ON A SET OF NORMAL SUBGROUPS
 by I. D. MACDONALD
 (Received 4 April, 1961)

1. The commutator $[a, b]$ of two elements a and b in a group G satisfies the identity

$$
a b=b a[a, b] .
$$

The subgroups we study are contained in the commutator subgroup G^{\prime}, which is the subgroup generated by all the commutators.

The group G is covered by a well-known set of normal subgroups, namely the normal closures $\{g\}^{G}$ of the cyclic subgroups $\{g\}$ in G. In a similar way one may associate a subgroup $K(g)$ with each element g, by defining $K(g)$ to be the subgroup generated by the commutators $[g, x]$ as x takes all values in G. These subgroups generate G^{\prime} (but do not cover G^{\prime} in general), and are normal in G in consequence of the identical relation

$$
\begin{equation*}
[g, x]^{y}=[g, y]^{-1}[g, x y] \tag{A}
\end{equation*}
$$

holding for all g, x and y in G. (By a^{b} we mean $b^{-1} a b$.) It is easy to see that

$$
\{g\}^{G}=\{g, K(g)\} .
$$

The subgroups $K(g)$ appear in a number of situations. For instance, it is shown in Theorem 3 of [1] that if every $K(g)$ in G is abelian, then the commutator subgroup $G^{\prime \prime}$ of G^{\prime} lies in the centre of G and has exponent 2. Again, every $K(g)$ is finite if and only if every element of G has just a finite number of conjugates. One part of this statement is clear, and to prove the other part suppose that every element of G has only a finite number of conjugates. Then any subgroup $K(g)$ is generated by a finite set of commutators of the form [g, x] for certain elements x; each $[g, x]$ has finite order by Theorem 5.1 in [2]. These facts, and the condition on conjugates in G, and use of Corollary 5.21 of [2], show that each $K(g)$ is finite. We further note that, because of Theorem 3.1 of [3], each $K(g)$ is boundedly finite if and only if G^{\prime} is finite.

In § 2 we consider groups G in which each $K(g)$ contains elements of the form $[g, x]$ only. This with minimal condition on the $K(g)$ appears to be a strong restriction on G, which will be shown to be a $Z A$ group. An unusual feature of this result is that conditions on G^{\prime} give a conclusion on the structure of G, not just of G^{\prime}. In § 3 we turn to groups G in which each $K(g)$ is cyclic. As it can be shown that G^{\prime} is then locally cyclic, it is worth considering groups with each $K(g)$ locally cyclic. We show that again G^{\prime} is locally cyclic.
2. The subgroup $K(g)$ contains only commutators of the form $[g, x]$ if and only if the equations

$$
\begin{equation*}
[g, x][g, y]=\left[g, z_{1}\right] \tag{B}
\end{equation*}
$$

(C)

$$
[g, x]^{-1}=\left[g, z_{2}\right]
$$

can be solved for z_{1} and z_{2}, the elements x and y being arbitrary. An equivalent condition is, clearly, that
(D)

$$
[g, y]^{-1}[g, x y]=[g, z]
$$

should be soluble for z. By (A) and (D) another equivalent condition is that
(E)

$$
[g, x]^{y}=[g, z]
$$

should be soluble for z.
A further condition may be obtained when it is noted that solubility of (B) is sufficient for solubility of (C). For if there is an element z_{0} such that

$$
\left[g, x^{-1}\right]\left[g, x^{-1}\right]=\left[g, z_{0}\right]
$$

then we have successively

$$
\begin{aligned}
g^{-1} x g x^{-1} g^{-1} x g x^{-1} & =g^{-1} z_{0}^{-1} g z_{0} \\
x^{-1} g^{-1} x g & =g^{-1} x^{-1} z_{0}^{-1} g z_{0} x \\
{[g, x]^{-1} } & =\left[g, z_{0} x\right]
\end{aligned}
$$

thus $z_{2}=z_{0} x$ is a solution of (C).
Next we suppose that every $K(g)$ in G satisfies such a condition, and in addition we impose a minimal condition.

Theorem 1. Let each subgroup $K(g)$ of the group G consist of commutators of the form $[g, x]$, and let G be such that the minimal condition holds for the subgroups $K(g)$. Then a non-trivial element of each subgroup $\{g\}^{G}$ lies in the centre of G, provided that $g \neq 1$.

