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Abstract

We characterise the strongly dualisable three-element unary algebras and show that every fully dualisable
three-element unary algebra is strongly dualisable. It follows from the characterisation that, for dualisable
three-element unary algebras, strong dualisability is equivalent to a weak form of injectivity.
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The theory of natural dualities is a study of quasi-varieties of the form ISP(M),
where M is a finite algebra. We aim to set up a natural dual equivalence between
the category & := [SP(M) and a category 2" of structured topological spaces. This
duality can often provide a practical representation of the algebras in & in terms
of simpler objects. Priestley’s duality for the quasi-variety of distributive lattices is
a prime example of a very useful duality (see [9]). As well as finding and using
practical dualities, natural-duality theoreticians tackle more esoteric problems. We
are interested in understanding which finite algebras M allow us to set up a natural
duality for ISP(M), and what the existence (or non-existence) of this duality can tell
us about the quasi-variety ISP(M). -

The theory of natural dualities is well developed and contains some powerful theo-
rems for creating dualities. Nevertheless, our understanding of what makes an algebra
dualisable, fully dualisable or strongly dualisable is rather limited. In this paper,
we aim to gain some insight into strong and full dualisability by investigating three-
element unary algebras. Unary algebras, especially three-element unary algebras,
may seem very simple. But, from the point of view of natural-duality theory, they
are rather complicated. This study complements the paper [4], by Clark, Davey and
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Pitkethly, which classifies the dualisable three-element unary algebras. We give a
characterisation of the strongly and fully dualisable three-element unary algebras. In
particular, we show that strong and full dualisability are equivalent within this class. In
general, it is not known whether every fully dualisable algebra is strongly dualisable.
The strong dualisability of an algebra seems to depend on how close the algebra is
to being injective. We show that, for dualisable three-element unary algebras, strong
dualisability is equivalent to a weak form of injectivity. In [7], Hyndman and Willard
give an example of a three-element unary algebra that is dualisable but not fully dual-
isable. It follows from our characterisation that there are many three-element unary
algebras that are dualisable but not fully dualisable.

The (strong) dualisability of a three-element unary algebra is related to the number
of different patterns of its unary term functions. Consider a finite unary algebra M.
We shall define a kernel of M to be an equivalence relation on M that is the kernel of
a unary term function of M which is not a constant map or a permutation. We call M
an n-kernel unary algebra if n is the number of kernels of M.

The following theorem gives the classification of dualisable three-element unary
algebras from [4]. This classification is most complicated within the family of two-
kernel algebras. To simplify the statement of the theorem, we use the fact that every
two-kernel three-element unary algebra is isomorphic to a unary algebra, on the set
{0, 1, 2}, with kernels {01]2} and {02|1}. (See Lemma 4.1 {[4].) We denote a unary
operation u : {0, 1, 2} — {0, 1, 2} by the string u(0)u(1)u(2).

DUALISABLE THREE-ELEMENT UNARY ALGEBRAS. Let M be a three-element unary
algebra.

(i) If M is a zero-kernel or one-kernel algebra, then M is dualisable.
(i) Assume that M is a two-kernel algebra, on the set {0, 1, 2}, with kernels {01|2}
and {02|1}). Then M is dualisable if and only if none of the following conditions hold:

(a) ppq and pgp are term functions of M, for some p,q € M withp # q,
but 010 or 002 is not a term function of M

(b) 010, 001 and 110 are term functions of M, but 222 isn’t;

(c) 002, 020 and 202 are term functions of M, but 111 isn’t.

(i) If M is a three-kernel algebra, then M is not dualisable.

In this paper, we shall establish the characterisations of strongly and fully dualisable
three-element unary algebras given below.

STRONGLY DUALISABLE THREE-ELEMENT UNARY ALGEBRAS. Let M be a three-

element unary algebra.

(1) If M is a zero-kernel or one-kernel algebra, then M is strongly dualisable.
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(ii) Assume that M is a two-kernel algebra, on the set {0, 1, 2}, with kernels {01|2}
and {02|1}. Then M is strongly dualisable if and only if both 010 and 002 are term
Sunctions of M and neither of the following conditions holds:

(a) ppq and qpq are term functions of M, for some p, q € M withp # q;
(b) 101 and 220 are term functions of M.

Gii) If M is a three-kernel algebra, then M is not strongly dualisable.

Explicit examples of strongly dualisable two-kernel three-element unary aigebras
may be obtained from Lemma 3.6.

FULLY DUALISABLE THREE-ELEMENT UNARY ALGEBRAS. Let M be a three-element
unary algebra. Then M is fully dualisable if and only if M is strongly dualisable.

We have given an algorithm for deciding whether or not a particular three-element
unary algebra is strongly dualisable. However, this algorithm does not really give us a
feel for what makes a three-element unary algebra strongly dualisable. We shall show
that, for dualisable three-element unary algebras, strong dualisability is equivalent to
a weak form of injectivity. To make this more precise, we first need to give some
definitions. (Many of the concepts we use throughout this paper are introduced in
more detail, and with examples, in the paper [4].)

