) σ (m t+1) ≤ h×SR(rmkt),

where h is a free parameter chosen by the marginal investor and SR(rmkt) is the
market Sharpe ratio. Although Cochrane and Saá-Requejo (2000) suggest the
choice of h=2 to rule out “good deals” (arbitrage opportunities), we choose h=4
to make it easier for an asset pricing model to satisfy the no-arbitrage constraint.

To bound R2 in terms of the market Sharpe ratio SR(rmkt), we have the
following:

Proposition 2. Using the same assumptions on the state variables xt+1 in Propo-
sition 1 and constraint (9), the predictive R2 is bounded above as

(10) R2
≤ R̄2

SR = φ2
x ,r z × h2

×SR2(rmkt).

Proof. See Appendix Section 2.

Bound (10) is similar to bound (6). It is also semiparametric and easy to
compute. Depending on the preference, one may choose to use either bound or
both. Economically, though, the maximum risk aversion γ in bound (6) should
have a close relation with h to ensure the absence of arbitrage. In later applica-
tions, we show that the bounds with the choice of γ =10 and h=4 are numerically
close to each other.

It is worth noting that our bounds have an interesting implication on
cross-sectional return predictability. In the finance literature, a large number of
studies find that return predictability exists and varies over portfolios sorted
by market capitalization (Ferson and Harvey (1991)), book-to-market ratio
(Ferson and Harvey (1991)), industry (Ferson and Harvey (1991)), and volatil-
ity (Han, Yang, and Zhou (2013)). Propositions 1 and 2 suggest that the
maximum predictability of an asset is likely determined by its squared multiple
correlation with the state variables of the SDF. Given the maximum risk aversion
or the parameter excluding the arbitrage opportunities, an asset tends to be more
predictable if it has a greater multiple correlation with the state variables, regard-
less of the functional form of m(·). This suggests the need to identify new state
variables to explain cross-sectional return predictability or anomaly.

In summary, bounds (6) and (10) provide a simple test of whether a class
of asset pricing models can explain the degree of predictability found in the data.
They highlight the fact that the state variables in the SDF are the key factor. There-
fore, if an asset pricing model with state variables x fails to explain the predictabil-
ity, new state variables y 6= x may explain it as long as y have a greater multiple
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correlation with the asset return. This insight may help explain why Savov (2011)
finds that garbage is a good proxy of consumption in explaining asset prices, as it
is more volatile and more correlated with stock returns than standard consumption
measures.

A remaining question is to find out how measurement errors in x affect the
R2 bound. In Appendix Section 4, we show that if the state variables x suffer from
measurement errors, such as x̂= x+u, where u are the measurement errors and
are uncorrelated with x and r , the squared multiple correlation ρ2

x̂ ,r z is less than
ρ2

x ,r z . This implies that if a given set of state variables fails to explain the degree of
predictability, their proxies without additional information about the returns will
fail too.

D. Impact of Market Frictions
Our bounds are derived, like many other bounds in the literature, such as

those of Hansen and Jagannathan (1991) and Bakshi and Chabi-Yo (2012), un-
der the assumption that the market is frictionless and investors can trade freely
without constraints. In practice, however, there are various market frictions that
can make some profitable opportunities hard to arbitrage, hence leading to return
predictability. This implies that the R2 upper bound may have to be set higher if
market frictions are incorporated.

Market frictions can be the liquidity cost in Acharya and Pedersen (2005), the
funding liquidity of Brunnermeier and Pedersen (2009), or the leverage constraint
of Adrian et al. (2014). Nagel (2013) reviews asset pricing models with market
frictions and shows that the SDF in a frictionless market can be augmented with
a factor 3t that captures the state of transaction costs:

m̃ t+1 = m t+1
3t

3t+1
.

Let 1ωt+1= log(3t+1/3t ) and x̃t+1= (x ′t+1,1ωt+1)′. Then, we can rewrite m̃ t+1 as

(11) m̃ t+1 = m̃(x̃t+1).

In this way, a higher 1ωt+1 means a higher transaction cost, and an asset paying
well in the state of higher 1ωt+1 earns a lower expected return. Bounds (6) and
(10) can be adjusted easily by including 1ωt+1 in the state variables, which is
in the spirit of Nagel (2013), who shows how to incorporate liquidity into the
standard Epstein–Zin–Weil SDF and leverage constraint into the CAPM SDF as
a new state variable, respectively.

Naturally, a concern with expression (11) is whether including the addi-
tional variable improves the R2 bound, because it enters the calculation of ρ2

x ,r z . In
Appendix Section 5, we show theoretically that if the additional variable 1ω is
uncorrelated with x , the squared multiple correlation can be decomposed as

ρ2
x̃ ,r z = ρ2

x ,r z + ρ
2
1ω,r z.

It is clear that when1ω is correlated with the stock returns, ρ2
1ω,r z is greater than 0,

suggesting that accounting for market frictions will improve the R2 bound. In
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Section IV, we show empirically that 1ω will raise the R2 bounds as expected,
but the increases are quantitatively small. This implies that accounting for market
frictions in the three major asset pricing models still cannot explain the return
predictability in the data.

III. Data and Econometric Estimation
In this section, we introduce the predictors and state variables used in this

article and the econometric framework for testing whether the predictive R2 is
less than the upper bounds.

A. Data
The data are monthly spanning from Jan. 1959 to Dec. 2013. To examine

the robustness of our conclusion, we also consider the results with quarterly data
over the same period. The excess return of the market portfolio is the gross re-
turn on the Standard & Poor’s (S&P) 500 index (including dividends) minus the
gross return on the risk-free Treasury bill. As discussed by Ferson and Korajczyk
(1995), it is more appropriate to use the simple return instead of the continuously
compounded return in the context of this article in that the pricing equation states
that the expected return is equal to the conditional covariance of the return with
the marginal utility of wealth, which depends on the simple arithmetic return of
the optimal portfolio. However, if the continuously compounded return is used,
the result produces negligible change, and the conclusion is exactly the same.

We choose eight economic variables that display significant abilities in pre-
dicting the market portfolio:

1. BM: Book-to-market ratio extracted from Fama–French 25 size and value-
sorted portfolio BM ratios with the partial least squares approach (Kelly
and Pruitt (2013)).

2. TMS: Term spread between the long-term yield on government bonds and
the Treasury bill rate (Welch and Goyal (2008)).

3. CAY: Consumption-to-wealth ratio (Lettau and Ludvigson (2001)).

4. CAYMS: Markov-switching CAY (Bianchi, Lettau, and Ludvigson (2014)).

5. IK: Investment-to-capital ratio of aggregate (private nonresidential fixed)
investment to aggregate capital for the whole economy (Cochrane (1991)).

6. NOS: New-orders-to-shipments ratio of durable goods (Jones and Tuzel
(2013)).

7. OG: Output gap, measured as the deviation of the log of total industrial
production from a trend that includes both a linear and a quadratic compo-
nent (Cooper and Priestley (2009)).

8. CE: Credit expansion, measured as the past quarter change of bank credit
to gross domestic product (GDP) (Baron and Xiong (2017)).

It should be noted that although these eight variables are chosen to study whether
the proposed bounds can explain the basic pattern of return predictability, it does
not necessarily mean that other predictors are not important.
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Because CAY, CAYMS, IK, and CE are available at a quarterly frequency,
we convert them into monthly frequency when we explore monthly predictability
by assigning the most recent quarterly value to each month. For example, the
observation of CAY in the first quarter of 2010 is assigned to March, April, and
May 2010, respectively. Similarly, when we explore the quarterly predictability
of BM, TMS, NOS, and OG, we use the averages of the April, May, and June
observations for their second quarterly observations.

