THE HILBERT SERIES OF RINGS OF MATRIX CONCOMITANTS

YASUO TERANISHI

Introduction

Throughout this paper, K will be a field of characteristic zero. Let $K\left\langle x_{1}, \cdots, x_{m}\right\rangle$ be the K-algebra in m variables x_{1}, \cdots, x_{m} and $I_{m, n}$ the T-ideal consisting of all polynomial identities satisfied by $m n$ by n matrices. The ring $R(n, m)=K\left\langle x_{1}, \cdots, x_{m}\right\rangle / I_{m, n}$ is called the ring of m generic n by n matrices.

This ring can be described as follows. Let X_{1}, \cdots, X_{m} be m generic n by n matrices over the field K. That is $X_{k}=\left(x_{i j}(k)\right), 1 \leq i, j \leq n$, $1 \leq k \leq m$, where the $x_{i j}(k)$ are independent commutative variables over K. Then $R(n, m)$ is the K-algebra generated by X_{1}, \cdots, X_{m}. We denote by $K\left[x_{i j}(k)\right], 1 \leq i, k \leq n, 1 \leq k \leq m$, the commutative polynomial ring generated by the entries of generic n by n matrices X_{1}, \cdots, X_{m}. The subring of $K\left[x_{i j}(k)\right]$ generated by all the traces of monomials in $R(n, m)$ is called the ring of invariants of m generic n by n matrices and will be denoted by $C(n, m)$. The subring of $M_{n}\left(K\left[x_{i j}(k)\right]\right.$ generated by $R(n, m)$ and $C(n, m)$ is called the trace ring of m generic n by n matrices and will be denoted by $T(n, m)$.

The functional equation of the Hilbert series of the ring $T(n, m)$ is proved by Le Bruyn [L1] for $n=2$ and by Formanek [F2] for $m \geq n^{2}$. We prove the functional equation in a more general situation (4.3. Theorem).

Our method is as follows. The trace ring $T(n, m)$ is a fixed ring of $G L(n, K)$ and hence the Hilbert series has a integral expression by a classical result of Molien-Weyl. This formula reduce the problem to a problem of relative invariants for a torus group. By using a theorem of Stanley [S], we can prove the desired functional equation.

The rest of this paper was motivated by a result of Le Bruyn [L2], who treats trace ring of 2 by 2 generic matrices and proved, among other things, that the trace ring $T(2, m)$ is a Cohen-Macaulay module over its

[^0]center $C(n, m)$. Giving an explicit form of a homogeneous system of parameters for $C(2, m)$, we show that $T(2, m)$ is a free module of rank $\frac{1}{m-1}\binom{2 m-2}{m-1} 2^{m}$ over the polynomial ring $B(2, m)$ generated by elements of the homogeneous system of parameters for $C(2, m)$ (8.2. Theorem). As an example we give an explicit description of $C(2,4)$ and $T(2,4)$ (9.1. Theorem).

Procesi [P2] gave an explicit presentation of the Hilbert series of $T(2, m)$ and observed a close relation between the Hilbert series of $T(2, m)$ and that of the homogeneous coordinate ring of the Grassmannian $\operatorname{Gr}(2, m)$ (see [L2]). Then 8.2. Theorem together with Procesi's observation above suggest that there is a canonical free basis of $T(2, m)$ over the polynomial ring $B(2, m)$.

§ 1. Matrix invariants and concomitants

Let G be a classical group in $G L(n, K)$. That is one of the groups,

$$
S L(n, K), \quad S O(n, K), \quad S p(n, K)
$$

Let $V(G, m)$ be the vector space $\oplus^{m} \operatorname{Lie}(G)$, where Lie (G) denotes the Lie algebra of G. The group G acts rationally on $V(G, m)$ according to the formula:

$$
\begin{aligned}
& \text { If } g \in G,\left(A_{1}, \cdots, A_{m}\right) \in V(G, m) \text {, } \\
& \text { then } g\left(A_{1}, \cdots, A_{m}\right)=\left(\operatorname{Ad}(g) A_{1}, \cdots, \operatorname{Ad}(g) A_{m}\right) \text {, } \\
& \text { where } \operatorname{Ad}(g) \text { denotes the adjoint representation of } G \text {. }
\end{aligned}
$$

We denote by $K[V(G, m)]$ the ring of polynomial functions on $V(G, m)$ and by $C(G, m)$ the ring of polynomial G-invariants of $K[V(G, m)]$. Let $K[V(G, m)]_{d}$ be the K-subspace of $K[V(G, m)]$ consisting of polynomials of multi-degree $d=\left(d_{1}, \cdots, d_{m}\right) \in N^{m}$. The rings $K[V(G, m)]$ and $C(n, m)$ are graded rings:

$$
K[V(G, m)]=\underset{d \in N^{m}}{\oplus} K[V(G, m)]_{d},
$$

and

$$
C(G, m)=\underset{d \in N^{m}}{\oplus} C(G, m)_{d}
$$

where

$$
C(G, m)=K[V(G, m)]_{d} \cap C(G, m)
$$

A polynomial map $f: V(G, m) \rightarrow \operatorname{Lie}(G)$ is called a polynomial concomitant if that is compatible with the action of G i.e., $f(g \cdot v)=\operatorname{Ad}(g) f(v)$ for any $g \in G$ and $v \in V(G, m)$.

