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Abstract. We define the notions of the pseudo-rotation set and rotation shadowing
of pseudo-orbits for endomorphisms of the circle and for homeomorphisms of the
annulus. The results include: the rotation shadowing property holds for all
endomorphisms of the circle; the pseudo-rotation set equals the closure of the
rotation set; the closure of the rotation set varies upper-semicontinuously.

0. Introduction
Roughly speaking, whenever there is a circle action on a manifold, one may define
the rotation number of an orbit of a continuous endomorphism of the manifold.
For example, one might wish to compute rotation numbers of a surface homeomor-
phism relative to a fixed point in the interior of an invariant disc. Except in the
most idealized of situations, however, there is a spectrum of rotation numbers - a
rotation interval - associated with a given orbit. In this article we are interested in
the following problems:
(I) When is the rotation behavior of pseudo-orbits 'shadowed' or uniformly approxi-

mated by true rotation numbers? Can rotation sets be effectively calculated?
(II) Under what circumstances is the rotation set connected or closed? Is every

irrational number in the rotation set attained as the actual limit of rotation
averages?

That the first problem is not evident may surprise some - there is a sense that
computers can safely calculate rotation numbers except for roundoff error. However,
one can find simple diffeomorphisms on the annulus for which pseudo-orbits with
arbitrarily short jumps do not rotationally shadow true orbits (see definitions below).
We shall, however, be able to rule out such behavior for circle maps. While for
circle maps problem II is completely answered by work in [N-P-T] and [I], little
is known about homeomorphisms on the annulus. It is our aim in this paper to
demonstrate that pseudo-orbits, in addition to their intrinsic interest, shed light on
the actual dynamics and rotation behavior of annulus maps. We should add, here,
that Franks [F] uses pseudo-orbits to obtain information about the existence of
periodic orbits in chain-transitive sets, and we shall make use, in § 3, of one of his
results.
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We shall prove the following results in this paper (definitions follow below):
(A) All continuous circle endomorphisms have the rotation shadowing property

and the rotation set equals the pseudo-rotation set. (Theorem (1.1))
(B) For positive-tilt diffeomorphisms the rotation set equals the pseudo-rotation

set. (Corrollary (3.10))
(C) Given any homeomorphism of the annulus, the closure of the rotation set

equals the pseudo-rotation set. (Theorem (3.2))
Note that in particular the rotation set equals the pseudo-rotation set if and only
if the rotation set is closed. Finally, using pseudo-orbits we can prove
(D) The closure of the rotation set depends upper-semicontinuously on the full

homeomorphism group of the annulus, with continuity holding for a generic
set of homeomorphisms. (Theorem (3.14))

0.1. Definitions and terminology
In the following discussion let M denote a circle or annulus with covering spaces,
respectively, M = R or /?x[0,1]. Let f:M-*M denote either a continuous
endomorphism of the circle into itself or a homeomorphism of the annulus. In some
cases we shall remark how our results apply to toral homeomorphisms. Let F be a
continuous lift of / denned on the covering space M of M. Let irM denote the
covering map onto M, and let IT be the projection of the space R xfO, 1] onto R.
Define the rotation interval (wih respect to F) of z to be the closed interval

p(z) = [lim inf {nFn(z)/n}, lim sup {TTF"'(£)/'«}].

The point z is a lift of z; i.e. TTM(Z) = z. If p{z) is a singleton set, it will be called
a rotation number; otherwise, elements of p(f) are called rotation elements. The
union of rotation intervals over all z in M is called the rotation set of / and is
denoted by p(f) or p(F) if we have a particular lift in mind. Since p(f) is
well-defined up to integer translation, it is customary to set it equal to p(F) mod 1.

An a-pseudo-orbit for a continuous mapping is an infinite sequence {/>,} such that
for a fixed metric d( , ), one has d(f(pt), />1+1) — « for all /' in the sequence. By a
well known result due to Bowen, in an Axiom A system given any /3 > 0, there exists
an a > 0 such that every a-pseudo-orbit is uniformly approximated (up to )8) by
the actual orbit of some point. Bowen called this '/3-shadowing of a-pseudo-orbits'
[Bo]. Pseudo-orbits are true orbits of nearby (C°-sense) diffeomorphisms. Pseudo-
orbits may also be viewed as the orbits generated via a computer simulation.

