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Surface waves and currents in aquatic vegetation
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A multiscale asymptotic theory is formulated for surface gravity waves and currents
in finite-depth water with a vegetation canopy that provides a drag force on both
flows with known drag coefficients. It assumes that the density is uniform and the
depth is uniform pro tem and that the wave frequency is fast compared to the current
advective rate. It is a quasi-linear theory in which the wave dynamics is independent of
current and drag to leading order but provides perturbative corrections, and in which
wave nonlinear interactions are neglected while quadratic wave-averaged wave fluxes
and quadratic wave-drag effects are retained. The primary surface wave is modified
by drag and current interactions, and the wave-averaged current momentum balance
includes a wave-augmented drag force and several vortex forces due to Earth’s rotation,
current vorticity, Stokes drift and drag-induced wave vorticity. The wave-averaged
current equations derived here are a suitable basis for future large-eddy simulation and
submesoscale circulation computational models.

Key words: ocean processes, coastal engineering, ocean circulation

1. Introduction

This paper presents a formal theory for surface gravity waves and currents in shallow water
with a vegetation canopy that provides a drag force on both. The goal is a wave-averaged
oceanic model that can be computationally integrated as a large-eddy simulation (LES)
model with a rigid lid or a submesoscale circulation model – the essential distinction is
whether boundary-layer turbulence is resolved or parametrized – with a time step much
larger than would be required to resolve the primary wave propagation. The purpose is
for intermediate-sized problems with heterogeneous currents and vegetation, not for the
micro-mechanics of flow around plant fronds (e.g. Nepf 2012).

The paper is intended as a proof-of-concept demonstration of relevant flow–vegetation
interaction processes. In particular, the model posits a parametrization of the horizontal
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drag force per unit water density associated with a horizontal flow uh through a canopy
with mostly upright plants,

Dh = −D(x)|uh|uh (1.1)

(Shaw & Schumann 1992); herein, vectors are in bold italic face, and the superscript h
denotes a horizontal vector. The scalar factor,

D = αCD ≥ 0, (1.2)

is the product of α, the foliage area density per unit volume (i.e. with units of m−1) and
non-dimensional CD, the drag coefficient appropriate to the vegetation type. In the above,
α(x) is proportional to the cross-sectional profile the plants present to the flow. It is usually
spatially variable because plant density varies, both in the vertical profile of the canopy
and in heterogeneous horizontal distributions (‘patches’), but it is assumed independent of
time on the relevant flow scales.

Much of the potential value of the theory developed here is in learning more about
how non-uniform vegetation affects coastal currents and vice versa. The formula (1.1)
assumes there is a turbulent boundary layer adjacent to the vegetation, expressed by its
quadratic dependence on the velocity. The presumption is that α and CD will be determined
experimentally for particular plant types and distributions. The formula also neglects any
flexible plant motion as the flow varies (cf. Henderson 2019), which is most appropriate
for plants with rigid or highly buoyant fronds such as macroalgae (giant kelp). Based on
field experiments, Utter & Denny (1996) estimate a value of CD ≈ 0.015 for macroalgae,
and Monismith et al. (2022a,b) analyse other aspects for kelp-forest drag. Luhar & Nepf
(2011) discuss how plant compliance under flow alters its configuration, hence α. For a
justification for neglecting plant motion for macroalgae, see Yan, McWilliams & Chameki
(2021) – but note that there (1.1) is assumed to apply only to the current’s u, not the
total flow including wave orbital motions as here. There is also an extensive literature
on atmospheric flows over and through terrestrial canopies (e.g. Finnigan 2000; Brunet
2020). The parametrization formula (1.1) is arguably too simple for many real situations;
nevertheless, it has often been invoked in previous studies of canopy drag and it is
worthwhile to further explore its consequences faute de mieux.

The effects of surface gravity waves on currents are widely investigated and modelled.
Outside of the surf zone (as assumed here), a wave-averaged theory for the evolution of
the current velocity u highlights the importance of the Stokes vortex forces,

SVF = uSt × ( f ẑ + ∇ × u), (1.3)

where uSt is the wave Lagrangian mean flow, the Stokes drift (Craik & Leibovich 1976) –
here generalized to include the influence of the Coriolis frequency f due to Earth’s
rotation projected on the local vertical direction ẑ. Its influence is considered the primary
explanation for the occurrence of Langmuir circulations in the surface boundary layer,
as confirmed in many LES solutions (reviewed in Sullivan & McWilliams 2010). More
recently, the importance of Stokes drift has been demonstrated in submesoscale circulation
models (Hypolite et al. 2022). This canopy-interaction theory is a suitable counterpart to
what has become the prevailing wave–current interaction theory (also known as Stokes
vortex force, originating with Craik & Leibovich (1976)) used in wave-averaged LES and
circulation models.
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Surface waves and currents in aquatic vegetation

The wave-averaged theory is of the quasi-linear type. In its previous forms, it is based
on two small parameters,

ε = ak � 1 and μ = V
C

� 1. (1.4a,b)

The first assumption says that the wave’s free surface elevation has a small slope, where
a is the elevation amplitude and k is the horizontal wavenumber. The second assumption
says that the current speed V is small compared to the wave propagation speed, C = σ/k,
where σ is the wave frequency; this implies a time scale separation between faster waves
and slower currents and thus enables wave averaging for the current dynamics. Taken
together, they motivate the ingredients of a quasi-linear theory: linearized wave dynamics
with no current influence at leading order in μ and no nonlinear wave interactions, and
wave-averaged quadratic wave fluxes (e.g. SVF ) in the current dynamics that incorporate
the current effect on the waves at O(μ).

Various extensions of quasi-linear wave-averaged theory have been made (Holm 1996;
McWilliams, Restrepo & Lane 2004; Suzuki & Fox-Kemper 2016), including a recent
generalization for higher-order effects in μ in uSt, SVF , etc. (McWilliams 2022, hereafter
WCI22); however, only the leading-order current interactions are included. The latter paper
(WCI22) contains an extended discussion of many aspects of a quasi-linear wave–current
interaction theory, and specific references to it are made below to abbreviate the present
paper. WCI22 does not include anything about canopy drag, and the wave and current
relations here are for a finite-depth ocean (where vegetation mostly is found) rather than
the deep-water (infinite depth) in WCI22.

This paper follows this quasi-linear derivation path by additionally including the canopy
drag effects in (1.1) while again taking a perturbation approach with an assumption of weak
drag, i.e.

ν = aD∗ � 1, (1.5)

where D∗ is a representative value for D(x). Canopy drag yields several important effects:
dissipation of the waves, a wave-enhanced drag on the currents, and an augmentation
of VF by the wave vorticity generated through drag. The ideas of wave dissipation
and wave-enhanced current drag by vegetation have been addressed previously (e.g.
Dalrymple, Kirby & Hwang 1984; Rosman et al. 2013; Hu et al. 2014; Losada, Maza
& Lara 2016; Lei & Nepf 2019; Zhao et al. 2021; Yu, Rosman & Hench 2022), often using
laboratory experiments or direct numerical simulations and with an emphasis on the wave
damping; the reliance on an experimentally determined CD is common. The particular
formulae derived here for the partitioned wave and current drag forces in Dh are somewhat
different than previously, and the augmented VF result is new. The theory assumes that
there is a primary wave (or multiple primary waves; see § 12 and Appendix B) that is
perturbatively modified by canopy drag and weaker currents.

