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Decay of a Meta-stable State

In this chapter we will consider the decays of meta-stable states and calculate
the lifetime for such a state using instanton methods. A meta-stable state arises
due to the existence of a local minimum of the potential, which is not the global
minimum. This corresponds to a potential having the form given in Figure 4.1.
The potential rises steeply to infinity to the left and to the right; after the
potential barrier, it goes down well below the energy of the meta-stable state,
either eventually going to constant or it may even rise to plus infinity again in
order to give an overall stable quantum mechanical problem. However, exactly
what the potential does to the right is considered not to be important; the
behaviour of the potential to the right is assumed to have a negligible effect on
the tunnelling amplitude for a particle initially in the local minimum at z = 0

escaping to the right. We have drawn the potential, in Figure 4.1, so that it simply
drops off to the right and we have normalized the potential by adding a constant
such that the local minimum has V (0) = 0 . Physically we are considering a
potential of the type where a particle is trapped in a local potential well, but
once the particle tunnels out of the well, it is free. The probability that the
initial state is regenerated from the decay products is assumed to be negligible.
This is in contra-distinction to the problem considered in Chapter 3 with two
symmetric wells. Here the tunnelling-back amplitude was sizeable, corresponding
to the anti-instanton, and had to be taken into account.

4.1 Decay Amplitude and Bounce Instantons

In this chapter, we will attempt to calculate the amplitude

< z = 0|e−
β
�
ĥ(X̂,P̂ )|z = 0>=N

∫
Dz(τ)e−

SE [z(τ)]
� = e−

βE0
� |〈E0 |z = 0〉|2+ · · · .

(4.1)
From this amplitude we expect to be able to identify and calculate the energy
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42 Decay of a Meta-stable State

Unstable Vacuum

V(z)

x0

Figure 4.1. A potential with a meta-stable state at z = 0 that will decay via
tunnelling

Unstable Vacuum

–V(z)

x0

Figure 4.2. The flipped potential for instanton Euclidean classical solution

E0 for the ground state. For a stable state, localized at z = 0, we expect E0, in
first approximation, to correspond to the ground-state energy of the harmonic
oscillator appropriate to the well at z =0, and |〈E0 |z = 0〉| to be the magnitude
of the ground-state wave function at z=0. Now because of tunnelling we imagine
that E0 gains an imaginary part, E0 → E0 + iΓ/2. We will directly attempt to
use the path integral, and calculate it in a Gaussian approximation about an
appropriate set of critical points, as in Chapter 3.

The equation of motion corresponds to particle motion in the inverted potential
−V (z), as depicted in Figure 4.2, with boundary condition that z(±β

2 ) = 0.
There are two solutions, the trivial one z(τ) = 0 for all τ , and a non-trivial
true instanton solution z̄(τ). Here the particle begins at τ = −β

2 with a small
positive velocity at z = 0, falls through the potential well and rises again to
height zero at z = x0, at around τ = 0, and then bounces back, reversing its
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4.1 Decay Amplitude and Bounce Instantons 43

x0

–zbounce[τ ]

Figure 4.3. The bounce instanton which mediates tunnelling of a meta-stable
state

steps and arriving at z = 0 again at τ = β
2 . Clearly from symmetry such a

solution exists if β is sufficiently large. We call this instanton, after Coleman, the
bounce, z̄bounce(τ). The action for the bounce essentially comes from the short
time interval during which the particle is significantly away from z = 0. One
can easily show that the bounce is exponentially close to zero except for a region
around τ =0 of size 1

ω , where again ω2 =V ′′(0). We call the action for the bounce
S0 = SE [z̄

bounce(τ)] for the case β =∞. Due to the time translation invariance
in the β =∞ case, again, there exists a one-parameter family of configurations,
approximate bounces, which correspond to the bounce occurring at any time
τ0 ∈ [−β

