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Abstract

Jakeman’s random walk model with step number fluctuations describes the coherent
amplitude scattered from a rough medium in terms of the summation of individual
scatterers’ contributions. If the scattering population conforms to a birth–death
immigration model, the resulting amplitude isK-distributed. In this context, we derive a
class of diffusion processes as an extension of the ordinary birth–death immigration
model. We show how this class encompasses four different cross-section models
commonly studied in the literature. We conclude by discussing the advantages of this
unified description.
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1. Introduction

Advances in the modeling of electromagnetic scattering returns, especially from marine
surfaces, were enabled by a fundamental mathematical tool, the random walk model [11], [12].
It takes the total scattered field as the coherent summation of (independent) individual scatterers’
contributions. For a population driven by a birth–death immigration (BDI) process, the resulting
scattered amplitude isK-distributed, and its dynamics can be derived in a stochastic dynamical
framework [9]. More precisely, we can derive a stochastic differential equation (SDE) for the
scattering radar cross section (RCS), defined as the continuous limit of such a population for an
asymptotically large number of individual scatterers, whose asymptotic �-distribution, the so-
called texture, gives rise to the K-distribution for the scattered intensity [8]. Radar engineers
have postulated various other distribution models for this texture [1], [4]. Motivated by the
mathematical basis of the �-texture provided by the BDI process, the present paper succeeds
in deriving the other texture models considered in the literature on the basis of an underlying
discrete population. This paves the way towards the discussion of the Pearson diffusions, a
class of stationary Markov processes extensively studied in [18], which encompasses all the
probability densities proposed for the RCS. We also discuss how the particular structure of the
SDE associated with this class supports the viability of such probability distributions to represent
the RCS. In particular, it is possible to derive a generic form for the intensity autocorrelation
function, provided that the scattering cross-section process is a Pearson diffusion. Also of
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interest is the possibility to deduce the parameters of the underlying discrete population model
from the intensity moments, which are observable.

2. Population model

2.1. Random walk

The electric field scattered from a rough surface may conveniently be represented by a
random walk model [12]

ε
(N)
t =

N∑
j=1

exp[iϕ(j)t ], (2.1)

that is, as the summation of individual scatterers’ contributions with normalized amplitudes.
A phase diffusion model takes {ϕ(j)t } as a collection of (displaced) Wiener processes {W(j)

t } on
a suitable time scale

ϕ
(j)
t = �(j) + B1/2W

(j)
t (2.2)

with random initializations {�(j)}, a set of independent random variables uniformly distributed
on the interval [0, 2π). Consequently, an application of Itô’s formula (cf. [14, Chapter 4]) to
the normalized amplitude γt = limN→∞ ε

(N)
t /N1/2 yields the following SDE [9]:

dγt = − 1
2Bγt dt + B1/2 dξt . (2.3)

At this stage, the number of scatterers is constant and the ‘speckle’γt is thus a complex Ornstein–
Uhlenbeck process with a modulus amplitude that is Rayleigh distributed. More sophisticated
models may be obtained by allowing fluctuations in the population of scatterers, as considered
next.

2.2. First-order transitions

Accordingly, let us consider a first-order master equation (cf. [15]) for the time evolution of
the probability PN(t) = P[Nt = N ] for a continuous-time integer-valued population process
(cf. Figure 1). Denoting the (time-dependent) generation and recombination rates by GN(t)

N

GN

RN

N +1

N−1

RN+1

GN−1

Figure 1: First-order transition process.
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and RN(t), respectively, we find from conservation of probability that

dPN(t)

dt
= RN+1PN+1(t)+GN−1PN−1(t)− (GN + RN)PN(t). (2.4)

A widely used model for sea clutter, theK-distribution model [11], posits a BDI process for
the scatterers’fluctuations, that is, linear generation and recombination ratesGN = λN+ν and
RN = µN with constant birth, death, and immigration rates λ, µ, and ν, respectively, yielding
a time asymptotic population mean [2, Chapter 3]

N̄ = ν

µ− λ
. (2.5)

For an asymptotically large population Nt , it is instructive to consider the continuum limit
xt = Nt/N̄ so that xt will account for the RCS. In effect, for a fluctuating number of steps,
the (normalized) scattered amplitude ψt = limNt→∞ ε(Nt )/N̄1/2 has the following compound
representation:

ψt = lim
Nt→∞

[(
Nt

N̄

)1/2
ε
(N)
t

N
1/2
t

]
= x

1/2
t γt . (2.6)

This corresponds to the experimentally evidenced multiplicative representation of the scattered
amplitude in terms of two (independent) components: the Gaussian speckle γt , modulated by
(the square root of) the cross section xt [16]. In the continuum limit, the master equation (2.4)
reduces to the Fokker–Planck equation (FPE) [8],

∂Pt (x)

∂t
= λ

∂2

∂x2 [xPt (x)] + ν
∂

∂x
[(x − 1)Pt (x)], (2.7)

through a Taylor expansion for Pt (x) = PN̄x(t). There exists an SDE associated with (2.7)
(cf. Chapter 4 of [15]) in terms of the rescaled process x �→ αx for α = ν/λ:

dxt = −A(xt − α) dt + (2Axt )
1/2 dW(x)

t . (2.8)

Here W(x)
t denotes a Wiener process. In the asymptotic limit, whose dynamics is represented

by (2.8), the gamma texture of the K-distribution model is thus recovered.

2.3. Pearson diffusions

Let us now consider a class of (continuous-valued) diffusion processes: the Pearson diffu-
sions [10]. Pearson diffusions are stationary processes with an SDE bearing a close resemblance
to (2.8):

dxt = −A(xt −m) dt +
√

2A(ax2
t + bxt + c) dW(x)

t . (2.9)

Here A > 0 is a time scaling parameter, and a, b, and c are the process’ state parameters. The
FPE corresponding to dynamics (2.9) has stationary solutions belonging to the Pearson class,
as elucidated upon below. If it exists, the mean of the asymptotic distribution for xt is given
by 〈xt 〉 = m. The domain of xt is constrained to ensure that the square root in (2.9) is well
defined. This condition may be fulfilled by setting c = 0 (as in [4]), but we will consider a
broader range of processes here. This process is a diffusion (rather than a mere Itô process)
since the drift bt = m− xt and volatility 
t = ax2

t + bxt + c coefficients are state dependent
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(i.e. functions of xt ). Pearson diffusions may alternatively be defined through the following
differential equation satisfied by their asymptotic distributions W(x):

dW(x)

dx
= − (2a + 1)x −m+ b

ax2 + bx + c
W(x). (2.10)

Equation (2.10) forms the so-called Pearson system. The first investigation of the equivalence
between the probability densities satisfying the Pearson system and the stationary distribu-
tions for processes represented by (2.9) was performed by Wong [18] via the FPE associated
with (2.9).

From the compound representation (2.6), the dynamics of the scattered amplitude ψt are
uniquely determined by the dynamics of xt . Keeping this in mind, the Pearson class is of
interest since it incorporates a variety of probability distributions used by radar experimentalists
to model the texture of a scattered amplitude conforming to this multiplicative representation.
For a volatility coefficient given by 
 = bx, the RCS is asymptotically �-distributed with
scale parameter k and shape parameter m/k. The resulting scattered envelope will have a
K-distribution where the usual parameters b and ν are given by b = 1/k and ν = m/k. This
distribution has been used for several decades to model sea clutter. For maritime radars, the
normalized variance R = var[x]/〈x〉2 = 1/ν is related to the sea behavior. A large and small
R respectively represent a high and calm sea state. The shape parameter ν therefore depicts
the sea state [17]. Another Pearson diffusion with volatility 
 = ax2 yields a texture that
has an inverse �-distribution with scale parameter a/m and shape parameter 1 + 1/a. The
resulting distribution for the envelope was shown to match well data from a lake clutter [1].
In a slightly different context (synthetic aperture radar interferometry), two additional Pearson
diffusions were successfully confronted with real data [4] for 
 = ax2 + bx. In this case, the
RCS distribution is a β-distribution of the first kind with parameters m/b and −(m/b + 1/a)
if b/a ≤ 0 or a β-distribution of the second kind with parametersm/b and 1 + 1/a if b/a ≥ 0.
Apart from these four instances of (2.9), other Pearson diffusions may prove adequate for
scattering applications (whether the resulting distribution for the intensity is tractable or not).

2.4. Associated population model

We have described above the pertinence of the Pearson class for scattering applications.
Motivated by the well-known derivation of (2.8) on the basis of a discrete population model in
the continuum limit, we proceed to derive the Pearson processes on a similar basis of equivalent
underlying discrete-valued population models.