The outline of the paper is as follows. The basic fluid model, primary approximations
and wave–current decomposition are in § 2. The leading-order wave solution is in § 4.
The perturbation effects of canopy drag and currents on the waves are in §§ 5–8 and
Appendix A, and the combined drag and current effects of the perturbed waves on the
currents are in §§ 9 and 10. Alternative situations of weaker or multiple primary waves are
analysed in §§ 11 and 12. A summary and discussion of future prospects is in § 13. Finally,
because of the complexity of a multi-parameter, multiscale theoretical formalism, a table
of symbols is included for reference (table 1).
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Symbol Definition

g gravitational acceleration
f Coriolis frequency
H resting water depth
(a, k, σ, C) primary wave amplitude, wavenumber vector, eigenfrequency and phase speed
F(z) primary wave vertical eigenfunction
C, V scale estimates for wave propagation speed and current velocity
ε wave steepness parameter (1.4a,b)
μ current amplitude parameter (1.4a,b)
x = (x, y, z, t) space and time coordinates
xh = (x,y) horizontal coordinates
•h horizontal vector
u = (u, v, w), uh = (u, v) 3-D and horizontal velocity
∇, ∇h 3-D and horizontal spatial gradient operators
ζ vorticity vector
φ geopotential function (normalized pressure)
η surface elevation anomaly
uSt Stokes drift velocity (4.5)
La Langmuir number (§ 3)
VF = SVF + CVF wave-averaged total = Stokes + canopy vortex forces, (1.3) + (10.5)
Dh canopy drag force (1.1)
D(x), α(x), CD drag coefficients (1.2)
ν drag amplitude parameter (1.5)
•̄ or 〈 · 〉, •′ wave averages and wave fluctuation components
E = exp[iΘ] primary wave phase functions (4.1)
c.c., •∗ complex conjugate
Dh

w, D′
w, D̄h

w drag forces associated with wave orbital motion (§ 5)
D̄h wave-averaged drag force on currents (9.3)
τ = (μ, ν)t ‘slow’ time coordinates of drag- and current-induced evolution
•′

w, •′
d , •′

c, •′
m subscripts for the primary wave, drag, current and combined wave components

•′ζ , •′Φ vortical and potential wave field decomposition components
Φ ′, Q wave correction potential functions (5.11), (6.5) and (7.2)
Ri, R0 forcing terms for Φ ′ problem
P projection operator for solvability condition (8.3)
J, r slow-time drag-induced wave decay rates (8.8a,b)
B̄ wave-averaged Bernoulli head
C̄ potential function associated with wave-averaged vortex force (10.4)
H, I, K phase functions for drag force (Appendix A)
Δ non-dimensional drag force function (Appendix B)

Table 1. Symbol definitions.

2. Basic model and wave–current decomposition

The theory in this paper analyses wave–current–drag interactions while making the
unrealistic simplifications of constant water density, a flat bottom and an absence of
non-conservative forces apart from the canopy drag; such generalizations can be pursued
later.

Thus, the incompressible fluid equations are

∂tu + (u · ∇)u + f ẑ × u = −∇φ + Dh,

∇ · u = 0,

}
(2.1)
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Surface waves and currents in aquatic vegetation

where u = (uh, w) = (u, v, w) is the velocity, φ is the density-normalized pressure as a
deviation from the background hydrostatic profile −gz that does not accelerate the flow
(g is the gravitational constant), f is the Coriolis frequency (assumed constant) and Dh is
the drag force (1.1).

For boundary conditions, all fields are periodic in the horizontal coordinates (x, y), and
in the vertical,

w = ∂tη + uh · ∇hη,

φ = gη

}
(2.2)

at the sea surface, z = η(x, y, t), and
w = 0 (2.3)

at the bottom, z = −H (with H a constant). The second condition in (2.2) is a statement
that the total pressure is uniform at the surface interface. (Boundary stresses are omitted
for now.)

Direct numerical solutions of (2.1)–(2.3) are difficult for general waves and currents
especially because of the disparate time scales of wave propagation and current evolution
and the tendency for η to develop wave-related singularities (i.e. to break). So, to obtain
a wave-averaged LES-type or circulation model for the currents, several approximations
are made. These are listed in (1.4a,b) and (1.5). In particular, they imply that the wave
solutions at leading order are linear and uninfluenced by currents and drag (§ 4).

The relations in this paper are all dimensional, but scaling estimates are made (§ 3) based
on non-dimensionalizations using the primary wave scales: a, x ∼ 1/k (with the current
length scale  assumed to be the same or larger), t ∼ 1/σ , u ∼ C = σ/k, etc.

The velocity and other fields are decomposed into currents and waves, e.g.

u = ū + u′, (2.4)

with the distinction that u′ has zero average over a wave period, 2π/σ . A further
decomposition is made for the wave velocity,

u′ = u′
w + u′

c + u′
d. (2.5)

Here u′
w is the primary wave field with linear dynamics, its magnitude being O(εC); u′

c
is the small modification of the waves due to the current effects on the waves (CEW;
§ 6), its magnitude being O(εμC); and u′

d is the small modification of the waves due
to the transient drag force Dh′ (§ 5), its magnitude being O(ενC). The respective wave
corrections due to drag and currents in u′

d and u′
c can be superimposed because their

determining equations are linear (§§ 5 and 6). No decomposition is imposed on ū (∼ μC);
the goal is to derive a wave-averaged dynamical balance equation for ū including all of
these wave effects on currents (WEC; § 10).

3. Scaling assumptions and rationale

The primary scaling assumptions of ε, μ, ν � 1 are stated in § 1, and the wave and current
velocities have scaling estimates of

u′ ∼ εC, ū ∼ μC, (3.1a,b)

respectively. For strict validity of a quasi-linear perturbation theory, ε must be small
compared to μ or ν, which often is not true in nature. Wind–wave equilibrium in the
surface layer with Ekman currents scales as μ ∼ ε2; i.e. μ � ε with wave orbital motions
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(∼ εC) stronger than currents (∼ μC). Hanley, Belcher & Sullivan (2010) show the
empirical distribution of the so-called turbulent Langmuir number, La =

√
u∗/|uSt|(0) ∼

μ1/2/ε, which is peaked near the equilibrium value of 0.3. Stronger currents would
increase the μ/ε ratio and big swells decrease it. With the Langmuir turbulence context in
mind, the primary target regime is where the wave orbital motion is faster than the current
speed, which itself is often comparable to the Stokes drift:

u′
w 
 ū ∼ uSt. (3.2)

This ordering allows simpler formulae for the canopy drag on the waves and for the
wave-induced canopy drag on the currents (§§ 5 and 9). Furthermore, for generality of
the results, we assume that drag effects are comparable to current effects, both on the
wave perturbations (§§ 5–7) and on the currents (§ 10); i.e. ν ∼ μ � 1.

The theoretical focus in wave–current interaction is usually on the interactions
associated with the spectrum-peak waves (i.e. at most a few wavenumber components that
have the largest amplitudes a in η). For these waves, the nonlinear evolution effects are
often weak, even if the full wave spectrum has stronger nonlinear interactions. The success
of quasi-linear theory and even the simplification to monochromatic primary waves as a
modelling framework for Langmuir turbulence (McWilliams, Sullivan & Moeng 1997)
provides motivation to continue this approach with the inclusion of canopy drag.

Once a commitment is made to a quasi-linear theory for wave–current interaction, in part
because it is a doable theory for an otherwise very difficult problem, then the magnitude
of ε need not be declared. However, with the nonlinear canopy drag law (1.1), the ratio
μ/ε is important for how the drag force is approximated and partitioned between waves
and currents. In this paper the choice is made to assume that wave orbital velocities are
stronger than currents – the most common natural situation – as the main line of argument,
with tangential remarks about the alternatives (§ 9).

4. Primary wave

For simplicity, the primary wave field is assumed to be monochromatic, i.e. a single
eigenmode for linear wave dynamics (but also see § 11 and Appendix B). We adopt a
complex notation; e.g. for the surface elevation,

η′
w = a

E
2

+ c.c. (4.1)

Here a is the amplitude, E = exp[iΘ] is the phase function, Θ = k · xh − σ t is its
horizontal-propagation argument, k is the horizontal wavenumber vector (with magnitude
k), σ is the frequency eigenvalue and c.c. denotes the complex conjugate of the preceding
expression. In finite-depth water (kH < ∞), the dispersion relation is

σ =
√

gk tanh[kH] > 0. (4.2)

The propagation is in the direction of k. The other eigenfunction fields are

φ′
w = gaF(z)

E
2

+ c.c.,

uh′
w = ga

σ
F(z)k

E
2

+ c.c.,

w′
w = − iagk

σ
G(z)

E
2

+ c.c.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.3)
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Surface waves and currents in aquatic vegetation

The non-dimensional vertical structure functions are

F(z) = cosh[kz] + tanh[kH] sinh[kz],

G(z) = sinh[kz] + tanh[kH] cosh[kz].

}
(4.4)

Functions F and G decay monotonically with depth. At z = −H, G = 0 while F /= 0. If a
is real, then η′

w, φ′
w and u′

w are all ∝ cos[Θ], and w′
w ∝ sin[Θ]. Furthermore, there is no

vorticity in this eigenmode, ζ ′
w = ∇ × u′

w = 0, and this is quite helpful in solving for the
drag and current wave corrections in §§ 5 and 6.

In a multiscale theory, as here, a can be a function of ‘slow’ time τ due to drag and
current effects (§§ 5–8), in which case a(τ ) can become complex due to a slow evolution in
the primary wave phase. In this paper, for simplicity, a is assumed to be real and positive in
discussing specific canopy-related results (§§ 5 and 9–11 and Appendices A and B), while
its more general complex form is retained for the current interactions (§§ 6 and 7). The
latter allows for ‘wave–current resonance’ that might also incorporate canopy effects, but
that is not a central focus in this paper; also see the extended discussion of wave–current
resonance and several examples in WCI22, chapters 7 and 8.