2 ,
β
2 ]. The action for these configurations is exponentially close to S0 and

hence the degeneracy is β. Furthermore, approximate critical configurations also
exist corresponding to n bounces occurring at widely separated times with action
exponentially close to nS0. The degeneracy of these configurations is βn

n! as they
are exactly analogous to identical particles. Thus we expect the matrix element
to be expressable as

〈z=0|e−
β
�
ĥ(X̂,P̂ )|z=0〉=N

(
det

[
− d2

dτ2
+ω2

])− 1
2

∞∑
n=0

((
S0

2π�

) 1
2

β

)n

e−
nS0
�

n!
×

×

⎛
⎝det′

[
− d2

dτ2
+V ′′(z̄bouncen (τ))

]
det

[
− d2

dτ2
+ω2

]
⎞
⎠

− 1
2

=
( ω

π�

) 1
2 e−ωβ/2eβ

√
S0
2π�

Ke−S0
, (4.2)

where

K =

(
det′

[
− d2

dτ2
+V ′′(z̄bounce(τ))

])− 1
2

(
det

[
− d2

dτ2
+ω2

])− 1
2

. (4.3)
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44 Decay of a Meta-stable State

Here the prime signifies omitting only the zero mode. We will find that the
situation is not that simple, and we must also deal with a negative mode. Then
we would find

E0 = �

(
ω

2
+K

(
S0

2π�

) 1
2

e−
S0
�

)
(4.4)

and we look for an imaginary contribution to K.

4.2 Calculating the Determinant

The situation is actually more complicated than is apparent. K comes from
the determinant corresponding to integration over the fluctuations around the
critical bounce(
det′

[
− d2

dτ2
+V ′′(z̄bounce(τ))

])− 1
2

=

∫ ∏
n

λn �=0

dcn√
2π�

e
− 1

�

1
2

∑
nλnc

2
n =

∏
n

λn �=0

1√
λn
.

(4.5)
The n’s corresponding to vanishing λn’s are excluded, which is the meaning of
the primed determinant. This time, however, the problem is much more serious.
One of the λn’s is actually negative. For this λn the integration over the cn simply
does not exist, and hence the determinant, as we wish to calculate it, does not
exist. It seems our original idea is doomed. But there is a possible solution:
perhaps we can define the integration by analytic continuation. Indeed, analytic
continuations of real-valued functions often gain imaginary parts, exactly what
we desire. This analytic continuation is in fact possible and we will see how we
can perform it appropriately.

4.3 Negative Mode

First we will establish the existence of the negative mode. For β =∞ we have
an exact zero mode due to time translation invariance(

− d2

dτ2
+V ′′(z̄bounce(τ))

)
d

dτ
z̄bounce(τ)

=
d

dτ

(
− d2

dτ2
z̄bounce(τ)+V ′(z̄bounce(τ))

)
= 0, (4.6)

where the second term vanishes as it is the equation of motion. Since z̄bounce(τ)
has the increasing and then decreasing form given in Figure 4.3, this implies
˙̄z
bounce

(τ) has the form given by Figure 4.4. In contra-distinction to the zero
mode of Chapter 3, this zero mode has a node, i.e. it has a zero. This is intuitively
obvious, the velocity of the particle executing the bounce will vanish exactly when
it reverses direction. The analogous quantum mechanical Hamiltonian

− d2

dτ2
+V ′′(z̄bounce(τ)) (4.7)
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–
[τ ]dz

dτ

bounce

Figure 4.4. The derivative of the bounce dz̄bounce(τ)
dτ

–

ω 2

V˝(zbounce[τ ])

Figure 4.5. The form of the potential V ′′(z̄bounce(τ))

has the potential given by Figure 4.5. One expects the spectrum to consist of
a finite number of bound states and then a continuum beginning at ω2. The
ground-state wave function must have no nodes. The next bound energy level, if
it exists, will have one node. We have already found a bound-state wave function
with energy exactly zero, but it has one node. Thus there exists exactly one
bound-state level, the nodeless ground state, with negative energy. The Gaussian
integral in this direction in function space does not exist, and we must only define
it through analytic continuation.
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46 Decay of a Meta-stable State

