Canad. Math. Bull. Vol. 44 (1), 2001 pp. 19–21

Multiplicities of Binary Recurrences

B. Brindza, Á. Pintér and W. M. Schmidt

Abstract. In this note the multiplicities of binary recurrences over algebraic number fields are investigated under some natural assumptions.

Let \mathbb{K} be an algebraic number field of degree d and u_0 , u_1 algebraic integers in \mathbb{K} , and $\omega \in \mathbb{K}^*$. Furthermore, let $\{u_n\}_{n=0}^{\infty}$ be a non-degenerate binary recurrence sequence with companion polynomial $f(X) \in \mathbb{Z}[X]$. Denote by λ and μ the zeros of f(X). The ω -multiplicity of the sequence $\{u_n\}_{n=0}^{\infty}$ is defined as the number of indices m such that $u_m = \omega$ (*cf.* [ST] and the references given there). For an element $\alpha \in \mathbb{K}$ the (usual) height is denoted by $H(\alpha)$.

Theorem If $\min(|\lambda|, |\mu|) > 1$ and $\max(H(u_0), H(u_1)) > c(d, f, \omega)$, where $c(d, f, \omega)$ is an effectively computable constant depending only on d, f and ω , then the ω -multiplicity of $\{u_n\}_{n=0}^{\infty}$ is at most one.

Therefore if K, ω and the companion polynomial (with $|\lambda| > 1$, $|\mu| > 1$) are given, then apart from some effectively determinable exceptional pairs (u_0, u_1) the ω -multiplicity of the sequence is at most one.

Auxiliary Results

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be nonzero algebraic numbers. Write \mathbb{L} for their splitting field and put $g = [\mathbb{L} : \mathbb{Q}]$. Denote by A_1, \ldots, A_n upper bounds for the respective heights of $\alpha_1, \ldots, \alpha_n$, where we suppose that $A_j \ge 2$ for $1 \le j \le n$. Write

$$\Omega' = \prod_{j=1}^{n-1} \log A_j, \quad \Omega = \Omega' \log A_n.$$

Let b_1, \ldots, b_n be rational integers, not all zero, and set $B = \max\{|b_1|, \ldots, |b_n|, 2\}$.

Lemma 1 If $\Lambda = |\alpha_1^{b_1} \cdots \alpha_n^{b_n} - 1| \neq 0$, then

$$\Lambda > \exp\{-c(n,g)\Omega\log\Omega'\log B\},\$$

where c(n, g) is an effectively computable constant depending only on g and n.

Received by the editors March 9, 1999.

Research supported in part by Grant T25371 from the Hungarian National Foundation for Scientific Research.

AMS subject classification: Primary: 11B37; secondary: 11J86.

[©]Canadian Mathematical Society 2001.

Proof See [SPTS, p. 66].

It is well known that $(\mu - \lambda)u_n = \alpha \lambda^n + \beta \mu^n$ with $\alpha = u_0 \mu - u_1, \beta = u_1 - u_0 \lambda$. The ω -multiplicity therefore is the number of $n \in \mathbb{N}$ with

(1)
$$\alpha\lambda^n + \beta\mu^n = \gamma,$$

where $\gamma = (\mu - \lambda)\omega$. For an upper bound to the number of solutions of (1) in a very general case we refer to the paper of Beukers and Schlickewei [BS]. The crucial point is to handle the algebraic number field case.

Lemma 2 Suppose λ , μ , α , β lie in \mathbb{K} , with $|\lambda| > 1$, $|\mu| > 1$, and λ/μ not a root of 1, $\alpha\beta \neq 0$. Then there is an effectively computable $c_0 = c_0(d, \lambda, \mu)$ such that there is at most one $n \in \mathbb{N}$ with

(2)
$$0 < |\alpha\lambda^n + \beta\mu^n| < \max(|\alpha|, |\beta|) (2 + \log H(\alpha/\beta))^{-\iota_0}$$

Proof c_1, c_2, \ldots will be effectively computable constants depending on d, λ, μ . We may suppose that $|\alpha| \le |\beta|$ and set $h = 2 + \log H(\alpha/\beta)$. Then (2) may be rewritten as

(3)
$$0 < |(-\alpha/\beta)^{1}(\lambda/\mu)^{n} - 1| < |\mu|^{-n}h^{-c_{0}} < |\mu|^{-n}.$$