To this end, let us first extend the BDI process as

G = ν + λN + ε̄N2, R = µN + ε̄N2, (2.11)

where the nonnegative parameter ε̄ = ε/N̄ is of order N̄−1 to ensure that the continuous limit
of the resulting population is of diffusive type (cf. the discussion in [8, Section II]). Since the
quadratic coefficients in the generation and recombination transition functions are equal, the
BDI time asymptotic mean (2.5) is recovered (cf. Equation (10) of [3]). Following the same
token as for a BDI process, if we substitute the transition rates (2.11) into (2.4) and consider a
Taylor expansion, the SDE associated with the resulting FPE reads

dxt = ν(1 − xt ) dt +
√

2(λxt + εx2
t ) dW(x)

t .

By virtue of Itô’s calculus, the transformed cross section x �→ m(x + p)/(1 + p) is also a
Pearson diffusion with ad hoc parameters, as captured by the following result, for constant p
identified below.
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Proposition 2.1. The class of Pearson diffusions, as embodied by (2.9), emerges as the affine
transformed version x �→ m(x + p)/(1 + p) of the continuous limit of a discrete-valued
population model with transition rates G = ν + λN + ε̄N2 and R = µN + ε̄N2, with

ν = A,

ε = Aa,

λ = A
b(1 + p)

m+ 2ap
,

p = −(2c +mb)+m
√
b2 − 4ac

2(am2 + bm+ c)
,

where µ is a free parameter that determines the asymptotic population mean N̄ through (2.5).

3. Application to scattering theory

An appealing feature of the representation of the cross section via the SDE (2.9) is that
the stochastic framework introduced in [9] and pursued in [7], originally for a K-distributed
amplitude, may readily be extended to encompass the Pearson cross sections discussed above.
These considerations could be applied to the cross-section inference or to the derivation of the
spectral properties of the scattering amplitude.

3.1. Intensity autocorrelation

Owing to the linear drift in (2.9), the Pearson diffusions share the feature that their normalized
covariance function is an exponentially decaying function of time, i.e.

〈(
xt −m

σ

)(
x0 −m

σ

)〉
= exp[−At]. (3.1)

(The meanm and the varianceσ 2 in the above expression can be deduced from (3.3) below. Also,
x0 denotes the initial value drawn from the asymptotic distribution, thus ensuring stationarity
of the process.) Meanwhile, from the compound expression (2.6), the scattered intensity
zt = |ψt |2 has a multiplicative representation in terms of two independent processes, and
its autocorrelation function is given by

〈zt z0〉 = 〈utu0〉〈xtx0〉.
The dynamics of the process ut = |γt |2 proceed from (2.3) and read as

dut = B(1 − ut ) dt + √
2But dW(u)

t ,

in which γt dξ∗
t + γ ∗

t dξt = √
2But dW(u)

t . As a consequence, ut also belongs to the class
of Pearson diffusions and satisfies (3.1). As a result, for a speckle distribution satisfying the
Pearson equation (2.10), the autocorrelation of the intensity reads

〈zt z0〉 = (m2 + σ 2 exp[−At])(1 + exp[−Bt]). (3.2)

The normalized covariance of the intensity zt is the product of two exponentially decaying terms
with timescales A−1 and B−1, respectively characteristic of xt and ut (in radar applications,
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A−1 is typically of the order of many seconds whereas B−1 is of the order of ten millisec-
onds [17, pp. 106–107]). We also readily observe that the intensity power spectral density is
given by

Sz(ω) = m2δ(ω)+ σ 2 A

2π(A2 + ω2)
+m2 B

2π(B2 + ω2)

+ σ 2 A + B

2π((A + B)2 + ω2)
.

Equation (3.2) generalizes the expression obtained in [9] for a K-distributed amplitude. We
have thus encompassed the wider class of intensity distributions considered in [1] and [4] for
which we have derived their autocorrelation and spectral properties.

3.2. Deduction of the associated population model

An interesting property concerning the moments is obtained by considering Itô’s formula
for the process yt = xnt :

d(xnt ) = −Anxn−1
t (xt −m) dt + An(n− 1)xn−2

t (ax2
t + bxt + c) dt

+ nxn−1
t

√
2A(ax2

t + bxt + c) dW(x)
t .