To calculate the R2 upper bounds, we need the consumption growth rate,
which is one of the state variables in the consumption-based asset pricing models.
Following common practice, we compute the consumption growth rate as the per-
centage change in the seasonally adjusted, aggregate, real per capita consumption
expenditures on nondurable goods and services. We use the monthly and quarterly
seasonally adjusted aggregate nominal consumption expenditures on nondurables
and services from National Income and Product Accounts (NIPA) Table 2.3.5
and the monthly nominal consumption expenditures from NIPA Table 2.8.5.
Population numbers from NIPA Tables 2.1 and 2.6 and price deflator series from
NIPA Tables 2.3.4 and 2.8.4 are used to construct the time series of per capita
real consumption figures. Finally, data on the component portfolios sorted by
size, book-to-market ratio, and industry are taken from Kenneth French’s Web site
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html).

B. State Variables in the SDF
Since Mehra and Prescott (1985), various consumption-based asset pricing

models have been developed to explain the equity risk premium puzzle and other
features of the data. Among them, the habit formation model, the LRR model, and
the rare disaster model are the three most studied, because they all can generate
time-varying expected returns and therefore can explain return predictability to
some degree in a qualitative way. Hence, we focus on these three models and
investigate whether they can explain the degree of predictability quantitatively.

1. Habit Formation Model

The habit formation model assumes that risk aversion is time varying over
economic business cycles. The risk aversion is high in economic recessions when
investors require a high premium for taking risks, but it is low in economic
expansions when investors require a low premium. Countercyclical risk aver-
sion suggests that the risk premium is countercyclical; hence, stock returns are
predictable.

Suppose the log consumption growth rate 1ct+1= log(Ct+1/Ct ) is indepen-
dently and identically distributed (i.i.d.) and follows a normal distribution:

(12) 1ct+1 = g+ σεc,t+1, εc,t+1 ∼ i.i.d. N(0,1),

and where g and σ are the mean and volatility of consumption growth,
respectively.

Let X t be the external habit at time t . According to Campbell and Cochrane
(1999), the surplus consumption ratio is St= (Ct− X t )/Ct , and its logarithm is
assumed to follow the following process:

st+1 = (1−φ)s̄+φst + λ(st )(1ct+1− g),
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where φ, s̄, and g are parameters, and the sensitivity function λ(st ) is given by

λ(st ) =


1
S̄

√
1− 2(st − s̄)− 1, st < s̄+

1
2

(
1− S̄2

)
,

0, st ≥ s̄+
1
2

(
1− S̄2

)
,

where S̄ = σ
√
γ /(1−φ) is the steady-state surplus consumption ratio.

The SDF of the habit formation model is

m t+1 = δ

(
St+1

St

Ct+1

Ct

)−A

= δe−A[g+(φ−1)(st−s̄)+(1+λ(st ))(1ct+1−g)].

In this model, st+1 is the only state variable and can be extracted according to
Campbell and Cochrane (1999).

2. LRR Model

Because the LRR model uses the low-frequency time series properties of
dividends and aggregate consumption, it can simultaneously explain the equity
risk premium puzzle, the risk-free rate puzzle, and the high level of market
volatility. The key assumptions are that the consumption growth rate and the div-
idend growth rate follow the joint dynamics as:

1ct+1 = g+µc,t + σtεc,t+1,
µc,t+1 = ρµµc,t +ψcσtεµ,t+1,
σ 2

t+1 = (1− ν)σ̄ 2
+ νσ 2

t + σwεσ ,t+1,
dt+1− ct+1 = µDC+DCt+1,

DCt+1 = λDCµc,t + ρDCDCt +ψDCσtεDC,t+1,
1dt+1 = g+ (1+ λDC)µc,t + (ρDC− 1)DCt + σtεc,t+1+ψDCσtεDC,t+1,

where ct+1 is the log aggregate consumption and dt+1 is the log dividends. The
shocks εc,t+1, εµ,t+1, εσ ,t+1, and εDC,t+1 are assumed to be i.i.d. normally distributed.

This model has four state variables: the two latent variables µc,t and σ 2
t ,

the observable consumption growth rate1ct , and the dividend–consumption ratio
DCt . Constantinides and Ghosh (2011) show that the log price–dividend ratio and
log risk-free rate are affine functions of the two latent variables and suggest that
one can invert the system and express the two latent state variables as known affine
functions of the observable aggregate log price–dividend ratio and log risk-free
rate. Hence, the state variables in SDF for the LRR model are 1ct+1,r f ,t+1,dpt+1,
and DCt+1.

3. Rare Disaster Model

The rare disaster model revived by Barro (2006) is intended to resolve the
equity risk premium puzzle and does not accommodate time-varying expected
returns. Wachter (2013) extends Barro to allow for time-varying probability of
disasters, thereby generating return predictability.
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The basic assumption for the rare disaster model is that the consumption
growth rate follows the following stochastic process:

1ct+1 =

{
g+ σεc,t+1, with probability 1− pt ,
g+ σεc,t+1+ log(1− b), with probability pt ,

where εc,t+1 is i.i.d. N(0,1), and pt is the probability of disasters. The crucial
question is to find a variable to proxy for the unobservable pt . Wachter (2013)
considers the rare disaster model in a continuous-time setting and finds that the
dividend–price ratio is a strictly increasing function of the disaster probability,
which implies that one can invert this function to find the disaster probability
given the observations of the dividend–price ratio. Hence, we use the consumption
growth rate and the dividend–price ratio as the two state variables for the rare
disaster model.

C. Wald Test
The parameters needed to calculate the predictive R2 and its upper bounds

involve only the mean and covariance of yt+1= (rt+1, zt ,rt+1zt , x ′t+1)′, where xt+1

can be multidimensional. The moment conditions are

(13) h(yt+1,θ ) =

(
yt+1−µy

yt+1 y ′t+1− (6y +µyµ
′

y)

)
,

where µy=E(yt+1) and 6y=cov(yt+1). Because the econometric specification in
expression (13) is exactly identified, the generalized method of moments estima-
tor of θ= (µy ,6y) is the vector of values that set 1/T

∑T
t=1 h(yt+1,θ ) equal to 0,

where T is the number of sample observations.
The distribution of θ̂ takes the form

√
T (θ̂ − θ )

d
−→ N(0, S),

where S=
∑
∞

j=−∞E[h(yt+1,θ )h(yt+1− j ,θ )′].
We use the Wald test to evaluate whether R2

≤ R̄2
RA or R̄2

SR, which is equiv-
alent to a one-sided test for f (θRA)=0 or f (θSR)=0, where θRA and θSR are the
moment parameters used in f (θRA)= R2

− R̄2
RA and f (θSR)= R2

− R̄2
SR. Let 6RA

and 6SR be the corresponding covariances of θRA and θSR. The Wald statistic is

WRA = T f (θ̂RA)
[

d f
dθRA

6̂RA
d f

dθRA

]−1

f (θ̂RA)
d
−→ χ 2(1)

for the bound with maximum risk aversion and

WSR = T f (θ̂SR)
[

d f
dθSR

6̂SR
d f

dθSR

]−1

f (θ̂SR)
d
−→ χ 2(1)

for the bound with market Sharpe ratio.

