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Abstract

Let P(k) be the largest prime factor of the positive integer k. In this paper, we prove that the series

∑
n≥1

(log n)α

P(2n − 1)

is convergent for each constant α < 1/2, which gives a more precise form of a result of C. L. Stewart
[‘On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers’, Proc. London Math. Soc. 35(3) (1977),
425–447].
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1. Main result

Let P(k) be the largest prime factor of the positive integer k. The quantity P(2n
− 1)

has been investigated by many authors (see [1, 3, 4, 10–12, 14–16]). For example, the
best-known lower bound

P(2n
− 1)≥ 2n + 1 for n ≥ 13

is due to Schinzel [14]. No better bound is known even for all sufficiently large values
of n.

Stewart [15, 16] gave better bounds provided that n satisfies certain arithmetic or
combinatorial properties. For example, he showed in [16], and this was also proved
independently by Erdős and Shorey [4], that

P(2p
− 1) > cp log p

holds for all sufficiently large prime numbers p, where c > 0 is an absolute constant
and log is the natural logarithm. This was an improvement upon a previous result of
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his from [15] with (log p)1/4 instead of log p. Several more results along these lines
are presented in Section 3.

Here, we continue to study P(2n
− 1) from a point of view familiar to number

theory which has not yet been applied to P(2n
− 1). More precisely, we study the

convergence of the series

σα =
∑
n≥1

(log n)α

P(2n − 1)
(1)

for some real parameter α.

THEOREM 1. The series σα is convergent for all α < 1/2.

The rest of the paper is organized as follows. We introduce some notation in
Section 2. In Section 3 we comment on why Theorem 1 is interesting and does not
immediately follow from already known results. In Section 4 we present a result due
to Stewart [16] which plays a crucial role in our argument. Finally, in Section 5, we
give a proof of Theorem 1.

2. Notation

In what follows, for a positive integer n, we use ω(n) for the number of distinct
prime factors of n, τ(n) for the number of divisors of n and ϕ(n) for the Euler function
of n. We use the Vinogradov symbols�,� and � and the Landau symbols O and o
with their usual meaning. The constants implied by them might depend on α. We use
the letters p and q to denote prime numbers. Finally, for a subset A of positive integers
and a positive real number x , we write A(x) for the set A ∩ [1, x].

3. Motivation

Stewart [16] proved the following two statements:

A. If f (n) is any positive real-valued function which is increasing and f (n)→∞ as
n→∞, then the inequality

P(2n
− 1) >

n(log n)2

f (n) log log n

holds for all positive integers n except for those in a set of asymptotic density
zero.

B. Let κ < 1/ log 2 be fixed. Then the inequality

P(2n
− 1)≥ C(κ)

ϕ(n) log n

2ω(n)

holds for all positive integers n with ω(n) < κ log log n, where C(κ) > 0
depends on κ .
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Since for every fixed ε > 0 we have∑
n≥2

log log n

n(log n)1+ε
<∞,

assertion A above, taken with f (n)= (log n)ε for some fixed small positive ε < 1− α,
motivates our Theorem 1. However, since Stewart [16] gives no analysis of the
exceptional set in assertion A (that is, of the size of the set of numbers n ≤ x such
that the corresponding estimate fails for a particular choice of f (n)), this alone does
not lead to a proof of Theorem 1.

In this respect, given that the distribution of positive integers n having a fixed
number of prime factors K < κ log log n is very well understood starting with the
work of Landau and continuing with the work of Hardy and Ramanujan [6], it may
seem that assertion B is more suitable for our purpose. However, this is not quite
so either since most n have ω(n) > (1− ε) log log n and for such numbers the lower
bound on P(2n

− 1) given by B is only of the shape ϕ(n)(log n)1−(1−ε) log 2, and this
is not enough to guarantee the convergence of series (1) even with α = 0.

Conditionally, Murty and Wang [11] have shown that the ABC conjecture implies
that P(2n

− 1) > n2−ε for all ε > 0 once n is sufficiently large with respect to ε. This
certainly implies the conditional convergence of series (1) for all fixed α > 0. Murata
and Pomerance [10] have proved, under the generalized Riemann hypothesis for
various Kummerian fields, that the inequality P(2n

− 1) > n4/3/ log log n holds for
almost all n, but they did not give explicit upper bounds on the size of the exceptional
set either.

4. Main tools

As we have mentioned in Section 3, neither assertion A nor B of Section 3 is
directly suitable for our purpose. However, another criterion, implicit in the work
of Stewart [16] and which we present as Lemma 2 below (see also [10, Lemma 3]),
plays an important role in our proof.

