
EXTREME POINTS IN SPACES OF ANALYTIC 
FUNCTIONS 

T. W. GAMELIN AND M. VOICHICK 

1. Introduction and statement of results. Our aim in this paper 
is to obtain some theorems concerning spaces of analytic functions on a 
finite open Riemann surface R which extend known results for the disc 
A = [\z\ < 1}. Suppose that R has a smooth boundary bR consisting of t 
closed curves, and that the interior genus of R is s. The first Betti number 
of R is then r = 2s + t — 1. 

Let Hœ(R) be the algebra of bounded analytic functions on R, with the 
uniform norm ||/||œ = supBj/|, and let A(R) be the subalgebra of Hœ(R) 
consisting of functions which have continuous extensions to bR. For a fixed 
point q Ç R, let du be the harmonic measure for q on bR. Hl(dn) will denote 
the space of analytic functions/ on R such that |/| has a harmonic majorant. 
The norm of/ in H1 is defined by ||/|| = u(q), where u is the least harmonic 
majorant of/. A function/ £ Hl(dn) is determined by its boundary values, 
which exist almost everywhere and will also be denoted by / . Also, 

ii/ii = ; « I / I ^ . 

de Leeuw and Rudin (2) characterized the extreme points of the unit ball 
of Hl(k) as the outer functions of norm 1. From this it easily follows t h a t / 
is in the closure of the set of extreme points of the unit ball of Hl(k) if and 
only if II/II = 1 and / has no zeros in the open disc. Our analogue of this 
result is the following. 

THEOREM 1. The closure of the set of extreme points of the unit ball of Hl{dp) 
consists of all functions f Ç Hl{dn) such that \\f\\ = 1 and the number of zeros 
of f, counting multiplicity, does not exceed r/2. 

It turns out that the nature of the zeros of extreme points depends on the 
existence of certain meromorphic functions on R (cf. Lemma 4). Once this 
correspondence is established, it is easy to obtain the following result. 

THEOREM 2. There exists a point on R which is not the zero of an extreme 
point of the unit ball of Hl(dy.) if and only if R is conformally equivalent to a 
parallel slit domain with slits along the real axis. 
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In this case, we calculate explicitly the extreme points in Theorem 6. The 
classification of the extreme points of the unit balls of some other function 
spaces associated with R turns out to be the same as for the disc (4). 

THEOREM 3. A function f Ç Er°(R) is an extreme point of the unit ball of 
Hœ(R) if and only if \\f\\œ = 1 and J log[l - |/|] dp = - ° o . 

THEOREM 4. A function f £ A (R) is an extreme point of the unit ball of A (R) 
if and only if \\f\\œ = 1 and Jlog[l - |/|] d/x = - ° ° . 

2. Extreme points in H°°(R) and A(R). Theorems 3 and 4 are prob­
ably well known; the proofs proceed exactly as in (4, pp. 138-139), except 
that an additional argument is needed to show that the analytic functions 
constructed there can be chosen to be single-valued. This can be done by 
recourse to Theorem 4 of (1). We will prove a lemma which also does this, 
and which has some other applications. 

Let YI, . . . , yr be curves on R with the fixed base point q, such that 
Yi, . . . , yr is a basis for the homology of R. If u is any continuous function 
on bR, it has a continuous harmonic extension, also denoted by u, to R. The 
functional u —> ) y j * du is a real continuous functional on C(bR) which is ortho­
gonal to A(R). The measure on bR which represents this functional is the 
boundary value of an analytic differential ooj, so that J yj * du = j b R u o)j. T h e 
Schottky differentials coi, . . . , cor form a basis for the space of real measures 
orthogonal to A(R). Since they are real along bR, they extend analytically 
across bR and form a basis for the space of analytic differentials on the doubled 
surface of R (1). Note that JbR uoij = Jyj * du is the period of the harmonic 
conjugate of u around jj. 