IV. Empirical Results

In this section, we compute the R2 upper bounds and examine whether the
three major asset pricing models can explain the degree of predictability found in
the data. We investigate both the market portfolio and component portfolio sorted
by size, value, and industry.
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A. R2 Bounds on the Market Portfolio
Suppose rt+1 in expression (1) is the excess return on the market portfolio.

Table 1 reports the predictive regression results, the upper bound of Ross (2005)
R̄2

Ross, the multiple correlation coefficient ρx ,r z that determines the improvement of
our bounds over Ross’s, and the two proposed bounds. The statistical significance
is assessed by the Wald statistic that tests the hypothesis that the predictive R2 is
less than the upper bound.

TABLE 1
R2 Bounds on the Market Portfolio

Table 1 reports the results of regressing the excess market return on one of the predictors in column 1 and the upper
bounds of the predictive R 2 derived from three asset pricing models: habit formation model, long-run risks (LRR) model,
and rare disaster model. The predictors include the book-to-market ratio (BM), term spread (TMS), consumption–wealth
ratio (CAY), Markov-switching CAY (CAYMS), investment–capital ratio (IK), new-orders-to-shipments ratio (NOS), output
gap (OG), and credit expansion (CE). The sample period is Jan. 1959–Dec. 2013. ρx ,rz is the multiple correlation defined
in column 8. R̄ 2

Ross is Ross’s (2005) bound on the R 2. R̄ 2
RA and R̄ 2

SR are the proposed bounds. Statistical significance is
assessed by the Wald statistic for testing that the predictive R 2 is less than the theoretical upper bound. ** and * indicate
significance at the 1% and 5% levels, respectively.

Habit Formation Model LRR Model Rare Disaster Model

Predictor β t -Stat. R 2(%) R̄ 2
Ross(%) ρx ,rz R̄ 2

RA(%) R̄ 2
SR(%) ρx ,rz R̄ 2

RA(%) R̄ 2
SR(%) ρx ,rz R̄ 2

RA(%) R̄ 2
SR(%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

BM 0.58 3.06 1.42 20.16 0.02 0.01** 0.01** 0.07 0.11** 0.11** 0.05 0.05** 0.05**
TMS 0.24 2.03 0.66 20.16 0.06 0.07** 0.07** 0.10 0.20** 0.20** 0.06 0.08** 0.08**
CAY 0.25 2.90 1.09 20.16 0.06 0.07** 0.08** 0.12 0.24** 0.24** 0.04 0.03** 0.03**
CAYMS 0.49 3.22 1.78 20.16 0.06 0.09** 0.09** 0.12 0.33** 0.33** 0.01 0.00** 0.00**
IK −1.11 −2.25 0.84 20.16 0.12 0.34** 0.34** 0.17 0.66* 0.67* 0.15 0.48** 0.49**
NOS −0.20 −3.10 1.64 20.16 0.08 0.15** 0.15** 0.12 0.33** 0.34** 0.07 0.12** 0.13**
OG −0.09 −3.36 1.71 20.16 0.06 0.07** 0.07** 0.14 0.40** 0.41** 0.12 0.32** 0.32**
CE −0.32 −2.07 0.75 20.16 0.09 0.20** 0.20** 0.13 0.40** 0.40** 0.08 0.17** 0.18**

Column 1 of Table 1 indicates the predictors. Columns 2, 3, and 4 report
the regression slope, t-statistic, and R2 for each predictor, respectively. Because
all the t-statistics are greater than 2 in absolute value, the eight predictors we
consider significantly predict the market portfolio. The associated R2s range from
0.66% for TMS to 1.78% for CAYMS. Together with t-statistics greater than 2,
the sizable R2s suggest that the market portfolio is predictable and that the degree
of predictability varies across the predictors, which in turn implies that the upper
bound of R2 should vary across the predictors.

As discussed in the previous section, we assume that the maximum risk aver-
sion is 10 throughout. The upper bound of Ross (2005), R̄2

Ross, is reported in col-
umn 5 of Table 1, which has a constant value of 20.16% regardless of the predictor
and asset pricing model used. Because the maximum R2 with respect to the eight
predictors is only 1.78%, Ross’s bound is satisfied for all predictors and all mod-
els. To the best of our knowledge, there is no single predictor that can generate an
R2 as large as 20.16%, or close to it, at a monthly frequency. Therefore, Ross’s
bound is unable to reject any of the models for explaining the degree of market
portfolio predictability.

Columns 6, 9, and 12 of Table 1 report the multiple correlation ρx ,r z be-
tween the state variables and the market portfolio, where x are the state variables
used in the habit formation model, the LRR model, and the rare disaster model,
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respectively. In comparison to Ross’s (2005) bound, the proposed bounds have
improved by a factor of 1/φ2

x ,r z . Over our sample period, the standardized vari-
ance term var(rt+1(zt−µz))/var(rt+1)var(zt ) of φ2

x ,r z is between 1 and 3, indicating
that the improvement of our bounds comes mainly from the multiple correlation
ρx ,r z . Because the maximum ρx ,r z within columns 6, 9, and 12 is 0.17, our bounds
are at least 11 times lower than Ross’s.

Columns 7, 10, and 13 of Table 1 report the proposed R2 bounds by assuming
a maximum risk aversion of 10 with respect to the three asset pricing models. As
expected, the low-value ρx ,r z drives the R2 upper bound close to 0 for all three
sets of state variables for the habit formation model, the LRR model, and the
rare disaster model. All eight predictors display larger R2s than the theoretical
upper bounds. In other words, the three sets of state variables explain a small
fraction of predictability found in the data. Therefore, we can conclude that asset
pricing models with the same state variables as the habit formation model, the
LRR model, and the rare disaster model cannot explain the magnitude of return
predictability.

Because there is no consensus on the choice of the level of maximum
risk aversion, a value of 10 may be too small for some extremely conservative
investors. Columns 8, 11, and 14 of Table 1 report R2 bounds based on the market
Sharpe ratio. As discussed earlier, we set the free parameter h in bound (10) to
be 4, which means that if the monthly market Sharpe ratio is 0.11, any strategy
with a monthly Share ratio larger than 0.44 will be a violation of the no-arbitrage
condition. It is surprising that the upper bounds with this market Sharpe ratio con-
straint are similar to those with the maximum risk aversion constraint, suggesting
that our two bounds complement each other and can be used interchangeably,
according to the user’s taste.

Although we focus on the most frequently explored monthly frequency of
data, it is of interest to see how the results of Table 1 change when the pre-
dictability is examined quarterly. Table 2 reports the results with quarterly data
over the same sample period. Compared to Table 1, the predictive R2s increase
significantly, with the exception of TMS, and seven of the eight predictors are
larger than 2%. Again, CAYMS stands out as the most pronounced predictor with
an R2 of 4.98%. This is consistent with the predictability literature that finds
that the longer the forecasting horizon, the greater the degree of predictability.
Theoretically, this appears to hold true as Ross’s (2005) bound increases to
68.48%, which is much larger than any of the R2s of the data. Our proposed
bounds are greater than before as well. However, because ρx ,r z is less than or equal
to 0.21 for almost all the predictors, our bounds still improve Ross’s bound by 7
times or more. For the habit formation model, seven predictors generate larger R2s
than the bounds, six of which are significant. For the LRR model, five predictors
deliver significantly larger R2s than the theoretical bounds. The result for the rare
disaster model is similar, with six of the eight predictors violating the bounds. In
sum, models based on each of the three sets of state variables cannot explain the
predictability of the data.