With $T(G, m)$ we will denote the set of polynomial concomitants. Then $T(G, m)$ is a $C(G, m)$-module. Let $P(G, m)$ denote the set of polynomial maps from $V(G, m)$ to $\operatorname{Lie}(G)$ and define the action of G on $P(G, m)$ by

$$
(g \cdot f)(v)=\operatorname{Ad}(g) f\left(g^{-1} v\right), \quad \text { if } g \in G, f \in P(G, m)
$$

Then $T(G, m)$ is the fixed space of $P(G, m)$ under the action of G.
Let X_{1}, \cdots, X_{m} be generic matrices in Lie (G). Then, for each i, X_{i} is identified with the i-coordinate map

$$
\left(A_{1}, \cdots, A_{m}\right) \longrightarrow A_{i}, \quad\left(A_{1}, \cdots, A_{m}\right) \in V(G, m)
$$

The following theorem is a direct consequence from some result of Procesi [P1].
1.1. Theorem. The ring $C(G, m)$ is generated by factors of polynomials of the form $\operatorname{Tr}\left(X_{i_{1}} X_{i_{2}} \cdots X_{i_{j}}\right)$, where $X_{i_{1}} \cdots X_{i_{j}}$ runs over all possible (noncommutative) monomials in m generic matrices X_{1}, \cdots, X_{m} in Lie (G).

§ 2. Molien-Weyl formula

Let G be a semi-simple linear algebraic group over the complex number field C and V a G-module. We denote by $K[V]$ the polynomial ring on V. The action of G on the vector space V can be extended on $K[V]$ by a canonical way. Let $K[V]^{a}$ be the subring of $K[V]$ consisting of G-invariant polynomials. Then $K[V]^{G}$ is a graded ring:

$$
K[V]^{G}=\underset{d \in N}{ } K[v]_{d}^{G}
$$

where $K[v]_{d}^{G}$ is the K-vector space of G-invariant polynomials of degree d.
The Hilbert series for the graded ring $K[V]^{a}$ is the formal power series defined by

$$
\chi\left(K[V]^{G}, t\right)=\sum_{d \in N} \operatorname{dim} K[V]_{d}^{G} t^{d} .
$$

The Molien-Weyl formula gives an integral expression for the Hilbert series $\chi\left(K[V]^{G}, t\right)$.
2.1. Proposition. Let T be a maximal torus of a maximal compact subgroup K of G. If $|t|<1$, then

$$
\chi\left(K[V]^{G}, t\right)=\frac{1}{|W|} \int_{T} \frac{\left(1-\alpha_{1}(g)\right) \cdots\left(1-\alpha_{N}(g)\right)}{\operatorname{det}(1-\operatorname{tg})} d g
$$

where W is the Weyl group of G and $\alpha_{1}, \cdots, \alpha_{N}$ is the set of roots of G with respect to T and $d g$ is the normalized Haar-measure on T.

Let V_{1}, \cdots, V_{m} be G-modules and set $V=\oplus_{i=1}^{m} V_{i}$. Then by defining $\operatorname{deg} t_{i}, 1 \leq i \leq m$, is to be $(0, \cdots, 1, \cdots, 0)$, where i-th coordinate is $1, K[V]$ is an N^{m}-graded ring

$$
K[V]=\underset{d \in N^{m}}{\oplus} K[V]_{d} .
$$

Corresponding to this decomposition of $K[V]$, we have

$$
K[V]^{G}=\oplus K[V]_{d}^{G}, \quad K[V]_{d}^{G}=K[V]^{G} \cap K[V]_{d}
$$

The multi-valued Hilbert series in m variables $t=\left(t_{1}, \cdots, t_{m}\right)$ is defined by

$$
\chi\left(K[V]^{G}, t\right)=\sum_{d} \operatorname{dim} K[V]_{d}^{G} t^{d},
$$

where if $d=\left(d_{1}, \cdots, d_{m}\right) \in N^{m}, \boldsymbol{t}^{a}=\prod t_{i}^{d_{i}}$.
The Molien-Weyl formula in this case is only a slight modification of 2.1. Proposition.
2.2. Proposition. Notations being as avobe, if $\left|t_{1}\right|<1, \cdots,\left|t_{m}\right|<1$,

$$
\chi\left(K[V]^{G}, t\right)=\frac{1}{|W|} \int_{T} \frac{\left(1-\alpha_{1}(g)\right) \cdots\left(1-\alpha_{N}(g)\right)}{\prod_{i} \operatorname{det}\left(1-t_{i} g\right)} d g .
$$

2.3. Corollary.

$$
\chi(C(G, m), t)^{\boldsymbol{y}}=\frac{1}{|W|} \prod_{i=1}^{m}\left(1-t_{i}\right)^{-r} \int_{T} \frac{\left(1-\alpha_{1}(g)\right) \cdots\left(1-\alpha_{N}(g)\right)}{\prod_{i} \prod_{j}\left(1-t_{i} \alpha_{j}(g)\right)} d g,
$$

where $r=r a n k$ of G.

§3. Linear diophantine equation

Let a_{1}, \cdots, a_{m} and b be fixed column vectors in V, and set

$$
E(A, b)=\left\{x=\left(x_{1}, \cdots, x_{m}\right) \in N^{m}, a_{1} x_{1}+\cdots+a_{m} x_{m}=b\right\},
$$

where \boldsymbol{A} is the r by m matrix defined by

$$
A=\left[a_{1}, \cdots, a_{m}\right]
$$

Let $F(A, b, t)$ be the formal power series in m variables $t=\left(t_{1}, \cdots, t_{m}\right)$ defined by