By adapting Bowen's terminology to rotation numbers, it is natural to query
whether the average rotation of pseudo-orbits is )3-shadowed by actual rotation
numbers. In what follows, we restrict our attention to forward-infinite pseudo-orbits.
We may suppose that {£,} denotes the lift of an a-pseudo-orbit {z>} and is, in turn,
the a-pseudo-orbit of a fixed lift F of/ defined on the covering space. Now define
the pseudo-rotation interval by ( TT denotes projection onto the lift coordinate of the
covering space)

p(Zj) = [lim inf irz-Ji, lim sup TTZJi\
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If {z,} is a true orbit with z, =/'(z) for i = 1, 2 , . . . , then the latter definition gives
the rotation interval p(z) of z.

Now define p(F, a) to be the union of all rotation intervals of a-pseudo-orbits.
Finally, the pseudo-rotation set of F is given by

If, in the preceding definition, we replace pseudo-orbits with true orbits we obtain
p(F), the actual rotation set of F. Analogously to the case of true rotation numbers,
let the pseudo-rotation set of/ be given by p^,(/) = p*(F) mod 1. Also, we say that
the map f ^-rotation-shadows pseudo-orbits if for each /3 > 0, there exists a > 0 such
that for every a-pseudo-orbit {zn}, with lift {£„}, there exists an orbit {/"(z)}, lifting
to {F"(z)}, such that

lim sup {|F"(£)-£„!/«} </3.
n

If//3-rotation-shadows pseudo-orbits for each /} > 0, we shall say that / satisfies
the rotation shadowing property. Note that one could replace /3 by 0 in the definition
and have a very strong rotation shadowing property that would be difficult to
distinguish from the Bowen-Ruelle orbit shadowing. In any event our definition is
more in the spirit of the shadowing lemma. Quite clearly, Axiom A systems satisfy
the rotation shadowing property. Another kind of rotation-shadowing is to require
that p(f) = p*(f), which is arguably a minimal necessary condition required to
reliably calculate rotation sets. We have no examples of annular homeomorphisms
which do not satisfy this weaker shadowing property, a property which can fail
easily for toral homeomorphisms. In the next section we take up endomorphisms
of the circle where a complete description of the rotation behavior is possible: all
circle maps enjoy the rotation shadowing property. In § 2 we apply ergodic theory
to obtain detailed information about the structure of the rotation set, in particular
the subset of actual rotation numbers obtained as limits of rotation averages. Finally,
in the last section we prove, as our main result, that for annular homeomorphisms
the closure of the rotation set equals the pseudo-rotation set.

1. Endomorphisms of S1

For endomorphisms of S1 having degree one, it is known that p(f) is a closed
interval ([N-P-T]) and, remarkably, that every closed subinterval of p( / ) is realized
as the rotation set of some orbit ([I] and [B—M-P-T]). The so-called standard family
provides an important example of such endomorphisms and is given by F^z) =
z + 2n<o + E sin27rz. In one dimension we can prove the following:

THEOREM 1.1. All continuous circle endomorphisms of degree one have the rotation
shadowing property.

COROLLARY 1.2. For all continuous maps f: S1 -» S1

That is, the rotation set equals the pseudo-rotation set and pseudo-orbits are a
reliable guide to the true rotation behavior.
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Proof. We shall suppose that F: R -» R is a continuous lift of/ such that F(£ + 1) =
F(£) +1 for all £ in /?. Before proving the theorem we need to establish three lemmas:

LEMMA 1. Let I denote a closed interval of length one in R, and let N be a positive
integer. Then given ze I, there is a closed subinterval J of I such that ze J and length

Proof of (I). Clearly, we have length (F N ( / ) )>1 . Let J = [a, 0], where l=[c,d],
c<a?£z and £</3<d. Since the length of FN(J) depends continuously on the
ordered pair (a,/}), the lemma must follow from the intermediate value theorem.

LEMMA 2. Given a >0, define N(a) to be the largest integer k such that if {£„} is an
a-pseudo-orbit of F then |F"(z0) - £n| ^ 1 for n -0,1, 2 , . . . , k. Then N(a) increases
without bound as a tends to zero.

Proof of (2). This is simply the uniform continuity of F.

LEMMA 3. For any pair of positive integers k and N, there exists a constant C independent
of k such that the following holds:

sup{ |F r (£ ) -F r (w) | : 0<r<N- l , \z-w\<k}<C + k.

