EXTREME POINTS IN SPACES OF ANALYTIC
FUNCTIONS

T. W. GAMELIN AND M. VOICHICK

1. Introduction and statement of results. Our aim in this paper
is to obtain some theorems concerning spaces of analytic functions on a
finite open Riemann surface R which extend known results for the disc
A = {|z| < 1}. Suppose that R has a smooth boundary bR consisting of ¢
closed curves, and that the interior genus of R is s. The first Betti number
of Ris then7r =2s +1¢ — 1.

Let H®(R) be the algebra of bounded analytic functions on R, with the
uniform norm |[|f||, = supglf|, and let A(R) be the subalgebra of H*(R)
consisting of functions which have continuous extensions to bR. For a fixed
point ¢ € R, let du be the harmonic measure for ¢ on bR. H'(du) will denote
the space of analytic functions f on R such that [f| has a harmonic majorant.
The norm of f in H! is defined by ||f|| = #(g), where u is the least harmonic
majorant of f. A function f € H'(du) is determined by its boundary values,
which exist almost everywhere and will also be denoted by f. Also,

11l = Jor If] du.

de Leeuw and Rudin (2) characterized the extreme points of the unit ball
of H'(A) as the outer functions of norm 1. From this it easily follows that f
is in the closure of the set of extreme points of the unit ball of H'(A) if and
only if ||f|]| = 1 and f has no zeros in the open disc. Our analogue of this
result is the following.

THEOREM 1. The closure of the set of extreme points of the unit ball of H'(du)
consists of all functions f € H'(du) such that ||f|| = 1 and the number of zeros
of f, counting multiplicity, does not exceed r/2.

It turns out that the nature of the zeros of extreme points depends on the
existence of certain meromorphic functions on R (cf. Lemma 4). Once this
correspondence is established, it is easy to obtain the following result.

THEOREM 2. There exists a point on R whick ts not the zero of an extreme
point of the unit ball of H (du) if and only if R is conformally equivalent to a
parallel slit domain with slits along the real axis.
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In this case, we calculate explicitly the extreme points in Theorem 6. The
classification of the extreme points of the unit balls of some other function
spaces associated with R turns out to be the same as for the disc (4).

THEOREM 3. 4 function f € H*(R) is an extreme point of the unit ball of
H>(R) if and only if ||f|lo = 1 and [ log[l — |f|]]du = —o.

THEOREM 4. A function f € A(R) is an extreme point of the unit ball of A (R)
if and only if ||f]|e = 1 and [log[l — |f|]]du = —.

2. Extreme points in H°(R) and 4 (R). Theorems 3 and 4 are prob-
ably well known; the proofs proceed exactly as in (4, pp. 138-139), except
that an additional argument is needed to show that the analytic functions
constructed there can be chosen to be single-valued. This can be done by
recourse to Theorem 4 of (1). We will prove a lemma which also does this,
and which has some other applications.

Let v1,...,v, be curves on R with the fixed base point ¢, such that
Y1, . . ., ¥r is a basis for the homology of R. If u is any continuous function
on bR, it has a continuous harmonic extension, also denoted by #, to R. The
functional # — [,,*du is a real continuous functional on C(bR) which is ortho-
gonal to 4 (R). The measure on bR which represents this functional is the
boundary value of an analytic differential w;, so that fyj *du = be 1 w;. The
Schottky differentials wy, ..., w, form a basis for the space of real measures
orthogonal to 4 (R). Since they are real along bR, they extend analytically
across bR and form a basis for the space of analytic differentials on the doubled
surface of R (1). Note that [,z uw; = [,, * du is the period of the harmonic
conjugate of # around 7.

If u is a bounded measurable function on bR, # can be extended harmonic-
ally to R in the sense that there is a unique bounded harmonic function on R
which has non-tangential boundary values coinciding with # almost every-
where.

LeEMMA 1. Let E be a measurable subset of bR such that w(E) > 0, and let
1, ..., C, be real numbers. Then there is a function u € L®(du) such that u=<0,
i is zero on bR — E, and the period of the harmonic conjugate *u of the harmonic
extension of 1 around v, 1s congruent to c; modulo 2r. If, in addition, E is open,
then u can be chosen to be C* on bR.