4.4 Defining the Analytic Continuation

The original idea that the matrix element has an expansion of the form

〈z = 0|e−
βĥ(X̂,P̂ )

� |z = 0〉= e−
(E+iΓ)β

� 〈0|E+ iΓ 〉〈E+ iΓ| 0〉+ · · · (4.8)

was ill-conceived. There is no eigenstate of the Hamiltonian corresponding to the
meta-stable state. The Hamiltonian is a hermitean operator with all eigenvalues
real, an eigenstate with a complex eigenvalue simply does not exist. We can
only obtain the imaginary energy of the meta-stable state through analytic
continuation. We imagine the analytic continuation in a parameter α which starts
at α= 0 with a potential with a stable bound state localized at z = 0, but yields
our original potential at α = 1. The energy of the bound state will also be an
analytic function of the parameter α. As long as a true bound state exists around
z=0, this energy will be a real function of the parameter α. When the parameter
is continued to yield our original potential where the bound state becomes meta-
stable, we expect that this energy as an analytic function of the parameter α
will not remain real and will gain an imaginary part. This imaginary part should
correspond to the width of the meta-stable state. These general considerations
correspond to a sequence of potentials, as shown in Figures 4.6, 4.7 and 4.8.

4.4.1 An Explicit Example

We will confirm these ideas with an explicit demonstration in a specific solvable
potential. The example we consider is

V (α,z) =−
(
α− 1

2

)
z4+ω2z2 (4.9)

Stable Vacuum

V(α=0, z)

Figure 4.6. The potential with a stable state at z = 0 for α= 0
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4.4 Defining the Analytic Continuation 47

Stable Vacuum

V(α critical, z)

Figure 4.7. The critical potential with a stable state at z = 0 for αcritical

Unstable Vacuum

V(α=1, z)

Figure 4.8. The potential with a meta-stable state at z = 0 for α= 1

and the integral

I(α,ω) =
∫ ∞

−∞
dze

− 1
�

(
−
(
α− 1

2

)
z4+ω2z2

)
, (4.10)

which is analogous to the integral over the direction corresponding to the negative
mode in the definition of the determinant, when α = 1, as depicted in Figures
4.9 and 4.10. The integral is defined for α≤ 1

2 and, specifically, it is not defined
for α=1. The integral is actually well-defined for complex α, with the condition
Re{α}≤ 1

2 . We can define the analytic function I(α,ω) for Re{α}> 1
2 by analytic

continuation. In this simple case we have no difficulty whatsoever, for Re{α}≤ 1
2 ,

the integral is known in terms of special functions,

I(α,ω) = 1

2

√
ω2(

1
2 −α

)e
(

ω4

8�
(
1
2
−α
)
)
K 1

4

(
ω4

8�
(
1
2 −α

)) , (4.11)
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48 Decay of a Meta-stable State

Stable Vacuum

V(a=0,z)=.5z4+ ω 2z 2

V(α=.5,z)= ω 2z 2

Figure 4.9. The potential with a stable state at z = 0 for α= 0 and α= .5

Unstable Vacuum

V(α  =  .5  +  ∈, z)  =   –∈z4 +  ω 2 z 2

V(α  =  1, z)= –.5 z 4 +  ω 2 z 2

Figure 4.10. The potential with a meta-stable state at z=0 for α= .5+ ε and
for α= 1

where
Kν(z) =

πi

2
e
π
2
νi
(Jν(iz)+Nν(iz)) (4.12)

is the modified Bessel function of imaginary argument. The expression in
Equation (4.11) has a well-defined analytic continuation throughout the complex
α-plane, except on the real α-axis, where starting at α = 1

2 , there is a
branch cut.