In examining the effects of market frictions on the R2 bounds, we first con-
sider the liquidity factor constructed by Pástor and Stambaugh (2003) as a proxy
for transaction costs. The monthly data span Aug. 1962 to Dec. 2013, and the
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TABLE 2
R2 Bounds on the Market Portfolio with Quarterly Data

Table 2 reports the results of regressing the excess market return on one of the predictors in column 1 and the upper
bounds of the predictive R 2 derived from three asset pricing models: habit formation model, long-run risks (LRR) model,
and rare disaster model. The predictors include the book-to-market ratio (BM), term spread (TMS), consumption–wealth
ratio (CAY), Markov-switching CAY (CAYMS), investment–capital ratio (IK), new-orders-to-shipments ratio (NOS), output
gap (OG), and credit expansion (CE). The sample period is 1959Q1–2013Q4. ρx ,rz is the multiple correlation defined
in column 8. R̄ 2

Ross is Ross’s (2005) bound on the R 2. R̄ 2
RA and R̄ 2

SR are the proposed bounds. Statistical significance is
assessed by the Wald statistic for testing that the predictive R 2 is less than the theoretical upper bound. ** and * indicate
significance at the 1% and 5% levels, respectively.

Habit Formation Model LRR Model Rare Disaster Model

Predictor β t -Stat. R 2(%) R̄ 2
Ross(%) ρx ,rz R̄ 2

RA(%) R̄ 2
SR(%) ρx ,rz R̄ 2

RA(%) R̄ 2
SR(%) ρx ,rz R̄ 2

RA(%) R̄ 2
SR(%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

BM 0.01 2.39 2.48 68.48 0.01 0.01** 0.01** 0.09 0.57** 0.56** 0.04 0.14** 0.13**
TMS 0.36 0.80 0.36 68.48 0.03 0.06 0.05 0.10 0.88 0.85 0.08 0.59 0.57
CAY 0.75 2.84 2.91 68.48 0.10 0.60** 0.58** 0.18 2.16** 2.10** 0.10 0.60** 0.59**
CAYMS 1.51 3.44 4.98 68.48 0.09 0.59** 0.57** 0.17 2.34** 2.28** 0.03 0.08** 0.08**
IK −3.61 −2.48 2.75 68.48 0.20 2.93 2.85 0.19 2.76 2.68 0.11 0.92** 0.89**
NOS −0.17 −3.14 4.59 68.48 0.09 0.92** 0.89** 0.18 3.51** 3.41* 0.09 0.87** 0.85**
OG −0.25 −3.21 4.51 68.48 0.10 0.76** 0.74** 0.16 1.94** 1.88** 0.15 1.57** 1.52**
CE −0.99 −2.14 2.21 68.48 0.15 1.96 1.90 0.21 3.74 3.64 0.16 2.07 2.02

results are reported in Table 3. Ross’s (2005) bound increases from 20.16% in
the frictionless case to 20.54% in the friction case. The change is so small that it
makes no difference in the inference of the degree of predictability. In contrast,
the changes for our new bounds using the habit formation model are relatively
large. For example, the bounds of using the investment–capital ratio predictor
double from 0.34% to 0.78% and from 0.34% to 0.82% for the bounds with the
maximum risk aversion rate and the market Sharpe ratio, respectively. However,
the bounds are still small compared to regression R2 values. Indeed, similar to
Table 1, the bounds are binding in all cases. Hence, the conclusion is identical to
the earlier case of no market frictions.

We consider the leverage constraint of Adrian et al. (2014) as another
proxy of market frictions, which can be included in the SDF as an additional

TABLE 3
R2 Bounds on the Market Portfolio with Liquidity Cost

Table 3 reports the results of regressing the excess market return on one of the predictors in column 1 and the upper
bounds of the predictive R 2 derived from three asset pricing models, habit formation model, long-run risks (LRR) model,
and rare disaster model, where the Pástor and Stambaugh (2003) liquidity factor is used as the proxy for liquidity cost.
The predictors include the book-to-market ratio (BM), term spread (TMS), consumption–wealth ratio (CAY), Markov-
switching CAY (CAYMS), investment–capital ratio (IK), new-orders-to-shipments ratio (NOS), output gap (OG), and credit
expansion (CE). The sample period is Aug. 1962–Dec. 2013. ρx ,rz is the multiple correlation defined in column 8. R̄ 2

Ross is
Ross’s (2005) bound on the R 2. R̄ 2

RA and R̄ 2
SR are the proposed bounds. Statistical significance is assessed by the Wald

statistic for testing that the predictive R 2 is less than the theoretical upper bound. ** and * indicate significance at the
1% and 5% levels, respectively.

Habit Formation Model LRR Model Rare Disaster Model

Predictor β t -Stat. R 2(%) R̄ 2
Ross(%) ρx ,rz R̄ 2

RA(%) R̄ 2
SR(%) ρx ,rz R̄ 2

RA(%) R̄ 2
SR(%) ρx ,rz R̄ 2

RA(%) R̄ 2
SR(%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

BM 0.67 3.44 1.83 20.54 0.11 0.26** 0.28** 0.08 0.13** 0.13** 0.06 0.07** 0.07**
TMS 0.23 1.93 0.63 20.54 0.07 0.12** 0.12** 0.11 0.24** 0.25** 0.07 0.11** 0.11**
CAY 0.24 2.72 1.01 20.54 0.07 0.08** 0.08** 0.12 0.28** 0.29** 0.04 0.03** 0.03**
CAYMS 0.48 3.08 1.74 20.54 0.12 0.34** 0.36** 0.12 0.36** 0.38** 0.01 0.00** 0.00**
IK −1.28 −2.41 1.04 20.54 0.18 0.78 0.82 0.17 0.68** 0.71** 0.14 0.46** 0.48**
NOS −0.19 −2.89 1.55 20.54 0.12 0.39** 0.41** 0.12 0.34** 0.36** 0.07 0.13** 0.14**
OG −0.10 −3.45 1.98 20.54 0.15 0.48** 0.51** 0.15 0.48** 0.51** 0.12 0.31** 0.32**
CE −0.36 −2.21 0.93 20.54 0.10 0.24** 0.25** 0.15 0.60** 0.63** 0.11 0.28** 0.29**
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state variable. The rationale is that deleveraging indicates deteriorating funding
conditions. The data are collected quarterly from 1968Q1 to 2009Q4.2 Table 4
reports the results. Similar to Pástor and Stambaugh’s (2003) liquidity factor, the
bounds are generally greater but are still significantly less than the predictive R2s.
Summarizing Tables 3 and 4, although market frictions can make the theoretical
R2 bounds greater, the bounds are still binding in almost all cases. This indicates
that even after accounting for market frictions, asset pricing models based on one
of the three sets of state variables still have difficulty explaining the magnitude of
predictability of the market portfolio.

TABLE 4
R2 Bounds on the Market Portfolio with Leverage Constraint

Table 4 reports the results of regressing the excess market return on one of the predictors in column 1 and the upper
bounds of the predictive R 2 derived from three asset pricing models, habit formation model, long-run risks (LRR) model,
and rare disaster model, where the Adrian, Etula, and Muir (2014) leverage factor is used as the proxy for leverage
constraint. The predictors include the book-to-market ratio (BM), term spread (TMS), consumption–wealth ratio (CAY),
Markov-switching CAY (CAYMS), investment–capital ratio (IK), new-orders-to-shipments ratio (NOS), output gap (OG),
and credit expansion (CE). The sample period is Mar. 1968–Feb. 2010. ρx ,rz is the multiple correlation defined in column 8.
R̄ 2

Ross is Ross’s (2005) bound on the R 2. R̄ 2
RA and R̄ 2

SR are the proposed bounds. Statistical significance is assessed by
the Wald statistic for testing that the predictive R 2 is less than the theoretical upper bound. ** and * indicate significance
at the 1% and 5% levels, respectively.