An important property of surface waves is their Lagrangian mean flow, the Stokes drift
velocity. For small ε, this is defined by

uSt =
〈(∫ t

u′ dt · ∇
)

u′
〉
, (4.5)

where the angle brackets denote an average over the wave period (i.e. this has the same
meaning as the overbar symbol). In this paper only the leading-order approximation to uSt

is needed. With u′ ≈ u′
w,

uhSt(z) ≈ |a|2σk

2 sinh2[kH]
cosh[2k(z + H)],

wSt(z) ≈ 0.

⎫⎪⎬
⎪⎭ (4.6)

The drift is only in the horizontal direction. Also, ∇ · uSt = 0, as is usual in conservative
quasi-linear wave theories (WCI22, appendix C).

For completeness, these primary wave formulae are also listed in the deep-wave limit,
kH → ∞ (even though that is inconsistent with bottom-rooted marine vegetation affected
by surface wave motions):

σ →
√

gk, F(z), G(z) → ekz,
cosh[2k(z + H)]

2 sinh2[kH]
→ e2kz. (4.7a–c)

Everything in this section is well known.

5. Effect of drag on the waves

With the decomposition (2.5) and the assumption that wave orbital motions are stronger
than currents (3.2), the largest canopy drag term is

Dh
w = −D|uh′

w |uh′
w . (5.1)

Substituting from (4.3) with real a > 0,

Dh
w = −D

(
(ga)2F2k

σ 2

)
|cos[Θ]| cos[Θ]k. (5.2)
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Figure 1. Plots of |cos[Θ ′]| cos[Θ ′] (black) and c1 cos[Θ ′] (red) over one wave period in Θ ′ = σ t/2π.

The functional dependence on Θ can be approximated as

〈|cos[Θ]| cos[Θ]〉 = 0, |cos[Θ]| cos[Θ] ≈ c1 cos[Θ], (5.3a,b)

as demonstrated in figure 1. The coefficient c1 = 8/3π ≈ 0.849 is the projection of the
left-hand side of (5.2) on cos[Θ], i.e. it is the value that gives the least-square error in
this approximation averaged over a primary wave period; the root-mean-square (r.m.s.)
relative error in the approximation is <20 %. Thus, the wave forcing by canopy drag is
purely oscillatory, with D̄h

w = 0, and it is approximately monochromatic. The latter allows
more extensive analytic results compared to the exact form of Dh

w; see Appendices A
and B for generalizations.

The wave drag has the same phase function as the eigenmode, viz.

Dh′
w ≈ −Dc1

(
(ga)2F2k

σ 2

)
cos[Θ]k; (5.4)

and u′
d is needed for the WEC model (§ 10). With this approximation for Dh′

w as the forcing
term for the O(ν) correction to u′

w, this makes the solution for u′
d itself monochromatic.

Obviously, a more complete solution with Dh′ could be obtained with higher harmonics of
Θ , and Appendix A shows that the errors incurred by this simplification are minor.

The solution procedure for u′
d (as for u′

c in § 6 and in WCI22, chapter 5) is decomposed
into vortical and irrotational parts:

u′
d = uζ ′

d + uΦ′
d , (5.5)

where ∇ × uΦ′
d = 0. As a consequence of ζ ′

w = 0, the vortical component is relatively
easy to obtain, while the irrotational component may be more difficult.
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Surface waves and currents in aquatic vegetation

The wave vorticity equation with respect to drag at O(ν) is

∂tζ
′
d = curl[∂tu

ζ ′
d ] = curl[Dh′

w ]. (5.6)

There is no vertical component in the drag force (1.1), and

curl[Dh′
w ] = c1

g2a2k
σ 2

⎛
⎝ ky∂z[DF2]

−kx∂z[DF2]
F2(ẑ · k × ∇hD)

⎞
⎠ cos[Θ]. (5.7)

To invert (5.6), the time integral of the phase function is

∫ t
cos[Θ] dt = − 1

σ
sin[Θ]. (5.8)

Therefore, using (5.4)–(5.7),

ζ ′
d = c1

g2a2k
σ 3

⎛
⎝ −ky∂z[DF2]

+kx∂z[DF2]
−F2(ẑ · k × ∇hD)

⎞
⎠ sin[Θ]. (5.9)

Furthermore, the vorticity relation for ζ ′
d = ∇ × u′

d in (5.9) can be inverted for the vortical
component of the wave velocity to obtain

uhζ ′
d = Dc1

(
(ga)2F2k

σ 3

)
sin[Θ]k, wζ ′

d = 0. (5.10)

Notice that the vertical component of ζ ′
d is zero if ∇hD = 0, i.e. if the vegetation is

horizontally uniform.
The irrotational component uΦ′

d in (5.5) requires the solution of an elliptic
boundary-value problem. It is derived by taking the divergence of the momentum equation
at O(ν) and utilizing a combination of the vertical momentum equation and the conditions
(2.2) and (2.3) at the boundaries to eliminate the velocity in favour of a velocity potential
function Φ ′

d defined by

uΦ′
d = −∇

∫ t
Φ ′

d dt (5.11)

(WCI22, chapter 5). The derivation includes recognizing that ∇ · ∂tu′
d = 0 and ζ ′

w = 0.
It also includes the linearized wave forms of (2.2) and (2.3) in a Taylor series expansion
about z = 0:

w′ = ∂tη
′ + ∇h · (η′ūh) and φ′ = gη′ at z = 0,

w′ = 0 at z = −H.

}
(5.12)

For this drag-effect derivation, the ūh boundary-condition term is not considered, but it
will be included for the CEW component uΦ′

c in § 6. Also, the wave vertical momentum
equation has no drag component (i.e. ẑ · Dh′

w = 0). The combination of the relations in this
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paragraph is the following partial differential equation (PDE) system:

∇2Φ ′
d = div[Dh′

w ],[
∂z − σ 2

g

]
Φ ′

d = −2
g
∂t∂τφ

′
w at z = 0,

∂zΦ
′
d = 0 at z = −H.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.13)

The ‘forcing’ term in (5.13) includes the possibility of a ‘slow-time’ evolution of the
primary wave field (4.1)–(4.3) through its amplitude, a(τ ), i.e.

− 2
g
∂t∂τφ

′
w = −2σ sin[Θ]∂τ a (5.14)

for a slow-time coordinate, τ = νt. This slow-time dependence is determined through a
solvability condition for (5.13) that assures there is no resonant forcing of Φ ′

d, i.e. that there
is no projection of the forcing on the primary wave eigenmode (WCI22, appendix E).

It will be shown that canopy drag induces a slow amplitude decay for the primary wave,
and this condition must be combined with an analogous constraint on Φ ′

c, hence providing
an amplitude dependence also on ū; both of these statements will be further explained in
§§ 6–8. The system (5.13) must be solved in conjunction with the evolution of the current
ū also on the slow time scale τ (§ 10).

With (5.4) the drag forcing in the PDE in (5.13) is

div[Dh′
w ] = −c1

(
(gaF)2k

σ 2

)
(k · ∇h)[D cos[Θ]]

= c1

(
(gaF)2k

σ 2

)
{k2D sin[Θ] − (k · ∇hD) cos[Θ]}. (5.15)

In the particular case of horizontally uniform vegetation, ∇hD = 0, and we can factor
Φ ′

d for its (xh, z, t) dependences,

Φ ′
d = ϕd(z) sin[Θ], (5.16)

where ϕd satisfies a one-dimensional (1-D) boundary-value problem from (5.13):

[∂2
z − k2]ϕd = D(z)c1

g2a2k3

σ 2 F2(z),[
∂z − σ 2

g

]
ϕd = −2σ∂τ a at z = 0,

∂zϕd = 0 at z = −H.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.17)

Furthermore, this 1-D problem only needs to be solved once at each slow time τ as a(τ )

evolves. Or, even more efficiently, it can be partitioned into two problems that only need to
be solved once – one with only ordinary differential equation forcing by the interior factor
of a2, the other with only surface boundary forcing by the factor of ∂τ a – then the two
answers are superposed with the current values of a(τ ) and ∂τ a(τ ) as their factors.
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6. Current effects on the waves (CEW)

In WCI22 (chapter 5) the quasi-linear theory is presented for CEW in u′
c, and the relevant

parts of it will be repeated briefly. The wave momentum equation is linearized with
respect to wave–current advection, i.e. CEW occurs at O(μ) compared to the primary
wave balance with respect to the current effects, and (2.1) is approximated as

∂tu′
c + f ẑ × u′

c = −∇φ′
c − ∇(u′

w · ū) + u′
w × ζ̄ ,

∇ · u′
c = 0,

}
(6.1)

where ζ̄ is the current vorticity. Besides the pressure gradient, the right-hand-side wave
forces are the gradient of the wave Bernoulli head and the wave vortex force. The
associated vertical boundary conditions on u′

c, φ′
c and η′

c are (5.12) now with a non-zero
ūh. Because the wave components for both drag and current satisfy linear equations, they
can be superposed in u′.