Proof. If g is an arbitrary element of G we may suppose that $K(g)$ is not the trivial subgroup 1, for otherwise g is in the centre of G and the theorem holds. In $K(g)$ we choose a minimal non-trivial subgroup of the form $K\left(g_{0}\right)$-this exists because of the minimal condition-and we choose an element $h \neq 1$ in $K\left(g_{0}\right)$. As we have $K(h) \subseteq K\left(g_{0}\right)$, we see that $K(h)=K\left(g_{0}\right)$ or $K(h)=1$. In the former case $h^{-1} \in K\left(g_{0}\right)=K(h)$, so by hypothesis there is an element x in G for which

$$
h^{-1}=[h, x]=h^{-1} x^{-1} h x,
$$

implying that $h=1$, a contradiction. Therefore we must have $K(h)=1$, that is, h is central in G. As $h \in K\left(g_{0}\right) \subseteq K(g) \subseteq\{g\}^{G}$, the theorem follows.

Corollary 1. Under the hypotheses of Theorem 1, G is a $Z A$ group.
Proof. By a $Z A$ group is meant a group with an ascending central series which eventually exhausts the group. As Theorem 1 shows that G has a non-trivial centre, the corollary follows once it is verified that the properties required in Theorem 1 persist in homomorphic images of G. This is elementary.

Corollary 2. A group in which each $K(g)$ consists of elements $[g, x]$, and in which every element has only a finite number of conjugates, is $Z A$.

Proof. We remarked earlier that this finiteness condition on conjugates is equivalent to each $K(g)$ being finite. Application of Corollary 1 completes the proof.

In particular, finite groups with the condition of Theorem 1 on the $K(g)$ are nilpotent. However, it is not difficult to see that the class of nilpotency is arbitrary.

We are in a position to show that neither of the following conditions on a group G implies the other:
(i) G^{\prime} consists of commutators;
(ii) for each g in $G, K(g)$ consists of the commutators $[g, x]$ as x varies in G.

Though many finite non-nilpotent groups satisfy (i), no such group satisfies (ii), by a remark above. For examples, we refer to Ore's paper [4], where it is established that the alternating groups of finite degree greater than or equal to 5 satisfy (i). On the other hand, it is clear that any group that is nilpotent of class 2 satisfies (ii), and it seems to be well-known that such a group need not satisfy (i). We present a supporting example as no record of one can be readily found.

The example G_{1} is simply the free nilpotent group of class 2 on 4 generators $a_{1}, a_{2}, a_{3}, a_{4}$; if $c_{i j}=\left[a_{i}, a_{j}\right]$ for $1 \leqq i<j \leqq 4$, the relations in G_{1} are

$$
\left[c_{i j}, a_{k}\right]=1
$$

for $1 \leqq i<j \leqq 4$ and $I \leqq k \leqq 4$, and their consequences. Each element of G_{1} has a unique representation in the form

$$
a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} a_{3}^{\alpha_{3}} a_{4}^{\alpha_{4}} \prod c_{i j}^{\alpha_{1 j}}
$$

where the product is taken over all i and j with $1 \leqq i<j \leqq 4$. So an arbitrary commutator may be written as

$$
\left[a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} a_{3}^{\alpha_{3}} a_{4}^{\alpha_{4}}, \quad a_{1}^{\beta_{1}} a_{2}^{\beta_{2}} a_{3}^{\beta_{3}} a_{4}^{\beta_{4}}\right]
$$

which may be simplified by use of the defining relations to

$$
\prod_{1 \leqq i<j \leqq 4} c_{i j}^{\delta_{i j}}
$$

where $\delta_{i j}=\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}$. It may be verified directly that the $\delta_{i j}$ satisfy

$$
\delta_{12} \delta_{34}-\delta_{13} \delta_{24}+\delta_{14} \delta_{23}=0
$$

If $c_{13} c_{24}$ is the commutator of two elements of G_{1}, the uniqueness of the representation shows that we must have $\delta_{12}=\delta_{34}=\delta_{14}=\delta_{23}=0, \delta_{13}=\delta_{24}=1$. Since these $\delta_{i j}$ do not satisfy the above identity, we have a contradiction; so $c_{13} c_{24}$ is not a commutator, and G_{1} satisfies (ii) but not (i). We note without proof that finite groups with similar properties may be found by taking factor groups of G_{1}.

