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DIFFUSION AND THE TORSION PARAMETER
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Abstract

The parameters describing the trapping kinetics of a linear model for diffusion, in
solids involving a captured immobile phase of the diffusing entity, can be determined
by measuring mean residence times for matter in the systems and evaluating the
exponents for the final exponential decay rates of the diffusing entity from various
shaped solids. The mean residence time for matter in a given region can be expressed
in terms of a "torsion parameter" S which in the case of Dirichlet boundary conditions
and cylindrical geometries, coincides with the torsional rigidity of the cylinder.
The final decay rate is given by the first eigenvalue /A of a Helmholtz problem.
Expressions and inequalities are derived for these parameters S and n for general
linear boundary conditions and for geometries relevant to diffusion experiments.

1. Introduction

The linear partial differential equations

dw
in fi x (0, T); (1.1)

model diffusion of a substance which interacts linearly with an immobile phase in
a homogeneous region. The dependent variable C is a measure of concentration
and diffusion potential, a is the mass storage capacity per unit volume and D is
the constant of proportionality between mass flux per unit area and the gradient
of diffusion potential normal to the area. The second dependent variable w
measures the mass per unit volume of substance trapped in the immobile phase

dc
a-—-

ot
- DA'•c \-bw-

dw
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and the constants a and b characterise the linear trapping kinetics.
In many such systems, particularly relating to diffusion in solids, the paramet-

ers a,D, a, b must be inferred from measurements made outside of the region
£2, and so must be related to measurements of q(t) the flux of chemical through
3£2 the boundary of £2, and measurements of Ca{t) the concentrations of C of
diffusing substance controlling the boundary conditions on 3 £2 at time t. The
mass flux q(t) and the accumulated output Q{t) are given by

f dC f

q(t) = - / D —, Q(t) = / q(s)ds. (1.2)

We assume a general linear boundary condition of mixed form:

C+P— = Ca on 3S2. (1.3)

dn
If Q is saturated by a constant boundary concentration Co, then at equilibrium,

C = Co and w = aCo/b in £2. Suppose now that C and w are allowed to decay
to zero by setting Ca to zero, and Q(t) is measured throughout the decay process.
The increasing mass Q(t) of substance evolved after time t has a limiting value
<2(oo) equal to the initial mass content of substance in G and given by

G(oo) = V(aC0 + w0) = V (a + a/b) Co = Va*CQ, (1.4)

where a* = a + a/b and V = \Q\, the volume of £2.
If £2 is a thin slab of thickness d with x measuring distance through it, and

if the ambient concentration Ca is maintained constant outside x = O and zero
outside the other face at x = d, then a steady flux q through the slab given by

:, (1-5)

will eventually be attained and driven by a concentration distribution,

We see that measurements of q as a function of d, or d as a function of q
can be used to estimate D and p. There remains the question of how to identify
the other parameters a, a and b in (1.11) and any answer to this must involve a
study of transient responses of the system.
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If C = Co at t = 0 in fi when the region is transferred to a zero concentration
environment, the mean residence time t for the chemical in Q. is given by

Jo
-T-, (1-7)

Jo H(oo) Jo |_ lAoo;j j n £vi.co)

where

Cdt and * = /
Jo

(1.8)

The functions O and * are solutions of a Poisson problem.
The integration of (1.1) with respect to time give a linear relationship between

$ and * , and a Poisson equation for <I>:

- « $ + />* = io0 = — - , and DA2<t> = (« + - ) Co, (1.9)
b V of

and the same treatment of (1.3) gives a boundary condition for $:

3$
c£> + / 3 — = 0 on 3S2. (1.10)

3/z

If M« is the solution of

V-Uft = - \ in S2, Mfl + P — ^ = 0 on 3S2,
an

and

5^= /"«/,, (1.11)

we find that
w h e r e « * = « + ! • (1-12)

b
It may be assumed that D and /J are known from steady flux experiments
mentioned earlier and so (1.4), (1.12) determine a* and a/b2. A third equation
needed to separately identify a, a and b, is provided by the exponent X of the
final exponential decay made of q{t). If n is the first eigenalue of the Helmholtz
problem,