LEMMA 2. Let n ≥ 2, and let d1 < · · ·< d` be all `= 2ω(n) square-free divisors of n.
Then for all n > 6,

#{p | 2n
− 1 : p ≡ 1(mod n)} �

log(2+1(n)/τ(n))
log log P(2n − 1)

,

where
1(n)= max

i=1,...,`−1
di+1/di .

Stewart’s [16] proof of Lemma 2 uses the original lower bounds for linear forms
in logarithms of algebraic numbers due to Baker. It is interesting to note that
following [16] (see also [10, Lemma 3]), but using instead the sharper lower bounds
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for linear forms in logarithms due to Matveev [9], does not seem to lead to any
improvement of Lemma 2.

Let 1= d1 < d2 < · · ·< dτ(n) = n be all the divisors of n and let

10(n)= max
i≤τ(n)−1

di+1/di .

Note that 10(n)≤1(n).
We need the following result of Saias [13] on the distribution of positive integers n

with ‘dense divisors’. Let

G(x, z)= {n ≤ x :10(n)≤ z}.

LEMMA 3. The bound

#G(x, z)� x
log z

log x

holds uniformly for x ≥ z ≥ 2.

Next we address the structure of integers with10(n)≤ z. In what follows, as usual,
an empty product is, by convention, equal to 1.

LEMMA 4. Let n = pe1
1 · · · pek

k be the prime number factorization of a positive
integer n, such that p1 < · · ·< pk . Then 10(n)≤ z if and only if, for each i ≤ k,
the inequality

pi ≤ z
∏
j<i

p
e j
j

holds.

PROOF. The necessity is clear since otherwise the ratio of the two consecutive divisors∏
j<i

p
e j
j and pi

is larger than z.
The sufficiency can be proved by induction on k. Indeed, for k = 1 it is trivial. By

the induction assumption, we also have10(m)≤ z, where m = n/pe1
1 . Remarking that

p1 ≤ z, we also conclude that 10(n)≤ z. 2

5. Proof of Theorem 1

We put E = {n : τ(n)≥ (log n)3}. To bound #E(x), let x be large and x/(log x)2 <
n ≤ x . Since n ∈ E(x), we have that τ(n) > (log(x/(log x)2))3 > 0.5(log x)3 for all x
sufficiently large. Since ∑

n≤x
τ(n)= O(x log x)
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(see [7, Theorem 320]), we get that

#E(x)�
x

(log x)2
.

By the primitive divisor theorem (see [1], for example), there exists a prime factor
p ≡ 1 (mod n) of 2n

− 1 for all n > 6. Then, by partial summation,∑
n∈E(x)

(log n)α

P(2n − 1)
≤

∑
n∈E(x)

(log n)α

n
≤ 1+

∫ x

2

(log t)α

t
d#E(t)

≤ 1+
#E(x)

x
+

∫ x

2

#E(t)(log t)α

t2 dt

� 1+
∫ x

2

dt

t (log t)2−α
� 1.

Hence, ∑
n∈E

(log n)α

P(2n − 1)
<∞. (2)

We now let F = {n : P(2n
− 1) > n(log n)1+α(log log n)2}. Clearly,∑

n∈F

(log n)α

P(2n − 1)
≤

∑
n≥1

1

n log n(log log n)2
<∞. (3)

From now on, we assume that n 6∈ E ∪ F . For a given n, we let

D(n)= {d : dn + 1 is a prime factor of 2n
− 1},

and
D+(n)=max{d ∈ D(n)}.

Since P(2n
− 1)= D+(n)n + 1,

D+(n)≤ (log n)1+α(log log n)2. (4)

Assume that L is large. Clearly, for n ∈ [eL−1, eL
], D+(n)≤ L1+α(log L)2. We let

Hd,L be the set of n ∈ [eL−1, eL
] such that D+(n)= d . We then note that by partial

summation

SL =
∑

eL−1
≤n≤eL

n 6∈E∪F

(log n)α

P(2n − 1)
≤ Lα

∑
d≤L1+α(log L)2

∑
n∈Hd,L

1
nd + 1

<
Lα

eL−1

∑
d≤L1+α(log L)2

#Hd,L

d
�

Lα

eL

∑
d≤L1+α(log L)2

#Hd,L

d
. (5)
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We now estimate #Hd,L . We let ε > 0 to be a small positive number depending on
α which is to be specified later. We split Hd,L in two subsets as follows.