Proof of (3). This result follows from the uniform continuity of F and the fact that
Fr(£+fe) = Fr(£) + fc, for all k and all £.

We are now ready to prove Theorem 1.1: Choose N = N(a) as in Lemma 2,
fix any a-pseudo-orbit {£„}, and let / be any interval of length 1 with zoe I. By
Lemma 1, choose an interval J{ in / such that zo€jx and length (FN(J])) = 1. By
the choice of N, there is a number / ,e{-l ,0,1} such that vv(l) = zN + /, lies in
the interval FN(Jl). Note that whenever £„ is an a-pseudo-orbit, then so is £„ + / for
each integer /.

Now define, inductively, a sequence of intervals {Jk} and a sequence of numbers
h e {-1,0,1} as follows:

Given Jk and lk with w(fc) = £fcN + (/| + /2+- • - + lk)eJk, use Lemma 1 to obtain
an interval Jk+1 such that w(k)eJk+1 and length [FN{Jk+i)] = 1. Now let lk+,e
{-1,0,1} be such that w(fc+l) = £(fc+1)N + (/, + - • • + lk) + lk+i lies in FN(Jk+i). The
latter choice makes use of Lemma 2.

By construction, FN(Jk) contains Jk+l for each positive integer k. It follows that
there exists an element £ in the set obtained by intersecting all the sets F~kN(Jk+1)
for k = 0,1,2, We shall prove now that F"(£) is the desired shadowing orbit.

We estimate as follows, where n = kN+r and N = N(a):

£\Fr(FkN(z)) - Fr(zkN )| +1 (Lemma 2)

<|Fr(F'"v(£))-Fr(w

Recalling that n = kN + r, it follows that

limsup{|F"(£)-£n|/M}<l/N.
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Now, given /3>0 choose a>0 so that 1/N= l/7V(a)</J, which is possible since
JV(a)-»oo, as a-*0. D

Proof of Corollary 1.2. Since/ has the rotation shadowing property, p(f) is dense
in Pl /,(/). But p ( / ) is closed ([I]), so p*(f) = P(f). •

2. Ergodic theory and rotation sets
Ergodic theory informs us that there is a close correspondence between time averages
and space averages. Thus, one might expect to be able to realize rotation numbers
as integrals with respect to invariant measures. Let Mf(A) denote the set of/-
invariant Borel probability measures defined on the annulus A. Recall that a measure
is f-invariant if p,[f~l(E)] = p.[E], for all Borel sets E, and is ergodic if the only
invariant measurable sets have measure one or zero. Given a fixed lift F of the
homeomorphism / on the annulus, define a continuous function g: A -» R such that

g = TT ° {F — Id) ° a,

where a: A -* R x / denotes a cross-section of the covering map rrA with range in
the unit square of R x I.

Given an/-invariant set Z in A, let Mf(Z) denote the set of all/-invariant Borel
probability measures on Z. If S is a subset of R we denote the convex hull of S by
(S). The main theorem of this section is the following:

THEOREM 2.5. Let Z denote any compact invariant subset of A. Let p(Z) denote the
rotation set obtained by restricting f to Z. Then
(i) The supremum and infimum of p(Z) are realized as rotation numbers of points

in Z.
(ii) <p(Z)) = {r = J g(z) dp: M £ Mf(Z)}.

Towards the proof of this theorem we begin with the following:

PROPOSITION 2.1. Given any ergodic measure p. on A with respect tof then the integral

- J
is the rotation number of some point in A. In fact, for p-almost all we A

r = \im{F"(w)/n}.
n

Remark. The integral in the latter proposition is called the mean rotation number
with respect to p..

COROLLARY 2.2. The collection ofze A for which p(z) is a rotation number is a set
of full measure; that is, a set of measure one for every f-invariant probability measure.

Proof. This is essentially the ergodic theorem. Applying the latter, we infer that for
almost all w in the support of p,

{ -v

I g(fk(w))/n\.
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Using the periodicity of F — Id, it is not hard to show that
fk 17/c + l r--k 1—1

g°f=TT°F ° O - - 7 7 - ° F ° < 7 , •

and the desired result follows.

Remark Following the language of ergodic theory we could call the set of such
points we A satisfying the proposition the generic points GM with respect to fi. The
set of points that are generic with respect to some measure are called the quasiregular
points off. It is well known that the quasiregular points have measure one for every
invariant measure on A. See, for example [D-G-S, pp. 20-22].

