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BERRY-ESSEEN BOUNDS AND THE LAW OF THE
ITERATED LOGARITHM FOR ESTIMATORS OF
PARAMETERS IN AN ORNSTEIN-UHLENBECK
PROCESS WITH LINEAR DRIFT
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Abstract

We study the asymptotic behaviors of estimators of the parameters in an Ornstein—
Uhlenbeck process with linear drift, such as the law of the iterated logarithm (LIL)
and Berry—Esseen bounds. As an application of the Berry—Esseen bounds, the precise
rates in the LIL for the estimators are obtained.
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1. Introduction and main results
We consider the following Ornstein—Uhlenbeck (OU) process with linear drift:
dX; = (—6X, +y)dr +dW;, Xo = xo. (1.1)

Here 6 € (0, +00) and y are unknown, W = {W,, t € [0, c0)} is a standard Brownian motion.
We denote by Py, x, the probability distribution of the solution of (1.1) on C(R4, R).
It is known that the maximum likelihood estimators of 6 and y are given by [13, p. 64]
i =t fo XodXg + (X, — x0) [y Xy ds
t ELEX2ds — (ff X, ds)?

(1.2)

and

s _/()tXSdsf(;Xsts‘f‘(Xt—XO)fOtXSst

1.3
tfo X2ds — (fy X, ds)? (1.3

It is also well known that 6, and 7, are both strongly consistent estimators of # and y. Their
asymptotic normality can be found in [13]. Moreover, Gao and Jiang [6] obtained some
deviation inequalities and moderate deviations using the logarithmic Sobolev inequality [8]
and the exponential martingale method. For additional references on statistical inference of
diffusion processes, see [3] and [17].

For the y = 0 case, Bishwal [2] obtained the sharp Berry—Esseen bound for é,. Florens-
Landais and Pham [5] obtained large deviations for é, using the Girtner—Ellis theorem. Bercu
and Rouault [1] established the sharp large deviation properties of 6,, while Guillin and
Liptser [9] and Gao et al. [7] obtained the moderate deviations.
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In this paper we first study the joint law of the iterated logarithm (LIL) for 6, and Vr.

Theorem 1.1. Let 0, and 7, be as defined in (1.2) and (1.3). We have, for any v = (5;) e R?,
under Py y x,,

, 7 (6 —0 o 7 (6 —0
limsup ./ ——— v . = —liminf | ——v"|
i—+oo Y 2loglogt Vi —y t—+oco '\ 2loglog ¢ Vi—y

= (W Lv)'/?  almost surely (a.s.),

where
260 2y
L= 22 +0
2y 7

Respectively taking v = () and v = (%), we can immediately obtain the following result.

Corollary 1.1. Under Py, x,,

. ét_e ét—g
limsup—=—liminf — =1 a.s.

i /@)1 loglog ! t~+o0 /(40/1) loglog t

and
Vi—v V=V
lim sup = —liminf =1 as.
1—+00 \/((4)/ +20)/6t) loglogt 1=+00 \/((4y? +20)/01) loglogt

Then, a natural question is: what are the precise rates of the LIL for 6; and 7,27 For a
sequence of independent and identically distributed nondegenerate random variables {X, X,
n > 1} withE X = 0and E X? = &2, this question has been studied explicitly by many authors.
Gut and Spataru [11] established that, for S, := 27: 1 Xi,

lim 822 —P(|S | > eoy/nloglogn) =1,

e—0

which is the precise rate in the LIL for S,. Pang et al. [16] developed similar results for the
self-normalized sums S,/ V2 with V2 = 37| X?,i.e.

b 2b+2
. 2b+1 (log IOgn) [ry72 — —E V]
ggl’})é‘ Z nlo P(|Sn| = (8 +an) 2Vn lOg logn) - 2b+1 (b + 1)’

where «, = O(1/loglogn), b > —1, and N stands for the standard normal distribution. More
details can be found in [10] and [15].

Motivated by the above remarks, in this paper we also consider the precise rates of the LIL
for ét and 7;. To this end, we obtain the following Berry—Esseen bounds for ét and y,.

Theorem 1.2. Foranyv € R2 v # 0, and § > 0, we have

Py Lv’ 0 =0 <x)—-PN <x)| =
VX0 vT Ly J’/\[_)/ = =

where the matrix L is as defined in Theorem 1.1.

sup O(t_(“‘”/z@“s)),

xeR
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Respectively taking v = (3) and v = (%), we obtain the following result.