Taking the expectation removes the Brownian term and, for the moments of a Pearson diffusion,
we obtain the recurrence relation

〈xnt 〉 = (m+ (n− 1)b)〈xn−1
t 〉 + (n− 1)c〈xn−2

t 〉
1 − (n− 1)a

, (3.3)

initialized with 〈x0
t 〉 = 1 and 〈x1

t 〉 = m (the nth moment exists for a < 1/(n− 1), as observed
by investigating its existence for all the different types of Pearson diffusion [10]). On the other
hand, for a compound Gaussian clutter, the moments of the RCS xt , and of the intensity zt , are
related according to (see Chapter 4 of [17])

〈znt 〉 = n! 〈xnt 〉. (3.4)

Conversely, if a probability distribution for the scattered intensity does not exhibit such a
recurrence relation for the intensity moments (e.g. the Weibull distribution 〈zn〉 = an�(n/β +
1)), we cannot postulate a cross-section distribution belonging to the Pearson system (although
a compound distribution resulting from (2.6) may exist). Combining (3.3) and (3.4) yields
an expression for the Pearson diffusion parameters in terms of the first four moments of the
intensity, if they exist, as exemplified by

a =
∣∣∣∣∣∣

〈z2
t 〉 − 2〈zt 〉2 2〈zt 〉 2

〈z3
t 〉 − 3〈z2

t 〉〈zt 〉 6〈z2
t 〉 12〈zt 〉

〈z4
t 〉 − 4〈z3

t 〉〈zt 〉 12〈z3
t 〉 36〈z2

t 〉

∣∣∣∣∣∣
/ ∣∣∣∣∣∣

〈z2
t 〉 2〈zt 〉 2

2〈z3
t 〉 6〈z2

t 〉 12〈zt 〉
3〈z4

t 〉 12〈z3
t 〉 36〈z2

t 〉

∣∣∣∣∣∣
In other words, the state parameters a, b, and c of (2.9) and (2.10) can be extracted from the

intensity moments. Since these state parameters also specify the discrete-valued underlying
population model (via Proposition 2.1), it is possible to express the transition rates of the latter
in terms of the intensity raw moments (which are directly observable). A precise knowledge of
the underlying population model parameters provides some insight into the underlying physical
phenomena. For instance, experimental data show that the scattering pattern depends on the
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incident wave polarization (see, e.g. [5]). Comparing the population parameters for different
polarizations may improve the understanding of this discrepancy.

Besides the state parameters, knowledge of the characteristic frequency constant A is also
required to fully determine the population model. This quantity may also be extracted from the
observed time series of the intensity (as discussed in [6]). As a result, the discrete population
model driving the speckle can be entirely inferred from the intensity time series alone.

4. Conclusion

Motivated by the effectiveness of the discrete BDI scheme in the context of electromagnetic
scattering, we have extended it to encompass the class of Pearson diffusions as the continuum
limit of a discrete population model. This establishes a mathematical basis for a more general
class of probability densities for the (texture component of the) scattered amplitude as the
asymptotic stationary distributions of these diffusions. Besides the�-distribution for the texture
that corresponds to the widespread K-distribution for the intensity, only a few instances of
the Pearson system yield analytical expressions for the scattering amplitude distribution [4].
Nevertheless, these diffusions enable the extension of the stochastic framework developed in [8]
and [9] to include additional intensity distributions which are further characterized by analytical
expressions for their autocorrelation functions and power spectra. Experimental time series for
the intensity may exhibit temporal correlation patterns more sophisticated than the exponential
form (3.2). Nonstationary patterns can be accommodated by considering delays in the transition
functions of the rate equation (2.4), which is conceptually equivalent to the introduction of a
delay in the SDE (2.9) [13].

We have also shown that the underlying discrete-valued population model is deducible
through the intensity time series. This feature can provide some insight into the physical
phenomena, yielding a particular intensity distribution pattern. As a parametric generalization
of the BDI process (which results in a K-distributed noise), the Pearson class could provide a
more refined model for scattering data that exhibit a slight deviation from theK-distribution (for
example, to account for the discrepancy in tails with regards to observed data). Furthermore,
the propagator of (2.9) has been derived in [18] for several cases, thus enabling, beyond the
already known autocorrelation function, the derivation of all higher-order statistics.
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