Another proposition which is a standard application of ergodic theory is:

PROPOSITION 2.3. Let fi be any invariant probability measure on A. Then if

:ig(/"(z))/7i},

g* is defined for fi-almost all points and \A g*(z) dfi =\A g(z) dfi. The range of g*
consists entirely of rotation numbers.

Remark. The proposition holds for any compact invariant set in place of the
annulus A.

The next proposition is familiar to ergodic theorists ([D-G-S]) and follows from
the Banach-Alaoglu theorem. Recall that the weak*-topology on the space of
measures is metrizable and has the pleasant property that a sequence fin -» fi if and
only if I h(z) dfin-*\h(z) dfi for all continuous functions h on A (e.g. [D-G-S]).
The annulus A can be replaced by any compact invariant set Z with Borel measures
restricted to Z.

PROPOSITION 2.4. Let Z denote any compact invariant subset of A. In the weak*-
topology on the space of Borel measures on Z, Mf(Z) is compact.

Proof of Theorem 2.5. (i) The evaluation mapping Eg: /u,-»Jg(z) dfi is obviously
continuous in the weak*-topology on the set of Borel measures on Z. Thus, the
mapping Eg attains its infimum and supremum on the subset Mf{Z) by (2.4). We
shall first show that if b = sup p(Z), then for each e > 0 there exists fi e Mf{Z) such
that b-e< Eg(fi). Later in the proof we will see that Eg(fi) < b for all fi e Mf(Z).
This will establish (i) since the proof for the infimum is similar. For any such e > 0,
we may assume there exists an element r of p(Z) such that b-e <r<b. It follows
that b - e< l imsup n {£k g(fk(z))/n}<b, for some point zeZ.

Now use the method of Banach limits (e.g.; [R, p. 82]). Given any continuous
function h:Z-*R and z e Z, as above, we shall define the bounded sequence

z(h,n)=ZiHfk(z))/n.

By the Hahn-Banach Theorem, there exists a continuous linear functional A: /°°-» R
such that for all sequences {y(n)}e /°°,
(a) A{z(g, n)} = supp(z)
(b) A{w(n)} = A{y(n)}, if w(n) = y(n + 1), and
(c) lim inf {y(n)}< A{y(n)} < lim sup {y(n)}.
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Now define the continuous linear functional /A(/I) = A{Z(/I, n)}. This is a signed
/-invariant (by (£>)) Borel measure which must be positive, since it is positive on
positive functions. Such a measure satisfies the desired inequality when evaluated.
Now suppose Eg{p) = b. Let g* be as in Proposition 2.3. Then b = \g* dp,, where
p is supported on Z. Since no value of g*, off a set of measure zero, can be larger
than b, it must attain the constant value b on a set of measure one (relative to p,
of course). Note that this does not imply that p is ergodic. The proof of (ii): Since
both a = inf(p(Z)) and b = sup (p(Z)) are in the range of Eg and Mf{Z) is connected,
{p{Z))^{r = \g{z)dp: p € Mf (Z)}. On the other hand, a<g*(z)<b for ju-almost
all zeZ. By (2.3), then, {r = Jg(z) dp: pe Mf(Z)}<=(p{Z)). •

3. Homeomorphisms of A
In this section we consider homeomorphisms of the annulus that are isotopic to the
identity. Our main result (Theorem 3.2) asserts that, for such homeomorphisms, the
closure of the rotation set is equal to the pseudo-rotation set. We also prove (Theorem
3.14) that the function which assigns to such a homeomorphism the closure of its
rotation set is upper-semicontinuous. A key ingredient in our development is the
following result due to John Franks.

THEOREM 3.1. (J. Franks [F].) Let f:A-* A be an annulus homeomorphism isotopic
to the identity. If Z is a compact invariant chain transitive set in A then every rational
in (p(Z)) is the rotation number of a periodic orbit off.

THEOREM 3.2. Let f:A-> A be an annulus homeomorphism isotopic to the identity.

The above theorem is valid for circle endomorphisms (Corollary 1.2) but is far
from being correct on the torus. Rotation vectors and pseudo-rotation vectors are
defined in a natural way for homeomorphisms of T2 (see [F], for example), but
these sets can be quite different as the following simple example shows. In the below
pictured homeomorphism of the torus there are two invariant circles, each one-sided
attracting and one-sided repelling, one with rotation number 0 and the other with
rotation number i Then p^, = {(0, t)\te [0,\]} while p = {(0,0), (0,^)}.