Proof. Let U be the set of all real functions # € L®(du) such that u < 0
and # is zero on bR — E. If E is open, we also assume that the functions
in Uare C*. In any event, U is a convex cone. The map ®(u) = [fuwl, . ,fuw,]
is a linear transformation of U into R” (r-dimensional Euclidean space), so
®(U) is a convex cone in R

Suppose ®(U) has no interior point. Then ®(U) is contained in a hyper-
plane, say
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2 a]-xj = 0
=1
for all [x1,...,x,] € ®(U), where 0 # [a1,...,0a,] € R". Then

f u( aj(z.)j> =0
bR \7=1

for all #u € U, so Y. jm1a;w; = 0 on E. Since Y a,w; is analytic, Y a,0; = 0,
contradicting the linear independence of the w'’s.

Hence ®(U) has an interior point [yy, ..., v.]. If b > 0 is large, there is
a ball with centre [byy,...,by,] which is contained in ®(U), and which
contains a representative of every r-tuple [cy, . . ., ¢,;] modulo 2.

Fatou's theorem shows that H*(R) can be considered as a subalgebra of
L*>(du). Lemma 1 can be used, for instance, to deduce that the Silov boundary
of H”(R) is the maximal ideal space of L®(du), by the same proof as that
for the disc (cf. 4, p. 174). To prove the assertion, it suffices to show that
for any measurable set F such that u(F) > 0, there exists an f € H® such
that the essential supremum of |f] on F is strictly greater than the essential
supremum of |[f| on bR — F = E. Let u be the harmonic function with bound-
ary values 1 on F and 0 on E. If u(E) = 0, there is nothing to prove. If
u(E) > 0, we apply Lemma 1 to find a bounded harmonic function v such
that ¥ £ 0, v = 0 on F, and the periods of *v are congruent to the periods
of —*u modulo 27. If f = exp(u + v + ¢*u 4 ¢*v), then f € H, |[f| = ¢
a.e. on F, and |f| = 1 a.e. on E. Hence f is the desired function.

Lemma 1 can be used to carry over the proof of Theorem 4 from (4) as
follows. If f € A(R), |lf|| = 1, and [ log[l — |f|]]du > —o, we must con-
struct g € A(R) such that [g(z)] = 1 — [f(2)| for 2z € bR. Let v be an inte-
grable function on bR such that v < log[l — [f|], and » is C™ on each open
arc of the set where |f| £ 1. Let E = bR, and choose a C* function % in
accordance with Lemma 1, so that the periods of *u are congruent to the
periods of —*y modulo 27. If g = exp(u + v 4 < *u + ¢ *v), then g € A(R)
and |g) £ ¢ £ 1 — [f] on bR.

The proof of Theorem 3 is carried over similarly from (4). Using Lemma 1
in conjunction with the results of (8), the following theorem can also be
established for 4(R) (cf. 4, pp. 80, 88).

THEOREM 5. Every closed ideal in A (R) 1is the closure of the principal ideal
generated by some function in A (R).

3. Reduction to meromorphic functions. It is useful to consider a
class of functions which includes H'(du): H,} is the class of multiple-valued
analytic functions f on R such that [f| is single-valued and |f| has a harmonic
majorant on R. If f € H,\, then [f| has boundary values a.e. on bR and on
bR |f| and log |f] are in L!(du) when f # 0. A function f € H,, is said to be
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an outer function if log |f(q)| = [srlog |f| du. Hj, is the class of bounded
functions in H,.. A function f € Hg is an inner function if [f| = 1 a.e. on bR.
A singular funclion is an inner function which never vanishes on R. An inner
function f with zeros p1, o, . . . is a Blaschke product if log [f(p)|=—>g(p, p;)
for all p € R where g is the Green’s function for R. A Blaschke product is
finite if it has a finite number of zeros.

If f € H'(du) (or H)}), then f has the factorization f = BSG, where B is
a Blaschke product, S is a singular function, and G is an outer function; these
factors are unique up to multiplication by constants of modulus one (see 9).

The factorization of H! functions on R is related to the factorization of
H' functions on A in the following way. Let 7: A — R be an analytic universal
covering map of R. For f € Hpyletf = for. If f € H} and f = BSG is the
factorization of f, then f € H'(A) and f = BSG is the factorization of f. For
later reference it is useful to note that r can be extended to bA a.e. (cf. 8§,
p. 500).

The jth period of a function f € H,, is the increase in the argument of f
when some branch of f is continued around ;. The period vector of f is the
vector II(f) € R™ whose jth component is the jth period of f.

