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1. The commutator [a, 6] of two elements a and b in a group G satisfies the identity

ab = ba\a, b~\.

The subgroups we study are contained in the commutator subgroup G', which is the subgroup
generated by all the commutators.

The group G is covered by a well-known set of normal subgroups, namely the normal
closures {g}G of the cyclic subgroups {g} in G. In a similar way one may associate a subgroup
K(g) with each element g, by defining K(g) to be the subgroup generated by the commutators
[g, x] as x takes all values in G. These subgroups generate G' (but do not cover G' in general),
and are normal in G in consequence of the identical relation

(A) l9,xY = [g,yylt

holding for all g, x and y in G. (By ab we mean b~*ab) It is easy to see that

{g}G = {g, K(g)}.

The subgroups K(g) appear in a number of situations. For instance, it is shown in
Theorem 3 of [1] that if every K(g) in G is abelian, then the commutator subgroup G" of G'
lies in the centre of G and has exponent 2. Again, every K(g) is finite if and only if every ele-
ment of G has just a finite number of conjugates. One part of this statement is clear, and to
prove the other part suppose that every element of G has only a finite number of conjugates.
Then any subgroup K{g) is generated by a finite set of commutators of the form [g, x] for
certain elements x; each [g, x] has finite order by Theorem 5.1 in [2]. These facts, and the
condition on conjugates in G, and use of Corollary 5.21 of [2], show that each K(g) is finite.
We further note that, because of Theorem 3.1 of [3], each K(g) is boundedly finite if and only
if G' is finite.

In § 2 we consider groups G in which each K(g) contains elements of the form [#, x\
only. This with minimal condition on the K(g) appears to be a strong restriction on G, which
will be shown to be a ZA group. An unusual feature of this result is that conditions on G"
give a conclusion on the structure of G, not just of G'. In § 3 we turn to groups G in which
each K(g) is cyclic. As it can be shown that G' is then locally cyclic, it is worth considering
groups with each K{g) locally cyclic. We show that again G' is locally cyclic.

2. The subgroup K(g) contains only commutators of the form [g, x] if and only if the
equations

(B) [g, x][g, y] = [g, z j ,

(C) [g,x]-1 =[0 ,z 2 ]
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can be solved for z, and z2, the elements x and y being arbitrary. An equivalent condition is,
clearly, that

(D) [g,yY1[

should be soluble for z. By (A) and (D) another equivalent condition is that

(E) [g, x? = [>, z]

should be soluble for z.
A further condition may be obtained when it is noted that solubility of (B) is sufficient

for solubility of (C). For if there is an element z0 such that

then we have successively

g~lxgx~1g~lxgx~i = g~lZQlgz0,

x~ig~lxg = g~1x~iZo 1gzox,

thus z2 = zQx is a solution of (C).
Next we suppose that every K{g) in G satisfies such a condition, and in addition we

impose a minimal condition.

THEOREM 1. Let each subgroup K{g) of the group G consist of commutators of the form
[g, x~\, and let G be such that the minimal condition holds for the subgroups K(g). Then a
non-trivial element of each subgroup {g}a lies in the centre of G, provided that 0 / 1 .

Proof. \fg is an arbitrary element of G we may suppose that K(g) is not the trivial sub-
group 1, for otherwise g is in the centre of G and the theorem holds. In K{g) we choose a minimal
non-trivial subgroup of the form K{g0)—this exists because of the minimal condition—and
we choose an element h / 1 in K(g0). As we have K{h) £ K(g0), we see that K(h) = K(g0)
or K(h) = 1. In the former case h'1 e K(g0) = K(h), so by hypothesis there is an element x in
G for which

implying that h = 1, a contradiction. Therefore we must have K(h) = I, that is, It is central
in G. As heK(g0) £ K(g) £ {g}G, the theorem follows.

COROLLARY 1. Under the hypotheses of Theorem 1, G is a ZA group.

Proof. By a ZA group is meant a group with an ascending central series which eventually
exhausts the group. As Theorem 1 shows that G has a non-trivial centre, the corollary follows
once it is verified that the properties required in Theorem 1 persist in homomorphic images
of G. This is elementary.

COROLLARY 2. A group in which each K(g) consists of elements [g, x], and in which every
element has only a finite number of conjugates, is ZA.
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Proof. We remarked earlier that this finiteness condition on conjugates is equivalent to
each K(g) being finite. Application of Corollary 1 completes the proof.