But in general, we do not have the luxury of knowing the integral exactly. There
is, however, a method for performing the analytic continuation more implicitly.
Happily, this method allows us to extract the information that we actually seek,
the imaginary part of the energy. We apply the method to the specific, exactly
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R

R′

A

E

E ′

C θ

Integration Contours

Figure 4.11. The original integration contour C, along the real line and the
deformed contour A, a straight line at an angle θ, for the analytic continuation

solvable integral of Equation (4.11) to see in detail how the implicit method
works. Indeed, we can obtain the analytic continuation of a function defined by
a contour integral, by deforming the integration contour. In our example

I(α,ω) =
∫ ∞

−∞
dze

− 1
�

(
−
(
α− 1

2

)
z4+ω2z2

)
for Real(α)≤ 1

2
(4.13)

corresponds to the integration contour C along the real axis, in Figure 4.11.
The integration is defined for

∣∣arg(−(
α− 1

2

))∣∣ < π
2 . We deform the contour to

E +A+E′ as in Figure 4.11, the integral is invariant since there are no poles
in regions R and R′ and if the contributions from the circular arcs E,E′, vanish
for infinite radius, which is assumed to be true, we get

I(α,ω) =
∫
z=reiθ
dze

− 1
�

(
−
(
α− 1

2

)
z4+ω2z2

)
. (4.14)

But now the integration converges for
∣∣arg(−(

α− 1
2

))
+4θ

∣∣ < π
2 since after

replacing z= reiθ we must have that −(α− 1
2 )e

i4θr4 has a positive real part. Thus
a deformation of the contour defines an analytic continuation of the integral in
the parameter α. If we take θ = π

4 then
∣∣arg(−(

α− 1
2

))
+π

∣∣< π
2 . This implies

arg

(
−
(
α− 1

2

))
∈
(
π

2
,
3π

2

)
(4.15)

hence the integral is now defined for Re{−
(
α− 1

2

)
}< 0, which is negative. This

means Re{α} > 1
2 . Thus we define, with A corresponding to the contour with
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50 Decay of a Meta-stable State

θ = π/4,

I(α> 1

2
,ω) =

∫
A

dze
− 1

�

(
−
(
α− 1

2

)
z4+ω2z2

)
. (4.16)

This is an exact expression for the analytic continuation of the original integral
I(α< 1

2 ,ω)→I(α> 1
2 ,ω) , and there is no question as to its existence. However,

we wish to actually evaluate the integral in the approximation as �→ 0 and
extract only the imaginary part.

4.5 Extracting the Imaginary Part

Consider the part of the contour A from 0 to ∞ in the first quadrant. The
other half of the contour clearly gives the same contribution. We will calculate
this integral approximately using the method of steepest descent, which is the
indicated approximation method in the limit � →∞. To do this, we further
deform the contour from its present path between 0 and ∞× eiπ4 to the path of
the steepest descent between these points. As there are no poles in the integrand,
the integral clearly is invariant under this additional deformation.

4.5.1 A Little Complex Analysis

A contour of the steepest descent for the real part of a complex analytic function
keeps the imaginary part constant (and vice versa). We can easily demonstrate
this fact. If we have f(x,y) = R(x,y) + iI(x,y) and a curve parametrized by a
variable t, (x(t),y(t)) with tangent vector

−−−−−−−→
(ẋ(t), ẏ(t)), the curve will correspond

to the steepest descent of the real part R(x,y) if the tangent vector is anti-parallel
to its gradient, as the gradient points in the direction of maximum change.
Therefore,
−−−−−−−−−−−−−−−→
(∂xR(x,y),∂yR(x,y))×

−−−−−−−→
(ẋ(t), ẏ(t)) = ∂xR(x,y)ẏ(t)−∂yR(x,y)ẋ(t) = 0. (4.17)

Due to analyticity, the Cauchy–Riemann equations give

∂xR(x,y) = ∂yI(x,y) and ∂xI(x,y) =−∂yR(x,y) (4.18)

thus Equation (4.17) gives

∂yI(x,y)ẏ(t)− (−∂xI(x,y))ẋ(t)≡
d

dt
I(x,y) = 0. (4.19)

But this means I(t) = constant, demonstrating that the imaginary part of the
complex analytic function remains constant on the paths of steepest descent of
the real part.