We now construct a group G_{2} with the purpose of showing that the minimal condition cannot be omitted from the hypotheses of Theorem 1 and its corollaries. Let U be a multiplicative group isomorphic to the additive group of rationals, with u in U corresponding to the rational 1 ; thus u^{r} corresponds to the rational r, and

$$
u^{r_{1}} u^{r_{2}}=u^{r_{1}+r_{2}}
$$

for any rationals r_{1} and r_{2}. The unit element of U is u^{0}, which will be written as 1 . Now U has an automorphism α_{0} such that $x \alpha_{0}=x^{-1}$ for all $x \in U$, and automorphisms α_{n} such that $x \alpha_{n}=x^{p_{n}}$ for all $x \in U$, where p_{n} is the nth odd prime. These automorphisms $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots$ generate an abelian group A of automorphisms of U. The example G_{2} is the splitting extension of U by A, and we suppose that the element a_{i} of G_{2} corresponds to the automorphism α_{i} of A.

The proof that $K(g)$ consists of elements $[g, x]$ is in two parts.
(i) Let $[g, u] \neq 1$, say $u^{g}=u^{\rho}$ for some rational $\rho \neq 1$. Clearly $K(g) \subseteq U$, and we can in fact solve the equation

$$
[g, x]=u^{\sigma}
$$

for x, where σ is any rational. It is easy to verify that $x=u^{\sigma /(1-\rho)}$ is a solution. Thus $K(g)$ has the required property.
(ii) Let $[g, u]=1$. We may assume that g is not central in G, for then $K(g)=1$ and the result is trivial. Thus $g=a u^{\tau}$, where a is central in G and $\tau \neq 0$, and $K(g)$ is generated by elements of the form $u^{\phi \tau}$, where ϕ is rational with even numerator and odd denominator. Consequently all elements of $K(g)$ have the same form as $u^{\phi \tau}$, and we have to solve an equation of the form

$$
[g, x]=u^{\phi r}
$$

or equivalently

$$
\left(u^{\tau}\right)^{x}=u^{(\phi+1) r}
$$

for x. The form of ϕ shows that $\phi+1$ is the quotient of two odd integers and, in particular, that $\phi+1$ is non-zero:

$$
\phi+1=(-1)^{e} p_{i_{1}}^{\varepsilon_{1}} i_{i_{2}}^{\varepsilon_{2}} \ldots p_{i_{s}}^{\varepsilon_{s}}
$$

where $\varepsilon=0$ or 1 , the ε_{1} are non-zero integers, and $s \geqq 0$. Then for x we take the element $a_{0}^{\varepsilon} a_{i 1}^{z_{1}} a_{i_{2}}^{\varepsilon_{2}} \ldots a_{i_{s}}^{\varepsilon_{s}}$.

In either case $K(g)$ contains no elements other than the $[g, x]$. But G_{2} is not a $Z A$ group as its subgroup $\left\{u, a_{0}\right\}$ is certainly not $Z A$.
3. In this section we discuss groups with each $K(g)$ cyclic, after a digression on similar conditions for $\{g\}^{\text {G }}$.

More precisely, we start by proving the equivalence of the three following conditions on the group G :
(i) every subgroup is normal;
(ii) every $\{g\}^{G}$ is cyclic;
(iii) every $\{g\}^{\boldsymbol{G}}$ is locally cyclic.

Clearly (i) implies (ii) and (ii) implies (iii), leaving us to show that (iii) implies (i). Consider the subgroup $\left\{g, g^{x}\right\}$, where x is an arbitrary element of the group G, which satisfies (iii). As $\left\{g, g^{x}\right\}$ is cyclic, being a finitely generated subgroup of $\{g\}^{G}$, we have

$$
g=h^{\alpha}, \quad g^{x}=h^{\beta}
$$

for some h and some coprime α and β; thus

$$
\left(h^{\alpha}\right)^{x}=h^{\beta}, \quad x^{h^{\alpha}}=x h^{\alpha-\beta}
$$

Now $\left\{x, x h^{\alpha-\rho}\right\}$ is cyclic and so abelian. Hence we have

$$
h^{\alpha(\alpha-\beta)}=\left(h^{\alpha(\alpha-\beta)}\right)^{x}=h^{\beta(\alpha-\beta)}, \quad h^{(\alpha-\beta)^{2}}=1 .
$$

If h has infinite order, then $\alpha=\beta$, that is $[g, x]=1$. If h has finite order, then the numbers α, β and $(\alpha-\beta)^{2}$ are coprime in pairs; so g^{x} lies in $\{g\}$. In either case $\{g\}$ is normal in G, which at once gives (i).