V2v + /xv = 0 in Q, v + p—=O on 3S2, (H()3))
3/i

then
X(X-b)a-Xa = Dfi(k-b). (1.13)
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In cases of supposed simple diffusion and a and b not too large, we may
regard (1.12) as a test for hidden trapped phases. The limiting case for a and b
very large is degenerate. In this case the diffusing and trapped populations, C
and w, are in equilibium and w = aC/b. Since measurements of w cannot be
made from outside ft, the system behaves like one of simple diffusion and is
indistinguishable from the case where a is replaced by a* in (1.1) and bw — aC
is set to zero. In the case fi zero and ft an infinitely long cylinder, So given by
(P(0), 1.11) is the torsional rigidity of the cylinder and expressions for it may be
found in engineering literature for many cross-sectional shapes. (See Higgins
[1] for a historical survey of the problem.)

The solution up of the Poisson problem (P(/8)) also has relevance to freezing
problems (McNabb and Wake [7]). When the energy change in a freezing
problem is predominantly latent heat of a phase change, um, the greatest value
of u in ft gives the relative time for freezing of variously shaped regions ft in
the sense that the ratio um/u*m of the greatest values of u and u* the solutions of
(P(jS)) in regions ft and ft* respectively, is equal to the ratio tf/tj of the times
tf and tf for freezing of the regions ft and ft*.

Exact solutions for problems (P(/0, HQS)) when ft is not zero or when ft is
three dimensional, are hard to find in the literature. S and [x are easily calculated
numerically for two dimensional problems, particularly when /$, the boundary
parameter, is zero. For non-zero fi and three dimensional problems the calcula-
tions, while tractable, are more difficult. There are important simple formulae
for the solution up and the first eigenvalue ix of H()S) when ft is an infinite slab
or circular cylinder and we give new ones for infinite cylinders of rectangular
and equilateral triangular cross-section. But these need to be supplemented
by correction factors for the finite aspects of experimental geometries and by
asymptotic approximations for large /8 values.

In Section 2 we present formulae for the separable variable cases when ft is
a finite cylinder of rectangular and circular cross-section, which express Up as
deviations from the simple slab and infinite cylinder cases. These cases have
practical value in diffusion studies.

In Section 3, boundary value problems are given for generating the terms of
simple asymptotic power series in (1//J) for up and 5^. The first three terms of
the asymptotic series for Up are:

( U 4 )
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where ««, is the solution of

V2
Moo + l = 0 in Q, ^ = _ M f Uoods = 0 on da.

(P(oo))
The boundary value problem P(oo) has a simple quadratic polynomial solu-

tion when Q is a cylinder or box, and even when it is an equilateral triangle.
This leads to a simple polynomial solution of P(/3) for this region which extends
the known solution of P(0) to general p. There is even a simple exact solution
for the problem H(/J) when Q is an equilateral triangle.

2. Separable variable solutions

The Poisson problem P(/J) and the Helmholtz problem H(/J) have simple
solutions of one independent variable r of the form

U 2 N ' V ^ ' (2A)

where 2p = N — 2, when £2 is a sphere in N dimensions of radius a. For these
cases

_a2 + 2Pa S _ a2 Pa
Um = 2N ' V ~ N(N+2) + ¥ ' (2.2)
and Jin

These are the primary formulae for parameter identification, but need to be
supplemented by correction terms for finite geometries. In the cases of rect-
angular and cylindrical polar coordinates, separable variable techniques yield
series solutions of the Poisson problem which give the truncation corrections to
the basic formulae (2.2). The derivations are standard (for details see McNabb
and Wake [6]) except perhaps for the final formulation as a series of dimensional
corrections.

If £2 is brick shaped and bounded by planes x = ±a, y = ±b, z = ±c the
'torsion function' u for general fi is given by the expression:

a2-x2 ~ a2A\ cosh (Xpy/a) cos (Xpx/a)

2 * M l Xj [cosh {Xpb/a) + {p/a)Xp sinh {Xpb/a)]

~ ~ c2A\A\ cosh {Zpqz/c) cos {Xpx/a) cos (Yqy/b)
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where Xp, Yq are the roots of the equations,

cos Xp = (fi/a)Xp sin Xp, cos Yq = {P/b)Yq sin Yq, (2.4)

and A1, A2 and Zpq are defined as:

! _ 2 sin Xp 2 _ 2sinF(?