$$
F(A, b, t)=\sum_{\alpha \in E(A, b)} t^{\alpha},
$$

where if $\alpha=\left(\alpha_{1}, \cdots, \alpha_{m}\right)$ then $\boldsymbol{t}^{\alpha}=t_{1}^{\alpha_{1}} \cdots t_{m}^{\alpha_{m}}$.
R. Stanley proved the following
3.1. Theorem ([S]). Suppose that the system of linear equations $a_{1} x_{1}$ $+\cdots+a_{m} x_{m}=b$ has a rational solution $\alpha=\left(\alpha_{1}, \cdots, \alpha_{m}\right) \in Q^{m}$ with -1 $<\alpha_{i} \leq 0$ for all i and $1 \in E(A, 0)$. Then $F(A, b, t)$ is a rational function in $t=\left(t_{1}, \cdots, t_{m}\right)$ which satisfies the functional equation

$$
F\left(A, b, t^{-1}\right)=(-1)^{d} \quad t_{1} \cdots t_{m} F(A,-b, t)
$$

where $\boldsymbol{t}^{-1}=\left(t_{1}^{-1}, \cdots, t_{m}^{-1}\right)$.
The next lemma will be used to prove the functional equation of the ring of polynomial concomitants.
3.2. Lemma ([T1] Lemma 1.1). If $\left|t_{1}\right|<1, \cdots,\left|t_{m}\right|<1$,

$$
F(A, b, \boldsymbol{t})=\left(\frac{1}{2 \pi \sqrt{-1}}\right)^{r} \int_{T} \frac{\varepsilon^{-b}}{\prod_{i=1}^{m}\left(1-\varepsilon^{a_{i}} t_{i}\right)} \frac{d \varepsilon_{1} \cdots d \varepsilon_{r}}{\varepsilon_{1} \cdots \varepsilon_{r}}
$$

where the integral is taken over the r-dimensional torus T and, if $a=$ $\left(a_{1}, \cdots, a_{r}\right) \in Z^{r}, E^{a}=\Pi_{i} \varepsilon_{i}^{a_{i}}$.

§4. The functional equation of the Hilbert series ($T(G, m), t)$

We return to the situation in section 1. Let X_{1}, \cdots, X_{m} be generic matrices of Lie (G). Define $\operatorname{deg} X_{i}$ to be the i-th unit vector ($0, \cdots$, $1, \cdots, 0) \in N^{m}$.

The Hilbert series $\chi(T(G, m), t)$ for the N^{m}-graded module $T(G, m)$ is defined by

$$
\chi(T(G, m), t)=\sum_{d \in N^{m}} \operatorname{dim} T(G, m)_{d} t^{d}
$$

Let X_{m+1} be a new generic matrix in Lie (G). Since the trace $\operatorname{Tr}(X, Y)$, $\mathrm{X}, Y \in \operatorname{Lie}(G)$, is a nondegenerate bilinear form on $\operatorname{Lie}(G) \times \operatorname{Lie}(G)$, it follows that $\operatorname{Tr}\left(X X_{m+1}\right), X \in T(G, m)$ defines an injection from $T(G, m)$ onto the subspace of $C(G, m+1)$ consisting of invariants of degree one in X_{m+1}. Then by 2.3. Corollary we have
4.1. Proposition. With notations as 2.3. Corollary, the Hilbert series $\chi(T(G, m), t)$ has the following expression

$$
\chi(T(G, m), t)=\frac{1}{|W|} \Pi\left(1-t_{i}\right)^{-r} \int_{T} \frac{\left(r+\sum \alpha_{j}(g)\right) \Pi\left(1-\alpha_{j}(g)\right)}{\prod_{i, j}\left(1-t_{i} \cdot \alpha_{j}(g)\right)} d g
$$

By the theorem of Hochster-Roverts [H-R], $C(G, m)$ is a CohenMacaulay domain which is Gorenstein. It follows from a theorem of Stanley [S] that the Hilbert series satisfies a functional equation of the form

$$
\chi\left(C(G, m), t^{-1}\right)= \pm\left(t_{1}, \cdots, t_{m}\right)^{a} \chi(C(G, m), t)
$$

for some $a \in Z$. Here $t^{-1}=\left(t_{1}^{-1}, \cdots, t_{m}^{-1}\right)$.
In our case, we can determine the integer a.
4.2. Theorem ([T]). If $m \geq 2$, the Hilbert series for the ring $C(G, m)$ satisfies the functional equation

$$
\chi\left(C(G, m), t^{-1}\right)=(-1)^{a}\left(t_{1}, \cdots, t_{m}\right)^{a} \chi(C(G, m), t),
$$

where $d=(m-1) \operatorname{dim} G$ and $\mathrm{a}=\operatorname{dim} G$.
We prove the same functional equation for $T(G, m)$.
4.3. Theorem. With notations as before, if $m \geq 3$ then the Hilbert series for $T(G, m)$ satisfies the functional equation

$$
\chi\left(T(G, m), t^{-1}\right)=(-1)^{d}\left(t_{1}, \cdots, t_{m}\right)^{a} \chi(T(G, m), \boldsymbol{t}),
$$

where $d=(m-1) \operatorname{dim} G$ and $a=\operatorname{dim} G$.
Proof. The maximal torus of G is isomorphic to the group

$$
\left[\begin{array}{ccc}
\varepsilon_{1} & & \\
& \cdot & \\
& \cdot & \varepsilon_{r}
\end{array}\right], \quad\left|\varepsilon_{i}\right|=1, r=\operatorname{rank} \text { of } T
$$

and every root α_{j} of G with respect to T can be written as $\alpha_{j}=\varepsilon^{a_{j}}$ for some $a_{j}=\left(a_{j_{1}}, \cdots, a_{j_{r}}\right) \in Z^{r}$, where $\varepsilon^{a_{j}}=\varepsilon_{1}^{a_{1}} \cdots \varepsilon_{r}^{a_{i}}$.