Corollary 1.2. Forany § > 0,
sup

t A
Po.y.x (V %(Gt —-0) < X) —P(N <x)
xeR
or .
Py.y.xo m(% —y)<x|—P(N <x)

By the above Berry—Esseen bounds, we can obtain the precise rates of the LIL for 6; and V1.

— 0~ (1+9/26+20))

and

sup = 0~ (1+9/26+20)y

xeR

Theorem 1.3. Assume that o, = O(1/loglogt). Then, forb > —1,0 # v € R2, and the

matrix L defined in Theorem 1.1, we have
6, — 6 [2v7 Lvloglogt
vf<f ) > (¢ +ap) v Zvos sl )dt
Vi—Y t

+% (loglog t)”
1im82b+2/ (loglog 1) PG’NO(

€
Now, we easily obtain the following result.

&0 e tlogt
E |N|2b+2
T2+

Corollary 1.3. Assume that oy = O(1/loglogt). Then, for b > —1, we have

+2° (loglogt)? A 40 E |N|?b+2
li 2b+2/ ~—= 27 p 6, — 0| > —loglogt |dt = ————
WOETT Lo T rtogr  For{ |6 =61z (e )y o loglog 2671 (b + 1)

and

+2° (loglogt)? 4y2 +26
li 2””/ ———"P vy — > —— loglogt ) dt
81138 B fog! 9.yl 1V — VI = (6 +ar) o oglog

E | N|2b+2
T2 1)

The paper is organized as follows. In Section 2 we first recall some properties of the
OU process (1.1), and then give the proof of Theorem 1.1 by the method of separation.
In Section 3, the Berry—Esseen bounds are established by the deviation inequalities for the
quadratic functional (see [6]). We give the proof of Theorem 1.3 in Section 4. Throughout this
paper, Co, C1, C2, and C3, depending only on v, 6, y, and the initial point x¢, denote positive
constants whose values can differ from place to place.

2. LIL for 6; and 7,

In this section we prove Theorem 1.1 by the method of separation. We first recall some
properties of the OU process (1.1). We also refer the reader to [6].

2.1. Some properties of the OU process
It is well known that (1.1) has the following solution:

t
X, = xo—Z 6_9’+Z+e_9’/ e dw;.
7 0 A
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Consequently, it is easily seen that, for any ¢ > 0, under Py, v,

Xt ~ N(MZ’ Ut)’

where |
e = (xo — g)e‘(’t + g, o= 5o(1 = e 2.
Set
N L[ L )
iy =—-] Xgds and o7 =- | X;ds—p;. 2.1
tJo tJo
Then, under Py, »,,
N 1 14 o0t 1 L op 2 _o
~N|— — =) - t— — -1 - -1 2.2
Mt <9t<xo 9)( )+9 92t2< 20(6 )+9(e )] 22
and
1 1 /2 v\
Eé) v, xo(at ) — = 92 9 + 6| xo — 5 . 2.3)
Since

X y X
V(x):= f exp { -2 (—Bu+y) du} dy = / =2y +0y? dy - o0 asx — +oo
0 0 0

+oo y +o0 )
G = / exp {2/ (—6u + y)du} dy = / e dy < 400,
— 0o 0 —00

it follows from Theorem 1.16 of [13, p. 40] that the OU process {X;, t > 0} defined by (1.1)
has ergodic properties with the invariant distribution N (y /6, 1/260). Together with (2.2), (2.3),
and Theorem 1.16 of [13, p. 40], we have the following result.

and

Lemma 2.1. Ast — +o0o, under Py y, ., for any B € R,

gt e 6 -x0ras = St o -7 as

2.2. LIL for 6, and

Letting [i; and 63 be as defined in (2.1), simple calculations lead to

0, —0 ™
”r(f )Z S VTR, 2.4)
Yi—VY t

where .

/ 2y —20X;) dW;

0
t2y2 40
/( v + —2yXS>dWS
o\ o

)+(1—29&,2)/ (——X)de
)+(m—2y0t)/ (——X)dwg

Ml:

W, <;l

2
L W <M

and

_.
le‘<

=
Il

N
wq)
'CblY
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Proof of Theorem 1.1. By Lemma 2.1, we have, under Py ,, ,,
1 t
lim — / Qy —20X,)%ds =20 as., (2.5)
t—oo t 0
1 [1/6+2y2 2 292 +6
lim - T ayx,) ds= Y s, (2.6)
=0t Jo 0 0
and . 5
1 0+2
lim -/ Qy —29Xs)< +y —2)/XS> ds =2y as. 2.7
t—=>oo t Jy 2]
It follows from Theorem 4 of [14] that
. VTMI . . VTM[
lim sup = — liminf
t—400 +/2(vIM),loglog(vi M), t—+00 /2(vT M), loglog{(vT M),
=1 as.,
where
(WM, = v (M)
with
Ji@y —20X,)% ds Jtey - 29Xs)<0+g7’2 - 2st) ds
(M), = 2
Jtey - 29)(S)(9+§V2 _ 2)/XS) ds f(;(”gﬁ — 2)/XS> ds
Consequently, by (2.5), (2.6), and (2.7), we have, under Py ,, ;.
T
M
lim u =v"'Lv,
t——+00 t
where
260 2y
L= ) 22+ 0
Y g
Therefore,
i VTMt lim inf UTM[ ( T )1/2 (2 8)
imsup ——— = —liminf — = (v Lv a.s. .
;_>+o£) /2t loglogt t—+oo /2t loglogt

Now, we show that the remainder v® R, on the right-hand side of (2.4) can be neglected in

the sense of the LIL. In fact, since
. W[ . W[
limsup ————=——==—1

minf ———— =1
t—+oo +/2tloglogt t—~+oo /2t loglogt

by Lemma 2.1 and (2.8), we have, under Py, v, as t — +o00,

Wi (i —y /0) _<A V) 1 Wi

a.s.

=\ — =) 5—F———=——0 as,
167,/(40/1)loglog 1 "7 0) 52 Jabtloglogt
1-2062) [ (y /6 — X;) dW. 1 [o(y/6 — X,)dW,
( o; )fo(y/ s) s _ a —29&;) fo(y/ s) s 0 as.

1672/ (40/1)loglogt 62 JAbrloglogt
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Wit — v /0) _ <A y>ll 1 Wi
~Na—
162/ ((4y2 +20)/61) loglog t 0" 62 /(4% +260)/6)rloglogt
— 0 as., (2.11)

and

(e =2y67) Jow/0 — X)Wy _ o 2yst) L Jo(r/6 — Xs) dW;
162/ (472 + 26)/61) log log 1 ! 762 /(@y2 + 20)/6) loglog1
S0 as. 2.12)

Together with (2.8)—(2.12), we can complete the proof of Theorem 1.1.
From the proof of Theorem 1.1, we can immediately obtain the following result.
Corollary 2.1. For é, and y; defined as in (1.2) and (1.3), we have, under Py ,, x,,

. (VM) L (6—6 - wiMy, L (6-0
limsup | ——— v | . = —liminf | ————v*| .
i—+oo \ 2loglog(vt M), Vi—y 1—+oo || 2loglog(v* M), Vi—y

=VviLy a.s.

3. Berry—Esseen bounds of é, and p;

In this section we give the proof of Theorem 1.2. Before giving our results, we need to
mention the following useful results from Gao and Jiang [6].

Lemma 3.1. (Lemma 2.3 and Lemma 2.5 of [6].) There exist finite positive constants Cy, C1,
and Cy such that, forallr > Qandall T > 1,

t t
Pg,y,m(‘/ xfds—Eg,y,xo</ X2 ds)
0 0

Po.y 10167 — Eg.y 1 (6D > 1) < Coexp{—Cirt min{l, Car}},

> rt) < Coexp{—Cyrtmin{l, Cor}},

and, for each fixed p € R,

t
PG,y,xg(‘/ (Xs — p)dWwy| > rt> < Coexp{—Cjrt min{1, Cor}}.
0

The following result is Lemma 2 of [4].

Lemma 3.2. Let X and Y be any two random variables on a probability space (2, F, P).
Then, for any n > 0, we have

sup [P(X +Y =x) = P(x)| <sup [P(X =x) —P)|+P(Y|>n) + T
xeR xeR V21

where ®(x) stands for the standard normal distribution function.
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3.1. Proof of Theorem 1.2

From (2.4) and Lemma 3.2, we have, for any 1 > 0,

t . (0,—0
PO‘V’XO mv ),) y §x —P(N §x)
-

T

\% Ml
<n+sup Py, (— SX>—P(N§x)
xeR v ~tvt Ly

sup
xeR

[t
+P9’va0< _ervh)tRll > T])

For I>(¢, n), it can be easily seen that

viWe(se —y/0)| _ n [viLy
167 4V

12(t7 77) =< Pe,y,x0<

p Vi1 —=2067) [o(r/0 = X)dWs | n [vTL
0,7.x0 f512 =3 P
V2t Wi (L — v /0) n [vtLv
P > —
+ 9”””“’( 162 a4V ¢
vty —2y62) fot(y/e — X;)dW; n [viLv
+P9,y,x0 ~0 > Z
to; t

= D1(t, ) + In(t,n) + hi(t,n) + ha(t, n).

