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Abstract. In an earlier paper, for ‘large’ (but otherwise unspecified) subsets
A,B, C, D of �q, Sárközy showed the solvability of the equations a + b = cd with
a ∈ A, b ∈ B, c ∈ C, d ∈ D. This equation has been studied recently by many other
authors. In this paper, we study the solvability of systems of equations of this type
using additive character sums.
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1. Introduction. In [8], Sárközy proved that if A, B, C, D are ‘large’ subsets of
�p, more precisely, |A||B||C||D| � p3, then the equation

a + b = cd (1.1)

can be solved with a ∈ A, b ∈ B, c ∈ C and d ∈ D. Gyarmati and Sárközy [4]
generalized the results on the solvability of equation (1.1) to finite fields. They also study
the solvability of other (higher degree) algebraic equations with solutions restricted to
‘large’ subsets of �q, where �q denotes the finite field of q elements. Using bounds of
multiplicative character sums, Shparlinski [9] extended the class of sets which satisfy
this property. Furthermore, Garaev [3] considered equation (1.1) over some special
sets A,B, C,D to obtain new results on the sum–product problem in finite fields. The
author gave another proof of Garaev’s results using graph theory methods in [11].

In this paper, we will use additive character sums to study the systems of sum–
product equations in finite fields. More precisely, we consider the following systems:

a0 + a1 − b0 · b1 = λ1, a0 + a2 − b0 · b2 = λ2, (1.2)

and

a0 + a1 − b0 · b1 = λ1, a0 + a2 − b0 · b2 = λ2, a1 + a2 − b1 · b2 = λ3, (1.3)

with (ai, bi) ∈ Ai and Ai ⊆ �q × �d
q , i = 0, 1, 2, d ≥ 1. Our first result states that the

system (1.2) of two sum–product equations in large restricted subsets of �q is always
solvable.

THEOREM 1.1. Given three subsets A0,A1,A2 ⊆ �q × �d
q . Suppose that

|A0||A1|, |A0||A2| � qd+2,
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then for any λ1, λ2 ∈ �q, the system (1.2) has

(1 + o(1))
|A0||A1||A2|

q2

solutions.

Theorem 1.1 can even be generalized to the system of k equations and k + 1
variables without any costs.

THEOREM 1.2. Given k + 1 subsets Ai ⊂ �q × �d
q , i = 0, . . . , k. Suppose that

|A0||Ai| � qd+2

for all i = 1, . . . , k, and

|A0|2
∏
i∈I

|Ai| � q(d+2)|I |

for all I ⊂ {1, . . . , k}, |I| ≥ 2. Consider the system L of k equations

a0 + ai − b0 · bi = λi, (ai,bi) ∈ Ai, i = 1, . . . , k.

Then, for any λi ∈ �q, the above system has

(1 + o(1))q−k
k∏

i=0

|Ai|

solutions.

The system (1.3) of three sum–product equations in large restricted subsets of �q,
however, is not always solvable. We will instead show that the system is solvable for
a positive proportion of all triples (λ1, λ2, λ3) ∈ �3

q in the smallest case, d = 1. More
precisely, we have the following theorem.

THEOREM 1.3. Given three subsets A0,A1,A2 ⊆ �q × �q. Suppose that

|A0|, |A1|, |A2| � q3/2,

then the system (1.3) is solvable for �
(√|A1||A2|

q2

)
q3 triples (λ1, λ2, λ3) ∈ �3

q.

It is conceivable that we can chop off the term �
(√|A1||A2|

q2

)
in the above theorem,

or even better, the system is solvable for (1 − o(1))q3 triples (λ1, λ2, λ3) ∈ �3
q. We show

that it is indeed the case when the ambient space �q × �d
q has dimension d + 1 ≥ 3.

THEOREM 1.4. Given three subsets A0,A1,A2 ⊆ �q × �d
q . Suppose that

|A0||A1, |A1||A2|, |A0||A2| � q(d+2)/2,

then the system (1.3) is solvable for (1 − o(1))q3 triples (λ1, λ2, λ3) ∈ �3
q. Furthermore,

if d ≥ 3 and

|A0||A1, |A1||A2|, |A0||A2| � q(d+3)/2,
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then the system (1.3) is solvable for all triples (λ1, λ2, λ3) ∈ �3
q.