By Lemma 1,

$$\left| (-\alpha/\beta)^1 (\lambda/\mu)^n - 1 \right| > \exp(-c_1 h \log n).$$

Comparison with (3) and taking logarithms yields $-c_1h \log n < -n \log |\mu|$, hence $n/\log n < c_2h$, hence

$$(4) n < c_3 h \log h.$$

Suppose $0 < n_1 < n_2$ were two solutions of (2), hence of (3). When $c_0 \ge 2$, we have $h^{-c_0} \le 1/4$, and we obtain

(5)
$$|(\lambda/\mu)^{n_2-n_1}-1| < 4h^{-c_0}$$

Since λ/μ is not a root of 1, the left hand side is \neq 0, so that by Lemma 1 it is

$$> \exp(-c_4 \log(n_2 - n_1)) > \exp(-c_5 \log h) = h^{-c_1}$$

by (4). Comparison with (5) gives $h^{c_0-c_5} < 4$, whence $2^{c_0-c_5} < 4$, which is impossible if $c_0 \ge c_5 + 2$.

In what follows, σ will denote embeddings $\mathbb{K} \hookrightarrow \mathbb{C}$, and for $\xi \in \mathbb{K}$ we set $|\xi| = \max_{\sigma} |\sigma(\xi)|$.

Lemma 3 Let $\gamma \in \mathbb{K}^*$, and $\alpha, \beta \in O_{\mathbb{K}}$. Suppose

(6)
$$\min_{\sigma} \min(|\sigma(\lambda)|, |\sigma(\mu)|) > 1$$

and

(7)
$$\max(\overline{\alpha}, |\beta|) > c_6(d, \lambda, \mu, \gamma)$$

Then the equation (1) *possesses at most one solution* $n \in \mathbb{N}$ *.*

20

Binary Recurrences

Proof Set $m = \max(\overline{\alpha}, \beta)$, and suppose *m* is so large that

$$\frac{m}{(2+d\log m)^{c_0}} > \left|\gamma\right|.$$

We may suppose that $\overline{|\alpha|} \le \overline{|\beta|}$, and after an appropriate embedding we may further suppose that $\overline{|\beta|} = |\beta|$, so that $m = \max(|\alpha|, |\beta|)$. Then (1) yields

$$|\alpha\lambda^n + \beta\mu^n| = |\gamma| \le |\overline{\gamma}| < \frac{m}{(2 + d\log m)^{c_0}} \le \frac{\max(|\alpha|, |\beta|)}{\left(2 + \log H(\alpha/\beta)\right)^{c_0}}$$

because $\log H(\alpha/\beta) \le d \log m$, since α , β are in $O_{\mathbb{K}}$. According to Lemma 2, there is at most one such *n*.

Proof of the Theorem

Now λ , μ are rational or are conjugate quadratics, so that min($|\lambda|, |\mu|$) > 1 yields (6). As noted above, we are dealing with (1) where $\alpha = u_0\mu - u_1$, $\beta = u_1 - u_0\lambda$, $\gamma = (\mu - \lambda)\omega$, so that

$$u_0 = \frac{lpha + eta}{\lambda - \mu}, \quad u_1 = \frac{\lambda lpha + \mu eta}{\lambda - \mu}.$$

Since $\alpha, \beta \in O_{\mathbb{K}}$,

$$\max(H(u_0), H(u_1)) \leq c_7(\lambda, \mu) (\max(\overline{\alpha}, \beta))^d$$

and therefore $\max(H(u_0), H(u_1)) > c(\lambda, \mu, d, \omega)$ implies (7).

References

- [1] F. Beukers and H. P. Schlickewei, *The equation* x + y = 1 *in finitely generated groups*. Acta Arith. **78**(1996), 189–199.
- [2] T. N. Shorey, A. J. van der Poorten, R. Tijdeman and A. Schinzel, Applications of the Gel'fond-Baker Method to Diophantine Equations. In: Transcendence Theory: Advances and Applications (eds. A. Baker and D. W. Masser), Academic Press, London-New York-San Francisco, 1977, 59–77.
- [3] T. N. Shorey and R. Tijdeman, *Exponential Diophantine Equations*. Cambridge University Press, Cambridge, 1986.

Kossuth Lajos University Mathematical Institute Debrecen P.O. Box 12 4010-Hungary Kossuth Lajos University Mathematical Institute Debrecen P.O. Box 12 4010-Hungary

University of Colorado at Boulder Department of Mathematics Campus Box 395 Boulder, CO 80309-0395 USA