In the remainder of the paper, “‘extreme point” will always refer to the
extreme points of the unit ball of H'(du). The point of departure for the
classification of the extreme points is the following lemma of de Leeuw and
Rudin (see 2 and 4 for proofs).

LeEMMA 2. Suppose f € H'(dp) and ||f|| = 1. f is not an extreme point if and
only if there is a non-constant real-valued function k € L®(du) such that on bR,
kf is the boundary function of a function in H'(dy).

An inner function F € Hjy, is extremal if whenever a real-valued function
k € L®(du) is such that kF is the boundary function of a function in Hj
which has the same periods (modulo 27) as F, then k is a constant.

LemmA 3. Suppose f € H'(du) and ||f|| = 1. f is an exireme point if and
only if the inmer part of f is exiremal.

Proof. Let f = FG be the factorization of f as a product of an inner and
an outer function. In view of Lemma 2, f is not an extreme point if F is not
extremal. Suppose f is not an extreme point, and let £ be the function of
Lemma 2 and % the function in H'(dp) such that # = kf on bR. Then on
bR, |b| = ||k||» |G|, so |k|/|G]| is bounded on bR. Since G is an outer function
|h]/|G| is bounded on R, thus /G € Hy. Since on bR, /G = (kFG)/G = kF,
the lemma is proved.

Lemma 3 shows that the extremal properties of functions f € H!(du)
depend only on their inner parts. Since 1 is an extremal inner function, we
have the following corollary.
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COROLLARY. If f is an ouler function in H'(du) of norm one, then [ is an
extreme point.

In (3), Forelli showed that if f is extremal, the L!-closure of 4 (R)f has co-
dimension at most 7/2 in H'(du). This shows, in particular, that every non-
constant extremal inner function is a Blaschke product with at most /2
zeros, counting multiplicity. We will not use Forelli’s result in what follows,
but we will restrict ourselves to finite Blaschke products, giving our own
derivation of the bound on the number of zeros of extremal inner functions.

LeEmMmA 4. Suppose F is a finile Blaschke product. F is not extremal if and
only if there is a non-constant meromorphic function h on R such that h is real
on bR, and every pole of h is a zero of F and the order of the pole is at most the
order of lhe zero.

Proof. If there exists such a meromorphic function %, then AF ¢ Hj, has
the same periods as F, so F is not extremal. Suppose that F is not extremal.
Choose a non-constant real-valued function & € L”(du) such that kEF is the
boundary function of f € H,,, where f has the same periods as F (modulo 2).
Then & = f/Fis meromorphic on R, is bounded near 4R, and has real boundary
values k on bR. Hence /. can be continued analytically across bR by reflection.
Since A F is analytic, the order of the pole of % at a point p cannot exceed the
order of the zero of F at p.

4. Application of the Riemann-Roch theorem. For § a divisor on
R, MI5] is the space of meromorphic functions on B which are real on bR
and are multiples of §; D[5] is the space of meromorphic differentials on R
which are real along bR and are multiples of §; A[6] and B[8] are the real
dimensions of M[6] and D[5], respectively; and d[8] is the degree of 6. In (5),
Royden showed that

(1) A[1/8] = B[] + 2d[8] — r + 1.
The divisor associated with a meromorphic function or differential will be

denoted by (-). Lemma 4 then states that a finite Blaschke product F is not
extremal if and only if A[(1/F)] = 2.

LeMMA 5. If F is an inner function which has more than r/2 zeros, counting
muliiplicity, then F is not extremal.

Proof. Let § be a divisor such that d[6] > /2 and § divides (F). By (1),
A[1/8] = 2. Hence there is a non-constant meromorphic function 2 € M[1/5].
Now hF € H;,, and kF has the same periods as F. Since % is real on bR, F
is not extremal.

There is one case in which we can compute A[1/5] easily.

THEOREM 6. Suppose that R is a parallel slit domain with slits along the real
axis. An integral divisor § is the divisor of an extremal Blaschke product if and
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only if d[8] = r/2 and whenever p divides 8, then P (the complex conjugate of p)
does not divide 5. In particular, for v = 2, a point p € R s the zero of an extremal
Blaschke product if and only if p is not real.

Proof. If p € R and p is real, then 1/(z — p) € M[1/p], so A[1/p] = 2. If
p € Ris complex, then 1/(z — p)(z — p) € M[1/pp], so A[1/pp] = 2. Hence
no extremal Blaschke product can have real zeros, or two zeros which are
complex conjugates. This proves the forward implication.