In this and the next sections a is complex (see § 4).
As before in (5.5), the wave component u′

c is decomposed into vortical and divergent
components,

u′
c = uζ ′

c + uΦ′
c . (6.2)

Taking the results from WCI22 (section 5.2), with modifications for finite kH, the wave
vorticity associated with (6.1) is

ζ ′
c = ∇ ×

(∫ t
u′

w dt
)

× ( f ẑ + ζ̄ )

= ∇ × ag
σ 2 {iF(k × ( f + ζ̄ z)ẑ) + Gk(ẑ × ζ̄ h)}E

2
+ c.c. (6.3)

The gradient cross-product in this relation can be inverted to yield the vortical velocity
component uζ ′

c = (∇×)−1ζ ′
c, disregarding a possible contribution to the divergent

component. The result is

uζ ′
c = ga

σ 2

⎛
⎝ iky( f + ζ̄ z)F(z) − kζ̄ yG(z)

kζ̄ xG(z) − ikx( f + ζ̄ z)F(z)
i(kxζ̄ y − kyζ̄ x)F(z)

⎞
⎠E

2
+ c.c. (6.4)

As with uΦ′
d in § 5, the irrotational (divergent) velocity component is the gradient of a

potential function,

uΦ′
c = −∇

∫ t
Φ ′

c dt, (6.5)

where Φ ′
c = φ′

c + u′
w · ū is a combined pressure and Bernoulli-head potential. Following

the same derivation path as outlined in § 5, the associated boundary-value problem for Φ ′
c
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is the following:

∇2Φ ′
c = −∇

(∫ t
φ′

w dt
)

· ∇2ū

= ag
σ

(F(z)k · ∇2ūh − iG(z)k∇2w̄)
E
2

+ c.c.,[
∂z − σ 2

g

]
Φ ′

c = −2
g
∂t∂τφ

′
w − 2

g
∇h(∂tφ

′
w) · ūh − ∇h

(∫ t
φ′

w dt
)

· ∂zūh

− 1
g
(∂tφ

′
w)(∇h · ūh) at z = 0

=
(

2iσ∂τ a + aσ
(
−2k · ūh + g

σ 2 k · ∂zūh + i∇h · ūh
)) E

2
+ c.c.

at z = 0,

∂zΦ
′
c = ẑ · uh′

w × ζ̄ h = aσ

2k
cosh[2kH]
sinh[kH]

k · ∂zūhE
2

+ c.c. at z = −H

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.6)

(cf. WCI22, section 5.2). This system is functionally consistent with (5.13) for Φ ′
d except

for the replacement of drag-effect forcing there with current-interaction forcing and the
presumption that the slow-time coordinate is τ = μt. As in § 5 for u′

d, the elliptical system
(6.6) is to be solved as ū evolves, along with the evaluation of (6.4), to obtain u′

c using
(6.2) and (6.5).

If the currents themselves are three-dimensional (3-D), then (6.6) cannot be reduced to
a 1-D vertical problem like (5.17), but they can be if ū = ūh(z) only, in which case the
familiar Doppler-shifting effect on the frequency and wave vertical profile is recovered
(WCI22, appendix J.1).

7. Synthesis of the wave perturbations

In §§ 5 and 6 the effects on the wave modifications due to wave drag and CEW are
expressed in functionally similar ways. To make a more generally useful theory, it seems
worthwhile to combine them, taking advantage of the fact that the associated u′ fields
are determined by linear relationships, hence are superposable. Both formulations include
the possibility of a slow-time evolution of the primary wave amplitude, a(τ ), and they
have a solvability condition (§ 8) that brings these two effects together. Therefore, a
formal synthesis is now made under the scale-ordering assumption that ν ∼ μ (§ 3),
and this can be considered the distinguished limit for this multiscale asymptotic theory.
If these parameters had disparate magnitudes, then either the drag or current effects
would be dominant, with corresponding consequences for the wave-averaged evolution
(§ 10); however, the assumption that they are comparable is the more general case that
incorporates both possibilities. The combined slow-time coordinate is thus the fastest of
the preceding τ coordinates.

In this section and the following one, the wave amplitude a(τ ) is a complex function
only of slow time (§ 4); thus, the drag-related formulae are slightly modified from § 5.

Consider a combined wave-modification velocity,

u′
m = u′

d + u′
c, (7.1)
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which itself is decomposed into vortical and irrotational components, uζ ′
m and uΦ′

m . The
accompanying fields η′

m, φ′
m and Φ ′

m are analogous combinations.
The goal is a wave-averaged theory, and thus the ‘fast’ dependence should be separated

from the wave-averaged dependence. This is done by factoring E/2 in the various u′
m

relations and focusing on their generally complex coefficient fields; e.g. for

Φ ′
m = Q

E
2

+ c.c., (7.2)

the complex factor Q(x, τ ) is entirely a wave-averaged quantity. For u′
m, choose an

analogous complex factor, Um = Uζ + UΦ , so that

u′
m = Um

E
2

+ c.c. (7.3)

For the vortical velocity components in (5.10) and (6.4), the combined factor is

Uζ
m = − iDc1(gF(z))2|a|ak

σ 3 k + ga
σ 2

⎛
⎝ iky( f + ζ̄ z)F(z) − kζ̄ yG(z)

kζ̄ xG(z) − ikx( f + ζ̄ z)F(z)
iẑ · k × ζ̄ hF(z)

⎞
⎠. (7.4)

For the irrotational velocity component, the elliptical PDE system for the combined factor
Q from (5.13) and (6.6) is the following:

[∇2 + 2ik · ∇h − k2]Q = −c1
(gF(z))2|a|ak

σ 2 (k · ∇hD + ik2D)

+ ag
σ

(
F(z)k · ∇2ūh − iG(z)k∇2w̄

)
,[

∂z − σ 2

g

]
Q = 2iσ∂τ a + aσ

(
−2k · ūh + g

σ 2 k · ∂zūh + i∇h · ūh
)

at z = 0,

∂zQ = aσ

2k
cosh[2kH]
sinh[kH]

k · ∂zūh at z = −H.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.5)

Notice that this system has combined the forcing term ∝ ∂τ a that is present in both (5.13)
and (6.6). Finally, the associated irrotational velocity factor is

UΦ
m = 1

σ
(Qk − i∇Q). (7.6)

In both (7.5) and (7.6) the 3-D gradient operator ∇ has been expanded to include its action
both on E and on the wave-averaged factor Q.

Once a(τ ) is known (§ 8), then (7.3)–(7.6) determine the u′
m field sufficiently to evaluate

the WEC terms in the current evolution equations (§§ 9 and 10).

8. Solvability condition for wave amplitude a(τ)

In perturbation expansions, a common technique is to enforce an orthogonality condition
between a leading-order quantity – here the primary wave u′

w – and its small perturbation
u′

m to avoid ‘resonant’ forcing of the perturbation that upsets the asymptotic ordering in
space and/or time. Combining (5.13) and (6.6) and formally defining the inhomogeneous
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terms as R• factors in the PDE and boundary conditions gives the following PDE system
for the wave-correction velocity potential:

∇2Φ ′
m = Ri,(

∂z − σ 2

g

)
Φ ′

m = R0 at z = 0,

∂zΦ
′
m = RH at z = −H.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8.1)

The homogeneous solution to this system is the φ′ eigenmode, G = F(z)E , with the
eigenvalue σ and wavenumber vector k, i.e. the primary wave (§ 4). There is an analogous
G† = F(z)E† for any other k† with the same wavenumber magnitude k (i.e. for a circle in
k-space of radius k).