The theorem of Dedekind and Zassenhaus describes completely the groups satisfying (i); see [5, pp. 159-161]. Such a group, if non-abelian, is the direct product of a quaternion group, an abelian group of exponent two, and an abelian group with every element of odd order.

When we impose the condition that every $K(g)$ is cyclic or locally cyclic (see Theorems 2 and 3), we cannot hope to determine more than the structure of G^{\prime}.

In preparation for both these theorems we prove now that G^{\prime} is abelian when every $K(g)$ in G is locally cyclic. If $c=[a, b]$ and $d=\left[a^{\prime}, b^{\prime}\right]$ are arbitrary commutators in G, then the subgroup

$$
\left\{d, d^{a-1}, d^{a-1 b-1}, d^{a^{-1} b^{-1} a}, d^{[a, b]}\right\}
$$

of $K\left(a^{\prime}\right)$ is cyclic, with generator h say. Hence we have

$$
d=h^{\alpha}, \quad d^{a-1}=h^{\beta}, \quad d^{a-1_{b}-1}=h^{\gamma}, \quad d^{a-b_{b}-1_{a}}=h^{\delta}, \quad d^{[a, b]}=h^{e} .
$$

It follows that

$$
h^{\alpha \gamma}=d^{\gamma}=\left(h^{\beta \gamma}\right)^{a}=\left(d^{a^{-1} b^{-1} a}\right)^{\beta}=h^{\beta \delta}=\left(d^{a-1}\right)^{\delta}=\left(h^{\gamma \delta}\right)^{b}=\left(d^{[a, b]}\right)^{\gamma}=h^{e \gamma}, \quad h^{\gamma(\alpha-\varepsilon)}=1 .
$$

Successive transformations by $b, b a, a$ and $a b$ give

$$
h^{\beta(\alpha-\varepsilon)}=h^{\alpha(\alpha-\varepsilon)}=h^{\delta(\alpha-\varepsilon)}=h^{\varepsilon(\alpha-\varepsilon)}=1 .
$$

Since

$$
h \in\left\{h^{\alpha}, h^{\beta}, h^{\gamma}, h^{\delta}, h^{e}\right\}
$$

we have

$$
h^{\alpha-\varepsilon}=1,
$$

that is, $d=d^{[a, b]}$. Therefore, as arbitrary commutators c and d in G commute, we conclude that G^{\prime} is abelian.

We state once and for all the fact that if every $K(g)$ in G is locally cyclic, or cyclic, then the same property is to be found in all subgroups and factor groups of G.

It is convenient to consider first the case in which G^{\prime} is finite.
Theorem 2. Let G be a group with finite commutator subgroup. Then G^{\prime} is cyclic if and only if $K(g)$ is cyclic for each g in G.

Proof. When every $K(g)$ is cyclic, we use induction on the order of G^{\prime} to establish that G^{\prime} is cyclic. Suppose that the abelian group G^{\prime} has two distinct non-trivial Sylow subgroups S_{p} and S_{q}. Each of these is characteristic in G^{\prime} and so normal in G. By the induction hypothesis, G / S_{p} has its commutator subgroup G^{\prime} / S_{p} cyclic, and similarly $G^{\prime} \mid S_{q}$ is cyclic. Therefore G^{\prime} is cyclic.

Next suppose that G^{\prime} is a non-trivial p-group for some prime p. In this case G^{\prime} contains a
subgroup N, of order p, which is normal in G, because we may take N to be the subgroup of order p in any non-trivial $K(g)$. We have G^{\prime} / N cyclic. If G^{\prime} is non-cyclic, then it is the direct product of cyclic subgroups of orders p and p^{n} respectively, where $n \geqq 1$, and we show that this case is impossible.

We must have $n=1$; for if $n>1$, and if H denotes the subgroup of G^{\prime} generated by the p th powers of all its elements, then $H \supset 1$ and G^{\prime} / H is cyclic by the induction hypothesis, which is impossible. Therefore G^{\prime} is the direct product of subgroups $K\left(a_{1}\right)$ and $K\left(a_{3}\right)$, with

$$
\left[a_{1}, a_{2}\right]=c_{12} \neq 1, \quad\left[a_{3}, a_{4}\right]=c_{34} \neq 1
$$

say. Clearly

$$
\begin{gathered}
K\left(a_{1}\right)=K\left(a_{2}\right)=\left\{c_{12}\right\}, \quad K\left(a_{3}\right)=K\left(a_{4}\right)=\left\{c_{34}\right\} \\
{\left[a_{2}, a_{3}\right] \in K\left(a_{2}\right) \cap K\left(a_{3}\right)=1, \quad\left[a_{1}, a_{4}\right] \in K\left(a_{1}\right) \cap K\left(a_{4}\right)=1 .}
\end{gathered}
$$