If u is a bounded measurable function on bR, u can be extended harmonic­
ally to R in the sense that there is a unique bounded harmonic function on R 
which has non-tangential boundary values coinciding with u almost every­
where. 

LEMMA 1. Let E be a measurable subset of bR such that n(E) > 0, and let 
ci, . . . , cr be real numbers. Then there is a function u G Lœ(djj.) such that u^O, 
u is zero on bR — E, and the period of the harmonic conjugate *u of the harmonic 
extension of u around yj is congruent to Cj modulo 2T. If, in addition, E is open, 
then u can be chosen to be C00 on bR. 

Proof. Let U be the set of all real functions u G L°°(^/,t) such that it ^ 0 
and u is zero on bR — E. If E is open, we also assume that the functions 
in £/are C°°. In any event, [/is a convex cone. The map $(w) = [Juœi, . . . , jutor] 
is a linear transformation of U into Rr (r-dimensional Euclidean space), so 
$(£/) is a convex cone in R7". 

Suppose $(U) has no interior point. Then <£(£/) is contained in a hyper-
plane, say 
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2 afiû = 0 

for all [xi, . . . , xr] G <ï>( £/)> where 0 ^ [&i, . . . , ar] G Rr. Then 

u[ X) a^coJ = 0 

for all « Ç [7, so ^5=i a ; wi = 0 on E. Since ]£a/o^ is analytic, X)a;co; == 0, 
contradicting the linear independence of the co's. 

Hence $(U) has an interior point [yi, . . . , yT], If 5 > 0 is large, there is 
a ball with centre [byi, . . . , byr] which is contained in $(£/), and which 
contains a representative of every r-tuple [ci, . . . , cr] modulo 2TT. 

Fatou's theorem shows that H°°{R) can be considered as a subalgebra of 
U°(dn). Lemma 1 can be used, for instance, to deduce that the Silov boundary 
of Hœ(R) is the maximal ideal space of U°(dix), by the same proof as that 
for the disc (cf. 4, p. 174). To prove the assertion, it suffices to show that 
for any measurable set F such that fx(F) > 0, there exists an / G Hœ such 
that the essential supremum of |/ | on F is strictly greater than the essential 
supremum of |/| on bR — F = E. Let u be the harmonic function with bound­
ary values 1 on F and 0 on E. If n(E) = 0, there is nothing to prove. If 
fi(E) > 0, we apply Lemma 1 to find a bounded harmonic function v such 
that v S 0, v = 0 on F, and the periods of *v are congruent to the periods 
of — *u modulo 2T. If / = exp(u + v + i *u + i *v), then / G Hœ, \f\ = e 
a.e. on F, and |/| ^ 1 a.e. on E. Hence / is the desired function. 

Lemma 1 can be used to carry over the proof of Theorem 4 from (4) as 
follows. Il f e A(R), H/11 = 1, and J log[l - \f\] dfx > - co , we must con­
struct g G A{R) such that \g(z)\ ^ 1 — |/(z)| for z G bR. Let v be an inte­
g r a t e function on bR such that v ^ log[l — | / | ] , and v is C°° on each open 
arc of the set where |/| ^ 1. Let E = bR, and choose a C° function u in 
accordance with Lemma 1, so that the periods of *w are congruent to the 
periods of — *v modulo 2ir. If g = exp(u + v + i*u + i *v), then g G A (R) 
and \g\ g ev g 1 - |/| on bR. 

The proof of Theorem 3 is carried over similarly from (4). Using Lemma 1 
in conjunction with the results of (8), the following theorem can also be 
established for A(R) (cf. 4, pp. 80, 88). 

THEOREM 5. Every closed ideal in A(R) is the closure of the principal ideal 
generated by some function in A(R). 