The solvability condition that suppresses excitation of a homogeneous solution in Φ ′
is obtained as follows (WCI22, appendix E). Multiply the PDE in (8.1) by the complex
conjugate of G† (denoted by a ∗ superscript), integrate over the domain volume and then
integrate by parts to insert the boundary conditions from (8.1). The result is the solvability
condition: ∫∫∫

dxG†∗Ri(x) =
∫∫

dxh (G†∗(0)R0(xh) − G†∗(−H)RH(xh)). (8.2)

Define a horizontal wavenumber projection operator,

P†[ · ] ≡ 1
A

∫∫
dxh E†∗[ · ], (8.3)

with the property that

P†[E ′] = δk′,k† . (8.4)

In the above, A is the horizontal area of the domain.
The solvability condition (8.2) can be more compactly expressed as an integral only over

z: ∫ 0

−H
F(z)P†[Ri] dz = F(0)P†[R0] − F(−H)P†[RH]. (8.5)

This condition must be satisfied for all k†. Because R0 contains a term with (∂τ a)E and
all the other R• terms depend only on aE , this condition gives a first-order differential
equation for a(τ ). This assures that Q(x) will not have a component proportional to F(z)
without any associated xh structure. Once the a(τ ) are determined from (8.5), then (7.5) is
a well-behaved PDE system for Φ ′

m.
Notice that the solvability condition (8.5) for a(τ ) depends only on D, the primary wave

properties, and the current ū, i.e. it does not require knowing the solution for u′
m. So a(τ )

can be determined independently.
In advance of more complete solutions with both drag and current effects on the waves,

the simple situation of drag without any current or Coriolis effect (i.e. ū = f = 0) and
with a horizontally uniform canopy (i.e. ∇hD = 0) can be evaluated using (8.5). In this
case, the projection operations are trivial except for k† = k, and the solvability condition
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becomes ∫ 0

−H
F(z)

(
−i

(g2|a|ak3)

σ 2 F2Dc1

)
dz = F(0)2iσ∂τ a. (8.6)

After rearrangement, one obtains

∂τ a = −J|a|a, J = c1
g2k3

2σ 3

∫ 0

−H
F3(z)D(z) dz. (8.7a,b)

With a slow-time initial condition of a(τ0) = a0 > 0, the solution is a real, positive
amplitude function:

a(τ ) = a0

1 + r(τ − τ0)
, r = a0J = c1

g2k3a0

2σ 3

∫ 0

−H
F3(z)D(z) dz. (8.8a,b)

This shows a slow-time, inverse-linear decay in the primary wave amplitude at a rate r
that depends on the primary wave properties, including its initial amplitude, the canopy
density and the drag coefficient. (A similar linear-decay dependence for wave amplitude
is found for canopy-drag effects in Dalrymple et al. (1984), but with somewhat different
functional dependences than in r associated with how D is specified.)

With non-zero currents (ū /= 0), the implications of (7.4)–(7.6) and (8.5) must mostly
wait for combined drag and current solutions in a computational code built on top of the
equations derived here. However, an important issue is the possibility of wave–current
resonance, which is discussed extensively in WCI22 (chapters 7 and 8 and appendices J
and K). If the current field has a wavenumber component p, and if |k†| = |k ± p| = k,
then there can be a slow-time energy exchange between the amplitudes a(τ ; k) and
a(τ ; k†). This occurs through the quadratic product of primary wave and current fields
in the quasi-linear advection terms in (6.1). That is, new primary waves can arise through
the wave–current interaction, and wave energy can be exchanged among these resonant
components. In principle, their amplitudes can become as large as that of the original
primary wave. Several idealized examples of wave–current resonance for particular ū(x)

fields are analysed in WCI22, and in all such cases the slow-time amplitude behaviour is
oscillatory between primary wave modes under the condition of steady currents. For most
simple currents ū(x) and primary wave u′

w fields, however, there is no resonance and no
current-induced change in a. If there are multiple primary waves present (Appendix B),
then the solvability conditions are still valid, although this would compound the resonant
possibilities.

As the currents evolve with WEC and other influences (§ 10), it is presently unknown
how often wave–current resonance might be an important phenomenon. (All of the papers
cited in § 1 ignore this possibility except for WCI22.) A computational simulation strategy
for dealing with it is also discussed in WCI22 (chapter 9), but it has not yet been
implemented. For now, it remains an open issue for solving a quasi-linear wave model
like the one here.

9. Wave-averaged drag force

The wave-averaged drag force is

D̄h = −D〈|uh|uh〉, (9.1)

and the total velocity is defined in (2.4) and (2.5). In support of the WEC model in § 10,
the goal is to obtain a wave-averaged formula for D̄ without having to do wave-resolved
evaluations, nor even having to solve the elliptic problems for uΦ′

d or uΦ′
c .
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For the results in this and the following section, a is real and positive (§ 4), and the
approximation (5.4) is made for Dh′

w .
As a first step, consider an approximate form for the quadratic term in the drag law for

a sum of velocities, u + v, when |v| � |u|:
|u + v|(u + v) ≈ |u + v|u + |u|v

≈ |u|u + (u · v)
u
|u| + |u|v, (9.2)

neglecting second-order terms in v.
Assume, as in (3.2) and §§ 3–5, that the largest velocity is uh′

w . Inserting (2.4) and (2.5)
into (9.1) – with the preceding approximation and ν ∼ μ ordering for uh′

m and ūh – gives

D̄h = −D
〈(

|uh′
w |uh′

w + uh′
w · (ūh + uh′

m)
uh′

w

|uh′
w | + |uh′

w |(ūh + uh′
m)

)〉
. (9.3)

The first right-hand-side term has already been evaluated to have a zero average in (5.3a,b).
Because both u′

w and u′
m are ∝ E in their fast-time dependence, here two other wave

quantities that are either linear or cubic in their signed dependence on E also have zero
average because of the odd sign symmetry in different phases of Θ . Thus,

〈|uh′
w |uh′

w 〉 = 0,〈
(uh′

w · uh′
m)

uh′
w

|uh′
w |

〉
= 0,

〈|uh′
w |uh′

m〉 = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.4)

This is because they are proportional to the trigonometric functions of Θ in a way that has
equal magnitude and opposite sign over the interval of [0, 2π].

In contrast, (uh′
w · ūh)uh′

w/|uh′
w | and |uh′

w | are single-signed and have non-zero averages.
(These cancellations also extend to the relatively weak higher harmonics in u′

w (figure 1);
see Appendix A.) Furthermore, for terms linear in the magnitude of | cos[Θ]|, the
averaging operation gives

1
2π

∫ 2π

0
|cos[Θ]| dΘ = 2

π
. (9.5)

Thus, with (4.3) the wave-averaged drag force (9.1) is

D̄h = −D
〈
(uh′

w · ūh)
uh′

w

|uh′
w | + (|uh′

w | + ūh)ūh
〉

= −D
(

2ag
πσ

F(z)
(

kūh + k · ūh

k
k
)

+ |ūh|ūh
)

. (9.6)

In an ad hoc way (i.e. beyond leading order in μ), the last term is added to have a
well-behaved limit in the absence of a primary wave when the drag is entirely due to the
current.

Thus, the canopy exerts a horizontal drag force on the currents that is enhanced by the
primary wave. The spatial structure of this drag is the product of the canopy distribution
D(x), the wave eigenmode profile F(z) and the horizontal current itself uh(x). It is
retarding in the direction of the current in all three of the terms in (9.6); i.e. the drag work,
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D̄h · ūh, is negatively proportional to each of (ūh)2, (k · ūh)2 and |ūh|(ūh)2. The first two
terms in (9.6) have a scaling magnitude of (νμ)C2/, while the last term is (νμ2/ε)C2/,
where  is a length scale for both the waves and the currents. As desired, (9.6) is expressed
entirely in terms of wave-averaged quantities. Notice that there is no dependence on u′

m,
so the wave perturbations need not be solved for, apart from whatever a(τ ) dependence is
caused by the solvability condition (§ 8).

It would be straightforward to extend the representation of D̄h to include a bottom
drag stress and again have a wave enhancement over the dependence on only ūh. The
form is likely to be similar to (9.6), which is functionally different from presently used
parametrization formulae for wave-enhanced bottom stress in a turbulent bottom boundary
layer (e.g. Feddersen et al. 2000). This issue is worth further consideration.

10. Wave effects on the currents (WEC)

The approximate wave-averaged current evolution equations for the general model (2.1)
are

[∂τ + ū · ∇]ū + f ẑ × uh + ∇φ̄ = −∇B̄ + 〈u′ × ζ ′〉 + D̄h,

∇ · ū = 0,

}
(10.1)

with vertical boundary conditions of w̄ = 0 at z = 0 and −H (i.e. a rigid flat top and
bottom; see WCI22, chapter 6, but with D̄h added). The time coordinate is again τ = μt,
based on the advective time scale of current evolution, although one can also view this as
valid for τ = νt when ν ∼ μ (§ 7).