Consider $K\left(a_{1} a_{3}\right)$. We have

$$
\left(a_{1} a_{3}\right)^{a_{2}}=a_{1} c_{12} a_{3}=a_{1} a_{3} c_{12}^{a_{3}}, \quad\left(a_{1} a_{3}\right)^{a_{4}}=a_{1} a_{3} c_{34},
$$

and therefore

$$
K\left(a_{1} a_{3}\right) \supseteq\left\{c_{12}, c_{34}\right\} .
$$

This contradicts the fact that $K\left(a_{1} a_{3}\right)$ is cyclic, and completes the proof of Theorem 2.
A lemma of a technical nature precedes Theorem 3.
Lemma. A finitely generated group $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ is cyclic if and only if $\left\{c_{i}, c_{j}\right\}$ is cyclic for all i and j with $1 \leqq i<j \leqq n$.

Proof. We establish the less trivial part of the lemma in several stages. If each $\left\{c_{i}, c_{j}\right\}$ is cyclic, then $\left[c_{i}, c_{j}\right]=1$ and the group A generated by $c_{1}, c_{2}, \ldots, c_{n}$ is abelian. Suppose that A is a p-group. The fact that $\left\{c_{i}, c_{j}\right\}$ is a cyclic p-group shows that $c_{i} \in\left\{c_{j}\right\}$ or $c_{j} \in\left\{c_{i}\right\}$; so either c_{i} or c_{j} can be omitted from the given system of generators. An obvious induction on n shows that A is cyclic.

Suppose next that A is periodic. For an arbitrary prime p we choose elements $c_{i p}$ which generate the Sylow p-subgroup of $\left\{c_{i}\right\}$, for $1 \leqq i \leqq n$. The generators $c_{1 p}, c_{2 p}, \ldots, c_{n p}$ of the Sylow p-subgroup of A inherit the property of the generators of A; therefore each Sylow p-subgroup of A is cyclic. It follows that A is cyclic.

There remains the case in which A is infinite, though the periodic subgroup of A is finite as A is finitely generated. If this subgroup has order m, we consider the group A / M, where M is generated by the m th powers of the elements of A. Now A / M is finite, and its generators $c_{1} M, c_{2} M, \ldots, c_{n} M$ inherit the property of the generators of A; so A / M must be cyclic. Its order is at most m. As A has elements of infinite order and its periodic part has order m, we must have $m=1$.

Therefore we consider the factor group A / S of the torsion-free group A, where S is generated by all squares in A. It is finite, and so cyclic. But A, having the same number of generators as A / S, is then cyclic.

This completes the proof of the lemma.

Theorem 3. The commutator subgroup of the group G is locally cyclic if and only if $K(g)$ is locally cyclic for each g in G.

Proof. It is enough to show that if each $K(g)$ is locally cyclic, then so is G^{\prime}, which was shown above to be abelian. That is, we wish to show that any finite set of elements of G^{\prime} generates a cyclic subgroup, or (equivalently) that any finite set of commutators generates a cyclic subgroup. The lemma reduces this problem to that of showing that any pair of commutators generates a cyclic subgroup.

Let $\left[a_{1}, a_{2}\right]$ and $\left[a_{3}, a_{4}\right]$ be any two commutators. As we work in the subgroup $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ only, we shall take this to be G. If $c_{i j}=\left[a_{i}, a_{j}\right]$ for $1 \leqq i \leqq 4$ and $1 \leqq j \leqq 4$, our aim is to show that $\left\{c_{12}, c_{34}\right\}$ is cyclic. We suppose that $c_{12} \neq 1$ and $c_{34} \neq 1$.

First we discuss the case when $c_{13}=c_{24}=1$. Then

$$
\left(a_{1} a_{4}\right)^{a_{2}}=a_{1} c_{12} a_{4}=a_{1} a_{4} c_{12}^{a_{4}}, \quad\left(a_{1} a_{4}\right)^{a_{3}}=a_{1} a_{4} c_{34}^{-1}
$$

as c_{12} and c_{34} therefore lie in the locally cyclic group $K\left(a_{1} a_{4}\right)$, we see that $\left\{c_{12}, c_{34}\right\}$ is cyclic. We may, and shall, assume from here onwards that $c_{13} \neq 1$.