3. Reduction to meromorphic functions. It is useful to consider a 
class of functions which includes Hl{dn)\ Hm is the class of multiple-valued 
analytic functions f on R such that |/| is single-valued and |/| has a harmonic 
majorant on R. If / G H^, then |/| has boundary values a.e. on bR and on 
bR l/l and log |/| are in Ll(dfi) when / ^ 0. A function/ G Hm is said to be 
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an outer function if log| / (g) | = jbR\og\f\ dfx. HZ is the class of bounded 
functions in Hm. A function / G HZ is an inner function if |/ | = 1 a.e. on bR. 
A singular function is an inner function which never vanishes on R. An inner 
function/with zeros pu p2, . . . is a Blaschke product if log \f(p)\ = — Dg(/>, Pf) 
for all p G i? where g is the Green's function for R. A Blaschke product is 
finite if it has a finite number of zeros. 

If / G Hl(dix) (or i7w), then / has the factorization / = BSG, where B is 
a Blaschke product, S is a singular function, and G is an outer function; these 
factors are unique up to multiplication by constants of modulus one (see 9). 

The factorization of H1 functions on R is related to the factorization of 
H1 functions on A in the following way. Let r: A —> R be an analytic universal 
covering map of R. For / G Hm l e t / = / o r. If/ G i?OT and / = BSG is the 
factorization of/, then / G H1 (A) and / = ÂSG is the factorization of/. For 
later reference it is useful to note that r can be extended to bA a.e. (cf. 8, 
p. 500). 

The jih period of a function / G Hm is the increase in the argument of / 
when some branch of / is continued around y j . The period vector of / is the 
vector n( / ) G R r whose/th component is the jth period of/. 

In the remainder of the paper, "extreme point" will always refer to the 
extreme points of the unit ball of ^{dp). The point of departure for the 
classification of the extreme points is the following lemma of de Leeuw and 
Rudin (see 2 and 4 for proofs). 

LEMMA 2. Suppose f G H1 (dp) and \\f\\ — 1. / is not an extreme point if and 
only if there is a non-constant real-valued function k G Lœ(dfi) such that on bR, 
kf is the boundary function of a function in Hl{dn). 

An inner function F G HZ is extremal if whenever a real-valued function 
k G Lœ{dix) is such that kF is the boundary function of a function in HZ 
which has the same periods (modulo 2r) as F, then k is a constant. 

LEMMA 3. Suppose f G Hl(djj) and | | / | | = 1. / is an extreme point if and 
only if the inner part of f is extremal. 

Proof. Let / = FG be the factorization of / as a product of an inner and 
an outer function. In view of Lemma 2, / is not an extreme point if F is not 
extremal. Suppose / is not an extreme point, and let k be the function of 
Lemma 2 and h the function in Hl(djj,) such that h = kf on bR. Then on 
bR, \h\ ^ ||&|[oo \G\, so |/&|/|G| is bounded on bR. Since G is an outer function 
\h\/\G\ is bounded on R, thus h/G G H%. Since on bR, h/G = (kFG)/G = kF, 
the lemma is proved. 

Lemma 3 shows that the extremal properties of functions / G Hl{dn) 
depend only on their inner parts. Since 1 is an extremal inner function, we 
have the following corollary. 
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COROLLARY. If f is an outer function in Hl(dfi) of norm one, then f is an 
extreme point. 

In (3), Forelli showed that if / is extremal, the Z^-closure of A (R)f has co-
dimension at most r/2 in Hl(dix). This shows, in particular, that every non-
constant extremal inner function is a Blaschke product with at most r/2 
zeros, counting multiplicity. We will not use Forelli's result in what follows, 
but we will restrict ourselves to finite Blaschke products, giving our own 
derivation of the bound on the number of zeros of extremal inner functions. 

LEMMA 4. Suppose F is a finite Blaschke product. F is not extremal if and 
only if there is a non-constant meromorphic function h on R such that h is real 
on bR, and every pole of h is a zero of F and the order of the pole is at most the 
order of the zero. 