Interested readers can also find some interesting related problems in [1, 2, 5, 6, 7,
10, 12, 13, 14, 15].

2. Sum–product equation – Revisited. For any (a0,b0) ∈ �q × �d
q and a subset

V ∈ �q × �d
q , denote Nλ(a0,b0) be the set of all pairs (a,b) ∈ �q × �d

q such that

a0 + a − b0 · b = λ,

and let Nλ
V (a0,b0) = Nλ(a0,b0) ∩ V . The following key estimate says that the

cardinalities of Nλ
V (a0,b0)’s are close to |V |/q when |V | is large.

LEMMA 2.1. For every subset V of �q × �d
q then

∑
(a0,b0)∈�q×�d

q

(
|Nλ

V (a0,b0)| − |V |
q

)2

< qd |V |.

Proof For any set X , let X(·) denote the characteristic function of X . Let χ be any
non-trivial additive character of �q. We have

|Nλ
V (a0,b0)| =

∑
(a,b)∈�q×�d

q ,a0+a−b0·b−λ=0

V (a,b)

=
∑

(a,b)∈�q×�d
q ,s∈�q

1
q
χ (s(a0 + a − b0 · b − λ))V (a,b)

= |V |
q

+ 1
q

∑
(a,b)∈�q×�d

q ,s∈�∗
q

χ (s(a0 + a − b0 · b − λ))V (a,b).

Therefore,

∑
(a0,b0)∈�q×�d

q

(
|Nλ

V (a0,b0)| − |V |
q

)2

= 1
q2

∑
(a0,b0)∈�q×�d

q

⎛
⎝ ∑

(a,b)∈�q×�d
q ,s∈�∗

q

χ (s(a0 + a − b0 · b − λ))V (a,b)

⎞
⎠

2

= 1
q2

∑
s,s′∈�∗

q,a0,a,a′∈�q

b0,b,b′∈�d
q

χ ((s − s′)(a0 − λ))χ (sa − s′a′)χ (b0 · (s′b′

− sb))V (a,b)V (a′,b′)

= qd−1
∑

a,a′∈�q,b∈�d
q ,s=s′∈�∗

q

χ (s(a − a′))V (a,b)V (a′,b)

= qd−1(R1 + R2), (2.1)

where R1 is taken over a = a′ and R2 is taken over a �= a′ (the fourth line follows from
the orthogonality in a0 and b0 and we consider the third line as a sum over a0 then b0
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implies that all summands vanish unless s = s′ and b = b′). We have

R1 =
∑

a=a′∈�q,b∈�d
q ,s=s′∈�∗

q

χ (s(a − a′))V (a,b)V (a′,b)

= (q − 1)
∑

a∈�q,b∈�d
q

V (a,b)2 = (q − 1)|V |, (2.2)

and

R2 =
∑

a�=a′∈�q,b∈�d
q ,s=s′∈�∗

q

χ (s(a − a′))V (a,b)V (a′,b)

=
∑

a∈�q,b∈�d
q ,s∈�∗

q,t�=0,1,a′=ta

χ (sa(1 − t))V (a,b)V (ta,b)

= −
∑

a∈�q,b∈�d
q ,t�=0,1

V (a,b)V (ta,b)

� −(q − 2)|V |. (2.3)

The lemma follows immediately from (2.1), (2.2) and (2.3). �

The following result (a generalization of Theorem 1 in [4]) is an easy corollary of
Lemma 2.1.

THEOREM 2.1. For any two subsets V, U ⊆ �q × �d
q , let Nλ(U, V ) be the set of pairs

(a0,b0) ∈ V, (a1,b1) ∈ U such that a0 + a1 − b0 · b1 = λ. Then, we have∣∣∣∣Nλ(V, U) − |V ||U|
q

∣∣∣∣ <
√

qd |V ||U|.