In particular, finite groups with the condition of Theorem 1 on the K(g) are nilpotent.
However, it is not difficult to see that the class of nilpotency is arbitrary.

We are in a position to show that neither of the following conditions on a group G implies
the other:

(i) G' consists of commutators;
(ii) for each g in G, K(g) consists of the commutators [g, x] as x varies in G.

Though many finite non-nilpotent groups satisfy (i), no such group satisfies (ii), by a remark
above. For examples, we refer to Ore's paper [4], where it is established that the alternating
groups of finite degree greater than or equal to 5 satisfy (i). On the other hand, it is clear that
any group that is nilpotent of class 2 satisfies (ii), and it seems to be well-known that such a
group need not satisfy (i). We present a supporting example as no record of one can be readily
found.

The example Gt is simply the free nilpotent group of class 2 on 4 generators av, a2, a3, a4;
if Cjj = [at, aj\ for 1 ̂  i < j g 4, the relations in Gt are

[cip a J = 1

for 1 g / <j^ 4 and 1 ̂  k ̂  4, and their consequences. Each element of Gj has a unique
representation in the form

where the product is taken over all ; and j with 1 ̂  i < j g 4. So an arbitrary commutator
may be written as

| _ a l " 2 " 3 " 4 ' a i « 2 " 3 " 4 j '

which may be simplified by use of the defining relations to

n <ty>
where (5,v = a,/?;-!*,/?;. It may be verified directly that the <5f; satisfy

^12^34-<5l3^24 + ^14^23 = 0.

If cuc24 is the commutator of two elements of Gu the uniqueness of the representation
shows that we must have <512 = <534 = <514 = t>23 = 0, 5l3 = <524 = 1. Since these 8^ do not
satisfy the above identity, we have a contradiction; so cl3c24 is not a commutator, and G,
satisfies (ii) but not (i). We note without proof that finite groups with similar properties may
be found by taking factor groups of GL.

We now construct a group G2 with the purpose of showing that the minimal condition
cannot be omitted from the hypotheses of Theorem 1 and its corollaries. Let U be a multipli-
cative group isomorphic to the additive group of rationals, with « in U corresponding to the
rational 1; thus ur corresponds to the rational r, and

https://doi.org/10.1017/S204061850003447X Published online by Cambridge University Press

https://doi.org/10.1017/S204061850003447X


140 I. D. MACDONALD

for any rationals rl and r2. The unit element of U is u°, which will be written as 1. Now U
has an automorphism a0 such that x<x0 = x'1 for all xe U, and automorphisms an such that
xan=xpn fo ra l lxe U, where pn is the nth odd prime. These automorphisms a0, auct2, ...gen-
erate an abelian group A of automorphisms of U. The example G2 is the splitting extension
of [/by A, and we suppose that the element at of CF2 corresponds to the automorphism a, of A.

The proof that K(g) consists of elements [g, x~\ is in two parts.
(i) Let [g, u] ^ 1, say ifi — W for some rational p # 1. Clearly K(g) £ £/, and we can

in fact solve the equation

for -v, where a is any rational. It is easy to verify that x = ual(l~p) is a solution. Thus
has the required property.

(ii) Let [g, it] = 1. We may assume that # is not central in G, for then K(g) = 1 and the
result is trivial. Thus g = aur, where a is central in Cr and T ^ 0, and /sT(̂ ) is generated by
elements of the form u*7, where $ is rational with even numerator and odd denominator. Con-
sequently all elements of K(g) have the same form as M*T, and we have to solve an equation
of the form

[<7, *] = «*',
or equivalently

for x. The form of </> shows that <j> +1 is the quotient of two odd integers and, in particular,
that (j) +1 is non-zero:

where 6 — 0 or 1, the et are non-zero integers, and s^O. Then for x we take the element

In either case K(g) contains no elements other than the [g, x]. But G2 is not a ZA group
as its subgroup {«, a0} is certainly not ZA.

3. In this section we discuss groups with each K(g) cyclic, after a digression on similar
conditions for {g}G.

More precisely, we start by proving the equivalence of the three following conditions on
the group G:

(i) every subgroup is normal;
(ii) every {g}G is cyclic;

(iii) every {g}G is locally cyclic.