Proof. If there exists such a meromorphic function h, then hF £ HZ has 
the same periods as F, so F is not extremal. Suppose that F is not extremal. 
Choose a non-constant real-valued function k Ç U°(dn) such that kF is the 
boundary function of / 6 HZ, where/ has the same periods as F (modulo 2T). 
Then h = f/F is meromorphic on R, is bounded near bR, and has real boundary 
values k on bR. Hence h can be continued analytically across bR by reflection. 
Since h F is analytic, the order of the pole of h at a point p cannot exceed the 
order of the zero of F at p. 

4. Application of the Riemann-Roch theorem. For 8 a divisor on 
R, M[8] is the space of meromorphic functions on R which are real on bR 
and are multiples of <5; D[8] is the space of meromorphic differentials on R 
which are real along bR and are multiples of 8; A[8] and B[8] are the real 
dimensions of M[8] and D[8], respectively; and d[8] is the degree of 8. In (5), 
Royden showed that 

(1) A[l/8] = B[8] + 2d[8] - r + l . 

The divisor associated with a meromorphic function or differential will be 
denoted by (•)• Lemma 4 then states that a finite Blaschke product F is not 
extremal if and only if A[(l/F)] ^ 2. 

LEMMA 5. If F is an inner function which has more than r/2 zeros, counting 
multiplicity, then F is not extremal. 

Proof. Let ô be a divisor such that d[8] > r/2 and 8 divides (F). By (1), 
4̂ [I/o] ^ 2. Hence there is a non-constant meromorphic function h £ M[l/ô]. 

Now hF (E Hm, and hF has the same periods as F. Since h is real on bR, F 
is not extremal. 

There is one case in which we can compute A [1/8] easily. 

THEOREM 6. Suppose that R is a parallel slit domain with slits along the real 
axis. An integral divisor 8 is the divisor of an extremal Blaschke product if and 
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only if d[8] ^ r/2 and whenever p divides 8, then p (the complex conjugate of p) 
does not divide 8. In particular, for r ^ 2, a point p £ Ris the zero of an extremal 
Blaschke product if and only if p is not real. 

Proof. If p e R and p is real, then l/(z - p) G M[l/p], so A[l/p] ^ 2. If 
p £ Ris complex, then 1/(z - p)(z - p) G M[l/pp], so A[l/pp] ^ 2. Hence 
no extremal Blaschke product can have real zeros, or two zeros which are 
complex conjugates. This proves the forward implication. 

To prove the reverse implication, we suppose that d[8] ^ r/2 and that 8 
contains no real or complex conjugate points. A basis for the space of analytic 
differentials real along bR is {dz/f, z dz/f, . . . , zr~x dz/f}, wheref(z)2 = (z — ei) 
. . . (z — e2r+2), and eu ... , e2r+2 are the end points of the slits (cf. 7, p. 
293). Hence D[8] consists of all differentials of the form g dz/f, where g is a 
polynomial of degree at most r — 1 with real coefficients and 8 is a divisor 
of (g). Then <5 must also be a divisor of (g), so 88 is a divisor of (g). Hence 
we see that there are r — d[8~8] linearly independent polynomials g such that 
g dz/f e D[8]. That is, B[8] = r - d[8~8] = r - 2d[8]. By (1), A[l/8] = 1, 
and the finite Blaschke product F such that (F) — 8 is extremal. 

Proof of Theorem 2. If R is conformally equivalent to a parallel slit domain 
with slits along the real axis, and Z is an analytic function which effects the 
equivalence, then no point p Ç R such that Zip) is real can be the zero of 
an extreme point. 

Conversely, suppose that p (j R is the zero of no extreme point. Let h be 
a non-constant meromorphic function on R such that h is real on bR and 
has only one pole, a simple pole at p. Let h be the extension of h to the doubled 
surface R of R; that is, if <j> is the anticonformal reflection of R across bR, 
then h is defined so that hi^iw)) = h(w). h has two poles on R, at p and 
at 4>ip). Hence h is a two-to-one map of R onto the extended complex plane, 
mapping each boundary curve onto a segment of the real axis. 