To prove the reverse implication, we suppose that d[§] = /2 and that 6
contains no real or complex conjugate points. A basis for the space of analytic
differentials real along bR is {dz/f, z dz/f, . . . , 21 dz/f}, where f(2)? = (z — e1)

. (2 — esr42), and ey, ..., €242 are the end points of the slits (cf. 7, p.
293). Hence D8] consists of all differentials of the form gdz/f, where g is a
polynomial of degree at most » — 1 with real coefficients and 6 is a divisor
of (g). Then § must also be a divisor of (g), so 86 is a divisor of (g). Hence
we see that there are » — d[86] linearly independent polynomials g such that
gdz/f € D[5]. That is, B[s] = r — d[68] = » — 2d[8]. By (1), A[1/6] = 1,
and the finite Blaschke product F such that (F) = 6§ is extremal.

Proof of Theorem 2. If R is conformally equivalent to a parallel slit domain
with slits along the real axis, and Z is an analytic function which effects the
equivalence, then no point p € R such that Z(p) is real can be the zero of
an extreme point.

Conversely, suppose that p € R is the zero of no extreme point. Let % be
a non-constant meromorphic function on R such that % is real on OR and
has only one pole, a simple pole at p. Let  be the extension of % to the doubled
surface R of R; that is, if ¢ is the anticonformal reflection of R across bR,

then % is defined so that Z(¢(w)) = Z(w). % has two poles on R, at p and
at ¢(p). Hence 7 is a two-to-one map of R onto the extended complex plane,
mapping each boundary curve onto a segment of the real axis.

Let z be complex, z € E(bR), and let T be a curve joining « and z which
does not cross & (bR). k~(T) consists of two curves on R which do not meet
bR, one curve passing through p € R and the other through ¢(p) ¢ R — R.
Hence one of the curves is contained in R, and the other in R — R. In parti-
cular, & assumes the value z once and only once on R. So % is a conformal
equivalence of R and the extended complex plane with the slits 2 (bR) deleted.

As an example, we consider surfaces R for which » = 2. In this case, every
extreme point has at most one zero. If the surface is not planar, it is topo-
logically a torus with a disc excised and every point p € R is the zero of
an extreme point. If the surface is planar, it is necessarily equivalent to a
parallel slit domain with three slits along the real axis. If, for instance, R is
a disc with two smaller discs excised, there is a unique circle (or line) which
is orthogonal to the boundaries of the three discs. The points p € R which
lie on this circle are the points which cannot be the zeros of extreme points.
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5. The closure of the extreme points. This section is devoted to
proving Theorem 1. Lemma 6 allows us to approximate finite Blaschke pro-
ducts with no more than 7/2 zeros by extremal Blaschke products. Lemma 9
allows us to approximate singular inner functions by outer functions.

LEMMA 6. Suppose 1 = k = 7v/2, p1...px 15 a divisor on R, and U; is a
neighbourhood of p; j = 1,2,..., k. Then there are points q; € U,
1 =j =k, such that q; # q; for © 5 j, and A{1/(q1...q:)] = 1.

Proof. We will prove the lemma by induction on k. Suppose k£ = 1. Let e
be the unit divisor. Then if f € M[e], f is analytic on R and real on bR and
so by reflection f has an analytic extension to the doubled surface R. So f is
constant, 4[e] = 1 and by (1), Ble] = 7. Let ¢1,..., ¢, be a basis for D[e].
Choose ¢1 in U; such that ¢1(q;) # 0 £ ¢2(q1) and (¢1/¢2)(¢1) is not real.
Let z be a local parameter near ¢; so that 2(g1) = O and let ¢, = (u; + 1v;)d3,
where #; and v; are real. Now D{q:] consists of those differentials of the form
it;ds [ty . .., 8] € R, such that (¢ ¢;)(q1) = 0. In terms of local
coordinates this equation beci mes the system

ZI tu;(0) =0

Z: tjvj(()) = O.
Since (%#1(0) + 721(0))/(12(0) + 7v2(0)) is not real,

/31 (0) u2<0)
1 (0) 02(0)

and the solution system has dimension » — 2. Hence B[¢:] = » — 2 and by
(1), A[1/¢q1] = 1. Hence the lemma is true for & = 1.
Suppose 1 < & = /2 and the lemma is true for the points p,..., pr_1.