Clearly (i) implies (ii) and (ii) implies (iii), leaving us to show that (iii) implies (i). Con-
sider the subgroup {g, gx}, where x is an arbitrary element of the group G, which satisfies
(iii). As {g, gx}is cyclic, being a finitely generated subgroup of {g}G, we have

g = h\ g* = hi>

for some h and some coprime a and /?; thus

(h*)x = h*, xh' = xh"-".
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Now {x, xh"~P} is cyclic and so abelian. Hence we have

If h has infinite order, then a = /?, that is [g, x] = 1. If A has finite order, then the numbers
a, /? and (a—/?)2 are coprime in pairs; so g* lies in {g}. In either case {g} is normal in G, which
at once gives (i).

The theorem of Dedekind and Zassenhaus describes completely the groups satisfying (i);
see [5, pp. 159-161]. Such a group, if non-abelian, is the direct product of a quaternion group,
an abelian group of exponent two, and an abelian group with every element of odd order.

When we impose the condition that every K(g) is cyclic or locally cyclic (see Theorems 2
and 3), we cannot hope to determine more than the structure of G'.

In preparation for both these theorems we prove now that G' is abelian when every
K{g) in G is locally cyclic. If c = [a, b~\ and d = [a1, b'~\ are arbitrary commutators in G, then
the subgroup

{d, d"~\ d"'1"'1, d°~lb~la, dla-"i}

of K{a') is cyclic, with generator h say. Hence we have

d = h*, d"'l = hfi, d"'ib'l = h\ da'ib'ia = h6, dla-b^ = he.

It follows that

}f = dy = (hfr)a = (d"- '»- 'Y = h" = (da~'y = (hyi)b = (dia- b])y = h '\ hyi"-e) = 1.

Successive transformations by b, ba, a and ab give

Since

he{h", hfi, h>, hs,h'},

we have

that is, d = d1"- *]. Therefore, as arbitrary commutators c and d in G commute, we conclude
that G' is abelian.

We state once and for all the fact that if every K(g) in G is locally cyclic, or cyclic, then the
same property is to be found in all subgroups and factor groups of G.

It is convenient to consider first the case in which G' is finite.

THEOREM 2. Let G be a group with finite commutator subgroup. Then G' is cyclic if and
only if K(g) is cyclic for each g in G.

Proof. When every K(g) is cyclic, we use induction on the order of G' to establish that G'
is cyclic. Suppose that the abelian group G' has two distinct non-trivial Sylow subgroups
Sp and Sq. Each of these is characteristic in G' and so normal in G. By the induction hypo-
thesis, GISP has its commutator subgroup G'ISP cyclic, and similarly G'/Sq is cyclic. Therefore
G' is cyclic.

Next suppose that G' is a non-trivial />-group for some prime p. In this case G' contains a
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subgroup N, of order p, which is normal in G, because we may take N to be the subgroup of
order p in any non-trivial K(g). We have G'/N cyclic. If G' is non-cyclic, then it is the direct
product of cyclic subgroups of orders p and p" respectively, where n ^ 1, and we show that this
case is impossible.

We must have n = 1; for if n> 1, and if H denotes the subgroup of G' generated by the
pth powers of all its elements, then H => 1 and G'/H is cyclic by the induction hypothesis,
which is impossible. Therefore G' is the direct product of subgroups K(a1) and K(a3), with

[ a 1 ) a 2 ] = c 1 2 # 1, [a3, a4] = c34 # 1,

say. Clearly

K(ai) = K{a2) = {ci2}, X(a3) = K(a4) = {c34},

[a2, a 3 ] e X (

Consider K{axa3). We have

and therefore

2{c 1 2 , c34}.

This contradicts the fact that K^^) is cyclic, and completes the proof of Theorem 2.
A lemma of a technical nature precedes Theorem 3.

LEMMA. A finitely generated group {cu c2, ... , cn} is cyclic if and only if {ci( Cj} is
cyclic for all i andj with 1 ̂  / <j-£n.

Proof. We establish the less trivial part of the lemma in several stages. If each {c,, c}]
is cyclic, then [ch c,] = 1 and the group A generated by clt c2, ... , cn is abelian. Suppose
that A is a/7-group. The fact that {ch c}) is a cyclic />-group shows that Cie{cj} or Cje{c,};
so either c( or c} can be omitted from the given system of generators. An obvious induction
on n shows that A is cyclic.

Suppose next that A is periodic. For an arbitrary prime p we choose elements cip which
generate the Sylow p-subgroup of {c,}, for 1 ̂  / ^ n. The generators c, , c2p, ••• , cnp of
the Sylow /^-subgroup of A inherit the property of the generators of A; therefore each Sylow
/>-subgroup of A is cyclic. It follows that A is cyclic.