Proof By Lemma 2.1, we have

∑
(a1,b1)∈U

(
|Nλ

V (a1,b1)| − |V |
q

)2

�
∑

(a1,b1)∈�q�d
q

(
|Nλ

V (a1,b1)| − |V |
q

)2

< qd |V |.

By the Cauchy–Schwartz inequality,∣∣∣∣Nλ(V, U) − |V ||U|
q

∣∣∣∣ �
∑

(a1,b1)∈U

∣∣∣∣|Nλ
V (a1,b1)| − |V |

q

∣∣∣∣
�

√
|U|

√√√√ ∑
(a1,b1)∈U

(
|Nλ

V (a1,b1) − |V |
q

)2

�
√

qd |V ||U|.

�

3. The system of k equations, k + 1 variables. We will prove Theorem 1.2 in
this section (Theorem 1.1 is just a special case of this result). The proof proceeds by
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induction. The base step k = 1 is Theorem 2.1 above. Assuming that the theorem holds
for all systems of l equations and l + 1 variables with l < k, from Lemma 2.1, we have

∑
(a0,b0)∈A0

(
|Nλi

Ai
(a0,b0)| − |Ai|

q

)2

�
∑

(a0,b0)∈�q×�d
q

(
|Nλi

Ai
(a0,b0)| − |Ai|

q

)2

� qd |Ai|.

(3.1)
For any k � 2, by the Cauchy–Schwartz inequality, we have

k∏
i=1

⎛
⎝ n∑

j=1

a2
i.j

⎞
⎠ �

⎛
⎝ n∑

j=1

k−1∏
i=1

a2
i,j

⎞
⎠

⎛
⎝ n∑

j=1

a2
k.j

⎞
⎠ �

⎛
⎝ n∑

j=1

k∏
i=1

ai,j

⎞
⎠

2

. (3.2)

It follows from (3.1) and (3.2) that

⎛
⎝ ∑

(a0,b0)∈A0

k∏
i=1

(
Nλi

Ai
(a0,b0

)
− |Ai|

q
)

⎞
⎠

2

�
∑

(a0,b0)∈A0

k∏
i=1

(
Nλi

Ai
(a0,b0) − |Ai|

q

)2

� qdk
k∏

i=1

|Ai|,

which can be written as

∣∣∣∣∣∣
∑

I⊂{1,...,k}

⎛
⎝(−1)k−|I | ∑

(a0,b0)∈A0

∏
j/∈I

|Aj|
q

∏
i∈I

Nλi
Ai

(a0,b0)

⎞
⎠

∣∣∣∣∣∣ �

√√√√qkd
k∏

i=1

|Ai|. (3.3)

For any I ⊂ {1, . . . , k} with 0 < |I| < k, by the induction hypothesis, we have

∑
(a0,b0)∈A0

∏
i∈I

Nλi
Ai

(a0,b0) = (1 + o(1))q−|I ||A0|
∏
i∈I

|Ai|. (3.4)

Putting (3.3) and (3.4) together, we have

∣∣∣∣∣∣
∑

(a0,b0)∈A0

k∏
i=1

Nλi
Ai

(a0,b0) − (1 + o(1))q−k
k∏

i=0

|Ai|
∣∣∣∣∣∣ �

√√√√qk
k∏

i=1

|Ai|.

Since |A0|2
∏k

i=1 |Ai| � q(d+2)k, the left-hand side is dominated by (1 +
o(1))q−k ∏k

i=0 |Ai|. This implies that

∑
(a0,b0)∈A0

k∏
i=1

Nλi
Ai

(a0,b0) = (1 + o(1))q−k
k∏

i=0

|Ai|,

completing the proof of the theorem.
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4. The system of three equations, three variables.

4.1. The case d = 1 (proof of Theorem 1.3). Let A∗
i = Ai ∩ �∗

q × �∗
q, i = 0, 1, 2,

then

|A∗
i | � q3/2,

for i ∈ {0, 1, 2}. For any λ1, λ2 ∈ �∗
q, it follows from Theorem 1.1 that

|{(ai, bi) ∈ A∗
i , i = 0, 1, 2 : a0 + a1 − b0b1 = λ1, a0 + a2 − b0b2 = λ2}|

= (1 + o(1))
|A∗

0||A∗
1||A∗

2|
q2

.