In preparation for the proof of Theorem 3.2 we prove a sequence of lemmas.

FIGURE 1
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LEMMA 3.3. Let f:A-* A be a homeomorphism with lift F:A^>A and let T:A->A
be the deck transformation T(x, y) = (x +1, y). Let p and q be positive integers and
suppose that Z is the lift of an invariant set Z. Then
(i) '

(ii)

Proof. This is essentially Lemma 1.1 of Boyland [Bd]. We leave the obvious
modifications to the reader.

LEMMA 3.4. Let Z be compact and invariant under the homeomorphism f: A -* A. Then

Proof. Clearly <p(Z))c(pl//(Z)). Let p/q be a rational with supp(Z)<p/q and let
G = T~PF". Then G is a lift of/" with sup p(G 11) < 0 by Lemma 3.3. By compactness
of the unit square intersected with Z there is an integer N such that, for some
y > 0, GN(St nZ)c s_,_v where Sr is the half-strip Sr = {z\<jrz<r}. Periodicity now
yields
(1) G^iS^^czS.^, fork =1,2,....

Now let {£„} be an a-pseudo-orbit for G which is the lift of an a-pseudo-orbit
fo r / 9 that lies in Z. For sufficiently small a > 0 , {zfciV}2°=o is a y-pseudo-orbit for
GN and, from (1), we conclude that
(2) zkNeS^k forfc = l , 2 , . . . .

By continuity there is an M > 0 such that if £neS_M then zn+jeS0 for 7 =
0 , 1 , . . . , N - 1 . Thus we see that £„ e 50 for all sufficiently large n and sup p({zn}) < 0.
Since the a-pseudo orbit was arbitrary, it follows that supp^,(G|z)<0 which, by
Lemma 3.3, implies that supp^(F\z)^p/q. Since p/q>supp(Z) was arbitrary,
sup p^,(Z)< sup p(Z). A similar argument shows that inf p(Z) sinf p^,(Z). Finally,
infp(Z)ep(Z) and sup p(Z)ep(Z) by Theorem 2.5 so that inf p(Z) = inf p̂ ,
and sup p(Z) = sup p^,(Z).

We will employ the following terminology. Given a sequence of sets Sn, let

H c / (u Sn)
N>0 \n = N /

lim sup Sn =
n-»oo

and, given a sequence of points xm, let «({.xm}) = limsupn_0O Sn with Sn =
{xm | m s: n}. A set S in A will be called /3-invariant (under the homeomorphism / )
if d(/(x), S) < /3 for all x e S and we will say that S is /3-chain transitive if, given
x j e S , there are points x = x0, xt,..., xn = y in S such that

LEMMA 3.5. If {xn}™=0 is an a-pseudo-orbit for the homeomorphism f: A-> A then
«({*„}) is a-invariant and f)-chain transitive for all /3> a.

Proof. Let x e w({xn}). Then there is a subsequence xn. with xn. -* x. Then/(xn.) -*f{x)
and, since d(f(xn.), xn.+ 1)sa, the accumulation points of the *„.+, are in u>({xn})
and within a of f(x). Thus <a({xn}) is a-invariant.

Now let x,y €CD({X,,}) and let e > 0 be given. Choose 0 < 5 < e so that d(z, w)<8
implies d(f(z),f(w))<e, choose N large enough so that d(xn, <o({xn})) < S for all
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n > N, and let k and m be larger than N with d(xk, x) < 8, d(xm, y) < e, and m > k.
Let n = m - k, let z0 = x, zn = y and, for i = 1 , . . . , « - 1 , choose z, e w({xn}) such that
d(z,, xfc+I) < 8. It is easy to check that x = zo,zl,..., zn_x, zn = y is an a + 2e chain
in w ({*„}) from x to y.

Given a homeomorphism / : A - » A , an arbitrary subset 5 c A, and a > 0 , let
p(S,a) = {J p({xn}), the union being over all a-pseudo-orbits {xn}"=0 o f / lying
entirely in S.