Let Id,L be the set of n ∈Hd,L such that

#D(n) > M Lα+ε(log L)2,

where M is some positive integer depending on ε to be determined later. Since
D+(n)≤ L1+α(log L)2, there exists an interval of length L1−ε which contains at
least M elements of D(n). Let them be d0 < d1 < · · ·< dM−1. Write ki = di − d0
for i = 1, . . . , M − 1. For fixed d0, k1, . . . , kM−1, by the Brun sieve (see, for
example, [5, Theorem 2.3]),

#{n ∈ [eL−1, eL
] : di n + 1 is a prime for all i = 1, . . . , M}

�
eL

L M

∏
p|d1···dM

(
1−

1
p

)−M

�
eL

L M

( ∏M
i=1 di

ϕ(
∏M

i=1 di )

)M

(6)

�
eL(log log(L3M ))M

L M �
eL(log log L)M

L M ,

where we have used the fact that ϕ(m)/m� 1/log log y in the interval [1, y] with
y = (L1+α(log L)2)M < L3M (see [7, Theorem 328]). Summing the inequality (6) for
all d0 ≤ L1+α(log L)2 and all k1, . . . , kM−1 ≤ L1−ε, we get

#Id,L �
eL(log L)M+2L1+αL(M−1)(1−ε)

L M =
eL(log L)M+2

L(M−1)ε−α
. (7)

We now choose M to be the least integer such that (M − 1)ε > 2+ α, and with this
choice of M we get that

#Id,L �
eL

L2 . (8)

We now deal with the set Jd,L consisting of the numbers n ∈Hd,L with #D(n)≤
M Lα+ε(log L)2. To these, we apply Lemma 2. Since τ(n) < (log n)3 and P(2n

−

1) < n2 for n ∈Hd,L , Lemma 2 yields

log1(n)/ log log n� #D(n)� Lα+ε(log L)2.

Thus,
log1(n)� Lα+ε(log L)3.

Therefore
10(n)≤1(n)≤ zL ,

where
zL = exp(cLα+ε(log L)3)

and c > 0 is some absolute constant.
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We now further split Jd,L into two subsets. Let Sd,L be the subset of n ∈ Jd,L
such that P(n) < eL/ log L . From known results concerning the distribution of smooth
numbers (see the corollary to [2, Theorem 3.1], or [8, 17], for example),

#Sd,L ≤
eL

L(1+o(1)) log log L
�

eL

L2 . (9)

Let Td,L = Jd,L\Sd,L . For n ∈ Td,L , we have n = qm, where q > eL/ log L is a prime.
Fix m. Then q < eL/m is a prime such that qdm + 1 is also a prime. By the Brun
sieve again,

#{q ≤ eL/m : q, qdm + 1 are primes}

�
eL

m(log(eL/m))2

(
md

ϕ(md)

)
�

eL(log L)3

L2m
, (10)

where in the above inequality we used the minimal order of the Euler function in the
interval [1, eL L1+α(log L)2] together with the fact that

log(eL/m)≥
L

log L
.

We now sum estimate (10) over all the allowable values for m.
An immediate consequence of Lemma 4 is that since10(n)≤ zL , then10(m)≤ zL

for m = n/P(n). Thus, m ∈ G(eL , zL). Using Lemma 3 and partial summation, we
immediately get

∑
m∈G(eL ,zL )

1
m
≤

∫ eL

2

d(#G(t, zL))

t
≤

#G(eL , zL)

eL +

∫ eL

2

#G(t, zL)

t2 dt

�
log zL

L
+ log zL

∫ eL

2

dt

t log t

� log zL log L � Lα+ε(log L)4.

Thus,

#Td,L �
eL(log L)3

L2

∑
m∈Md,L

1
m
�

eL(log L)7Lα+ε

L2 <
eL

L2−α−2ε , (11)

when L is sufficiently large. Combining estimates (8), (9) and (11), we get that

#Hd,L ≤ #Id,L + #Sd,L + #Td,L �
eL

L2−α−2ε . (12)

Thus, returning to series (5), we get that

SL ≤
∑

d≤L1+α(log L)2

1

L2−2α−2ε �
log L

L2−2α−2ε .
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Since α < 1/2, we can choose ε > 0 such that 2− 2α − 2ε > 1 and then the above
arguments show that

∑
n≥1

(log n)α

P(2n − 1)
� 1+

∑
L

log L

L2−2α−ε <∞,

which is the desired result.
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