Habit Formation Model LRR Model Rare Disaster Model

Predictor β t -Stat. R 2(%) R̄ 2
Ross(%) ρx ,rz R̄ 2

RA(%) R̄ 2
SR(%) ρx ,rz R̄ 2

RA(%) R̄ 2
SR(%) ρx ,rz R̄ 2

RA(%) R̄ 2
SR(%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

BM 0.67 3.00 1.75 22.18 0.10 0.22** 0.13** 0.13 0.38** 0.21** 0.11 0.26** 0.15**
TMS 0.26 1.87 0.71 22.18 0.07 0.12** 0.07** 0.13 0.36** 0.20** 0.09 0.19** 0.11**
CAY 0.25 2.80 1.24 22.18 0.08 0.11** 0.06** 0.12 0.27** 0.15** 0.06 0.06** 0.04**
CAYMS 0.51 3.08 2.03 22.18 0.03 0.02** 0.01** 0.11 0.30** 0.17** 0.03 0.02** 0.01**
IK −1.28 −1.94 0.81 22.18 0.13 0.43** 0.24** 0.16 0.65 0.36** 0.13 0.40** 0.22**
NOS −0.22 −3.01 2.01 22.18 0.25 1.68 0.95** 0.15 0.59** 0.33** 0.06 0.09** 0.05**
OG −0.10 −2.53 1.41 22.18 0.17 0.77** 0.43** 0.16 0.68** 0.38** 0.12 0.36** 0.20**
CE −0.36 −2.07 0.93 22.18 0.22 1.19 0.67* 0.19 0.95 0.53** 0.12 0.39** 0.22**

B. Bounds on Component Portfolio Predictability
In this section, we examine whether the proposed bounds are also binding

for component portfolio predictability. Theoretically, our proposed bounds, (6)
and (10), should have different values for different portfolios, because they have
different multiple correlations with the state variables. Hence, it is an empirical
question as to how the bounds vary at the portfolio level.

Tables 5 and 6 report the R2s and their upper bounds on portfolios sorted
by size and value (book-to-market ratio). There are three interesting observations.
First, the eight predictors not only predict the market portfolio as shown in Table 1,
but also predict all of the component portfolios with sizable R2s. The degree of
predictability is almost the same as the market portfolio. Second, the upper bounds
are violated in all cases, with only a few exceptions. Finally, with respect to the
three types of asset pricing models, the LRR model performs the best with the
largest bounds. Nevertheless, the bounds are still violated in most cases.

Table 7 reports further results on portfolios sorted by industry. For brevity, we
report only the first three predictors: BM, TMS, and CAY. Consistent with Ferson

2We are grateful to Tyler Muir for making the data available on his Web site, http://faculty.som.yale
.edu/tylermuir/researchpapers.html.
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TABLE 5
R2 Bounds on Size Portfolios

Table 5 reports the results of regressing size portfolio returns on one of the predictors in column 1 and the upper bounds
of the predictive R 2 derived from three asset pricing models: habit formation model, long-run risks (LRR) model, and
rare disaster model. The predictors include the book-to-market ratio (BM), term spread (TMS), consumption–wealth ratio
(CAY), Markov-switching CAY (CAYMS), investment–capital ratio (IK), new-orders-to-shipments ratio (NOS), output gap
(OG), and credit expansion (CE). The sample period is Jan. 1959–Dec. 2013. R̄ 2

Ross is Ross’s (2005) bound on the R 2. R̄ 2
RA

and R̄ 2
SR are the proposed bounds. Statistical significance is assessed by the Wald statistic for testing that the predictive

R 2 is less than the theoretical upper bound. ** and * indicate significance at the 1% and 5% levels, respectively.

Habit Formation Model LRR Model Rare Disaster Model

Predictor R 2 R̄ 2
RA R̄ 2

SR R̄ 2
RA R̄ 2

SR R̄ 2
RA R̄ 2

SR

1 2 3 4 5 6 7 8

Panel A. Small Size Portfolio

BM 1.26 0.00** 0.00** 0.07** 0.07** 0.01** 0.01**
TMS 0.60 0.08** 0.08** 0.17** 0.17** 0.06** 0.06**
CAY 0.30 0.03 0.03 0.26 0.26 0.03 0.03
CAYMS 0.83 0.03** 0.03** 0.41** 0.41** 0.02** 0.02**
IK 0.36 0.36 0.37 0.51 0.52 0.33 0.34
NOS 1.38 0.21** 0.21** 0.28** 0.28** 0.10** 0.10**
OG 0.70 0.11** 0.11** 0.32** 0.32** 0.22** 0.22**
CE 1.04 0.13** 0.13** 0.44** 0.45** 0.18** 0.18**

Panel B. Median-Size Portfolio

BM 1.34 0.00** 0.00** 0.11** 0.11** 0.03** 0.03**
TMS 0.70 0.10** 0.10** 0.14** 0.14** 0.05** 0.05**
CAY 0.62 0.06** 0.06** 0.20** 0.20** 0.02** 0.02**
CAYMS 1.30 0.06** 0.07** 0.36** 0.36** 0.01** 0.01**
IK 0.69 0.41 0.42 0.67 0.68 0.48 0.49
NOS 1.47 0.21** 0.21** 0.32** 0.32** 0.07** 0.07**
OG 1.21 0.10** 0.10** 0.37** 0.37** 0.27** 0.27**
CE 0.87 0.19** 0.19** 0.48** 0.49** 0.22** 0.22**

Panel C. Large Size Portfolio

BM 1.39 0.01** 0.01** 0.12** 0.13** 0.06** 0.06**
TMS 0.60 0.07** 0.07** 0.22** 0.22** 0.10** 0.10**
CAY 1.23 0.08** 0.08** 0.25** 0.26** 0.04** 0.04**
CAYMS 1.83 0.09** 0.09** 0.28** 0.29** 0.00** 0.00**
IK 0.81 0.33** 0.33** 0.65 0.66 0.46** 0.47**
NOS 1.60 0.14** 0.14** 0.34** 0.34** 0.13** 0.14**
OG 1.78 0.06** 0.06** 0.42** 0.43** 0.33** 0.34**
CE 0.67 0.20** 0.21** 0.36** 0.37** 0.15** 0.16**

and Harvey (1991) and Ferson and Korajczyk (1995), industry portfolios are sig-
nificantly predictable. However, the degree of predictability varies substantially
across industries. For example, when BM is the predictor, the most predictable
industry is the consumer durable industry, which has an R2 of 1.82%, greater than
the predictability on the market portfolio, whereas the least predictable industry is
the energy industry, which has an R2 of 0.32%. The R2 upper bounds are binding
and have similar magnitudes as the other component portfolios in Tables 5 and 6.

Overall, the results for the component portfolios are similar to those for the
market portfolio, and the three sets of state variables have difficulty explaining the
magnitude of predictability.