Next, suppose that c_{12} has finite order. Then c_{13} also has finite order, as $\left\{c_{12}, c_{13}\right\}$ is a cyclic subgroup of $K\left(a_{1}\right)$. Similarly c_{34} has finite order, and indeed each subgroup $K\left(a_{1}\right)$ for $1 \leqq i \leqq 4$ is periodic, as it contains a non-trivial element of finite order. Now an arbitrary commutator c in G may be written as

$$
\left[x_{1} x_{2} \ldots x_{r}, y_{1} y_{2} \ldots y_{s}\right]
$$

where each x_{i} and each y_{i} is one of $a_{i}^{ \pm 1}$ for $1 \leqq i \leqq 4$, and the well-known identical relations

$$
[x y, z]=[x, z]^{y}[y, z], \quad\left[x^{-1}, y\right]=[y, x]^{x-1}
$$

may be used to expand c as the product of certain conjugates of the commutators $c_{i j}$. This proves that $G^{\prime} \subseteq K\left(a_{1}\right) K\left(a_{2}\right) K\left(a_{3}\right)$; hence G^{\prime} is periodic. Because each $c_{i j}$ has finite order it generates a characteristic subgroup of $K\left(a_{i}\right)$, and so a normal subgroup of G. It follows that $c_{i j}$ has a finite number of conjugates. As G^{\prime} is finitely generated and periodic, G^{\prime} is finite. By Theorem 2, G^{\prime} is cyclic, and so is its subgroup $\left\{c_{12}, c_{34}\right\}$. We shall, therefore, in future suppose that c_{12} has infinite order, which clearly implies that c_{34} has infinite order.

In this case we investigate the structure of G^{\prime} and its embedding in G. If d is a generator of the cyclic subgroup $\left\{c_{12}, c_{13}\right\}$ of $K\left(a_{1}\right)$, we have

$$
c_{12}=d^{\alpha}, \quad c_{13}=d^{\beta}
$$

for some $\alpha \neq 0$ and $\beta \neq 0$; so $c_{12}^{\beta}=c_{13}^{\alpha}$. Similar consideration of $K\left(a_{3}\right)$ gives $c_{13}^{\beta^{\prime}}=c_{34}^{\alpha^{\prime}}$ for some $\alpha^{\prime} \neq 0$ and some $\beta^{\prime} \neq 0$. These results combine to give

$$
\begin{equation*}
c_{12}^{\gamma_{12}}=c_{34}^{\gamma_{34}} \tag{*}
\end{equation*}
$$

where $\gamma_{12}=\beta \beta^{\prime} \neq 0, \gamma_{34}=\alpha \alpha^{\prime} \neq 0$. It is easy to see that a relation of the same sort holds when c_{34} is replaced by any non-trivial commutator among $c_{13}, c_{14}, c_{23}, c_{24}$, because $K\left(a_{1}\right)$ and $K\left(a_{2}\right)$ are locally cyclic.

Now let x be an arbitrary element of G, and let d_{12} be a generator of the cyclic subgroup $\left\{c_{12}, c_{12}^{x}\right\}$ of $K\left(a_{1}\right)$, so that

$$
c_{12}=d_{12}^{\lambda}, \quad c_{12}^{x}=d_{12}^{\mu}
$$

where λ and μ are coprime; thus

$$
\left(d_{12}^{\lambda}\right)^{x}=d_{12}^{\mu}
$$

On raising both sides to the power γ_{12} and using (*), we find that

$$
\left(c_{34}^{\lambda \gamma_{34}}\right)^{x}=c_{34}^{\mu \gamma_{34}} .
$$

Let d_{34} generate the cyclic subgroup $\left\{c_{34}, c_{34}^{x}\right\}$, so that

$$
c_{34}=d_{34}^{\theta}, \quad c_{34}^{x}=d_{34}^{\omega}, \quad\left(d_{34}^{\theta}\right)^{x}=d_{34}^{\omega},
$$

where θ and ω are coprime. This last relation gives

$$
\left(c_{34}^{\theta \gamma_{34}}\right)^{x}=c_{34}^{\omega y_{34}} .
$$

We therefore have

$$
c_{34}^{\mu \theta_{34}}=\left(c_{34}^{\lambda \theta_{34}}\right)^{x}=c_{34}^{\lambda \omega \gamma_{34}}, \quad c_{34}^{(\mu \theta-\lambda \omega))_{34}}=1 .
$$