Now, we have to estimate /1 (¢) and I; (t,n), i =1, 2, 3, 4.
To estimate /;(¢), we need the following lemma from Theorem 2 of [12].

Lemma 3.3. Consider a fixed locally square-integrable martingale M;,t > 0. Then, for any
8 > 0, there exists a finite constant Cs depending only on & such that, for L 25 + N;2s < 1,

sup [P(M; < x) —P(N < x)| < Cs(Ly.25 + Ny.25)"/ G20,
xeR

where
Lias = E( > |AMs|2+23), Ny2s = E((M), — 1]'*9),

0<s<t
and (M) is the predictable quadratic process ofM, AM, = 1\7It — 1\7It_ with A7I,_ = lim4, A7IS.
Then, we can obtain the estimation of 7 (z).

Lemma 3.4. Forany$ > Oand B € R,

vt M, —(148)/2(3+26)
sup Py, (—fx)—P(fo) =0@" ).
xeR v ~tvt Ly

Proof. Let Ms =v"M;//tvTLv,0 < s < t. Then, it is a continuous martingale, which
implies that

- ~ (VT M)
Lios = Ee,m( > |AMS|2+25) =0, (M), = ‘.

0<s<t
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By Lemma 3.3 and Fubini’s theorem, we obtain

v‘[Mt 3426
sup |Pg . (— < x) —P(N <x)
xeR 0 ~tvtLy

< Cs(tvTLv) "0 Bpy o (VM) — tvT L]

< Cs2° (v Lv) T P T By g (M), — tL)v]' P
+o00
+ 0’ / Po.y g (V7 (M), — gy (M) 0] = 17 Lux/0+9) dix.
0

On the one hand, by (2.2) and (2.3),

t e Iy
Eo.y.x0 </ X; dS) - gt‘ _ o= v/Ol ey o= 7/0l
0

0 0
and
t 2 2
2 roy 1 (2 4 2y V4
E9,)/,X0([) XSdS> — % — 9_2t S 9—2<5+9()€0— 5) >+9—2 X0 — 5
2
4 4
+ o7 (XO 9> )
which implies that
(v L) "W Bg g (M), — tL)V|' = 071 70). (3.1

On the other hand, by (2.2) and Lemma 3.1, we have, for any fixed constants o1, a2, 8 € R
and 0 < C < +o0,

Po.y 2o (1Qs (@1, a2, B, x)| = Crx/0F0)

! d Cix1/(+9)
< P(Iﬁ(al + )| / Xyds —Eg ,x (/ X, ds) > T)
0 0
! ! Crx!/(1+9)
+P<|a1a2| / X2ds —Eg (/ X2 ds) > XT)
0 0

C21252/(1+8)
40+ () + a2)?)

<2exp { } + Co exp{—Czx /1) min(1, Cox!/0+y),

where
t t
0 (a1, a2, B, x) = fo (B — a1X)(B — 02 Xs)ds — Egyx ( fo (B—a1X)(B — Otzxs)d5>-
Consequently,
+00
/ Poyono (101 (@1, a2, B 0)] = Cox /49 dx = 0= 049)/2),
0
which implies that
+o00
/ Po.yxo (VT (M) — Egyxo (M))v| = tv" LoxV/ 1) dx = 0= 1H9/2) (3.2)
0

Using (3.1) and (3.2), we can complete the proof of the lemma.
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We now estimate I>;(n, t) and I3(n, t).

Lemma 3.5. There exists some constant T > e° such that, forany t > T,

Poy (‘ Wit — v /0) ’ vftLu> - Coefc"m N pe=Cin11/2 (33)
162 4\

and
0 L, — T
PG,V,XO<‘M > E ﬂ) < Coe—cltl/2 + Ze—clnzll/z_ (34)
t0; 4 t
Proof. We only give the proof of (3.4), as (3.3) can be proved similarly. We can see that,
fort > 1,
p (’ Wi (i — /0] vav)
O yxo\ | — %= —_—
167 t
~D 1 1 R R Yy TLvt
=Py yxl |07 _20 _49 + Poy x| e We Mt—g = 160 n
A y|_ lvl+1
SPG,y,X()(U >+P0yx0< —5‘ZW>
|Wt| O~/ vTLv 1/4
+ P9 Y, X0 = ) —_— Nt .
Vi T Ra+1yD