V. Conclusion
In this article, we investigate whether return predictability found in the data

is consistent with asset pricing models. To answer this question, we develop two
upper bounds on the predictive R2. Our bounds have improved substantially over
the nonbinding bound of Ross (2005), and they provide likely reasons a given
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TABLE 6
R2 Bounds on Value Portfolios

Table 6 reports the results of regressing value portfolio returns on one of the predictors in column 1 and the upper bounds
of the predictive R 2 derived from three asset pricing models: habit formation model, long-run risks (LRR) model, and rare
disaster model. The predictors include the book-to-market ratio (BM), term spread (TMS), consumption–wealth ratio
(CAY), Markov-switching CAY (CAYMS), investment–capital ratio (IK), new-orders-to-shipments ratio (NOS), output gap
(OG), and credit expansion (CE). The sample period is Jan. 1959–Dec. 2013. R̄ 2

Ross is Ross’s (2005) bound on the R 2. R̄ 2
RA

and R̄ 2
SR are the proposed bounds. Statistical significance is assessed by the Wald statistic for testing that the predictive

R 2 is less than the theoretical upper bound. ** and * indicate significance at the 1% and 5% levels, respectively.

Habit Formation Model LRR Model Rare Disaster Model

Predictor R 2 R̄ 2
RA R̄ 2

SR R̄ 2
RA R̄ 2

SR R̄ 2
RA R̄ 2

SR

1 2 3 4 5 6 7 8

Panel A. Low-BM (Growth) Portfolio

BM 1.73 0.02** 0.02** 0.11** 0.11** 0.05** 0.05**
TMS 0.67 0.07** 0.07** 0.27** 0.28** 0.12** 0.12**
CAY 1.04 0.06** 0.06** 0.24** 0.24** 0.05** 0.05**
CAYMS 1.76 0.08** 0.08** 0.27** 0.27** 0.00** 0.00**
IK 0.73 0.30** 0.31** 0.67 0.68 0.50 0.51
NOS 1.38 0.09** 0.09** 0.26** 0.26** 0.12** 0.13**
OG 1.52 0.05** 0.05** 0.40** 0.40** 0.31** 0.31**
CE 0.71 0.15** 0.15** 0.31** 0.31** 0.15** 0.15**

Panel B. Median-BM Portfolio

BM 0.96 0.00** 0.00** 0.15** 0.15** 0.05** 0.05**
TMS 0.56 0.09** 0.09** 0.12** 0.12** 0.06** 0.06**
CAY 1.07 0.08** 0.08** 0.16** 0.16** 0.02** 0.02**
CAYMS 1.54 0.07** 0.07** 0.22** 0.23** 0.00** 0.00**
IK 0.74 0.41** 0.41** 0.60 0.61 0.32** 0.33**
NOS 1.92 0.21** 0.22** 0.46** 0.47** 0.11** 0.12**
OG 1.60 0.10** 0.10** 0.46** 0.47** 0.28** 0.28**
CE 0.72 0.28** 0.28** 0.49** 0.50** 0.19** 0.19**

Panel C. High-BM (Value) Portfolio

BM 1.21 0.00** 0.00** 0.25** 0.25** 0.09** 0.09**
TMS 0.22 0.08 0.08 0.09 0.09 0.02 0.05
CAY 0.21 0.04 0.04 0.16 0.16 0.01 0.01
CAYMS 0.66 0.06** 0.07** 0.31** 0.31** 0.02** 0.02**
IK 0.51 0.38 0.38 0.51 0.52 0.23* 0.23*
NOS 1.34 0.27** 0.28** 0.49** 0.49** 0.12** 0.12**
OG 1.04 0.12** 0.12** 0.44** 0.45** 0.24** 0.25**
CE 0.72 0.19** 0.19** 0.65 0.66 0.10** 0.10**

asset pricing model cannot explain predictability. In forecasting the market port-
folio or component portfolios sorted by size, value, and industry, we find that the
high predictive R2s observed in the data almost always exceed the proposed theo-
retical upper bounds, implying that return predictability cannot be fully explained
by any asset pricing models based on three sets of well-known state variables
underlying the habit formation model (Campbell and Cochrane (1999)), the LRR
model (Bansal and Yaron (2004)), and the rare disaster model (Barro (2006),
Wachter (2013)). The reason may be the low correlations between the return(s)
and the state variables. This conclusion is unaltered even when market frictions
are accounted for.

Although our study focuses on the stock market, it may be useful for
studying other asset classes, such as options, bonds, and foreign exchanges, to
examine whether the predictability is consistent with existing models in these ar-
eas. Moreover, it appears important to extend our bounds to allow for parameter
instability and structural breaks. However, this is technically very challenging,
as it leads to difficulties similar to those we faced when extending Hansen and
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TABLE 7
R2 Bounds on Industry Portfolios

Table 7 reports the results of regressing industry portfolio returns on the book-to-market ratio (BM), term spread (TMS),
or consumption–wealth ratio (CAY) and the upper bounds of the predictive R 2 derived from three asset pricing models:
habit formation model, long-run risks (LRR) model, and rare disaster model. The sample period is Jan. 1959–Dec. 2013.
R̄ 2

Ross is Ross’s (2005) bound on the R 2. R̄ 2
RA and R̄ 2

SR are the proposed bounds. Statistical significance is assessed by
the Wald statistic for testing that the predictive R 2 is less than the theoretical upper bound. ** and * indicate significance
at the 1% and 5% levels, respectively.

Habit Formation Model LRR Model Rare Disaster Model

Portfolio R 2 R̄ 2
RA R̄ 2

SR R̄ 2
RA R̄ 2

SR R̄ 2
RA R̄ 2

SR

1 2 3 4 5 6 7 8

Panel A. Predictor: BM

NODUR 0.50 0.00** 0.00** 0.22** 0.22** 0.10** 0.10**
DURBL 1.82 0.00** 0.00** 0.16** 0.16** 0.08** 0.09**
MANUF 1.34 0.01** 0.01** 0.15** 0.15** 0.08** 0.08**
ENRGY 0.32 0.00** 0.00** 0.11 0.11 0.04 0.04
HITEC 1.30 0.02** 0.02** 0.15** 0.15** 0.06** 0.07**
TELCM 0.67 0.00** 0.00** 0.06** 0.06** 0.02** 0.02**
SHOPS 1.20 0.01** 0.01** 0.15** 0.15** 0.07** 0.07**
HLTH 0.50 0.00** 0.00** 0.06** 0.06** 0.03** 0.03**
UTILS 0.49 0.00** 0.00** 0.20** 0.21** 0.06** 0.06**
OTHER 0.97 0.00** 0.00** 0.08** 0.08** 0.04** 0.04**

Panel B. Predictor: TMS

NODUR 0.43 0.12* 0.13* 0.24* 0.24* 0.09** 0.09**
DURBL 1.14 0.07** 0.07** 0.14** 0.14** 0.07** 0.07**
MANUF 0.80 0.09** 0.09** 0.16** 0.16** 0.05** 0.05**
ENRGY 0.14 0.04 0.04 0.07 0.07 0.01 0.01
HITEC 0.62 0.04** 0.04** 0.33** 0.34** 0.09* 0.09*
TELCM 0.27 0.12 0.13 0.04 0.04 0.01 0.01
SHOPS 0.50 0.10** 0.10** 0.12** 0.12** 0.09** 0.09**
HLTH 0.01 0.14 0.14 0.26 0.27 0.22 0.22
UTILS 0.26 0.06 0.06 0.17 0.18 0.08 0.09
OTHER 0.37 0.04** 0.04** 0.16 0.16 0.12* 0.12*

Panel C. Predictor: CAY

NODUR 1.43 0.13** 0.13** 0.27** 0.27** 0.09** 0.09**
DURBL 0.20 0.02 0.02 0.19 0.19 0.05 0.05
MANUF 0.56 0.06** 0.06** 0.15** 0.15** 0.02** 0.02**
ENRGY 0.11 0.02 0.02 0.13 0.14 0.05 0.05
HITEC 0.61 0.02** 0.02** 0.14** 0.14** 0.04** 0.04**
TELCM 1.33 0.11** 0.11** 0.17** 0.17** 0.02** 0.02**
SHOPS 0.42 0.05** 0.05** 0.24 0.24 0.06** 0.06**
HLTH 1.04 0.07** 0.07** 0.26** 0.26** 0.17** 0.18**
UTILS 0.64 0.08** 0.09** 0.29** 0.29** 0.21** 0.22**
OTHER 1.03 0.05** 0.06** 0.23** 0.24** 0.04** 0.04**

Jagannathan’s (1991) SDF volatility bound. Although these issues are of interest
to study further, we leave them for future research.