By the pigeon-hole principle, there exists (a0, b0) ∈ A∗
0 such that

|{(ai, bi) ∈ A∗
i , i = 1, 2 : a0 + a1 − b0b1 = λ1, a0 + a2 − b0b2 = λ2}|

= (1 + o(1))
|A∗

1||A∗
2|

q2
� q.

Let δ = √|A∗
1||A∗

2|/q2 � q−1/2. Let A′
i = {(ai, bi) ∈ A∗

i : a0 + ai − b0bi = λi}, i = 1, 2,
then |A′

1||A′
2| � δ2q2. We assume that |A′

2| � |A′
1|, then |A′

2| � δq. It suffices to show
that there are at least cδq values of λ such that the equation

a1 + a2 − b1b2 = λ, (ai, bi) ∈ A′
i, i = 1, 2 (4.1)

is solvable. For a fix (a1, b1) ∈ A′
1, we want to solve the following system:

a0 + a − b0b = λ2,

a1 + a − b1b = λ,

under the constraint a0 + a1 − b0b1 = λ1. It follows that (b1 − b0)b = λ2 − λ + a1 −
a0. Thus, the system has at most one solution unless b1 − b0 = λ2 − λ + a1 − a0 = 0.
Suppose that b1 = b0 and λ = λ2 + a1 − a0, then from the constraint a0 + a1 − b0b1 =
λ1, we have a1 = b2

0 + λ1 − a0 and λ = λ2 + λ1 + b2
0 − 2a0. We consider two cases.

Since |A′
2| ≤ q, |A′

1| ≥ δ2q � 1. Thus, we can choose (a1, b1) ∈ A′
1 such that (a1, b1) �=

(b2
0 + λ1 − a0, b0). Equation (4.1) now has at most one solution for each λ. So, there

exists at least |A′
2| ≥ δq values of λ such that equation (4.1) is solvable. This complete

the proof of the theorem.

4.2. The case d ≥ 2 (proof of Theorem 1.4). Let A∗
i = Ai\(0; 0, . . . , 0). For any

λ1, λ2 ∈ �q, it follows from Theorem 1.1 that

|{(ai,bi) ∈ A∗
i , i = 0, 1, 2 : a0a1 − b0 · b1 = λ1, a0a2 − b0 · b2 = λ2}|

= (1 + o(1))
|A∗

0||A∗
1||A∗

2|
q2

.
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By the pigeon-hole principle, there exists (a0,b0) ∈ A∗
0 such that

|{((a1,b1), (a2,b2)) ∈ A∗
1 × A∗

2 : a0a1 − b0 · b1 = λ1, a0a2 − b0 · b2 = λ2}|
= (1 + o(1))

|A∗
1||A∗

2|
q2

.

For any (a,b) ∈ �q × �d
q\(0; 0, . . . , 0), set �λ(a,b) = {(u, v ) ∈ �q × �d

q : au − b ·
v = λ}. Let A′

1 = �λ1 (a0,b0) ∩ A∗
1 and A′

2 = �λ2 (a0,b0) ∩ A∗
2, then

|A′
1||A′

2| = (1 + o(1))
|A∗

1||A∗
2|

q2
� qd+1.

The first part of Theorem 1.4 follows immediately from the following lemma:

LEMMA 4.1. For any (a,b) ∈ �q × �d
q\(0; 0, . . . , 0) and λ1, λ2 ∈ �q, suppose that

E ⊆ �λ1 (a,b), F ⊆ �λ2 (a,b). If d � 2 and |E ||F | � qd+1, then

|�(E,F) := {e0f0 − e1 · f1 : (e0, e1) ∈ E, (f0, f1) ∈ F}| � (1 − o(1))q.

Proof The proof is similar to that of Theorem 2.8 in [7]. Define the incidence function

vλ(E,F) = {((e0, e1), (f0, f1)) ∈ E × F : e0f0 − e1 · f1 = λ}.