LEMMA 3.6. Let f:A-* A be a homeomorphism and let 5n <= A, n=0,l,2,...bea

sequence of sets with the properties: (i) there is a convergent sequence {xn}™=0 with
xn e Sn for « = 0 ,1 ,2 , . . . and (ii) Sn is an-invariant and an-chain transitive for each
n with «„->() as n-*<x>. Then S = lim supn_<x,Sn is compact invariant and chain
transitive. Furthermore, lim sup^oo (Sn, an)<=

Proof. Of course 5 is compact. Let z e S and choose zt e Sn. with z, -»z. Then
/(z , )^ / (z) and there are w,eSn. with d(wj,/(zi))<an/ + l/«. Then vfj^/(z) so
/(z) e 5 and S is invariant.

Now let x = limn-,oo xn e S, let y be any other element of S and let a be greater
than zero. Let 8>Q be small enough so that 8<a/3 and, if d(z, w)<8, then
d(f(z),f(w)) < a/3. Choose m large enough so that d(xm, x) < 8, so that if w 6 Sm

then d(iv, S) < 8, and such that am < a/3. We may also choose such an m so that
there is a >>m e Sm with d(ym, y) < a/3.

Now in Sm, let wo = xm, wl,w2,...,wn =ym be an am-chain from xm to ym and
select z0 = x, z , , . . . , zn = y in S with d(z;, wf) < 8 for i = 0 , . . . , n. Then

/3 = a so z o ,z , , . . . ,z n

is an a-chain from x to y in S. Clearly, using the same Sm, we can also construct
an a-chain from y to x. Thus, given a >0 and any y, ze S we can find an a-chain
in 5 (going through x) from y to z so S is chain transitive.

We now show that given a > 0 there is an N such that p{Sn, an) <= p(S, a) for all
n > N. From this it will follow that

l imsupp(Sn ,aJc p |

To this end let a > 0 be given. Let 8 be small enough so that 8 < a / 3 and, if
d(z, w) < 8 then d(F(z), F(w)) < a/3. Now take N large enough so that d(w, S)<8
for all w e U«>M 5n and an < a/3 for all n > N. Now let n be at least as large as
N and let {wk}f=0 be an an-pseudo-orbit in Sn. Choose zke S such that d(zk, wk) < 8.
Then

<a/3 + a/3 + a/3 = a for it = 0, 1 , . . . ,

and we see that {zk} is an a-pseudo-orbit in S. Since d(zk,wk)<8 for all k,
P({zk}) = P({wk}) and we have p(Sn, a n ) c p (S , a).
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LEMMA 3.7. Let f:A^> A be a homeomorphism isotopic to the identity. Given /e
c ' (p ( / ) ) there is a sequence ln e p ( / ) with l im , ,^ /„ = / and a sequence of compac
invariant chain transitive sets SneA with /„ep(Sn).

Proof. First suppose that there is a sequence of rationals lnep(f) with /„->/. Foi
each n, let zn e A with /„ € p(zn). Then /„ e (p{(o{zn))) (see, for example, [Bd], Lemma
1.1) and, since <o(zn) is a compact invariant chain transitive set, there is, by Theorem
3.1, a periodic orbit Sn with rotation number /„.

Now, if there is no sequence of rationals /„ -*/,/„€ p ( / ) , then there must be a
sequence of irrationals /„ ->/ , /„€p( / ) , and corresponding points zneA with
p(&>(zn)) = {/„}. Indeed, if for each sequence zneA with /„ e p(a>(zn)) there are
infinitely many n with p(w(zn)) containing more than /„, then for each such n, there
is a rational in p ( / ) arbitrarily close to /„ and we would have a sequence of rationals
in p ( / ) converging to /. Thus, in this case, we may let Sn = o>(zn). Q

LEMMA 3.8. Let {zn} be an a-pseudo-orbit for the homeomorphism f: A -* A. Then
p{w({zn}),P) 3p({zn}) for allp>a.

Proof. For 8 > 0 let M = M(8) be such that d(2m, w({zn})) < 8 for all m > M. Foi
each Jk = 0 , 1 , 2 , . . . let wk e w({zn}) be such that d{zM+k, wk) < 8. Clearly for a given
/3 > a, there is a 8 > 0 small enough so that wk is a /3-pseudo-orbit in w({zn}). Since
d(wn,zn) is bounded, p({wn}) = p({zn}) so that p({zn})<=p(o;({zn}), /?).

LEMMA 3.9. If Z is a compact invariant chain transitive set for the homeomorphism
f:A-> A then p^,{Z) — (plll(Z)) is a closed interval.