Appendix. Proofs

1. Proof of Proposition 1
We prove Proposition 1 in two steps. In the first step, we show that with mild

assumptions, the R2 from the predictive regression rt+1= α+βzt+εt+1 is bounded above
as R2

≤φ2
x ,r zvar(m(xt+1)), where m t+1=m(xt+1) is a specific normalized SDF such that

E(m(xt+1))=1. In the second step, we show that the variance of any SDF can be bounded
above by the variance of a CRRA utility’s SDF with risk aversion γ .

Step 1. The Euler equation suggests that

(A-1) E[m(xt+1)rt+1|It ] = 0.
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Let µz denote the mean of predictor z. Because zt−µz is in the information set It , we
multiply equation (A-1) by zt−µz on both sides and apply the law of iterated expectations
to obtain

E[m t+1rt+1(zt −µz)] = 0,

which can be rearranged as

(A-2) cov(rt+1, zt ) = −cov[m t+1,rt+1(zt −µz)].

Because cov(rt+1, zt )=cov(rt+1, zt−µz)=E[rt+1(zt−µz)], equation (A-2) indicates that the
expected excess return with zt−µz units of investment in the asset rt+1 is equal to the
negative covariance between the normalized SDF and the realized excess return of the
investment, which implies that any dynamic trading strategy that exploits the predictability
of rt+1 must be priced by the normalized SDF.

In the predictive regression (1), β=cov(rt+1, zt )/var(zt ). Combining expression (2)
and equation (A-2) gives

R2
=

var(α+βzt )
var(rt+1)

=
β2var(zt )
var(rt+1)

=
cov2(rt+1, zt )

var(rt+1)var(zt )
(A-3)

=
cov2
[m t+1,rt+1(zt −µz)]
var(rt+1)var(zt )

.

To the best of our knowledge, Kirby (1998) is the first to test this implication by using a
specific functional form of m(·). Instead, we derive semiparametric bounds here that do not
require the functional form.

To facilitate the understanding of readers, we first consider a simple case when
xt+1 and rt+1(zt−µz) are jointly normally distributed conditional on time t . From
equation (A-3), we have

R2
=

cov2
[m(xt+1),rt+1(zt −µz)]

var(rt+1)var(zt )
(A-4)

=

[
cov(xt+1,rt+1(zt −µz))′var−1(xt+1)cov(m t+1, xt+1)

]2

var(rt+1)var(zt )
≤

[
cov(xt+1,rt+1(zt −µz))′var−1(xt+1)cov(xt+1,rt+1(zt −µz))

]
×

(
cov(m t+1, xt+1)′var−1(xt+1)cov(m t+1, xt+1)

)
var(rt+1)var(zt )

= ρ2
x ,r zvar(rt+1(zt −µz))×

cov(m t+1, xt+1)′var−1(xt+1)cov(m t+1, xt+1)
var(rt+1)var(zt )

≤ ρ2
x ,r z

var(rt+1(zt −µz))
var(rt+1)var(zt )

var(m t+1)

= φ2
x ,r zvar(m t+1).

To derive equation (A-4), we use Stein’s lemma twice as3

cov(m(xt+1),rt+1(zt −µz)) = cov(xt+1,rt+1(zt −µz))E(m ′(xt+1)),(A-5)

cov(m(xt+1), xt+1) = var(xt+1)E(m ′(xt+1)),(A-6)

3We are very grateful to the referee for this and many other suggestions that improved the paper
substantially.
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where m(·) is assumed to be differentiable and E(|m ′(·)|)<∞ (see, e.g., Cochrane (2005),
p. 164). A more general proof is provided in Furman and Zitikis (2008), where the assump-
tion of the differentiability of m(·) can be relaxed. Inequalities in (A-4) use the Cauchy–
Schwarz inequality.

Although normal distribution is generally used in the asset pricing literature, we prove
that expression (A-4) can hold in more general cases when rt+1 and xt+1(zt−µz) follow a
general distribution, but with an additional assumption of E(εt+1|xt+1)=0, where εt+1 is the
residual in the orthogonal decomposition rt+1(zt−µz)=a+bxt+1+εt+1. As discussed in
Kan and Zhou (2006), a sufficient condition for this assumption is that the state variables
are elliptically distributed (normal distribution is a special case), which seems to fit state
variables well. In fact, although technically very complex, one may expand the density
function into Taylor series and plug them into the bounds. The contributions of higher
moments are likely smaller than the first two moments. Because doubling the bounds does
not greatly affect our empirical results, we conjecture that our bounds can be extended by
relaxing the assumption. However, we retain this assumption here for simplicity.

Under the assumption E(εt+1|xt+1)=0, we have

cov(εt+1,m(xt+1)) = E[E(εt+1|xt+1)m(xt+1)] = 0.

Hence,

cov(rt+1(zt −µz),m(xt+1)) = cov[b′xt+1,m(xt+1)] = b′6xm ,

where 6xm=cov(xt+1,m(xt+1)). Using the Cauchy–Schwarz inequality generates

[cov(rt+1(zt −µz),m(xt+1))]2 = (b′61/2
xx 6

−1/2
xx 6xm)2(A-7)

≤ (b′6xx b)(6 ′xm6
−1
xx 6xm).

Using equation (A-7), equation (A-3) can be bounded above as

R2
=

cov2(m t+1,rt+1(zt −µz))
var(rt+1)var(zt )

(A-8)

≤
b′6xx b

var(rt+1(zt −µz))
var(rt+1(zt −µ))(6 ′xm6

−1
xx 6xm)

var(rt+1)var(zt )

≤ ρ2
x ,r z

var(rt+1(zt −µz))
var(rt+1)var(zt )

var(m t+1)

= φ2
x ,r zvar(m t+1).

From expressions (A-4) and (A-8), we can conclude that, given that an asset pricing
model can explain the degree of predictability, the predictive R2 cannot be arbitrarily large
but is bounded above by the variance of the SDF that is derived from the asset pricing
model.

Step 2. We show that the variance of SDF var(m t+1) in expressions (A-4) and (A-8)
can be bounded further, so that the final R2 bound does not depend on the specification of
the SDF.

Ross (2005) shows that if a utility function U (w) is bounded above in the relative risk
aversion by a utility function V (w), that is, the risk aversion of U (w) is less than or equal
to that of V (w), then

var(mU ) ≤ var(mV ),

where mU and mV are the corresponding SDFs. Moreover, if V (w) is a CRRA utility func-
tion with risk aversion γ (γ 6=1), the optimal wealth is the market portfolio and lognor-
mally distributed, such as logw∼N[µ(rmkt),σ 2(rmkt)], then

(A-9) var(mU ) ≤ var(mV ) = γ 2σ 2(rmkt).
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This inequality says that the variance of any SDF can be bounded above by a maximum
risk aversion.