The added forces due to the presence of waves are on the right-hand side of (10.1). The
wave-averaged drag D̄h is in (9.6). The wave-averaged Bernoulli head is

B̄ = 1
2 〈u′2〉/2 (10.2)

(WCI22, chapter 6), and it does not have to be evaluated explicitly because the ‘pressure
Poisson’ equation from the incompressibility condition in (10.1) gives a combined
expression for the potential force, φ̄ + B̄, as part of the time integration of (10.1) for ū.
This assumes that the lateral boundary conditions are consistent with their combination,
as certainly is true for horizontal periodicity. The approximate rigid-lid condition on
w̄ is associated with a higher-order kinematic surface boundary condition that is a
diagnostic relation for wave-averaged sea level, η̄, which is much smaller than η′

w (WCI22,
appendix B).

The total wave-averaged vortical force is a combination of drag and current effects on
the waves:

VF = 〈u′ × ζ ′〉 ≈ 〈u′
w × (ζ ′

d + ζ ′
c)〉, (10.3)

where the wave vorticities are in (5.9) and (6.3). In a way that is familiar in the papers
referenced in the introduction, the wave-averaged wave vortex force associated with the
currents is

SVF = 〈u′
w × ζ ′

c〉 = uSt × ( f ẑ + ζ̄ ) − ∇C̄,

C̄ = ẑ ·
∫ 0

−H
uSt(z′) dz × ( f ẑ + ζ̄ )

⎫⎪⎬
⎪⎭ (10.4)

(WCI22, section 6.1 and appendix G). The right-hand-side terms are evaluated using
(4.3) and (6.4). The first term is the familiar Stokes–Coriolis and Stokes–vorticity forces.
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The second term ∇C̄ does not have to be evaluated explicitly because it, too, combines
into the total potential force for the ū evolution.

The WEC vortical force associated with the wave-drag vortex force is evaluated using
(4.3) and (5.9):

CVF = 〈u′
w × ζ ′

d〉 = −c1
g3a3k2

2σ 4 G(z)∂z[DF2]k. (10.5)

Because D, F, G and ∂zF2 are all positive from (1.2) and (4.4), this force can be either
retarding or accelerating in the direction of primary wave propagation, depending on the
depth profile of the canopy structure, ∂zD ∝ ∂zα(x) in (1.2). A scaling estimate is CVF ∼
νε2C2/, compared to SVF ∼ με2C2/; i.e. they are of similar magnitude if ν ∼ μ. As
remarked following (9.6), the wave-enhanced drag terms are D̄h ∼ νμC2/; therefore, all
three wave forces are comparable if ε2 ∼ μ ∼ ν.

Thus, the final form of the current momentum balance is

[∂τ + ū · ∇]ū + f ẑ × uh + ∇Π̄

= VF + D̄h

= −c1
g3a3k2

2σ 4 G(z)∂z[DF2]k + uSt × ( f ẑ + ζ̄ ) + D̄h, (10.6)

where Π̄ = φ̄ + B̄ + C̄ is the combined force potential function, VF = CVF + SVF is
the combined vortex force and D̄h is the combined drag force on the currents (9.6). The
right-hand-side terms are, respectively, the vortex force due to canopy drag on the waves
CVF , the Stokes vortex forces SVF and the wave-enhanced current drag. This equation is
the principal result in this paper.

Notice that (10.6) is entirely specified in terms of D, ū and the primary wave properties.
Among the latter is the slow-time evolution of the primary wave amplitude a(τ ) as
determined from the solvability condition (8.5) that includes canopy wave damping and
possible wave–current resonances. This system is readily implemented in an LES or
circulation model, with the most challenging new element being the solvability condition
(§ 8) that has heretofore been neglected in wave–current interaction studies.

The vortex force is a product of the quasi-linear CEW theory (§ 6) at leading order
in μ (WCI22, section 5.1); the higher-order CEW and WEC terms presented in WCI22
(sections 5.2 and 6.6) are not included here, although they could be, as their forms are
known. But this would require explicit solutions of the elliptic problems in §§ 5–7 that are
not required for (10.6). Recall that another approximation is indicated in (5.3a,b), where
the weak higher harmonics in Dh′

w are neglected; this simplifies the theory, and Appendix A
shows that this approximation is fairly accurate for representing the further consequences
of Dh′

w in § 5, hence in D̄h as well.

11. Weaker waves

For the preceding u′
c, uSt and SVF results, it does not matter how small ε � 1 is. However,

this is not true for the canopy effects. They were derived for the scaling relation (3.2), i.e.
μ � ε, which yields the analytic relations in § 5 that carry through to the current effects
in § 10. If the wave orbital velocities are weaker, with μ ∼ ε, then the total drag force (1.1)
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at leading order, viz.

Dh = −D|uh′
w + ūh|(uh′

w + ūh) ≡ Dh′
w + D̄h, (11.1)

does not have explicit analytic expressions for its fluctuation and wave-averaged drag-force
components for the primary wave eigenmode (4.3) and a general current field ū(x). Thus,
at every location x and slow time τ , these forces must be computed by taking a numerical
average for D̄h over the primary wave period as an auxiliary calculation for the current
evolution equation.

The resulting Dh′ = Dh − D̄h can then be used to evaluate (5.6) as

∂tζ
′
d = curl[Dh′]

=
⎛
⎝ −∂zDy′

+∂zDx′
−ẑ · ∇h × Dh′

⎞
⎠, (11.2)

with discretized spatial derivatives in the right-hand-side quantities. Similarly, a spatially
discretized ∇h · Dh′ can be used to evaluate the solvability condition (8.5), also by
numerical averaging with the projection operator P . There is no need to solve for u′

m
with weaker waves.

For the current evolution equation analogous to (10.6), the current drag D̄h can be
inserted directly, and the canopy vortex force CVF is calculated as follows:

CVF = 〈u′
w × ζ ′

d〉 =
〈
u′

w ×
∫ t

curl[Dh′] dt
〉

= −
〈(∫ t

u′
w dt

)
× curl[Dh′]

〉

=
〈⎛
⎜⎜⎜⎝

(∫ t
v′

w dt
)

(ẑ · ∇h × Dh′) +
(∫ t w′

w dt
)

∂zDx′(∫ t w′
w dt

)
∂zDy′ −

(∫ t u′
w dt

)
(ẑ · ∇h × Dh′)

−
(∫ t uh′

w dt
)

· ∂zDh′

⎞
⎟⎟⎟⎠

〉
. (11.3)

With the primary wave (4.3) and real a, this becomes

CVF = ga
σ 2 〈F sin[Θ](ẑ · ∇h × Dh′)(ẑ × k)

+ kG cos[Θ]∂zDh′

+ F sin[Θ](k · ∂zDh′)ẑ〉. (11.4)

Again a fast-time numerical average over a primary wave period is needed, as indicated
by the angle brackets, where Θ and Dh′ are the fast-time variables. In (11.4) the first two
lines are horizontal components of CVF , and the final line is a vertical component. Thus,
in this weaker wave case, the wave-averaged effects on the currents (WEC) are still well
determined, but at the cost of added numerical averages of the wave-induced drag and
canopy vortex force.

If the primary wave is even weaker, with u′
w � ū and ε � μ, then D̄h ≈ −D|ūh|ūh, and

CVF is much smaller than, for example, the advective tendencies in the current evolution
equation. That is, wave effects on currents (WEC) are negligible, and the most important
interaction is current effects on waves (CEW) (e.g. a Doppler shift in σ ) and a fluctuating
canopy drag force on the waves.
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12. Multiple primary waves

Now reverting to the principal scaling assumption (3.2), a wave-averaged theory is still
achievable for multiple components in the primary wave field, i.e. for N components,

η′
w =

N∑
n=1

an
En

2
+ c.c., (12.1)

with amplitudes an and exponential phase factors En = exp[iΘn] with Θn = kn · x − σnt.
Again, these waves are eigenmodes with σn as in (4.2) for kn, accompanying fields as in
(4.3), vertical structure functions Fn and Gn as in (4.4), and a Stokes drift uSt(z) as in (4.6)
that is a sum over the N separate contributions.

However, such a theory has added complexity in dealing with the drag effects on both
the waves and currents. In particular, for use in the drag force on the waves (§ 5), the
formula (5.1) is evaluated with the primary wave horizontal velocity,

uh′
w =

∑
n

gan

σn
Fn(z)kn

En

2
+ c.c., (12.2)

which then propagates through the equivalents of §§ 5–10. The source of the complexity is
that analytic expressions are no longer available for Dh′

w , D̄h and CVF . Besides necessary
numerical averages over the primary wave periodic interval for these quantities and in
the solvability condition (8.5) (as in § 11), the simplifications in (9.4) are no longer
strictly valid, so that u′

m = u′
d + u′

c contributions to D̄h would also need to be solved
for computationally with the elliptic PDE system (7.5). This adds up to a considerable
computational burden beyond what is involved with the analytic expressions in §§ 9
and 10.