= 0

Then there are distinct points ¢; € U;, 1 = j < k — 1, such that

A“/(Ql . gk—l)] = 1.
By (1), Blgi...q-1] =r — 2k + 2 is the dimension of D[g;...gy_1]. Let

ay...,0, (m=r—2k + 2) be a basis for D[g: ... q:_1] and choose
gr € U, qx #q;, 7=1,2,...,k — 1, so that ai(g;) # 0 # as(qx) and
(a1/a2) (qx) is not real. Now D[q;. .. q:] consists of the differentials of the
form

ST‘, tie; such that <21: t]-aj> (ge) = 0.

By the same argument used in the first induction step the solution space
has dimension Blg;...q] =n —2 =r —2k. By (1), 4[1/(q1...qx)] = 1.

Let z; be a uniformizer for the jth boundary curve I'; so that I';= {[z;| =1},
j=1,...,t A singular function S determines a unique positive singular
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finite measure do on bR (which depends on the choice of boundary unifor-
. mizers) such that S = exp[—— (u 4+ 1 *u)], where

w0 =5:% [ E e i),

g is the Green’s function for R, and z; = 7; expi8;near I';. (Cf. 6.) The Schottky
differential w; is given along T'; by ¢4(6,)d8;, where g; is real. The kth period
of *u is

27r]_

;1 J;_qk(l%-) do(8;).

For convenience of notation we will assume that there is only one boundary
curve with uniformizer 2z = re’®. The adaptation of the proof to the general
case involves only a change of notation. In the simplified notation, the kth
period of *u is given by [,z ¢i(8) do(8).

LeEMMA 7. Suppose Ay, Ao, . . . is a sequence of points in R" which converges
to 0. Then there is a sequence of singular functions Si, Ss, . .. such that A, 1is
the period vector of S,, S, is determined by a finite linear combination of point
masses on bR, and S, — 1 a.e. on DA.

Proof. According to (1, § 4.2), there exist r + 1 points wy, ..., w,.; on bR
such that if B; is the period vector of the singular function T'; corresponding
to a unit point mass at w;, then By, ..., B,;; are the vertices of a simplex
in R” which contains 0 as an interior point. We can write

741

= Z b(n’j)Bjr

=1
where b(n,j) 2 0 and b(n,j) >0asn—» forj=1,...,7 + 1. Then the
singular function

S, =11 Ty

has A4, as its period vector, and S, — 1 everywhere on !(bR), except at
the points 7 (w;), j=1,...,7r + 1, so S,— 1 a.e. on bA.

LeMMa 8. For € > 0, there is a real function v € C*(bR) such that for
I= (_6, G),
(@) |7/ <eom bR — I,

(b) —e<von I

(c) f:v(ew) dg =1,

r.

@ J o0 do = 0.0, 15

Proof. Let V be all those real functions v € C”(bR) with properties a, b,
and ¢. For v € V, let ®(v) = [f,,val, - ,bevw,]. Then ®(V) is a convex

I\
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set in R, If the lemma is not true, then there are real constants ay, . . ., a,,
not all zero, such that forallv € V

(2) Z g (0) = fva QW

Let J be an arc on bR disjoint from I. Since wy, . . ., w, are linearly inde-
pendent, > a,w; is not zero on R and hence not zero along J. Hence there
is a real function vy € C*(bR) which is zero on bR — J such that vy <
and —L,Rvo 2 ajw;=08>0.Let u € Vsuch that u = 0 on bR — I. Setting
v = 9+ u in (2) we get

> agi(0) £ —6 + f:ru(e”)(z aqu(0)> de

for all such u. But this is impossible since there is a sequence u, € 7 with
u, =0onbdbR — I, n=1,2,..., such that

f:run (ei")(z aqu(0)> do— Y. aq:(0) as #n— .

LeMMA 9. If S € Hiy is singular, there is a sequence {S,}n—1 of outer functions
in Hy, such that S, has the same periods as S, ||S,||. = 1, and S, — Sa.e. onbA.

Proof. If S = exp[— (u + < *u)] is the singular function obtained by
planting a unit point mass at z = 1, the jth period of *u is ¢;(0). If 2, is the
function of Lemma 8 for ¢ = 1/, the periods of *», are the same as those
of *u. Let S, = exp[—(1/n) — (v, + @ *v,)], then S, € H;, and [|S,]|, = 1.
Since v,df converges weak * to the unit point mass at § = 0, v, converges
to # uniformly on compact subsets of R.