The Fourier transform of a complex-valued function f on �d
q with respect to a non-

trivial additive character χ on �q is given by

f̂ (k) = q−d
∑
x∈�d

q

χ (−x · k)f (x), (4.2)

and the Fourier inversion formula takes the form

f (x) =
∑
k∈�d

q

χ (x · k)f̂ (k). (4.3)

The Cauchy–Schwartz inequality applied to the sum in the variable (a0,b0) yields

∑
λ∈�q

vλ(E,F)2 � |E |
∑
λ∈�q

∑
a0+a1−b0·b1=λ
a0+a′

1−b0·b′
1=λ

E(a0,b0)F(a1,b1)F(a′
1,b

′
1)

= |E |
∑

(a1−a′
1)−b0·(b1−b′

1)=0

E(a0,b0)F(a1,b1)F(a′
1,b

′
1)

= |E |q−1
∑

s,a0,a1,a′
1∈�q

b0,b1,b′
1∈�d

q

χ (s(a1−a′
1 − b0 · (b1 − b′

1))E(a0,b0)F(a1,b1)F(a′
1,b

′
1)

= q−1|E |2|F |2 + q−1|E |q2d+2
∑

s�=0,a0∈�q,b0∈�d
q

E(a0,b0)|F̂(s(1,b0))|2,
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where the last line follows from (4.2). By changing variables a0 → a1, s → a0 and
sb0 → b0, we have∑

λ∈�q

vλ(E,F)2 � q−1|E |2|F |2 + q2d+1|E |
∑

a0 �=0,a1∈�q,b0∈�d
q

E(a1, a−1
0 b0)|F̂(a0,b0)|2

� q−1|E |2|F |2 + q2d+1|E |
∑

a0 �=0,b0∈�d
q

|F̂(a0,b0)|2

� q−1|E |2|F |2 + q2d+1|E |q−(d+1)
∑

(a∗
0,b

∗
0)∈�q×�d

q

|F(a∗
0,b

∗
0)|2

= q−1|E |2|F |2 + qd |E ||F |,
where the second line follows from the fact that for each a−1

0 b0, there exists at most
one a1 ∈ �q such that (a1, a−1

0 b0) ∈ E ⊆ �λ1 (a,b). By the Cauchy–Schwartz inequality
again, we have

|E |2|F |2 =
(∑

λ

vλ(E,F)

)2

� |�(E,F)|
∑

λ

vλ(E,F)2.

This implies that

|�(E,F)| � q

1 + qd

|E ||F |
.

This follows that if |E ||F | � qd , then |�(E,F)| = q(1 − o(1)), completing the proof of
the lemma. �

If d ≥ 3 and

|A0||A1, |A1||A2|, |A0||A2| � q(d+3)/2,

then

|A′
1||A′

2| = (1 + o(1))
|A∗

1||A∗
2|

q2
� qd+1.

From Theorem 2.2, for any λ3 ∈ �q, there are (a1,b1) ∈ A′
1 and (a2,b2) ∈ A′

2 such that
a1a2 − b1 · b2 = λ3. Therefore, the system (1.3) is solvable for all triples (λ1, λ2, λ3) ∈
�3

q. This complete the proof of the theorem.
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4. K. Gyarmati and A. Sárközy, Equations in finite fields with restricted solution sets, II
(algebraic equations), Acta Math. Hungar. 119 (2008), 259–280.

https://doi.org/10.1017/S0017089511000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000425


SOLVABILITY OF SYSTEMS OF SUM–PRODUCT EQUATIONS 435

5. D. Hart and A. Iosevich, Ubiquity of simplices in subsets of vector spaces over finite
fields, Anal. Math. 34 (2007), 29–38.

6. D. Hart and A. Iosevich, Sums and products in finite fields: an integral geometric
viewpoint, Contemp. Math. 464 (2008).

7. D. Hart, A. Iosevich, D. Koh and M. Rudnev, Averages over hyperplanes, sum–product
theory in finite fields, and the Erdös-Falconer distance conjecture, Trans. AMS 363 (2011)
3255–3275.
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