There remains the case in which A is infinite, though the periodic subgroup of A is finite
as A is finitely generated. If this subgroup has order m, we consider the group A\M, where M
is generated by the «ith powers of the elements of A. Now AjM is finite, and its generators
clM, c2M,..., cnM inherit the property of the generators of A; so A\M must be cyclic. Its
order is at most m. As A has elements of infinite order and its periodic part has order m, we
must have m = 1.

Therefore we consider the factor group A/S of the torsion-free group A, where S is gener-
ated by all squares in A. It is finite, and so cyclic. But A, having the same number of gener-
ators as AjS, is then cyclic.

This completes the proof of the lemma.
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THEOREM 3. The commutator subgroup of the group G is locally cyclic if and only if K(g)
is locally cyclic for each g in G.

Proof. It is enough to show that if each K(g) is locally cyclic, then so is G', which was
shown above to be abelian. That is, we wish to show that any finite set of elements of G'
generates a cyclic subgroup, or (equivalently) that any finite set of commutators generates a
cyclic subgroup. The lemma reduces this problem to that of showing that any pair of commu-
tators generates a cyclic subgroup.

Let [a1} a2] a n d [a3, a4] be any two commutators. As we work in the subgroup
{alt a2, o3, o4} only, we shall take this to be G. If ctJ = [a,, aj\ for 1 ^ 1 ^ 4 and 1 £j ^ 4,
our aim is to show that {c12, c34} is cyclic. We suppose that c12 ¥= 1 and c34 ^ 1.

First we discuss the case when c13 = c24 = 1. Then

as c12 and c34 therefore lie in the locally cyclic group Kia^), we see that {c12, c34} is cyclic.
We may, and shall, assume from here onwards that cx 3 ¥= 1.

Next, suppose that c12 has finite order. Then c13 also has finite order, as {c12, c13} is
a cyclic subgroup of K{Oi). Similarly c34 has finite order, and indeed each subgroup K(a,)
for 1 ^ 1 ^ 4 is periodic, as it contains a non-trivial element of finite order. Now an arbitrary
commutator c in G may be written as

where each x, and each j>( is one of af1 for 1 ̂  i ^ 4, and the well-known identical relations

[xy, z] = [x, z]>|>, z], [x"1 , y] = [y, x ] * "

may be used to expand c as the product of certain conjugates of the commutators ci}. This
proves that G' £ A-(a1)/r(a2)iT(a3); hence G' is periodic. Because each cXi has finite order it
generates a characteristic subgroup of K(at), and so a normal subgroup of G. It follows that c(j-
has a finite number of conjugates. As G' is finitely generated and periodic, G' is finite. By
Theorem 2, C is cyclic, and so is its subgroup {c12, c3 4}. We shall, therefore, in future suppose
that Ci 2 has infinite order, which clearly implies that c34 has infinite order.

In this case we investigate the structure of G' and its embedding in G. If d is a generator
of the cyclic subgroup {c12, c13} of K(ax), we have

for some a # 0 and /? # 0; so c^2 = c53. Similar consideration of K(a3) gives cf3 = c | 4 for
some a' ^ 0 and some /?' ^ 0. These results combine to give

C 12 — C34> W

where y12 = /?/?' 5̂  0, y34 = aa' ^ 0. It is easy to see that a relation of the same sort holds
when c34 is replaced by any non-trivial commutator among c13, c14, c23, c24, because K{ax)
and K{a2) are locally cyclic.
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Now let x be an arbitrary element of G, and let dX2 be a generator of the cyclic subgroup
{c12,c*2} <**(«,), so that

where X and jt are coprime; thus

(dx
12y = di2.

On raising both sides to the power y12 and using (*), we find that

Let d34 generate the cyclic subgroup {c34, c*4}, so that

C34 = "34> C34 = ^34> (^34)* = ^34,

where 9 and co are coprime. This last relation gives

We therefore have

c§y« = (cf/34)* = CsT", cft*-•"•>'" = 1.

It follows, since c34 has infinite order, that

nB-X<o = 0;

and because X and ^ are coprime, and 6 and co are coprime, we have X = 0, fi = co.
Therefore we have

C34 = ^34. ^34 = ^34.

where x, X and n have the meanings explained above. A similar argument will show that

ctJ = dfj, cfj = dfj

for a suitable element di}, where 1 ̂  i < j g 4. When x = ot, we shall write X and /t as Xk

and ^ t respectively, for 1 g A: ^ 4.
There is one case in which (*) at once shows that {c12, c34} is cyclic, namely when this

subgroup is torsion-free. If | yi2 \ is taken to be minimal, and if y12 and y34 are then coprime,
it follows that {cl2, c34} is cyclic; for we can find integers 8 and e for which

and we have

{ci2> c34} = {ce
12c34}.