Passing to a subsequence, we can assume that S, converges weakly in
L*(bA) to some function g € H?(A). Since |S,| converges to |S| on compact
subsets of A, |S| = |g| on A. Consequently, g = ¢S for some real 6, Ab-
sorbing this constant into *v,, we can assume that S, converges weakly in
L2(bA) to S. Since ||S,][2 < [|S]]2, we must have [|S,||z — |IS]|s, and S, con-
verges to .S strongly in L2(bA). Passing to a further subsequence, we can
assume that S, converges to S a.e. on bA.

This proves Lemma 9 in the case that S is determined by a point mass
at one point. By taking products of singular functions corresponding to
single point masses, one sees that Lemma 9 is valid for singular functions
determined by finite linear combinations of point masses.

Now suppose S is a singular function determined by an arbitrary positive
singular measure », and let {v;}7—1 be a sequence of finite positive linear
combinations of point masses which converges weak * to v. If S is the singular
function determined by »;, we can assume, as earlier, that S — S in L2(bA).
Let {T%..)ne1 be the sequence of outer functions constructed above for S;.
{ Tyl ) converges in L2(bA) to Sy, and so the diagonal process yields a
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sequence {T,}n—; chosen from the {T%,} such that T, — .S in L?*(bA). Passing
again to a subsequence, we can assume that T, — S a.e. on bA.

The period vectors I1(7T,) must converge to the period vector II(S). Accord-
ing to Lemma 7, we can choose singular functions U, determined by finite
linear combinations of point masses so that U, — 1 a.e. on bA, and II(U,)
= II(S) — I(T,). Since Lemma 9 is valid for singular functions determined
by finite linear combinations of point masses, we can find V, outer such that
(1, = M(U,) and 7, — 1 a.e. on bA. Then II(V,T,) = I(S), and 1,7,
converges a.e. on bA to S. Also ||V, Tyl = 1.

Proof of Theorem 1. Suppose f € H'(du) is such that |[f|]| = 1 and f has
k zeros on R, k = r/2. Let f = BSG be the canonical factorization of f. By
Lemma 6, we can find a sequence of extremal Blaschke products B, whose
zeros {Pa1, Pn2y - - - » Pux} converge to the zeros of f. Since each B, can be
written explicitly as

B,(p) = eXp<— ]}; [g(p, Pns) + 7*g(p, m)])

we see that II(B,) — II(B) and B, — B a.e. on bA.

By Lemma 7, there are singular functions .S, such that S, — 1 a.e. on bA
and II(S,) = O(B) — O(B,). Now choose 7, outer so that |T,| =1,
(T,) = 1(S,S), and T, — S,S in L2(bA). Now

I(B,T,G) = I(B,) + I(T,) + II(G) = II(BSG),

so g, = B,T,G € H'(du). Also |B,T,| <1 a.e. Since B,T, — BS in L2(bA),
we can, passing to a subsequence, assume that B, 7, — BS a.e. Hence |g,| |G
and g, — f a.e. If f, = g,/||g.||, then f, is an extreme point, and f, — f in
L'(du).

REFERENCES

1. L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment.
Math. Helv. 24 (1950), 100-134.

2. K. de Leeuw and W. Rudin, Extreme points and extremum problems in H?, Pacific J. Math.
8 (1958), 467-485.

3. F. Forelli, Extreme points in H'(R), Can. J. Math. 19 (1967), 312-320.

4. K. Hoffman, Banach spaces of analytic functions (Prentice-Hall, Englewood Clitfs, N.]J.,
1962).

5. H. Royden, The Riemann-Roch theorem, Comment. Math. Helv. 34 (1960), 37-51.

6. The boundary values of analytic and harmonic functions, Math. Z. 78 (1962), 1-24.

7. G. Springer, Introduction to Riemann Surfaces (Addison-Wesley, Reading, Mass., 1957).

8. M. Voichick, Ideals and invariant subspaces of analytic functions, Trans. Amer. Math. Soc.
111 (1964), 493-512.

9. M. Voichick and L. Zalcman, Inner and outer functions on Riemann surfaces, Proc. Amer.
Math. Soc. 16 (1965), 1200-1204.

M.I.T., Cambridge, Massachuselis;
Universidad Nacional de La Plata, La Plata, Argentina;
Unaiversity of Wisconsin, Madison, Wisconsin

https://doi.org/10.4153/CJM-1968-089-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-089-5