By 4.1. Theorem, the Hilbert series $\chi(T(G, m), t)$ has the integral expression. We write the numerator

$$
\sum_{j} \varepsilon^{a_{j}} \prod_{j}\left(1-\varepsilon^{a_{j}}\right)
$$

in the integral as a linear combination of terms of the form ε^{-b}, where $-b$ is a vector in Z^{r} of the form

$$
-b=a_{j_{1}}+\cdots+a_{j_{k}}+a_{j} \quad\left(j_{1}<j_{2}<\cdots<j_{k}\right)
$$

Then the integral is a linear combination of terms of the form

$$
F(b, \boldsymbol{t})=\left(2 \pi \sqrt{-1}^{-r}\right) \int_{T} \frac{\varepsilon^{-b}}{\left(1-t_{i} \varepsilon^{a_{j}}\right)\left(1-t_{i}\right)^{r}} \frac{d \varepsilon_{1} \cdots d \varepsilon_{r}}{\varepsilon_{1} \cdots \varepsilon_{r}} .
$$

By 3.2. Lemma, $F(b, t)$ is a Hilbert series associated with a system of linear diophantine equations. If $m \geq 3$, this system of linear equations satisfies the condition of Stenley's theorem (3.1. Theorem) because the vector b is a linear combination of roots a_{j} with nonnegative integer coefficients c such that $0 \leq c \leq 2$ for all j. Therefore we obtain the desired result because a is a root if and only if $-a$ is a root.

$\S 5$. The functional equation of trace rings

Let X_{1}, \cdots, X_{m} be m generic n by n matrices. According to the decomposition of each matrix variable

$$
X_{i}=\frac{1}{n} \operatorname{Tr}\left(X_{i}\right)+X_{i}^{\circ}
$$

where X_{i}° is a an n by n generic matrix in $\operatorname{Lie}(S L(n, K)$), we have

$$
T(n, m)=T(S L(n, K), m)\left[\operatorname{Tr}\left(X_{1}\right), \cdots, \operatorname{Tr}\left(X_{m}\right)\right] \oplus C(S L(n, k), m)
$$

This remark, due to Procesi [P1], enables us translate the structure of the trace ring $T(n, m)$ into that of $T(S L(n, K), m)$.
5.1. Theorem. If $n \geq 3, m \geq 2$ or $n=2, m \geq 3$, the Hilbert series of the trace ring of m generic n by n matrices satisfies the functional equation

$$
\chi\left(T(n, m), t^{-1}\right)=(-1)^{a}\left(t_{1}, \cdots, t_{m}\right)^{n^{2}} \chi(T(n, m), \boldsymbol{t})
$$

where $d=(m-1) n^{2}+1$.
Proof. If $m \geq 3$, this is a direct consequence from 4.3. Theorem. If $m=2, n \geq 3$, it is easy to see that the proof of 4.3. Theorem holds good, and we obtain the desired result.

§ 6. Homogeneous coordinate rings of the Grassmannian $\mathbf{G r}(2, m)$

First we recall the definition of the homogeneous coordinate ring of the Grassmannian. Recall that if Ω denotes the set of all one dimensional linear subspaces in the $m-1$ dimensional complex projective space P^{m-1}, we have an explicit embedding $\Omega \rightarrow P^{N}$, where $N=\binom{m}{2}-1 . \Omega$ is called the Grassmannian and denoted by $\mathrm{Gr}(2, m)$. It is well known that dimension and degree of $\operatorname{Gr}(2, m), m \geq 2$, as a projective variety are $2 m-4$ and $\frac{1}{m-1}\binom{2 m-4}{m-2}$ respectively.

Let $C\left[p_{i j}\right], 1 \leq i<j \leq m$, be the polynomial ring in the $\binom{m}{2}$ variables $p_{i j}$, which coordinatize P^{N}. Let I be the ideal of $C\left[p_{i j}\right]$ generated by all the polynomials of the form

$$
p_{i j} p_{k l}-p_{i k} p_{j l}+p_{i l} p_{j k}, \quad 1 \leq i<j<k<l \leq m
$$

The quotient ring $C\left[p_{i j}\right] / I$ is called the homogeneous coordinate ring of $\mathrm{Gr}(2, m)$ and will be denoted by $C[\mathrm{Gr}(2, m)]$. It is convenient to define degree of $p_{i j}$ is to be 2 . Let $R_{2 d}(d \in N)$ denote the vector space of $C[\operatorname{Gr}(2, m)]$ generated by all homogeneous polynomials of degree $2 d$:

$$
C[\operatorname{Gr}(2, m)]=\underset{d \in N}{\oplus} R_{2 d} .
$$

The Hilbert series for the graded ring $C[\operatorname{Gr}(2, m)]$ is calculated by Hilbert [H]:

$$
\chi(C[\operatorname{Gr}(2, m)], t)=\sum_{d \in N} \frac{(d+1)(d+m-1)}{(m-1)!(m-2)!} \prod_{i=2}^{m-2}(d+1)^{2} t^{2 d} .
$$

Set, for $k=3,4, \cdots, 2 m-1, \theta_{k}=\sum_{i+j=k} p_{i j}$. Then it is well known and can be easily proved that $\theta_{3}, \cdots, \theta_{2 m-1}$ is a homogeneous system of parameters of $C[\operatorname{Gr}(2, m)]$. Since $C[\mathrm{Gr}(2, m)]$ is a Cohen-Macaulay ring and degree of $\operatorname{Gr}(2, m)$ is $\frac{1}{m-1}\binom{2 m-4}{m-2}$, we have
6.1. Lemma. The homogeneous coordinate ring $C[\operatorname{Gr}(2, m)]$ is a free module of rank $\frac{1}{m-1}\binom{2 m-4}{m-2}$ over the polynomial ring $C\left[\theta_{3}, \cdots, \theta_{2 m-1}\right]$.