" ~ X [ l 0 3 / ) i 2 X ] ' * "]
72

 Y 2 y2

_£i = _ P + 1 1
c2 a2 b2'

Yq [l + (£/6)sin2 Yq\

(2.5)
The greatest value « m o f « i s a t . x = ; y = z = 0 and is given by

2 i^i [cosh (Xpb/a) + {p/a)Xp sinh {Xpb/a)] X2
p

r, (2.6)

oo oo r2 A\

Zpq + (y3/c)ZP9 sinh

and the generalised torsional rigidity S is given by

2sin2X
p

a\ bj?*Xp [\ + (P/a)sm2Xp] [coth(Xpb/a) + <fi/a)Xp]

(2.7)

The Helmholtz problem H(/J) in the same brick shaped region has the solution:

(2.8)
where XX,Y\, Z\ satisfy equations of the form (2.4).

There are two useful formulae for cylinders, one for coin shaped, and a second
for pencil-like regions.

If Q is a coin shaped region of radius a and thickness 2b, the Poisson problem
has a solution.

oo

J2"(r) cos (Znz/b), 0<r<a, \z\ < b, (2.9)
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LVJ

where

Rn(r)

and A,

Zn is the «-th

is given by,

Diffusion and

i root of

cos Zn —

Rn(r) z\ V [
, and ix. are defined by

4 -
/•« -

2 sin Z,

Zn (1 + (fi/b)

the torsion parameter

(3/b)ZH

h
/o(Z^) -

sin2 Zn)'

sinZn

(Znr/b)

f (P/b)Ii(ZnijL)]

a

^ b ~

295

(2.10)

In the limit as the coin radius a goes to infinity the series (2.9) tends to the
simple slab formulas (2.1) with N = I. Formula (2.11) may be rewritten as

cos (Znz/b)
( 2 1 3 )

so that um, the greatest value of u, is given by

b2 , ^ 2 sin Zn

2 ^ Z3 [1 + ()3/6) sin Zn] [/0(Zn/x) + (P/b)ZnIi(ZniJ,)]'
(2.14)

and the 5 value satisfies

5 b2+30b .^2, sin2 Z^^Z,,^)

V 3
(2.15)

The corresponding 'pencil' formulae for a cylinder of radius a and height
2b (IU, = a/b < 1) are

~~ Mz)Jo(<Jn-), 0<r<a, \z\<b, (2.16)
n=\

where qn is the «-th root of

the functions /n(z) are given by

, 2 ^ 1 , cosh qnz
- (fi/a)qn
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and Bn and /LA are defined by

2 a
B ( 2 1 9 )

The torsion function is now given by

u(r,z) = (a2-r2 + 2pa)/4
2fl2 cosh (qnz/a) Jo (qnr/a)

(/3/a)qn si
(2.20)

and the alternative expressions for um and 5 / V are

um = (a2 + 20a)/4

(2.21)

?- = (a2 + 4pa)/S
00

2-8a 2 ^

(2.22)

The corresponding formulae for V and /A associated with the problem
are

( ) ( ) " = § + £ <223)

where Z] and qx are given by (2.10) and (2.17) respectively.

3. Asymptotic approximations and the equilateral triangle solution

When the boundary dQ of ft is sufficiently smooth, the solution u of the
problem P(/J) can be expressed in the asymptotic series form:

- u o o + - u l + \ u 2 + .... (3.1)
P p
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The functions ««„, M, are solutions of the differential equations

V2
Moo + l = 0 , V 2 « , = 0 for i > 1, in « , (3.2)

and on the boundary dQ, they satisfy the following conditions:

3 3

/ "oo = / " I = 0.