Let z be complex, z (? h(bR), and let T be a curve joining œ and z which 
does not cross h(bR). h~l(Y) consists of two curves on R which do not meet 
bR, one curve passing through p Ç R and the other through 4>(p) G R — R. 
Hence one of the curves is contained in R, and the other in R — R. In parti­
cular, h assumes the value z once and only once on R. So h is a conformai 
equivalence of R and the extended complex plane with the slits h(bR) deleted. 

As an example, wTe consider surfaces R for which r = 2. In this case, every 
extreme point has at most one zero. If the surface is not planar, it is topo­
logical^ a torus with a disc excised and every point p Ç R is the zero of 
an extreme point. If the surface is planar, it is necessarily equivalent to a 
parallel slit domain with three slits along the real axis. If, for instance, R is 
a disc with two smaller discs excised, there is a unique circle (or line) which 
is orthogonal to the boundaries of the three discs. The points p G R which 
lie on this circle are the points which cannot be the zeros of extreme points. 
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5. The closure of the extreme points. This section is devoted to 
proving Theorem 1. Lemma 6 allows us to approximate finite Blaschke pro­
ducts with no more than r/2 zeros by extremal Blaschke products. Lemma 9 
allows us to approximate singular inner functions by outer functions. 

LEMMA 6. Suppose 1 ^ ft ^ r/2, p\ . . . pk is a divisor on R, and Uj is a 
neighbourhood of pj} j = 1, 2, . . . , ft. Then there are points Qj Ç Ujy 

1 ^ j S k, such that qt ^ Çj for i ^ j , and A[l/(qi . . . qk)] = 1. 

Proof. We will prove the lemma by induction on ft. Suppose ft = 1. Let e 
be the unit divisor. Then if / £ M[e], f is analytic on R and real on bR and 
so by reflection / has an analytic extension to the doubled surface R. So / is 
constant, A[e] = 1 and by (1), B[e] = r. Let fa, . . . , <t>T be a basis for D[e\. 
Choose qi in L\ such that fa(qi) ^ 0 ^ fa(qi) and (fa/fa)(qi) ls n o t real. 
Let z be a local parameter near qi so that z(qi) = 0 and let <t>j = (uj + ivf)dz, 
where Uj and ZJ; are real. Now D[qi] consists of those differentials of the form 
Za h^j* [̂ i» • • • » r̂] 6 i^r, such that (X) ^ <l>j){qi) = 0. In terms of local 
coordinates this equation becc mes the system 

T 

£ */w,(0) = 0 
1 
r 

£ ^(0) = 0. 
1 

Since (wi(0) + ivi(0))/(u2(0) + iv2(0)) is not real, 

Ui(0) «2 (o)| n 

|»i(0) v2(0)| ^ 

and the solution system has dimension r — 2. Hence B[qi] = r — 2 and by 
(1), ^4[l/gi] = 1. Hence the lemma is true for ft = 1. 

Suppose \ < k S r/2 and the lemma is true for the points pi,... ,pk.-\. 

Then there are distinct points qj £ Uj, 1 ^ j ' ^ ft — 1, such that 

,4 [ 1 / ( ? ! . . . ?*_!)] = 1. 

By (1), B[qi . . . g>_i] = r — 2k + 2 is the dimension of Z%i . . . g>-i]. Let 
«i, . . . , an (w = r — 2ft + 2) be a basis for Z)[gi . . . qk-i] and choose 
qk € Ï7*, g* ^ qjt j = 1, 2, . . . , ft - 1, so that ai(qk) ^ 0 ^ a2(qk) and 
(ai/a2)(qk) is not real. Now Z)[gi . . . qk] consists of the differentials of the 
form 

n / n \ 

X) tfiis such that ( X ) */**)(&-) = 0. 