Therefore we shall assume that {c12, c43} is infinite but not torsion-free, and it will be con-
venient to assume that its periodic subgroup is a /7-group for some prime p. For the elements
in G' of finite order prime to any fixed p form a characteristic subgroup of G' and so a normal
subgroup NofG; we may replace G by G/N without disturbing any of our assumptions about
cl2 and C34. What we shall show is that {c12, c34} contains in fact no element of order p, and
so is torsion-free.
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Consider the case in which c12 is central in G. Then Xk = \ik = 1 for 1 ̂  k ^ 4; so c34

is central in G. This ensures that the subgroup M generated by the wth powers of the ele-
ments of {c12, c34} is normal, m being the order of the periodic subgroup of {cl2, c34}. Thus
c12M and c3AM have finite orders exceeding 1; so the subgroup {c12M, c34M} of G/M is
cyclic, and its order is at most m. Therefore m= \, and then {c12, c34} is cyclic, as we wished
to prove.

For the rest of the proof of Theorem 3 we assume that neither c12 nor c34 is central in G,
that is that, in the notation introduced above, some nk — Xk is non-zero. We have that
[ci2> ak]x" belongs to K(cl2) and is equal to

"12 — C 12 .

for a suitable element dl2; this shows that c12 has finite order modulo K(ci2). Consequently,
the relation (•) shows that c34 has finite order modulo K(c12). A similar argument shows that
c12 and c34 have finite orders modulo K(c3A). If we put K = A"(c12)nAf(c34), we see that
cl2K and c3AK are elements of finite order in G/K.

An earlier result now indicates that {ci2K, c34.K} is a cyclic subgroup of GjK, say {cK},
where

ci2K=(cKy, c3AK = (cK)",

and a and /? are coprime. The relations

follow, and here we assume without losing generality that oc and p are coprime. Then we have

Next we examine a typical generator of K(c12). This has the form [c12, x], or (because
G' is abelian) [cl2, a], where a = a i ' a^a^a^ for certain integers nk. If we suppose for the
moment that each nk is positive, then there is an element d such that

c 1 2 — a , A. — /,! A2 A3 AA , c 1 2 — a , // — Hi fi2 ji3 n4 .

It follows from this that

[c12, x] = [c12, a] = d" - \ [c12, x ] ' = c12"-\

Relations of the same sort can be found when some nk are negative. For instance, when nt

is negative and the rest are positive the last relation holds provided we take A to be /*"'A2
2/13

3A4'
4,

and n to be A" 1 ^ ;^ 3 ^ 4 .
We note that no Xk or nk is divisible by p. For we may assume that {c12, c34} contains

an element c of order p, and for this element we have

(cXk)ak = c " \

where kk and nk are coprime. If nk, for instance, was divisible by p, then the transformation
of G by ak would not be an automorphism. Therefore [c12, x]A lies in {cl2}, where A and p
are coprime. This with the earlier relation c{2c^ e K(c12) shows that

C12C34 e 1C12/
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for some number co prime to p, and so

r<t>l — r<»2
C34 — C12>

where cot is prime to p.
But the relation of this form with | (Oy | minimal, and the fact that elements of finite order

in {c12, c34} havep-power order, show (as explained earlier) that {c12, c34} is cyclic.
This completes the proof of Theorem 3.

COROLLARY. The commutator subgroup of the group G is locally cyclic if and only if
[g, x] and [g, y\ generate a cyclic subgroup, where g, x and y are arbitrary elements of G.

Proof. The lemma shows that our hypothesis implies that every K(g) is locally cyclic.
Application of Theorem 3 completes the proof.

Finally we describe a group G3 in which G'3 is an arbitrary locally cyclic group while
every K(g) is cyclic. Let F be the free nilpotent group of class two on two generators, take a
countable infinity of copies of F, and let P be the restricted directed product of all these
groups. Thus the centre of P, which is also P', is a free abelian group of countably infinite
rank. Now to any given locally cyclic group L there corresponds a subgroup NofP such that
L is isomorphic to P'/N; the example G3 is defined to be PIN. The proof of the fact asserted
about K{g) is easy, and is omitted.

In particular a non-cyclic group, for instance the additive rationals, may be taken for L.
This shows that Theorem 2 does not always hold when G' is infinite.
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