Jan Jan

(See Keady and McNabb (1992)). We see that

M = i t + M ~ + O G ) forlarge * (3-4)
where «<» is denned by

V2
Moo + l = 0 in fi, ^ = - M , / Moo = 0 on

(P(oo))
Integration of (3.1) over the domain £2 gives an asymptotic expansion for 5^,

and a variational argument given in Keady and McNabb (1992) gives the useful
inequality,

1 ^ T , 1 ^ r + Eoo, (3.5)

where

Soo = /" «oo, E, = / " « , = - / " M2,. (3.6)

The quadratic polynomial

Moo = Co -

solves problem (P(oo)) for many simple domains.

For example, if Q is a brick in n dimensions with sides |x,| = a,-, we find

c/ = z - , co = - Jjflirl + ^ r where - = ^ J - , (3.8)
2a, 6 \ frf / 3 K ^ a,
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and the function

"oo 1 woo ~

Jn J

For a circular cylinder of radius a and height h,
ah 2 2 hr2

"°° 24(a + /*)2 J 4(a + /«)

S 5JZ ^ ^io° 247r(a + ^ -

az2

2(a + h)'

[10]

(3.9)

(3.10)

(3.11)

u = U0 = —^=x (x - Jliy + a)) (x + y/l{y - a)) .
4V3a v ' v '

When ft = 0, it is well known (Milne-Thompson [8, page 166]) that the
torsion function for the equilateral triangle Q, with sides of length la, is

(3.12)

Thus um, the maximum value, is assumed at the centroid (xc, 0) where

um=a2/9, xc=a/V3, (3.13)

and the torsional rigidity So is given by

So= f udv = ̂ - . (3.14)

Problem P(cx)) has a solution of the form (3.7) in this triangle given by

«oo = ^ - j((x - xc)
2 + y2) for which S^ = [ Ux> = -?-=. (3.15)

^ 4 JQ 4V3

Surprisingly, this expression leads to a simple exact solution for the general
problem P(fi). The function

is a solution of the Poisson equation for any constants c0, cx also satisfies

dug dug a a2

up +P~z— = ufi - P—— = 0 on x = 0 when c0 = —=, Ci = —,
3/i dx V3 6

and so by symmetry M^ given by (3.16) is the solution o
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The value of um(B) found by evaluating up at the centroid is

a (la2 + 6V3a0 + 9B2)
um(B) = — 7 r - , (3-17)

18 (a + V3/3J

and the function Sp = fnupis given by

B

The Helmholtz problem H()3) also has a simple exact solution for the equi-
lateral triangle. The function

v = 4 sin(a + by) sin

x sin i4, (3.20)

= sin fa + bsFhx + fe>>^ + sin (a - bV3x + by) - sin (a + V3b - 2by\

+ A - sin (3a + V3V), (3.21)

satisfies the Helmholtz equation when

A = sin (3a + y/lb\ and ft = 4b2. (3.22)

The requirement that on y = 0,

v — B— = [2 sin a — 2/J&cosa]cos (bV3xj

+ sin (a + V3b) + 2Bb cos (a + V3&)

= 0,

is satisfied when

t = tana = Bb and {It2 - 1) tan (St/fty = 3t. (3.23)

Symmetry considerations imply u + B(dv/dn) = 0 on the other two sides, and
so if t\ is the smallest positive solution of (3.24),

H = 4t2/B2. (3.24)
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4. Conclusion

The parameters of our simple model for diffusion with linear trapping kinetics
can be evaluated by measurements of steady fluxes through slabs and transient
experiments measuring flux decay rates and mean residence times for simple
geometries. The geometric dependence of the mean residence time is given by
a parameter 5 which, in the case of infinite cylinders and Dirichlet boundary
conditions, is the torsional rigidity parameter of elasticity theory. 5 is easily
calculated numerically for two dimensional problems, particularly when fl, the
boundary parameter, is zero. For this latter case, the library routine D03EAF is
used in Keady and McNabb [3]. For non-zero ft and three dimensional problems
the calculations, while tractable, are more difficult. Analytical series solutions
are available for finite cylinders of circular and rectangular cross-section to
give truncation corrections for the infinite cylinder formulae. The simple exact
solutions for non-zero fi for the equilateral triangle are useful for program testing
and studying solution properties of the problems P()3) and H(/J). When fi is
large, the asymptotic inequalities and estimates are needed.
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