In general for an integral of the form

I =

∫ b

a

dzeλf(z) (4.20)
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4.5 Extracting the Imaginary Part 51

we can describe the process of the method of steepest descent as follows. For
the application of the method of steepest descent, a should be a critical point
of f(z). We assume Re{f(a)} > Re{f(b)} and Im{f(a)} > Im{f(b)} and we
start from a following the path of steepest descent of the Re{f(z)} to a′ where
Re{f(a′)} = Re{f(b)} and then we append the path of steepest descent of
Im{f(z)} from a′ to b along a path where now only the imaginary part of f(z)
changes. If Im{f(a)}< Im{f(b)}, we obviously ascend the appropriate portion.
In the limit λ→∞ it is only the first contour which is important, since the second
is multiplied by eλRe{f(a

′)}� eλRe{f(a)}. Finally we perform the integration over
the first contour in the Gaussian approximation about z = a.

There are two further points to be made. First, we are actually only interested
in the imaginary part of the integral, as it is only this part that we believe will
have a leading contribution that is non-perturbative in �. Second, and this is
very important to the first, if the path of steepest descent of the real part of f(z)
passes through an ordinary critical point of f(z), it abruptly changes direction
by 90◦. We can demonstrate this easily. An ordinary critical point of f(z), which
requires f ′(z0) = 0 and assumes f ′′(z0) �= 0, implies the behaviour

f(z) = f(z0)+
1

2
f ′′(z0)(z− z0)2+ · · · . (4.21)

Replacing z− z0 = x+ iy we get

f(z0+x+ iy) = f(z0)+
1

2
f ′′(z0)(x2− y2+2ixy)+ · · · . (4.22)

Then paths of steepest descent passing through the critical point are paths of
the constant imaginary part of f(z0 + x+ iy) passing through x = y = 0, i.e.
Im{f(z0+x+ iy)}= Im{f(z0)}. Therefore, to lowest non-trivial order, we need
paths with Im{f ′′(z0)(x2− y2+2ixy)}= 0. If f ′′(z0) = r+ is this gives

s(x2− y2)+2rxy = 0. (4.23)

If s= 0, the solutions are x= 0 or y = 0, which are perpendicular horizontal or
vertical lines, respectively, hence crossing at 90◦. Assuming s �= 0,

x2+2
r

s
xy+

(ry
s

)2

= y2
(
1+

(r
s

)2
)
. (4.24)

This gives (
x+

ry

s

)
=±y

(
1+

(r
s

)2
) 1

2

(4.25)

that is the curves, which are just the straight lines

x=±y
((

1+
(r
s

)2
) 1

2

∓ r

s

)
(4.26)
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52 Decay of a Meta-stable State

with the ± signs correlated. The tangents at x= y=0 are given by the directions(
±
((

1+
(
r
s

)2) 1
2 ∓ r

s

)
,1

)
. These are clearly orthogonal, as their scalar product

vanishes,

−
((

1+
(r
s

)2
) 1

2

− r

s

)((
1+

(r
s

)2
) 1

2

+
r

s

)
+1= 0. (4.27)

Thus in complete generality, the paths of steepest descent turn abruptly by 90◦

as they pass through an ordinary critical point.
The real or imaginary parts of complex analytic functions are called harmonic

functions, which means that they satisfy ∇2R(x,y)=∇2I(x,y)= 0. As should be
well known, all critical points of the real or imaginary parts of complex analytic
functions are saddle points. Then a path of steepest descent, which descends
through an ordinary critical point, must change direction by 90◦, since continuing
in the same direction through the critical point would correspond to ascending
the other side of the saddle. Turning through 90◦ continues the descent through
the saddle point. The above analysis shows that for an ordinary critical point,
f ′(z0) = 0 but f ′′(z0) �= 0, the minimum and maximum directions are at 90◦ to
each other.