Proof. According to Lemma 3.4, {p^(Z)) = (p{Z)) and, by Theorem 2.5, (p(Z)) is a
closed interval, say [a, b], the endpoints of which are realized as actual rotation
numbers of elements of Z. Let x, yeZ be such that p(x) = a and p(y) = b.

Now let a > 0 be given. By compactness and chain transitivity of Z there is an
TV = N(a) such that, given any w,zeZ there is an a-chain for / from w to z of
length no larger than TV. Thus, for any sequence of positive integers 0 =
TV0, TV,,... with Nk+i - Nk > TV for k = 0 , 1 , . . . , there is an a-pseudo-orbit {£„} for
F with the property that, for n e [TVk, Nk+l - TV], zn is a true orbit segment of F, £„
is on the orbit of x for k even, and £„ is on the orbit of y for k odd. Now since
p(x) = a and p(y) = b it is clear that, by letting TVk+1 be large enough with respect
to Nk, we will have

1

for k even
fc + 1

and

ir(zNk+l)/Nk+l>b--— for k odd.

Then a,bep({zn}) so that (see [B-M-P-T]) [a, fc]cp({zn}). Thus (p+{Z)) =
[a, 5]<= p(Z, a) for all a > 0 and so p^(Z) = (p^,(Z)).

Proof of Theorem 3.2. Given an / in cl(p(f)) there are sequences /„ in p ( / ) and
compact invariant chain transitive sets Sn <= A such that /„ -* I and lnep(Sn) (Lemma
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3.7). We may assume there is a sequence xneSn such that {xn} is convergent
(otherwise, take a subsequence of the 5n's). Let an = \/n. Then, by Lemma 3.6,

/e lim sup p(Sn, an) <= p^lim sup Sn).

In particular, /
Now let / be an element of p^(/). Let an > 0 be a sequence with «„ -*• 0 as « -» oo.

Since lep^if) there is, for each n, an an-pseudo-orbit {x£}*°=o with /ep({x£})- Let
5n = a>({x"k}?=0). Then, by Lemma 3.8, lep(Sn, 0 J for /3n = «„ + 1/n, 5n is /3n-chain
transitive and /3n-invariant for all n (Lemma 3.5). By passing to a subsequence if
necessary we may assume that there is a convergent sequence {xn} with xn e Sn for
all n. By Lemma 3.6, lep^,(S) where S = limsupn_0O Sn. S is a compact invariant
chain transitive set and p#(S) = (p^,(S)) = (p(S)) by Lemmas 3.4 and 3.9. According
to Theorem 3.1, every rational in (p(S)) is in p(f). Thus /e cl(p(S)) so le c/(p(/)).

COROLLARY 3.10. Iff:A-*A is a positive tilt diffeomorphism then p(f) = p#(f).

Proof. For such anf p(f) is closed ([Bd]).
It is apparently unknown whether p( / ) is always closed and if all elements of

p(/) are realized as rotation numbers. The following proposition provides some
information regarding this.

PROPOSITION 3.11. Let f:A^>A be a homeomorphism isotopic to the identity. If
le cl(p(f)) n c/(int((p(/))c)) or if I is rational and in cl{p(f)) then I is the rotation
number of some point in A. In fact, for such I, there is an invariant measure p such
that p(z) = I for p-almost all ze A.

Proof. Given an / as above, the existence of a ze A with p(z) = I can be obtained
from Theorems 2.5 and 3.1 and from the lemmas used in the proof of Theorem 3.2.
the following alternative may be more enlightening.

Let le c/(p(/)). Then, by Lemma 3.7, there is a sequence /„ e p(f) and compact
invariant chain transitive sets Sn<= A such that /„ -* / and /„ € p(Sn). In fact we may
assume /„ = p{Sn) since if p(Sn) is more than a single number we can replace /„ by
an arbitrarily close rational in (p(Sn)) and replace Sn by a periodic orbit having
that rational as its rotation number (Theorem 3.1).