We give an integral expression for the Hilbert series of $C[\operatorname{Gr}(2, m)]$.
6.2. Lemma. The Hilbert series for the ring $C[\operatorname{Gr}(2, m)]$ has the fol-
lowing integral expression

$$
\chi(C[\operatorname{Gr}(2, m)], t)=\frac{1}{4 \pi \sqrt{-1}} \int_{|\varepsilon|=1} \frac{\left(1-\varepsilon^{2}\right)\left(1-\varepsilon^{-2}\right)}{(1-\varepsilon t)^{m}\left(1-\varepsilon^{-1} t\right)^{m}} \frac{d \varepsilon}{\varepsilon} .
$$

Proof. Let us consider the polynomial ring $C\left[x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{m}\right]$ in $2 m$ independent variables $x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{m}$. The group action of the special linear group $S L(2, C)$ on the polynomial ring is defined by

$$
\binom{x_{i}}{y_{i}} \longrightarrow g\binom{x_{i}}{y_{i}}, \quad g \in S L(2, C), \quad 1 \leq i \leq m
$$

Let R be the ring of invariant polynomials under the action of $S L(2, C)$. Then R is generated by all invariant polynomials of the form

$$
a_{i j}=\operatorname{det}\left(\begin{array}{ll}
x_{i} & y_{j} \\
y_{i} & y_{j}
\end{array}\right), \quad 1 \leq i<j \leq m
$$

and the map $\theta_{i j} \rightarrow a_{i j}$ defines a degree preserving ring isomorphism

$$
C[\operatorname{Gr}(2, m)] \xrightarrow{\sim} R .
$$

Then, by the Molien-Weyl formula, we have

$$
\chi\left(R_{m}, t\right)=\frac{1}{4 \pi \sqrt{-1}} \int_{|\varepsilon|=1} \frac{\left(1-\varepsilon^{2}\right)\left(1-\varepsilon^{-2}\right)}{(1-\varepsilon t)^{m}\left(1-\varepsilon^{-1} t\right)^{m}} \frac{d \varepsilon}{\varepsilon}
$$

which proves the lemma.

§ 7. Rings of invariants of generic 2 by 2 matrices

Let X_{1}, \cdots, X_{m} be m generic 2 by 2 matrices. Let $p_{3}, \cdots, p_{2 m-1}$ be elements of $C(2, m)$ defined by

$$
p_{k}=\sum_{i+j=k} \operatorname{Tr}\left(X_{i} X_{j}\right), \quad 3 \leq k \leq 2 m-1
$$

We denote by $B(2, m)$ the subring of $C(2, m)$ generated by invariants:

$$
\operatorname{Tr}\left(X_{i}\right), \quad \operatorname{Tr}\left(X_{i}^{2}\right), \quad 1 \leq i \leq m, \quad p_{3}, \cdots, p_{2_{m-1}}
$$

7.1. Theorem. Let $C(2, m)$ be the ring of invariants of m generic 2 by 2 matrices. If $m \geq 2$ then $C(2, m)$ is a free module of rank

$$
\frac{1}{m-1}\binom{2 m-4}{m-2} 2^{m-2}
$$

over the ring $B(2, m)$.
Proof. Let $\left(A_{1}, \cdots, A_{m}\right)$ be a tuple of 2 by 2 matrices such that any invariant in $\operatorname{Tr}\left(X_{i}\right), \operatorname{Tr}\left(X_{i}^{2}\right), p_{3}, \cdots, p_{2_{m-1}}, 1 \leq i \leq m$ vanishes at $\left(A_{1}, \cdots, A_{m}\right)$. We first prove by induction on m that any invariant which is not constant vanishes at $\left(A_{1}, \cdots, A_{m}\right)$. If $A_{1}=0$, then our assertion is obvious by assumption of induction and hence we can assume that A_{1} is not zero matrix. Note that A_{1}, \cdots, A_{m} are nilpotent matrices since $\operatorname{Tr}\left(A_{i}\right)=$ $\operatorname{Tr}\left(A_{i}^{2}\right)=0$ for $i=1,2, \cdots, m$. Then by a suitable componentwise adjoint action of the group $G L(2, K)$ on the matrices A_{1}, \cdots, A_{m}, we can assume that A_{1} has the form

$$
A_{1}=\left(\begin{array}{cc}
0 & a_{1} \\
0 & 0
\end{array}\right), \quad \text { for some } a_{1}=0
$$

In general, let $B=\left(\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right)$ be a nilpotent 2 by 2 matrix which satisfies the equation $\operatorname{Tr}\left(A_{1} B\right)=0$. Then we have

$$
\operatorname{Tr}\left(\left(\begin{array}{cc}
0 & a_{i} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)\right)=a_{1} b_{3}=0
$$

and hence $b_{3}=0$. Since B is a nilpotent matrix, B has the form

$$
B=\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)
$$

By using this fact and the equation $p_{3}=\cdots=p_{2_{m-1}}=0$ successively, one observe that each matrix A_{i} has the form

$$
A_{i}=\left(\begin{array}{cc}
0 & a_{i} \\
0 & 0
\end{array}\right), \quad 1 \leq i \leq m
$$

This implies that $\operatorname{Tr}\left(A_{i_{1}}, \cdots, A_{i_{k}}\right)=0$, for any monomial $A_{i_{1}}, \cdots, A_{i_{k}}$, and hence any invariant which is not constant vanishes at $\left(A_{1}, \cdots, A_{m}\right)$. Therefore it follows from a fundamental theorem of Hilbert [H] that $C(2, m)$ is integral over the polynomial ring $B(2, m)$. Since Krull dimension of $C(2, m)$ is $4 m-3$, it follows that $\operatorname{Tr}\left(X_{i}\right), \operatorname{Tr}\left(X_{i}^{2}\right), p_{3}, \cdots, p_{2 m-1}$ is a homogeneous system of parameters of the ring $C(2, m)$. Then the Cohen-Macaulay property of the ring $C(2, m)$ implies that $C(2, m)$ is a free module over the polynomial ring $B(2, m)$. Then by [T2], rank of
$C(2, m)$ over $B(2, m)$ is $\frac{1}{m-1}\binom{2 m-4}{m-2} 2^{m-2}$.