For our integral Equation (4.16), the real part of the exponent changes from
0→−∞ as z varies from 0→∞×eiπ4 , while the imaginary part of the exponent
is equal to 0 at z = 0 but becomes arbitrarily large at z =∞× eiπ4 . Thus in this
case, along the path of steepest descent of the real part, the imaginary part of the
exponent will always be equal to 0, since it must remain constant and it vanishes
at the initial point. Such a path will reach a point where Re{f(z0)} = −∞.
Then further following a contour with fixed real part, equal to −∞, but changing
imaginary part will be irrelevant since the factor corresponding to the exponential
of the real part will already be zero.

Our function actually has three critical points. Indeed,
d

dz

((
α− 1

2

)
z4−ω2z2

)
= 4

(
α− 1

2

)
z3− 2ω2z = 0 (4.28)

has the solutions z = 0 and z = ±ω√
2
(
α− 1

2

) for the case at hand, α > 1
2 . Thus the

point z=0 happens also to be a critical point, and it is easy to check that the path
of steepest descent of the real part from z = 0 proceeds along the positive real
axis, instead of the contour A, until it reaches the critical point at z= ω√

2
(
α− 1

2

) ,

and then turns by 90◦ into the complex plane.
The path of steepest descent can be explicitly computed in our special case.

The condition that the imaginary part be constant and equal to zero gives, with
z = x+ iy,

Im

{(
α− 1

2

)
(x2− y2+2ixy)2−ω2(x2− y2+2ixy)

}
= 0. (4.29)
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Path of Steepest Descent

A

A′

A′

θ=π/4 2α – 1
ωx

Figure 4.12. The integration contour along the path of steepest descent

Thus (
4

(
α− 1

2

)
(x2− y2)− 2ω2

)
xy = 0 (4.30)

⇒ x= 0, or y = 0, or (2α− 1)(x2− y2) = ω2 (4.31)

The first two solutions simply describe the x and y axes, the third solution
corresponds to a hyperbola. Note that all of these curves intersect at 90◦ as
we expect. The path of steepest descent, starting at the origin and going out
to infinity at ∞× eiπ4 , corresponds to the curve A′, as depicted in Figure 4.12.
Asymptotically the arcs of the hyperbola converge to the lines y =±x which is
the original contour A. The turn by 90◦ occurs at the critical point at z = x=

ω√
(2α−1)

.

But now, where does the imaginary part to the integral come from? The
integrand is always real, and the imaginary part of the function is always
zero along the contour of steepest descent of the real part. It can only come
from the integration measure dz when the contour follows the hyperbola in
the complex plane. The contribution from z = 0 to z = ω√

(2α−1)
along the real

axis has no imaginary part, thus we are not interested in it. The integration
along the hyperbola we perform in the Gaussian approximation about the
critical point at z = ω√

(2α−1)
. We have x =

√
y2+ ω2

(2α−1) , dx = ydy√
y2+ ω2

(2α−1)

,
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so dz = dx+ idy =

⎛
⎝ y√

y2+ ω2

(2α−1)

+ i

⎞
⎠dy and the integral is

∫ ∞

0

dy

⎛
⎝ y√

y2+ ω2

(2α−1)

+ i

⎞
⎠e

1
�

(
− ω4

(4α−2)
−2ω2y2+o(y4)

)
. (4.32)

Therefore, the imaginary part comes only from the second term, and is given by

i

2

√
2π�

2ω
e
− ω4

�(4α−2) , (4.33)

where the factor of 1/2 in front comes because we are only integrating over half
the Gaussian peak, while the full Gaussian integral gives

√
2π�
2ω . Then for our

original integral we get

Im

{∫ ∞

−∞

dz√
2π�

e
− 1

�

(
−
(
α− 1

2

)
z4+ω2z2

)}
α→1

=
1

2

1

2ω
e−

ω4

2� × 2, (4.34)

where the factor of 2 arrives because we have the integral over the full contour
of Figure 4.11, whereas the analysis above was only for half of the contour, the
part in the first quadrant. We point out that the imaginary part of the integral
simply corresponds to the formal expression of Equation (4.5) with λ−1→|λ−1|.