It follows, since c_{34} has infinite order, that

$$
\mu \theta-\lambda \omega=0
$$

and because λ and μ are coprime, and θ and ω are coprime, we have $\lambda=\theta, \mu=\omega$.
Therefore we have

$$
c_{34}=d_{34}^{\lambda}, \quad c_{34}^{x}=d_{34}^{\mu},
$$

where x, λ and μ have the meanings explained above. A similar argument will show that

$$
c_{i j}=d_{i j}^{\lambda}, \quad c_{i j}^{x}=d_{i j}^{u}
$$

for a suitable element $d_{i j}$, where $1 \leqq i<j \leqq 4$. When $x=a_{k}$, we shall write λ and μ as λ_{k} and μ_{k} respectively, for $1 \leqq k \leqq 4$.

There is one case in which (*) at once shows that $\left\{c_{12}, c_{34}\right\}$ is cyclic, namely when this subgroup is torsion-free. If $\left|\gamma_{12}\right|$ is taken to be minimal, and if γ_{12} and γ_{34} are then coprime, it follows that $\left\{c_{12}, c_{34}\right\}$ is cyclic; for we can find integers δ and ε for which

$$
\delta \gamma_{12}+\varepsilon \gamma_{34}=1
$$

and we have

$$
\left\{c_{12}, c_{34}\right\}=\left\{c_{12}^{e} c_{34}^{\delta}\right\} .
$$

Therefore we shall assume that $\left\{c_{12}, c_{43}\right\}$ is infinite but not torsion-free, and it will be convenient to assume that its periodic subgroup is a p-group for some prime p. For the elements in G^{\prime} of finite order prime to any fixed p form a characteristic subgroup of G^{\prime} and so a normal subgroup N of G; we may replace G by G / N without disturbing any of our assumptions about c_{12} and c_{34}. What we shall show is that $\left\{c_{12}, c_{34}\right\}$ contains in fact no element of order p, and so is torsion-free.

Consider the case in which c_{12} is central in G. Then $\lambda_{k}=\mu_{k}=1$ for $1 \leqq k \leqq 4$; so c_{34} is central in G. This ensures that the subgroup M generated by the m th powers of the elements of $\left\{c_{12}, c_{34}\right\}$ is normal, m being the order of the periodic subgroup of $\left\{c_{12}, c_{34}\right\}$. Thus $c_{12} M$ and $c_{34} M$ have finite orders exceeding 1 ; so the subgroup $\left\{c_{12} M, c_{34} M\right\}$ of G / M is cyclic, and its order is at most m. Therefore $m=1$, and then $\left\{c_{12}, c_{34}\right\}$ is cyclic, as we wished to prove.

For the rest of the proof of Theorem 3 we assume that neither c_{12} nor c_{34} is central in G, that is that, in the notation introduced above, some $\mu_{k}-\lambda_{k}$ is non-zero. We have that [$\left.c_{12}, a_{k}\right]^{\lambda_{k}}$ belongs to $K\left(c_{12}\right)$ and is equal to

$$
d_{12}^{\left(-\lambda_{k}+\mu_{k}\right) \lambda_{k}}=c_{12}^{\mu_{k}-\lambda_{k}},
$$

for a suitable element d_{12}; this shows that c_{12} has finite order modulo $K\left(c_{12}\right)$. Consequently, the relation (*) shows that c_{34} has finite order modulo $K\left(c_{12}\right)$. A similar argument shows that c_{12} and c_{34} have finite orders modulo $K\left(c_{34}\right)$. If we put $K=K\left(c_{12}\right) \cap K\left(c_{34}\right)$, we see that $c_{12} \mathrm{~K}$ and $c_{34} \mathrm{~K}$ are elements of finite order in G / K.