§8. Trace rings of generic 2 by 2 matrices

We now turn to cosideration of trace rings of generic 2 by 2 matrices. Procesi [P2] proved a one-to-one correspondence between a K-basis of the ring $T(S L(2, K), m)$ and standard Young tableaux of shape $\sigma=3^{a} 2^{b} 1^{c}$ for all $a, b, c \in N$.

Procesi's theorem in particular gives an explicit presentation of the Hilbert series of the trace ring $T(S L(2, K), m)$

$$
\left(T(S L(2, K), m)=\sum_{a, b, c \in N} L_{a, b, c} t^{3 a+2 b+c}\right.
$$

where $L_{a, b, c}$ is the number of standard Young tableaux of shape $3^{a} 2^{b} 1^{c}$ filled with indices from 1 to m.

From this fact Procesi (see [L2]) observed the following proposition and gave an elegant combinatrial proof of the functional equation for the Hilbert series $\chi(T(2, m), t)$. We give here a simple direct proof of Procesi's observation.
8.1. Proposition. Let $\chi(T(2, m), t)$ be the usual Hilbert series in one variable t for the trace ring $T(2, m)$. Then we have

$$
\chi(T(2, m), t)=(1-t)^{-2 m} \chi(C[\operatorname{Gr}(2, m)], t) .
$$

Proof. By the Molien-Weyl formula for the trace ring $T(2, m)$ we have

$$
\begin{aligned}
\chi(T(2, m), t) & =\frac{1}{4 \pi \sqrt{-1}(1-t)^{2 m}} \int_{|\varepsilon|=1} \frac{\left(2+\varepsilon+\varepsilon^{-1}\right)(1-\varepsilon)\left(1-\varepsilon^{-1}\right)}{(1-t)^{m}\left(1-\varepsilon^{-1} t\right)^{m}} \frac{d \varepsilon}{\varepsilon} \\
& =(1-t)^{-2 m} \chi(C[\operatorname{Gr}(2, m)], t)
\end{aligned}
$$

by 6.1 Lemma.
8.2. Corollary.

$$
\chi(T(2, m), t)=\frac{1}{(1-t)^{2 m}} \sum_{d} \frac{(d+1)(d+m-1)}{(m-1)!(m-2)!} \prod_{i=2}^{m-2}(d+i)^{2} t^{2 d}
$$

The proposition above links the Hilbert series of the trace ring $T(2, m)$ with that of the homogeneous coordinate ring of the Grassmannian $\mathrm{Gr}(2, m)$.

Le Bruyn [L2] nroved that $T(2, m)$ is a Cohen-Macaulay module over
the ring $C(2, m)$. Recall that $\operatorname{Tr}\left(X_{i}\right), \operatorname{Tr}\left(X_{i}^{2}\right), p_{3}, \cdots, p_{2 m-1}, 1 \leq i \leq m$, is a homogeneous system of parameters of the ring $C(2, m)$. Then the Cohen-Macaulay property of the trace ring $T(2, m)$ says that $T(2, m)$ is a free module over the polynomial ring $B(2, m)$. Therefore we obtain
8.3. Theorem. The trace ring $T(2, m)(m \geq 2)$ is a free module of rank $\frac{1}{m-1}\binom{2 m-4}{m-2} 2^{m}$ over the polynomial ring $B(2, m)$.

Proof. Note that the map $\theta_{i} \rightarrow p_{i}(3 \leq i \leq 2 m-1)$ defines a degree preserving isomorphism

$$
K\left[\theta_{3}, \cdots, \theta_{2 m-1}\right] \longrightarrow K\left[p_{3}, \cdots, p_{2 m-1}\right]
$$

Then the theorem follows from 6.1. Lemma and 8.1. Proposition.
The following proposition gives relations in the ring $T(S L(2, K), m)$ corresponding to the Plücker relations

$$
p_{i_{1} i_{2}} p_{i_{3} i_{4}}-p_{i_{1} i_{3}} p_{i_{2} i_{4}}+p_{i_{1} i_{4}} p_{i_{2} i_{3}}, \quad 1 \leq i_{1}<i_{2}<i_{3}<i_{4} \leq m .
$$

8.4. Proposition. Let $X_{i_{1}}, X_{i_{2}}, X_{i_{3}}, X_{i_{4}}$ be 2 by 2 matrices whose traces are all zeros. Then the following relation holds.