4.6 Analysis for the General Case

Now, in the general case, we know what we must do. In order to do the
path integral, we parametrize the space of all paths which satisfy the required
boundary conditions for z(α,τ =−β/2) and z(α,τ = β/2) (β can be effectively
taken to be ∞). We do this parametrization with one special, specific contour
z(α,τ) in the space of all paths, and augmented to this contour, we add the
subspace of all paths orthogonal to this contour (which we will label as z⊥(τ)).
To be very clear, a contour is not a path, it is a curve, itself parametrized by α,
in the space of paths, where each point along the contour corresponds to a path
z(α,τ). The specific contour will contain two critical points

z(α= 0, τ) = z̄(τ) = 0, (4.35)

which is the “instanton” corresponding to the particle just sitting on top of the
unstable initial point in Figure 4.2 and never moving, and the point

z(α= 1, τ) = z̄bounce(τ), (4.36)

which corresponds to the instanton that we have called the “bounce”. This
contour is represented pictorially in Figure 4.13 while the corresponding action
is represented in Figure 4.14. We will see that the actual paths that the contour
passes through are unimportant except for the two critical points. We also insist
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z(α ,τ)

α=2

α=1

α=–1

α=–2

α=0

z(0,τ)=0

z (1,τ)=zbounce[τ ]–

Figure 4.13. The path in function space as a function of α and τ

α=0 α=1

SE[z(α,τ)]

Figure 4.14. The Euclidean action as a function of α

that the “tangent” to the contour at α = 1 corresponds to the negative energy
mode

d

dα
z(α,τ)|α→1 = z−1(τ). (4.37)

In this way, the orthogonal directions never contain a negative mode and the
determinant (path integral over Dz⊥) can be done in principle. We then write
the path integral as a nested product of two integrals

N
∫
Dz(τ)e− 1

�
SE [z(τ)] =N

∫
dα√
2π�

Dz⊥(τ)e−
1
�
SE [z(τ)]. (4.38)

It is important to note that the path integral over the transverse directions is
α-dependent. However, we will find that, since we are actually only interested
in finding the imaginary part of the full integral, we will need to evaluate this
transverse integral only at α= 1.
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Contour for α

α – plane

α – real

α – complex

α=1

α=0

Figure 4.15. The contour for α from the origin, along the real axis and then
jutting out into the complex plane at 90◦ at α= 1

Now the integral over α is, however, ill-defined due to the existence of the
negative mode at α=1. As α=0 is a critical point which is a local minimum, the
action increases as we pass from α=0 to α=1 through real values of α. Hence the
path in function space is defined as the path of steepest descent of −SE [z(α,τ ],
the exponent (up to the trivial factor of 1/�) in the integral Equation (4.38). But
then we encounter the second critical point at α= 1, which is a local maximum
of the action, again for real α. The action behaves as depicted in Figure 4.14.
Hence continuing the integral past α= 1 to α=∞, it fails to converge and give
a sensible answer. However, we are actually only trying to find an imaginary
component of the original expression. If in fact we could integrate from α = 1

on to α=∞, the expression would remain completely real. Thus we can only be
content that we must define the integral via analytic continuation, since that is
the only possible way that the integral could obtain an imaginary component.

This analytic continuation is expressed as a deformation of the contour of
integration into the complex α-plane as we saw in the previous section. From
α= 1 we must follow along the contour of steepest descent of −SE [z(α,τ)]. The
important point, as we have seen, is that for an ordinary critical point, which
is generic and that we assume, this corresponds to a 90◦ turn into the complex
plane, as depicted in Figure 4.15. We start at α= 0 and go till α= 1 on the real
α line, then we continue out at 90◦ into the complex α-plane following the line
of steepest descent of −SE [z(α,τ)].
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As before, the imaginary part only comes from the integration measure; the
imaginary part of −SE [z(α,τ)] on the path of steepest descent is constant and
hence always zero. This gives for the imaginary part of the path integral for
the fluctuations about one bounce (using the notation A.C. to mean “analytic
continuation”),

Im

{
A.C.