Choosing T > e® such that, forany ¢ > T,

1 /2 r\? 1 1 y _ory _ 711
5.\ 4 9 - =< o’ - 1 ! )
9%(9 + <x° 9) ) <%0 e gl )=
then, by (2.2), (2.3), and Lemma 3.1, we have
N 1 1 “ 1 Co _r 12
2 C
PG,y,xo( oy — %% = @) < P&,y,xo<|‘7z E, yxo(az )| = 89) =< 76 1 (3.5

and

P0,%X0 <

AR I+ 1) _ Co e,
Mt_5'>—> P@yxo(l/’Lt E0on(//“t)|—49tl/4 = e

- 20t1/4 2
(3.6)
Since W, /t!/2 ~ N(0, 1), then
/T
%y”<%gzigT%%%?WM>52€“*”3 3.7)
14

Finally, (3.4) immediately follows from (3.5), (3.6), and (3.7).

By Lemma 3.1 and a similar method as used in the proof of Lemma 3.5, we can obtain the
following estimations of I2(n, t) and I»4(n, t).

Lemma 3.6. There exists some constant T > e° such that, foranyt > T,

L
Pé),y,x()( > Z,/ . . ”) < CoeC1t'"? ype=Cin''? (3 g)
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and

PG,%XO(

We now continue with the proof of Theorem 1.2. Let

1 (logzz‘>l/4
n_\/Cl 1

in (3.3), (3.4), (3.8), and (3.9). We deduce that

(fe —2y67) fo(J//9 —
tat

viLv 12 2,12
><Coe Cuts 4 pe=Cimt /7,

(3.9)

Ii(t) = O~ UFORCR e,y = 0@~y fori =1,2,3,4,

which completes the proof of Theorem 1.2.

4. Precise rates of the LIL for ét and p;

We first state the result for a normal variable, which can be easily deduced from Proposi-
tion 3.1 of [16].

Lemma 4.1. Assume that o = O(1/loglogt). Then, for b > —1, we have

|N|2b+2

b
. opi2 (log log t)
lime Le P(|N| > (8+(X,)\/210g10gt)dl‘ m

el0
We can now give the proof of Theorem 1.2 by the Berry—Esseen bound.

Proof of Theorem 1.2. By Theorem 1.2,

t )
€

e tlogt

P (%m0 o —P(N <x)
ro\Vorny \pi—-y) -0

Then we have, by Lemma 4.1,
6, — 6 207 Lvloglogt
( ) > (e 4 ap) /w)dt
Vi —V t

1+ (1oo1 tb
1im82b+2/ (Og Og ) Pe’y,xo<
€
loglogt)?
= lim82b+2/ (og og ) ————P(|N| = (¢ + as)y/2loglogt) dt
ee

where

A; = sup
xeR

£l0 e tlogt
el0

E|N|2b+2
PR

By the deviation inequality for the quadratic functional, we can also obtain the precise rate
in the LIL in Corollary 2.1.
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Corollary 4.1. Assume that o; = O(1/loglogt). Then, for b > —1, we have

+0 (loglog 1)? 6, — 0
hm 82b+2 f ( Og Og ) Pg’y,xO ( v'[ < At )
e Ve —VY

>v'Lv(e
€0 e tlogt - (& +ar)

2loglog(vt M); ds
(VM)

E |N|2b+2
T2t (h 1)

Proof. For large enough ¢ and any fixed 1 > n > 0,

6, — 6 207 Ly loglog ¢
Po x| [V° J > (e4+ay) 2V SV 0B 08¢ —P(|(v"M); — tv*Lv| > ntv* Lv)
Vi—v t(1—mn)
0, —0 21og log (v M
<o (e (* o VT Lv(e + ). | 208108V M),
e V=V (VIM),

0, —0 2vTLvloglogt
b () 2 [
Yi—y t(141n)

+P((v* M), — tv Lv| > ntv*Lv).

Thus, it follows from Theorem 1.3 and the proof of Lemma 3.4 that

EIN 2b+2
(1 =yt BN
2h+1(b + 1)
+00 b
< limeZb“f (loglog )
40 e¢ tlogt
b —6 2log log (vt M
X Pe,y,xo< VT(AI ) >V Lv(e + ar) M) dr
ey L),
E N |2b+2
<1+ WHL_
2h+l(b+ 1)

The proof is completed by letting n — O.
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