$$
\begin{aligned}
X_{i_{1}} X_{i_{2}} X_{i_{3}} X_{i_{4}} & -\operatorname{Tr}\left(X_{i_{1}} X_{i_{2}}\right) X_{i_{3}} X_{i_{4}}+\operatorname{Tr}\left(X_{i_{3}} X_{i_{4}}\right) X_{i_{1}} X_{i_{2}} \\
& -\operatorname{Tr}\left(X_{i_{1}} X_{i_{3}}\right) X_{i_{2}} X_{i_{4}}-\operatorname{Tr}\left(X_{i_{2}} X_{i_{4}}\right) X_{i_{1}} X_{i_{3}}+\operatorname{Tr}\left(X_{i_{1}} X_{i_{4}}\right) X_{i_{2}} X_{i_{3}} \\
& +\operatorname{Tr}\left(X_{i_{2}} X_{i_{3}}\right) X_{i_{1}} X_{i_{3}}+\frac{1}{2}\left\{\operatorname{Tr}\left(X_{i_{1}} X_{i_{2}}\right) \operatorname{Tr}\left(X_{i_{3}} X_{i_{4}}\right)\right. \\
& \left.-\operatorname{Tr}\left(X_{i_{1}} X_{i_{3}}\right) \operatorname{Tr}\left(X_{i_{2}} X_{i_{4}}\right)+\operatorname{Tr}\left(X_{i_{1}} X_{i_{4}}\right) \operatorname{Tr}\left(X_{i_{2}} X_{i_{3}}\right)\right\}=0 .
\end{aligned}
$$

Proof. Recall the multi-linear Caylery-Hamilton theorem for 2 by 2 matrices A and B :

$$
A B+B A-\operatorname{Tr}(A) B-\operatorname{Tr}(B) A+\operatorname{Tr}(A) \operatorname{Tr}(B)-\operatorname{Tr}(A B)=0
$$

Applying the multi-linear Cayley-Hamilton theorem, we have

$$
\begin{aligned}
X_{i_{1}} X_{i_{2}} X_{i_{3}} X_{i_{4}} & +X_{i_{3}} X_{i_{4}} X_{i_{1}} X_{i_{2}}-\operatorname{Tr}\left(X_{i_{1}} X_{i_{2}}\right) X_{i_{3}} X_{i_{4}}-\operatorname{Tr}\left(X_{i_{3}} X_{i_{4}}\right) X_{i_{1}} X_{i_{2}} \\
& +\operatorname{Tr}\left(X_{i_{1}} X_{i_{2}}\right) \operatorname{Tr}\left(X_{i_{3}} X_{i_{4}}\right)-\operatorname{Tr}\left(X_{i_{1}} X_{i_{2}} X_{i_{3}} X_{i_{4}}\right)=0,
\end{aligned}
$$

and

$$
\begin{aligned}
X_{i_{3}} X_{i_{4}} X_{i_{1}} X_{i_{2}}= & X_{i_{1}} X_{i_{2}} X_{i_{3}} X_{i_{4}}+\operatorname{Tr}\left(X_{i_{1}} X_{i_{3}}\right) X_{i_{2}} X_{i_{4}}+\operatorname{Tr}\left(X_{i_{2}} X_{i_{4}}\right) X_{i_{1}} X_{i_{3}} \\
& -\operatorname{Tr}\left(X_{i_{1}} X_{i_{4}}\right) X_{i_{2}} X_{i_{3}}-\operatorname{Tr}\left(X_{i_{2}} X_{i_{3}}\right) X_{i_{1}} X_{i_{4}} \\
& -\operatorname{Tr}\left(X_{i_{1}} X_{i_{3}}\right) \operatorname{Tr}\left(X_{i_{2}} X_{i_{4}}\right)+\operatorname{Tr}\left(X_{i_{1}} X_{i_{4}}\right) \operatorname{Tr}\left(X_{i_{2}} X_{i_{3}}\right) .
\end{aligned}
$$

Hence we have

$$
\text { (*) } \begin{aligned}
2 X_{i_{1}} X_{i_{2}} X_{i_{3}} X_{i_{4}} & -\operatorname{Tr}\left(X_{i_{1}} X_{i_{2}}\right) X_{i_{3}} X_{i_{4}}+\operatorname{Tr}\left(X_{i_{3}} X_{i_{4}}\right) X_{i_{1}} X_{i_{2}} \\
& -\operatorname{Tr}\left(X_{i_{1}} X_{i_{3}}\right) X_{i_{2}} X_{i_{4}}+\operatorname{Tr}\left(X_{i_{2}} X_{i_{4}}\right) X_{i_{1}} X_{i_{3}}+\operatorname{Tr}\left(X_{i_{1}} X_{i_{4}}\right) X_{i_{2}} X_{i_{3}} \\
& +\operatorname{Tr}\left(X_{i_{1}} X_{i_{2}}\right) \operatorname{Tr}\left(X_{i_{3}} X_{i_{4}}\right)-\operatorname{Tr}\left(X_{i_{1}} X_{i_{3}}\right) \operatorname{Tr}\left(X_{i_{2}} X_{i_{4}}\right) \\
& +\operatorname{Tr}\left(X_{i_{1}} X_{i_{4}}\right) \operatorname{Tr}\left(X_{i_{2}} X_{i_{3}}\right)-\operatorname{Tr}\left(X_{i_{1}} X_{i_{2}} X_{i_{3}} X_{i_{4}}\right)=0 .
\end{aligned}
$$

We claim that

$$
\begin{aligned}
2 \operatorname{Tr}\left(X_{i_{1}} X_{i_{2}} X_{i_{3}} X_{i_{4}}\right)= & \operatorname{Tr}\left(X_{i_{1}} X_{i_{2}}\right) \operatorname{Tr}\left(X_{i_{3}} X_{i_{4}}\right)-\operatorname{Tr}\left(X_{i_{1}} X_{i_{3}}\right) \operatorname{Tr}\left(X_{i_{2}} X_{i_{4}}\right) \\
& +\operatorname{Tr}\left(X_{i_{1}} X_{i_{4}}\right) \operatorname{Tr}\left(X_{i_{2}} X_{i_{3}}\right)
\end{aligned}
$$

Since both sides of the equation above are linear with respect to matrices $X_{i_{1}}, \cdots, X_{i_{4}}$, the claim is true if it is true when each X_{i} is replaced by one of matrices consisting of a basis of Lie $(S L(2, m))$. This can be easily verified. Then the lemma follows from the relation (*) and the claim.