(
N

∫
dα√
2π�

Dz⊥(τ)e−
1
�
SE [z(α,τ)]

)}
=

= Im

{
A.C.

∫
dα√
2π�

e
− 1

�

(
SE [z̄bounce(τ)]+ 1

2
d2

dα2 SE [z(α,τ)]|α=1(α−1)2+···
)}

×

×N
∫
Dz⊥(τ)e

− 1
�

∫
dτ ′dτ ′′

(
1
2

δ2SE [z(τ)]

δz⊥(τ ′)δz⊥(τ ′′)

∣∣∣∣
z(τ)=z̄bounce(τ)

δz⊥(τ ′)δz⊥(τ ′′)+···
)

= Im

{
A.C.

∫
dα√
2π�

e
− 1

�

(
S0+

1
2
λ−1(α−1)2+···

)}
×

×
(
S0

2π�

) 1
2

βN
(
det′

[
− d2

dτ2
+V ′′(z̄bounce(τ))

])− 1
2

=
1

2
× e−

S0
� ×

(
S0

2π�

) 1
2

β× 1√
|λ−1|

×N
(
det′

[
− d2

dτ2
+V ′′(z̄bounce(τ))

])− 1
2

,

(4.39)

where d2

dα2 SE [z(α,τ)]|α=1 = λ−1 is the negative eigenvalue and det′ now means
the determinant is calculated excluding both the zero eigenvalue and the negative
eigenvalue. In the last line of Equation (4.39), each factor separated by the ×
signs correspond, respectively, to: the factor of one-half since we are integrating
over only half of the Gaussian peak, the exponential of minus the action of the
bounce divided by �, the factor corresponding to the Jacobian of the change of
variables and the factor of β when we integrate over the position of the bounce
rather than its translational zero mode, the factor of one over the square root of
the magnitude of the negative eigenvalue which is the upshot of our analysis of
the analytic continuation, and finally the primed determinant over the orthogonal
directions in the space of paths where the negative mode and the zero mode are
removed. Taking into account the contribution from the multi-bounce sector,
the one-bounce contribution, including its imaginary part, just exponentiates as
before.

Thus K, as defined in Equation (4.3), changes as K→Re{K}+ iIm{K} and
we find

Im{K}= 1

2

1√
|λ−1|

⎛
⎝det′

[
− d2

dτ2
+V ′′(z̄bounce(τ))

]
det

[
− d2

dτ2
+ω2

]
⎞
⎠

− 1
2

, (4.40)

where we now understand the factor of 1
2 as coming from integrating, in the

Gaussian approximation, over just half of the saddle point descending into the
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complex α-plane and the primed determinant is now understood to exclude both
the zero mode and the negative mode. Thus the original matrix element that we
wish to calculate, Equation (4.1), is obtained from an analytic continuation

A.C.
{
〈z=0|e−

β
�
ĥ(X̂,P̂ ) |z=0〉

}
=A.C.

{
N

∫
z
(
±β

2

)
=0

Dz(τ)e− 1
�
SE [z(τ)]

}

=
( ω

π�

) 1
2 e−

βω
2 e

βK
(

S0
2π�

) 1
2 e

−S0
�

+ · · ·

= e−β(E0+iΓ/2)/�A.C.
{
|〈E0| 0〉|2+ · · ·

}
,(4.41)

where

K =Re(K)+ i
1

2

1√
|λ−1|

⎛
⎝det′

(
− d2

dτ2
+V ′′ (z̄bounce(τ)))

det
(
− d2

dτ2
+ω2

)
⎞
⎠

− 1
2

. (4.42)

This yields the imaginary part to the energy, iΓ/2, with the width of the state

Γ= �

(
S0

2π�

) 1
2 e−

S0
�√

|λ−1|

⎛
⎝det′

(
− d2

dτ2
+V ′′ (z̄bounce(τ)))

det
(
− d2

dτ2
+ω2

)
⎞
⎠

− 1
2

. (4.43)
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