By the same argument used in the first induction step the solution space 
has dimension B\qx . . . qk] = n — 2 = r — 2ft. By (1), A[l/(qi . . . qk)] = 1. 

Let Zj be a uniformizer for thej th boundary curve Tj so that Tj= { \ZJ\ = 1}, 
j = ! , . . . , £ . A singular function 5 determines a unique positive singular 
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finite measure da on bR (which depends on the choice of boundary unifor-
mizers) such that S = exp[— (u + i*u)], where 

u(z)=j-£ f f-(z,eiej)d<r{e}), 
Z7T ; = i %J Yj Oft 

g is the Green's function for R, and z3- = r3- e x p ^ n e a r Tj. (Cf. 6.) The Schottky 
differential ook is given along Tj by qk(dj)ddjy where qk is real. The Mh period 
of *u is 

j=i t /r ,-

For convenience of notation we will assume that there is only one boundary 
curve with uniformizer z = reie. The adaptation of the proof to the general 
case involves only a change of notation. In the simplified notation, the &th 
period of *u is given by j b B qk(6) da(0). 

LEMMA 7. Suppose A\, A2, . . . is a sequence of points in Rr which converges 
to 0. Then there is a sequence of singular functions Si, S2, . . . such that An is 
the period vector of Sn, Sn is determined by a finite linear combination of point 
masses on bR, and Sn —> 1 a.e. on bA. 

Proof. According to (1, § 4.2), there exist r + 1 points W\, . . . , wT+\ on bR 
such that if B3 is the period vector of the singular function Td corresponding 
to a unit point mass at wjt then B\, . . . , Br+i are the vertices of a simplex 
in Rr which contains 0 as an interior point. We can write 

r+1 

An = X) b(n,j)Bj, 

where b(n,j) ^ 0 and b(n, j) —> 0 as n —> oo for j = 1, . . . , r + 1. Then the 
singular function 

ci rj^b(n, 1) q-*b{n, r+1) 
On — 1 l . . . 1 r + i 

has An as its period vector, and Sn —> 1 everywhere on r~1(bR), except at 
the points r~l(wf), j — 1, . . . , r + 1, so Sn —> 1 a.e. on bA. 

LEMMA 8. For e > 0, there is a real function v £ Cœ(bR) such that for 

1= ( - e , e ) , 
(a) \v\ < e on bR — / , 

(b) —e<von I, 

(c) £v(ei6)dd=l, 

(d) £v(eid)qk(d) dd = <z*(0), 1 ^ £ ^ r. 

Proof. Let F be all those real functions v £ Cœ(bR) with properties a, 6, 
and £. For z; £ F, let <£(«;) = [jtRvœi, . . . , JbRvo)r]. Then $ ( F ) is a convex 
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set in Rr. If the lemma is not true, then there are real constants «i, . . . , aT, 
not all zero, such that for all v 6 V 

(2) EatftC) SI »Za*«t. 

Let J be an arc on 67? disjoint from I. Since coi, . . . , cor are linearly inde­
pendent, Z / * ^ is not zero on R and hence not zero along J. Hence there 
is a real function Vo Ç C°(bR) which is zero on bR — J such that |z;0| < e 
and —jbRVo Y, aj^j = 5 > 0. Let u £ V such that u = 0 on bR — I. Setting 
v = Vo + u in (2) we get 

for all such w. But this is impossible since there is a sequence un £ V with 
«« = 0 on bR — I, n = 1, 2, . . . , such that 

J un(e
ld) ( £ <**#* (0) ) d0 - + £ «*#* (0) as » -> oo . 

LEMMA 9. If S Ç i J^ w singular, there is a sequence {Sn}n=i of outer functions 
in HZ such that Sn has the same periods as S, \ \Sn\ |œ ^ 1, and Sn-+ S a.e. on bA. 