An earlier result now indicates that $\left\{c_{12} K, c_{34} K\right\}$ is a cyclic subgroup of G / K, say $\{c K\}$, where

$$
c_{12} K=(c K)^{\alpha}, \quad c_{34} K=(c K)^{\beta}
$$

and α and β are coprime. The relations

$$
\left(c_{12} K\right)^{\beta}=\left(c_{34} K\right)^{\alpha}, \quad c_{12}^{\beta} c_{34}^{-\alpha} \in K
$$

follow, and here we assume without losing generality that α and p are coprime. Then we have

$$
c_{12}^{\beta} c_{34}^{-\alpha} \in K\left(c_{12}\right) .
$$

Next we examine a typical generator of $K\left(c_{12}\right)$. This has the form $\left[c_{12}, x\right]$, or (because G^{\prime} is abelian) $\left[c_{12}, a\right]$, where $a=a_{1}^{n_{1}} a_{2}^{n_{2}} a_{3}^{n_{3}} a_{4}^{n_{4}}$ for certain integers n_{k}. If we suppose for the moment that each n_{k} is positive, then there is an element d such that

$$
c_{12}=d^{\lambda}, \quad \lambda=\lambda_{1}^{n_{1}} \lambda_{2}^{n_{2}} \lambda_{3}^{n_{3}} \lambda_{4}^{n_{4}} ; \quad c_{12}^{a}=d^{\mu}, \quad \mu=\mu_{1}^{n_{1}} \mu_{2}^{n_{2}} \mu_{3}^{n_{3}} \mu_{4}^{n_{4}}
$$

It follows from this that

$$
\left[c_{12}, x\right]=\left[c_{12}, a\right]=d^{\mu-\lambda}, \quad\left[c_{12}, x\right]^{\lambda}=c_{12}^{\mu-\lambda}
$$

Relations of the same sort can be found when some n_{k} are negative. For instance, when n_{1} is negative and the rest are positive the last relation holds provided we take λ to be $\mu_{1}^{n_{1}} \lambda_{2}^{n_{2}} \lambda_{3}^{n_{3}} \lambda_{4}^{n_{4}}$, and μ to be $\lambda_{1}^{n_{1}} \mu_{2}^{n_{2}} \mu_{3}^{n_{3}} \mu_{4}^{n_{4}}$.

We note that no λ_{k} or μ_{k} is divisible by p. For we may assume that $\left\{c_{12}, c_{34}\right\}$ contains an element c of order p, and for this element we have

$$
\left(c^{\lambda_{k}}\right)^{a_{k}}=c^{\mu_{k}}
$$

where λ_{k} and μ_{k} are coprime. If μ_{k}, for instance, was divisible by p, then the transformation of G by a_{k} would not be an automorphism. Therefore $\left[c_{12}, x\right]^{\lambda}$ lies in $\left\{c_{12}\right\}$, where λ and p are coprime. This with the earlier relation $c_{12}^{\beta} c_{34}^{-\alpha} \in K\left(c_{12}\right)$ shows that

$$
c_{12}^{\beta \omega} c_{34}^{-\alpha \omega} \in\left\{c_{12}\right\}
$$

к
for some number ω prime to p, and so

$$
c_{34}^{\omega_{1}}=c_{12}^{\omega_{2}},
$$

where ω_{1} is prime to p.
But the relation of this form with $\left|\omega_{1}\right|$ minimal, and the fact that elements of finite order in $\left\{c_{12}, c_{34}\right\}$ have p-power order, show (as explained earlier) that $\left\{c_{12}, c_{34}\right\}$ is cyclic.

This completes the proof of Theorem 3.
Corollary. The commutator subgroup of the group G is locally cyclic if and only if $[g, x]$ and $[g, y]$ generate a cyclic subgroup, where g, x and y are arbitrary elements of G.

Proof. The lemma shows that our hypothesis implies that every $K(g)$ is locally cyclic. Application of Theorem 3 completes the proof.

Finally we describe a group G_{3} in which G_{3}^{\prime} is an arbitrary locally cyclic group while every $K(g)$ is cyclic. Let F be the free nilpotent group of class two on two generators, take a countable infinity of copies of F, and let P be the restricted directed product of all these groups. Thus the centre of P, which is also P^{\prime}, is a free abelian group of countably infinite rank. Now to any given locally cyclic group L there corresponds a subgroup N of P such that L is isomorphic to P^{\prime} / N; the example G_{3} is defined to be P / N. The proof of the fact asserted about $K(g)$ is easy, and is omitted.

In particular a non-cyclic group, for instance the additive rationals, may be taken for L. This shows that Theorem 2 does not always hold when G^{\prime} is infinite.

REFERENCES

1. I. D. Macdonald, On certain varieties of groups, Math. Z. 76 (1961), 270-282.
2. B. H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. (3) 1 (1951), 178-187.
3. B. H. Neumann, Groups covered by permutable subsets, J. London Math. Soc. 29 (1954), 236-248.
4. O. Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951), 307-314.
5. H. J. Zassenhaus, The theory of groups (New York, 1958).

The University

Sheffield 10