As discussed in Appendix B, some quantitative exploration of Dh with multiple waves
gives support for thinking that there may be useful approximate shortcuts to the full
programme of numerical evaluations in the preceding paragraph. In particular, solving
for u′

m to evaluate D̄h in (9.3) might not be necessary if their associated quantities in (9.4)
are not too large compared to the u′

w contributions. Of course, this would need to be tested
in particular problems of interest.

On the other hand, the CEW corrections in §§ 6–8 are easily generalized with multiple
primary waves by simple superposition (as discussed in WCI22), as are their associated
WEC terms in § 10. This superposition can even be extended to broadband wave spectra,
e.g. for uSt in SVF .

For weaker waves (§ 11), multiple primary waves add only a modest burden to the
indicated numerical evaluations, with u′

w in the formulae (11.1) and (11.3) understood to
be the summation over the multiple primary wave components. The wave perturbations u′

d
and u′

c continue to be negligible in this case.

13. Summary and prospects

This paper presents a theory for the wave-averaged effects of surface gravity waves and
currents in the presence of a vegetative canopy, suitable for a modified LES or fine-scale
circulation model. The principal new effects – compared to previous wave-averaged
models with only a mean-current drag force and the Stokes vortex forces associated with
the currents (e.g. Yan et al. 2021) – are a wave-amplitude damping (8.5), a wave-enhanced
current drag (9.6) and a wave-drag vortex force (10.5). The model includes WEC for
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current evolution (§ 10) plus wave damping and possible resonances for the primary wave
amplitude(s), a(τ ; k). For a single primary wave field, the set of resonance amplitudes
is limited to a circle in k space, which should not be burdensome to calculate (versus a
broadband wave field). Interestingly, apart from its role in setting up the wave amplitude
equations, the irrotational part of the wave perturbations, uΦ′

d + uΦ′
c , need not be solved

for this model. This feature is in common with the original Stokes vortex-force models
(e.g. Craik & Leibovich 1976) at leading order in μ, where knowledge of uζ ′

c suffices for
determining the WEC expression in SVF .

For weaker waves (§ 11) and a fortiori for multiple primary waves (§ 12 and
Appendix B), a wave-averaged theory for the current evolution is feasible in principle
but probably laborious in practice because of the extra computational evaluations to
obtain the final WEC equations. From this perspective, the monochromatic primary wave
theory presented here, with its analytic wave-averaged expressions, is useful for clarifying
wave-enhanced drag and vortex force effects and for supporting a rather straightforward
computational implementation for current evolution. However, the generalization to
multiple primary waves or a realistic broadband wave spectrum is much more daunting and
might eventually require some form of wave-resolved modelling. If this were done, some
‘long-wave’ approximation to the free-surface dynamics could avoid the complexities of
resolving spectrum broadening and wave breaking (versus its parametrization). Also, it
would likely be advantageous to do a split-explicit time stepping (as commonly done for
circulation models by separating the barotropic and baroclinic vertical modes (Shchepetkin
& McWilliams 2005)) with fast time stepping of the surface gravity wave component
and subsequent numerical averaging on the slow time step of the currents. This type of
hybrid wave–LES model would be a pioneering task. It could bypass the need for a formal
wave-averaged theory, although it is likely that such theories as here would be useful
for interpreting the computational results. Nevertheless, the community experience with
Langmuir turbulence and depth-induced nearshore wave breaking indicates that important
lessons can be learned even with only a monochromatic wave field representing the
spectrum-peak component.

It seems worthwhile to proceed to a computation implementation of (10.6), e.g.
for a kelp canopy, while also including the necessary non-conservative current effects
(including some form of wave-enhanced bottom drag for the currents; see § 9), and, for
now, without a formal extension of the theory to include buoyancy effects. The latter has
been done previously for wave-averaged CEW and WEC theories (McWilliams et al. 2004;
WCI22, chapter 10), and it probably would contain no surprises with a canopy. The waves
are not influenced by buoyancy because the surface-interface gravitational force is so much
stronger than the force associated with interior stratification, and the main additional WEC
influence is Stokes-drift buoyancy advection. An important implementation ingredient
is sufficient experimental information about D(x), which often is not easily obtained.
Nevertheless, many nearshore and estuarine sites have marine vegetation that is likely
to be influential on the local currents and material transports.

Another necessary extension for nearshore realism in the wave-averaged theory and
computational model built upon it is inclusion of both bottom drag and variable bottom
depth. The former is briefly alluded to at the end of § 9 and is not inherently difficult.
The latter is naturally a part of the resolved current dynamics, and small-scale roughness
elements are a part of a Monin–Obukhov specification of the bottom drag coefficient.
However, further thought is needed for how to efficiently include finite-height, finite-width
(versus horizontally slowly varying, where a ray theory would be appropriate) depth
variations in the wave component of the flow. Perhaps this, too, would be an argument
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for developing a long-wave free-surface LES model as mentioned in the second paragraph
of this section. At the present time, oceanic LES examples for flow over such topography
are rare, even in the absence of surface wave effects – but see Calhoun & Street (2001),
Calhoun, Street & Kosoff (2001) and Skyllingstad & Wijesekera (2004).

Beyond the derivation of wave-averaged equations, a measured programme of idealized
computational experiments would be the right next step. Among the references in § 1
are various experimental results about wave damping in the presence of currents, and
a computational implementation of this theory could take advantage of their various
determinations of D = α(x)CD. In an oceanically targeted LES model with finite depth
and bottom-rooted vegetation such as kelp, simple geometries of different plant profiles
and different horizontal patches could be explored with various surface stress and
buoyancy flux and primary waves to assess how the combined wave–current–canopy
interactions manifest. Our recent papers partly set this framework (Yan et al. 2021; Yan,
McWilliams & Chamecki 2022), but as yet without the wave-enhanced drag effects.
Beyond these idealized studies, some field conditions could be targeted for experimental
testing. For various motivations, it would be timely to focus on kelp examples, both the
heterogeneous natural patches found in shallow water outside the surf zone and the present
and future suspended-platform aqua-farm configurations.

It is a delicate balancing act between do-able theories that enable informative
complex-flow simulations and their underlying approximations that are only marginally
defensible compared to nature’s true complexities. Formulating, solving and experimentally
testing feasible, relevant problems involving waves, currents, topography and canopies still
have a long way to go.
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Appendix A. Full drag force Dh
w for a monochromatic primary wave

In § 5 an approximation is made to (5.2) in (5.3a,b) based on their similarity of shape in
figure 1. Now the modifications based on not making this approximation are shown.

The full drag formula is rewritten as

Dh
w = −D

(
(ga)2F2k

σ 2

)
kH(Θ) (A1)

with

H(Θ) = |cos[Θ]| cos[Θ]. (A2)

As with its approximate form, 〈H〉 = 0; i.e. the wave drag is entirely oscillatory. The phase
function H is shown in figure 2 along with its approximate form.

Again, a vortical–irrotational decomposition is made for the wave perturbation u′
d. The

vortical part again satisfies (5.6), but now the drag forcing term, curl[Dh′
w ], is the same as
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Figure 2. Plots of the full-drag phase functions, H(Θ ′) (black solid line), I(Θ ′) (red solid line) and K(Θ ′)
(blue solid line), over one wave period in Θ ′ = σ t/2π. Their counterparts to (A2), (A3) and (A6) with the
approximation in (5.3a,b) are plotted with thin dashed lines with their corresponding colours. (The black lines
replicate the lines in figure 1.)

(5.7) except that c1 cos[Θ] is replaced by H[Θ]. To integrate the vorticity tendency, define

I(Θ) ≡
∫ Θ

H(Θ) dΘ = 1
2

sign[cos(Θ)]
(

Θ + 1
2

sin[2Θ]
)

. (A3)

The second-line formula is taken from the Wolfram integrator (http://integrals.wolfram.
com/index.jsp), and the function is plotted in figure 2. This function I(Θ) replaces
c1 sin[Θ] in (5.9) and (5.10):

ζ ′
d = g2a2k

σ 3

⎛
⎝ −ky∂z[DF2]

+kx∂z[DF2]
−F2(ẑ · k × ∇hD)

⎞
⎠I(Θ],

uhζ ′
d = D

(
(ga)2F2k

σ 3

)
I[Θ]k, w′

d = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A4)

The irrotational potential PDE forcing (5.15) is

div[Dh′
w ] = −

(
(gaF)2k

σ 2

)
(k · ∇h)[DH[Θ]]

= −
(

(gaF)2k
σ 2

)
{k2DK[Θ] + (k · ∇hD)H[Θ]}, (A5)

where
K(Θ) ≡ ∂ΘH = −2|cos[Θ]| sin[Θ]; (A6)

see figure 2. This function K(Θ) replaces −c1 sin[Θ]. Now the PDE system (5.13) for Φ ′
d

no longer has such a simple separable solution as in (5.16) even when ∇hD = 0 because
the differential equation and surface boundary condition have different dependences on Θ .
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Section 6 is unaltered by the more general form of Dh
w here. The synthesis of drag and

current effects on the waves in § 7 changes in the way indicated above for § 5 and will not
be repeated. However, because the Θ dependences are no longer simply proportional to E ,
the solution for Φ ′

m and u′
m can no longer be simply factored as in (7.2) and (7.3).