Combining expressions (A-4), (A-8), and (A-9), if investors are bounded above by a
maximum risk aversion γ , we have the R2 bound as

R2
≤ R̄2

RA = φ2
x ,r zγ

2σ 2(rmkt).

This completes the proof. �

2. Proof of Proposition 2
The proof of Proposition 2 consists of two steps. The first step is the same as that

in the proof of Proposition 1, which shows that R2
≤ρ2

x ,r zvar(m t+1). In the second step, to
make the absence of arbitrage true, we assume that constraint (9) holds, that is,

var(m t+1) ≤ h2
×SR2(rmkt).

Therefore, we have

R2
≤ R̄2

SR = φ2
x ,r z × h2

×SR2(rmkt).

This completes the proof. �

3. Value of var[rt+1(zt−µz)]/var(rt+1)var(zt )

We show that the numerical value of var[rt+1(zt−µz)]/var(rt+1)var(zt ) is generally
between 1 and 3. As a result, the squared multiple correlation ρ2

x ,r z in expression (7) is the
key parameter in determining the upper bound of R2.

Without loss of generality, we assume µz=0 and var(zt )=1. Hence α=E(rt+1) in
expression (1). With the law of total variance,

var(rt+1zt ) = var[E(rt+1zt |zt )] +E[var(rt+1zt |zt )|zt ]

= var((α+βzt )zt )+E(z2
t var(rt+1|zt )).

When zt cannot predict rt+1 at all, that is, β=0 and var(rt+1|zt )=var(rt+1), then

(A-10)
var(rt+1zt )

var(rt+1)var(zt )
=

α2var(zt )+ var(rt+1)var(zt )
var(rt+1)var(zt )

= 1+
E2(rt+1)
var(rt+1)

.

When zt is a perfect predictor of rt+1, then β2
=var(rt+1) and var(rt+1|zt )=0, where

we use the assumption that var(zt )=1. If zt follows a normal distribution, we have

(A-11)
var(rt+1zt )

var(rt+1)var(zt )
=

var[(α+βzt )zt ]

var(rt+1)var(zt )
= 2+

E2(rt+1)
var(rt+1)

.

The second term in equations (A-10) and (A-11) is the squared Sharpe ratio of rt+1 and is
clearly far below 1 at a monthly horizon in practice.

In general, when zt is not a perfect predictor of rt+1, based on the above analysis, the
value of var[rt+1(zt−µz)]/var(rt+1)var(zt ) is between 1 and 3.

4. Effect of Measurement Errors in x on ρ2
x ,r z

We discuss how measurement errors affect ρ2
x ,r z , which is a key parameter in deter-

mining the R2 bound. Let r̃t+1=rt+1(zt−µz). Suppose the proxy of xt+1 is x̂t+1= xt+1+u t+1,
where u t+1 are the measurement errors and are uncorrelated with xt+1 and r̃t+1. Without loss
of generality, we assume the variance–covariance matrix of u t+1 is invertible. For brevity,
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we abbreviate the subscript t+1 in the sequel. The squared multiple correlation between x̂
and r̃ is

ρ2
x̂ ,r z =

cov(x̂ , r̃ )′var−1(x̂)cov(x̂ , r̃ )
var(r̃ )

(A-12)

=
cov(x , r̃ )′var−1(x̂)cov(x , r̃ )

var(r̃ )

=
cov(x , r̃ )′var−1(x)cov(x , r̃ )

var(r̃ )

−
cov(x , r̃ )′var−1(x)

[
var−1(x)+ var−1(u)

]−1
var−1(x)cov(x , r̃ )

var(r̃ )
≤ ρ2

x ,r z.

Equation (A-12) uses the assumption that u are uncorrelated with r̃ . It goes on to use
the assumptions that u are uncorrelated with x and that the variance–covariance
matrix var(u) is invertible, and it uses the Woodbury matrix identity that (A+UCV )−1

=

A−1
− A−1U (V A−1U+C−1)−1V A−1, where A, U , C , and V all denote matrices of the cor-

rect sizes. In our case here, A=var(x), C=var(u), and U and V are identity matrices.
The inequality at the end of (A-12) uses the fact that the second term of the equation

preceding it is nonnegative. With a mild assumption that var(u) is positively definite, the
second term of that equation is always positive and less than ρ2

x ,r z . The more noise in the
proxy of x , the larger the effect of var(u), and the closer the second term to ρ2

x ,r z . In the
extreme case when each element of u has an infinite variance, var−1(u) approaches a 0
matrix, and the second term of that equation approaches ρ2

x ,r z , leading to ρ2
x̂ ,r z toward 0.

Therefore, the low R2 bound may be due to the measurement errors that attenuate the
measured ρ2

x ,r z .

5. Incremental Value of an Additional State Variable on ρ2
x ,r z

In Section II.C, we consider the effect of market frictions on the R2 bound by
including an additional variable, 1ωt+1, in the vector of state variables xt+1. Denote by
x̃t+1= (x ′t+1,1ωt+1)′ the new state variable vector, and let r̃t+1=rt+1(zt−µz), as in Appendix
Section 4. Without loss of generality, we assume that 1ωt+1 is uncorrelated with xt+1.
Hence, the variance–covariance matrix of x̃t+1 is

var(x̃t+1) =

[
var(xt+1) 0

0 var(1ωt+1)

]
.

The squared multiple correlation between x̃t+1 and r̃t+1 is

ρ2
x̃ ,r z =

cov[x̃t+1, r̃t+1]
′var−1(x̃t+1)cov[x̃t+1, r̃t+1]

var[r̃t+1]
(A-13)

=
cov(xt+1, r̃t+1)′var−1(xt+1)cov(xt+1, r̃t+1)

var(r̃t+1)

+
cov(1ωt+1, r̃t+1)′var−1(1ωt+1)cov(1ωt+1, r̃t+1)

var(r̃t+1)
= ρ2

x ,r z + ρ
2
1ω,r z

≥ ρ2
x ,r z.

Therefore, accounting for market frictions will improve the R2 bound.
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Barro, R. J., and J. F. Ursúa. “Rare Macroeconomic Disasters.” Annual Review of Economics, 4 (2012),

83–109.
Bekaert, G., and J. Liu. “Conditional Information and Variance Bounds on Pricing Kernels.” Review

of Financial Studies, 17 (2004), 339–378.
Bianchi, F.; M. Lettau; and S. C. Ludvigson. “A Markov Switching cay.” Working Paper, New York

University (2014).
Brunnermeier, M. K., and L. H. Pedersen. “Market Liquidity and Funding Liquidity.” Review of

Financial Studies, 22 (2009), 2201–2238.
Campbell, J. Y. “Stock Returns and Term Structure.” Journal of Financial Economics, 18 (1987),

373–399.
Campbell, J. Y., and J. H. Cochrane. “By Force of Habit: A Consumption-Based Explanation of

Aggregate Stock Market Behavior.” Journal of Political Economy, 107 (1999), 205–251.
Campbell, J. Y., and R. Shiller. “Stock Prices, Earnings, and Expected Dividends.” Journal of Finance,

43 (1988), 661–676.
Campbell, J., and T. Vuolteenaho. “Inflation Illusion and Stock Prices.” American Economic Review,

94 (2004), 19–23.
Cochrane, J. H. “Production-Based Asset Pricing and the Link between Stock Returns and Economic

Fluctuations.” Journal of Finance, 46 (1991), 209–237.
Cochrane, J. H. Asset Pricing. Princeton, NJ: Princeton University Press (2005).
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