Let M be a finite unary algebra and choose an algebra A from the quasi-variety
& = ISP(M). The centre of A is defined to be the subuniverse

Ca := {m* | m € M is the value of a constant term function of M}

of A. There is a directed graph naturally associated with A. We define the graph
G(A) = (A; E4) by

Er:={(a,b) | a€ Aandb € sg,(a)},

where sg, (a) denotes the subuniverse of A generated by a, for each a € A. The
relation E, is reflexive and transitive, and so is a quasi-order on A. Let G*(A) denote
the induced subgraph of G(A) with vertex set A\C,. For every a, b € A\C, and
n € NU {0}, we say that there is a fence from a to b in A of length n if there are edges
X1, Y1y« « + s Xny Yo Of G*(A) such that

X1 Y1 X2 e Yn
a b

in G*(A). A subalgebra P of A is called a petal of A if P\C, is the vertex set of a
connected component of the graph G*(A). So a, b € A\C, belong to the same petal
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of A if and only if there is a fence from a to b in A. It is easy to check that every
non-trivial algebra in & is the coproduct of its petals.

Now let P be a petal of A and let n € N. Define the distance function dp on
P\ C, such that dp(a, b) is the length of the shortest fence from a to b in A, for all
a, b € P\C,. For each a € P\C,, the ball in A with centre a and radius n, given by

na(a) :={b € P\Cx | dp(a,b) < n}UC,,

determines a subalgebra of A. For a € Ci, we set ny(a) := C,. Now define
na(B) := | J{na(b) | b € B}, for all B C A. The algebra M is said to be n-quasi-
injective if, for all finite algebras A, B € & such that B < A, every homomorphism
x : B — M that extends to n,(B) also extends to A. We shall show that the
theorem below follows from our description of strongly dualisable three-element
unary algebras.

QUASI-INJECTIVITY THEOREM. Let M be a dualisable three-element unary algebra.
Then M is strongly dualisable if and only if M is n-quasi-injective, for some n € N.

1. Natural dualities

This section provides a quick introduction to duality theory. A more detailed
account can be found in the text [1], by Clark and Davey. Let M = (M; F) be a finite
algebra and define & := ISP(M). An alter ego of M is a structured topological
space M = (M; G, H, R, Z), on the same underlying set as M, such that:

() Gisasetofalgebraic operations on M, thatis, each g € G is ahomomorphism
g :M" > M, for some n € NU {0};
(ii) H is a set of algebraic partial operations on M, that is, each h € H is a
homomorphism 4 : D — M, for some n € Nand D < M";
(i) R is a set of algebraic relations on M, that is, each r € R is the underlying set
of a subalgebra of M”, for some n € N;
(iv) 7 is the discrete topology on M.

Let M be an alter ego of M and define 2 := IS.P+*(M) to be the class of all
isomorphic copies of closed substructures of non-zero powers of M. There is a pair
of contravariant functors D : & — Z and E: 2" — &. Forevery A € &, define
D(A) to be the homset & (A, M) viewed as a closed substructure of M". The structure
D(A) is called the dual of A, for each A € &f. For every X € 2, define E(X) to be
the homset 2 (X, M) viewed as a subalgebra of M. It remains to define D and E on
morphisms. For ¢ : A — Bin &, define D(¢) : D(B) — D(A) by D(¢)(x) :=x0¢,
and for ¢y : X = Yin 2, define E(y) : E(Y) = E(X) by E(¥)(¢) :=a o ¥.
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For each A € &/, there is a natural embedding e, : A — ED(A), given by
ex(a)(x) := x(a), forall a € A and x € &/ (A, M). Similarly, for each X € Z’,
we can define an embedding ex : X — DE(X) by ex(x)(a) := a(x). If e, is an
isomorphism, for all A € &, then we say that M yields a duality on &/. In this case,
we have a representation for &/: each algebra A € & is isomorphic to the algebra
ED(A) of all morphisms from its dual D(A) into M. If e, and ¢x are isomorphisms,
forall A € & and X € &, then we say that M yields a full duality on </ . In this case,
the categories & and 2~ are dually equivalent. The algebra M is (fully) dualisable if
there is an alter ego of M that yields a (full) duality on 2.

As we shall see in Section 5, full dualities are rather complicated. There is a
simpler, stronger notion that we often use instead. First, let S be a non-empty set and
let Fu(S) denote the set of all S-ary term functions of M. A set X € M¥ is term
closed if

X = ﬂ{eq(a, 1) |o,t € Fu(S)and o[y = [y}

It is known that M yields a full duality on & if and only if M yields a duality on &
and every closed substructure of a non-zero power of M is isomorphic to a term-closed
substructure of a power of M (see [1]). We now say that M yields a strong duality on
& if M yields a duality on & and every closed substructure of a non-zero power of
M is term closed. So every strong duality is also a full duality. At present, it is not
known whether every full duality is also strong. The algebra M is strongly dualisable
if there is an alter ego of M that yields a strong duality on .