Proof. If 5 = exp[— (u + i *u)] is the singular function obtained by 
planting a unit point mass at z = 1, the j th period of *u is qj(0). If ^ is the 
function of Lemma 8 for e = 1/w, the periods of *vn are the same as those 
of *u. Let Sn = exp[— (1/w) - (vn + i*vn)], then Sn Ç i ï £ and | |5 n | |œ ^ 1. 
Since ï/ra d0 converges weak * to the unit point mass at 0 = 0, vn converges 
to u uniformly on compact subsets of R. 

Passing to a subsequence, we can assume that Sn converges weakly in 
L2(bA) to some function g £ H2(A). Since \§n\ converges to |o| on compact 
subsets of A, |5| = \g\ on A. Consequently, g = eie°S for some real 0O. Ab­
sorbing this constant into *vn, we can assume that Sn converges weakly in 
L2(bA) to S. Since ||5W||2 ^ | p | U we must have ||ow||2—> ||o||2, and Sn con­
verges to 5 strongly in L2(bA). Passing to a further subsequence, we can 
assume that Sn converges to S a.e. on bA. 

This proves Lemma 9 in the case that S is determined by a point mass 
at one point. By taking products of singular functions corresponding to 
single point masses, one sees that Lemma 9 is valid for singular functions 
determined by finite linear combinations of point masses. 

Now suppose 51 is a singular function determined by an arbitrary positive 
singular measure v, and let {^}T=i be a sequence of finite positive linear 
combinations of point masses which converges weak * to v. If Sk is the singular 
function determined by vk, we can assume, as earlier, that Sk —> S in L2(bA). 
Let [Tktn}n=i be the sequence of outer functions constructed above for Sk. 
{ TkiTl}n=i converges in L2(bA) to Sk, and so the diagonal process yields a 
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sequence {Tn}™=1 chosen from the {Tktn} such that Tn —> S in L2(bA). Passing 
again to a subsequence, we can assume that Tn —> S a.e. on bA. 

The period vectors U(Tn) must converge to the period vector U(S). Accord­
ing to Lemma 7, we can choose singular functions Un determined by finite 
linear combinations of point masses so that Ûn —> 1 a.e. on bA, and TL(Un) 
= U(S) — U(Tn). Since Lemma 9 is valid for singular functions determined 
by finite linear combinations of point masses, we can find Vn outer such that 
U(Vn) = IL(Un) and Vn -> 1 a.e. on bA. Then Il(VnTn) = II (S), and Vnfn 

converges a.e. on bA to 5. Also ||FnjTn||œ ^ 1. 

Proof of Theorem 1. Suppose / G Hl{dy.) is such that ||/|| = 1 and / has 
k zeros on R, k ^ r/2. Let / = BSG be the canonical factorization of / . By 
Lemma 6, we can find a sequence of extremal Blaschke products Bn whose 
zeros {pni, p„2, . . . , pn/c} con verge to the zeros of / . Since each Bn can be 
written explicitly as 

Bn(p) = exp^- Ç \g(p, Pm) + i*g(P, Pm)]j 

we see that II(J5W) —> 11(5) and Bn—>B a.e. on bA. 
By Lemma 7, there are singular functions Sn such that Sn —> 1 a.e. on bA 

and IKS*) = U(B) — TL(Bn). Now choose T„ outer so that \Tn\ ^ 1, 
11(7;) = n(5w5), and f n -> S„S in L2(&A). Now 

n(5nrnG) = ji(Bn) + u(Tn) + n(G) = U(BSG), 

so gn = BnTnG 6 i ï 1 ^ ) . Also |J5wrw| g 1 a.e. Since BnTn-> BS in L2(^A), 
we can, passing to a subsequence, assume that Bn Tn —> 5 5 a.e. Hence \gn\ ^ |G| 
and gn—*f a.e. li fn = gw/||gw||, then /„ is an extreme point, and fn —>/ in 
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