The general discussion of the solvability condition (§ 8) still applies. For the particular
example of drag in a uniform canopy (i.e. ū = f = ∇hD = 0, as in (8.6)–(8.8a,b)), the
relevant form of the projection operator is

P[•] = 2〈sin[Θ]•〉, (A7)

which yields a value of 1 when applied to the coefficient sin[Θ] of ∂τ a in R0. When applied
to the coefficient of div[D′

h] in (A5) in Ri, the result using (A6) is

P[−K(Θ)] = 2
1

2π

∫ 2π

0
2|cos[Θ ′]| sin2[Θ ′] dΘ ′ = 8

3π
, (A8)

i.e. the same value as c1 in § 5 after (5.3a,b); R−H = 0 in this case. Thus, the solvability
condition gives the same result for canopy-induced amplitude decay as in (8.8a,b) whether
or not the approximation (5.3a,b) is made.

The mean current drag, D̄h in § 9, is unchanged with the more complete form of Dh′
w in

(9.6), because it does not depend on u′
d except insofar as the trivial relations in (9.4) are

still valid. This is so because the more general functional shapes in figure 2 have the same
symmetries in Θ as do their approximate counterparts.

In § 10 the drag-induced vortex force 〈u′
w × ζ ′

d〉 involves the drag-induced wave
vorticity,

ζ ′
d = g2a2k

σ 3

⎛
⎝ −ky∂z[DF2]

+kx∂z[DF2]
−F2(ẑ · k × ∇hD)

⎞
⎠I[Θ], (A9)

instead of (5.9). Thus, the wave-averaged vortex force with u′
w from (4.3) and ζ ′

d from
(A9) involves the following quantities:

2〈cos[Θ]I[Θ]〉 = 0,

2〈sin[Θ]I[Θ]〉 = 8
3π

= c1.

⎫⎬
⎭ (A10)

Thus, the outcome is the same as (10.5), and the final form of the current momentum
balance is unaltered from (10.6).

In summary, the more complete quadratic functional form of the wave-drag force
Dh′

w has only slightly different outcomes for the drag-induced wave correction u′
d and

no differences for the wave-averaged drag and vortex forces, justifying the simplifying
assumption made in § 5.

Appendix B. Drag force Dh with multiple primary waves

With multiple primary waves (§ 12), the simple analytic expression for Dh′
w in (5.4) is

not available, nor is D̄h
w = 0. This is illustrated in this appendix and its implications

considered.
The wave-averaged theory is based on a fast-time average over a period T to distinguish

wave and current components. For a clean distinction, all wave components must have
a commensurate frequency such that 2π/σn is an integer fraction of T . Once the

958 A14-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

50
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.50


Surface waves and currents in aquatic vegetation

wave-averaged balances are derived, then T need not be explicit, but with the implicit
assumption that it is short compared to the current evolution on the slow time τ . This is
true asymptotically for μ and ν sufficiently small.

For illustration, consider the case of N = 2. Assume that σ1 ≤ σ2. Choose T such that
both σ1 and σ2 are commensurate frequencies; i.e. the period of the first component
is T/m and the period of the second component is T/q (m and q being integers). The
commensuration requirement is that m ≥ 1 is the least integer such that q = (σ2/σ1)m ≥
m is also an integer. Possible examples are (m, q) = (1, 2), (1, 8), (2, 3) and (7, 15);
notice that these integers can have no common divisors. Define a temporal phase function
Θ̃ = −σ1t. Without loss of generality, choose the direction of k1 to be x̂. Then normalize
uh′

w by the amplitude and phase of its first wave component. Thus, the fast phase behaviour
of the primary wave velocity is represented by the non-dimensional horizontal vector,

U ′(Θ̃) = cos[mΘ̃]x̂ + α2 cos[qΘ̃ + γ2]k̂2. (B1)

Here α2 ≥ 0 is the relative amplitude of the second component; k̂2 = (cos[λ2], sin[λ2])
is its relative wavenumber vector orientation with relative angle λ2; and γ2 is its relative
phase. The function U ′ is periodic in Θ̃ over [0, 2π], and it has zero average, 〈U ′〉 = 0,
for all parameter choices. With respect to the primary wave component drag force, the
question is how the phase average of

Δ(Θ̃) = |U ′|U ′ (B2)

depends on (m, q, α2, λ2, γ2). To assess its average value in relation to its fluctuations, Δ

can be normalized by its r.m.s. value, r.m.s.[Δ] = 〈Δ2〉1/2.
For α2 = 0 (a single component), 〈Δ〉 = 0, as in § 4. Similarly, RΔ ≡ 〈Δ〉/r.m.s.[Δ] →

0 as α2 → ∞; thus, the mean primary wave drag is largest for α2 ∼ 1. Extensive
computational exploration of the parameters listed after (B2) shows that RΔ is always small
compared to unity, usually much smaller, and often zero. An apparent global maximum
value is RΔ = 0.225 for the parameter set (1, 2, 0.65, 0, 0). I know of no analytic formula
for D̄h

w with multiple wave components, but it is readily evaluated in a numerical time
average over the period T .

Thus, D̄h
w is not always zero with multiple waves, although its relative value seems

usually to be small. This leads to a decomposition,

Dh
w = D̄h

w + Dh′
w , (B3)

with Dh′
w the larger right-hand-side quantity. The programme followed in § 5 is based

on the generalization of Dh′
w instead of (5.4). Again, a reduced harmonic component

approximation can be made:

Dh′
w ≈

∑
n

Ah
n cos[Θn], (B4)

where the fast-time dependence has been separated with Θn = kn · xh − σnt + γn and
spatially varying, real vector coefficients Ah

n that are determined by a least-squares fit to
the full Dh′

w (t) in a numerical time average over the commensurate frequency period T .
These fits show that the Ah

n components in general depend on all the primary component
amplitudes {am} and have orientations different from kn. As with the monochromatic
approximation in (5.3a,b), experimentation with two components shows that the relative
error in (B4)) is small, i.e. at most a few tens of a per cent.
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With the approximation (B4), the curl and divergence of Dh′
w are themselves sums over

spatial differential functions of Ah
n times cos[Θn] and sin[Θn]. Thus, ζ ′

d and uhζ ′
d can be

explicitly specified as in (5.9) and (5.10), and so can the right-hand-side forcing terms
in the PDE system (5.13) for Φ ′

d, hence uΦ′
d as in (5.11), both as in § 5. The former

allows an explicit analytic wave averaging of the wave-induced vortex force CVF as a
sum over the components of products of the primary wave uh′

w harmonic coefficients and
the functionals of Ah

n (cf. (10.5) in § 10). The latter allows a numerical evaluation of the
solvability conditions for the primary component amplitudes an(τ ) as averages over the
commensurate period T and the vertical integral in (8.5) in § 8.

Just as D̄h
w /= 0 with multiple wave components, no longer are the several particular

components of D̄h listed in (9.4) zero. As a first level of generalization, the previously
evaluated D̄h

w could be retained in D̄h for the wave-averaged drag. Although it is formally
larger than the other terms in (9.6) by a factor of O(ν−1) or O(μ−1), its relative value
is small compared to its scaling estimate (as discussed in the fifth paragraph of this
appendix). For the other two non-zero terms in (9.4), one could optimistically argue
that they have small relative values compared to the non-zero components in the first
line in (9.6), hence also small compared to D̄h

w, and thereby neglect them. Otherwise, a
numerical solution of (5.13) is required for uΦ′

d , and numerical time averages over T are
required for evaluating 〈(uh′

w · uh′
d )(uh′

w/|uh′
w |)〉 and 〈|uh′

w |uh′
d 〉; these are substantial auxiliary

calculations. (Their counterparts with uh′
c remain zero.) The other non-zero components

listed in the first line in (9.6) could be evaluated with numerical time averages over T using
(12.2).
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