Now let p.n be an ergodic invariant measure supported on Sn (see, for example,
[D-G-S]). By taking subsequences if necessary we may assume that the p.n converge
to the invariant measure p. in the weak*-topology and that there is a convergent
sequence {xn} with xneSn. Then, by Lemma 3.6, lep(S) where s = lim sup,,^ Sn

is a compact invariant chain transitive set. Also, it is not hard to see that the support
of p. is in 5. Now let g = n ° (F - Id) ° cr as in § 2 and let

* ( ) H

since g is continuous and p.n-> p. in the weak*-topology we have J g dp,n -*\g dp..
By the ergodic theorem, J gdp.n = g*(z) for p.n almost all z. Since p.n is supported
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on Sn and p{Sn) = /„, we have (Proposition 2.3) g*(z) = /„ for /in-almost all z. Thus

Now suppose that g*(z) ^ I on a set of positive measure with respect to /x. Then
\g*dix, = l by Proposition 2.3 and there are zx,z2&S such that g*(zt)<l and
£*(z2)> '• Since g*(z,) and g*(z2) are rotation numbers, we have that / is in the
interior of the nontrivial interval cl{p(S)). But c/((p(S)))<= c/(p(/)) by Theorem 3.1
so/<£c/(int((p(/))c)).

Thus for / G cl(p(f)) u c/(int ((p(/))c)) we have g*(z) = Z for /^-almost all z e A
That is, p(z) = / for ^.-almost all z e A.

We leave the argument for / a rational in cl(p(f)) to the reader.

COROLLARY 3.12. Let f: A-» A be a homeomorphism isotopic to the identity. If each
connected component ofp(f) has positive length or is isolated from the other components
then p(f) is closed.

In § 1 it was shown that circle endomorphisms have the rotation shadowing
property. This is certainly not the case for all homeomorphisms of the annulus.
Consider, for example, a homeomorphism that leaves invariant all meridional circles
and has a nontrivial rotation interval. Then, for each a, there is an a-pseudo-orbit
having that interval as its rotation set but every true orbit has a rotation number.
The following proposition gives another situation in which the rotation set is closed
and, if Conjecture 1 at the end of this paper is correct, implies that, at least generically,
the rotation set is closed.

PROPOSITION 3.13. Iff:A-*A is a homeomorphism isotopic to the identity that has
the rotation shadowing property then p(f) is closed.

Proof. Let /€ c/(p(/)). Then (see the proof of Proposition 3.11) there is a compact
invariant chain transitive set S with /e(p(S)). By Theorem 2.5, (p(S)) is closed so
if /€d(p(S)) then Ie p{f). If /e int {(p(S))), let P=\d(l, d{p(S))). Since S is compact
invariant and chain transitive, there is, for each a > 0, an a-pseudo-orbit with
rotation set containing (p(S)} (see the proof of Lemma 3.9). Let a be small enough
so that every a-pseudo-orbit is j8-rotation shadowed by a true orbit. Then a true
orbit /3-rotation shadowing an a-pseudo-orbit whose rotation set contains (p{S))
has / in its rotation interval. Thus, lep(f).

For our final result we let ft be the set of all homeomorphisms of the annulus
isotopic to the identity and we let H(R) denote the set of all closed subsets of the
reals. We give ft the C°-topology and H( R) the Hausdorf topology. Let p: ft -> H (R)
be given by p(f) = c/(p(/)).

THEOREM 3.14. p is upper semicontinuous. That is, if'/„ e ft and fn -»/e ft uniformly
then lim supn^oo p(fn)

c p(f)-

Proof. Without loss of generality we may assume that d (/„,/) = an -* 0 monotonically.
Then the an-pseudo-rotation sets p(f an) are nested and, since every orbit of /„ is
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an an-pseudo-orbit of/ p(/n)<= p(f, an). Thus,

lim sup p ( / J = H ( U P(fn))

«„))

The last equality is Theorem 3.2.

Remark. Boyland [Bd] proves a version of the above theorem with ft replaced by
the positive tilt diffeomorphisms equipped with the C1 topology. Since C° is weaker
than C1, Theorem 3.14 strengthens and extends Boyland's result.

Examples o f /e f t at which p is not continuous abound - the example following
Corollary 3.13 is one such - but, since ft is a Baire space, the set on which p is
continuous is generic ([Ch]).

We conclude with a few conjectures.

Conjecture 1. For a generic set o f / e f t , / has the rotation shadowing property.

Conjecture 2. If / e f t then p ( / ) is closed.

Conjecture 3. Given/e ft, a > 0, and / e p^,(/), there is an a-pseudo-orbit {zn} with
p({zn}) = /.

Conjecture 4. Given / e ft and / e p ( / ) , there is a z e A with p(z) - I.
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