§9. An explicit description of $C(2,4)$ and $T(2,4)$

Explicit description of the rings of invariants and the trace rings of two and three generic 2 by 2 matrices are given in [F-H-L], [F1] and [L-V]. They showed:
(1) $C(2,2)=B(2,2)$ and $T(2,2)$ is a free $C(2,2)$ module with basis 1, $X_{1}, X_{2}, X_{1} X_{2}$, (see [F-H-L]).
(2) $C(2,3)$ is a free $B(2,3)$ module with basis $1, \operatorname{Tr}\left(X_{1} X_{2} X_{3}\right)$ (see [F2]) and $T(2,3)$ is a free $B(2,3)$ module with basis $1, X_{1}, X_{2}, X_{3}, X_{1} X_{2}$, $X_{1} X_{3}, X_{2} X_{3}, X_{1} X_{2} X_{3}$ (see [L-V]).

In this section we will give an explicit description of the ring of invariants and the trace ring of four generic 2 by 2 matrices.
9.1. Theorem. (1) $C(2,4)$ is a free module over the polynomial ring $B(2,4)$ with basis $1, \operatorname{Tr}\left(X_{1} X_{4}\right), \operatorname{Tr}\left(X_{1} X_{4}\right)^{2}, \operatorname{Tr}\left(X_{1} X_{4}\right)^{3}, \operatorname{Tr}\left(X_{1} X_{2} X_{3}\right), \operatorname{Tr}\left(X_{1} X_{2} X_{4}\right)$, $\operatorname{Tr}\left(X_{1} X_{3} X_{4}\right), \operatorname{Tr}\left(X_{2} X_{3} X_{4}\right)$.
(2) $T(2,4)$ is a free module over the ring $B(2,4)$ with basis $1, X_{i}, X_{i} X_{j}$, $X_{i} X_{j} X_{k}, X_{1} X_{2} X_{3} X_{4}, \operatorname{Tr}\left(X_{1} X_{4}\right), \operatorname{Tr}\left(X_{1} X_{4}\right) X_{i}, \operatorname{Tr}\left(X_{1} X_{4}\right) X_{i} X_{j}, \operatorname{Tr}\left(X_{1} X_{4}\right) X_{i} X_{j} X_{k}$, $\operatorname{Tr}\left(X_{1} X_{4}\right) X_{1} X_{2} X_{3} X_{4}, 1 \leq i \leq 4,1 \leq i<j \leq 4,1 \leq i<j<k \leq 4$.

Proof. Formanek [F2] calculated the multi-valued Hilbert series:

$$
\chi(T(2,4), t)=\frac{(1+t)^{4}\left(1+t^{2}\right)}{(1-t)^{4}\left(1-t^{2}\right)^{9}}
$$

It is easy to prove (2) by using 8.3. Theorem, 8.4. Proposition and the formula above. The trace map $T: T(2,4) \rightarrow C(2,4)$ is surjective and hence (1) follows from (2), 7.1. Theorem and the following relation

$$
\begin{aligned}
2 \operatorname{Tr}\left(X_{1} X_{2} X_{3} X_{4}\right)= & \operatorname{Tr}\left(X_{1} X_{2}\right) \operatorname{Tr}\left(X_{3} X_{4}\right)-\operatorname{Tr}\left(X_{1} X_{3}\right) \operatorname{Tr}\left(X_{2} X_{4}\right) \\
& +\operatorname{Tr}\left(X_{1} X_{4}\right) \operatorname{Tr}\left(X_{2} X_{3}\right),
\end{aligned}
$$

where $\operatorname{Tr}\left(X_{i}\right)=0$, for $1 \leq i \leq 4$.

References

[F1] E. Formanek, Invariants and the trace ring of generic matrices, J. Algebra, 89 (1984), 178-223.
[F2] —. The functional equation for character series associated to n by n matrices, Trans. Amer. Math. Soc., 295 (1986).
[F-H-L] Formanek, Halpin, Li, The Poincare series of the ring of 2×2 generic matrices, J. Algebra, 69 (1981), 105-112.
[H-R] M. Hochster and J. L. Roverts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math., 13 (1974), 115-175.
[H] D. Hilbert, Uber die vollen Invariantensysteme, Math. Ann., 42 (1893), 313373.
[L1] Le Bruyn, Functional equation of Poincare series of trace rings of generic 2×2-matrices, Israel J. Math.
[L2] - Trace rings of generic 2 by 2 matrices, Mem. Amer. Math. Soc., to appear.
[L-V] Le Bruyn and Van den Bergh, An explicit description of $T_{3,2}$ Lecture Notes in Math., 1197, Springer (1986), 109-113.
[P1] C. Procesi, The invariant theory of $n \times n$ matrices, Adv. in Math., 19 (1976), 306-381.
[P2] - Computing with 2 by 2 matrices, J. Algebra, 87 (1984), 342-359.
[S] R. Stanley, Combinatrics and commutative algebra, Birkhauser (1983).
[T1] Y. Teranishi, Linear diophantine equations and invariant theory of matrices, Adv. Stud. in Pure Math., 11 (1987), 259-275.
[T2] \quad, The ring of invariants of matrices, Nagoya Math. J., 104 (1986), 149-161.

Department of Mathematics
Faculty of Science
Nagoya University
Chikusa-ku, Nagoya 464, Japan

[^0]: Received January 23, 1987.