By the First Strong Duality Theorem [1], the structure M yields a strong duality
on & if and only if M yields a full duality on & and M is injective in Z". There are
close connections between the injectivity of M in 2 and the injectivity of M in &
(see [1, Section 3.2]). The strong dualisability of an algebra seems to be related to
how close the algebra is to being injective. Certainly, every dualisable algebra that
is injective in the quasi-variety it generates is strongly dualisable. This follows from
results of Willard [10], but it can also be proved directly using the results in [1].

LEMMA 1.1. Let M be a finite algebra that is injective in ISP(M). If M is dualis-
able, then M is strongly dualisable. ’

PROOF (Sketch). Assume that M is dualisable. Then there is a relational structure
M = (M;R, 7) that yields a duality on & := ISP(M). Define the set G :=
U{@M", M) | n € NU {0}} and define the alter ego M' := (M; G, R, J) of M.
Then M’ also yields a duality on &. Since M is injective in &, every algebraic partial
operation on M is the restriction of an algebraic operation on M. It now follows
that M’ yields a strong duality on & by Exercise 3.1 and the Second Strong Duality
Theorem, in [1]. (For the solution to Exercise 3.1, refer to the proof of Theorem 3.1.3
in[1].) a
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In this paper, we make use of two general methods for showing that a dualisable
algebra is strongly dualisable. The first method is due to Clark, Idziak, Sabourin,
Szabé and Willard [2].

THEOREM 1.2 ([2, Lemma 4.8]). Let M be a finite algebra and let M be an alter
ego of M. Then M yields a strong duality on & := ISP(M) if and only if

(i) M yields a duality on &, and
(ii) for every A € & and each proper closed substructure X of D(A), the maps
in X do not separate the elements of A.

The second method was introduced by Lampe, McNulty and Willard [8]. It is based
on a result of Willard [10]. For a set ¥ C &/(M", M), with n € N, define the natural
product map NY : M" — M’ by n¥(a)(y) := y(a). We say that M has enough
algebraic operations if there is amap f : N — N for which the following condition
holds:

for all n € N, all algebras B < A < M" and all homomorphisms 7 : A - M,

there exists a set ¥ € &/(M", M), with |Y| < f(|B]), and a homomorphism

k' :Y(A) — M such that the diagram below commutes.

B« > A< > M°
hlg nYf,

M < - -nYrA)
h/

Although the definition of enough algebraic operations appears technical, it often
provides a relatively easy way to lift dualisability to strong dualisability.

THEOREM 1.3 ([8, Theorem 4.3]). Let M be a finite algebra with enough algebraic
operations. If M is dualisable, then M is also strongly dualisable.

2. Zero-kernel and one-kernel unary algebras
are strongly dualisable

The quasi-variety generated by a zero- or one-kernel unary algebra is especially
simple. Consider a finite (not necessarily three-element) zero- or one-kernel unary
algebra M and define & := [ISP(M). There is a finite set & of algebras that
encapsulates the quasi-variety /: each finite algebra in &/ is ‘nearly isomorphic’ to
a coproduct of algebras from 4. The finiteness of the quasi-variety & suggests that
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the algebra M should be dualisable. This is the case, and it is proven in {4]. To show
that M is strongly dualisable, it now suffices to show that M has enough algebraic
operations. We begin by describing the finiteness of & precisely, using the definition
of a gentle basis from [4].

Let A be a finite unary algebra. An element a € A is called an outer element of A
if sg, (a) is a maximal one-generated subalgebra of A, Otherwise, we say thata € A
is an inner element of A. Let A, denote the set of all outer elements of A and let A;,
denote the set of all inner elements of A. Then A;, is a subuniverse of A. A surjection
¢ : A — Bis said to be gentle if ¢ [, s, o) 1S One-to-one, for all a € Aoy

Let M be a finite unary algebra and define & := [SP(M). An algebra P is called
a petal of &/ if P is a petal of an algebra belonging to &/. Let £ be a set of finite
‘petals of o. Then 4B is a gentle basis for & if, for every finite petal P of &, there is a
gentle surjection ¢ : P — B, for some B € #. The following three results are proven
in [4]. The first lemma shows that gentle surjections are ‘nearly’ isomorphisms.

LEMMA 2.1 ([4, Lemma 3.3]). Let A be a finite unary algebra andlet ¢ : A - B
be a gentle surjection. Then ¢ is a retraction and, for each subalgebra C of A such
that [ - is one-to-one, there is a coretraction v : B < A for ¢ with C € y(B).

LEMMA 2.2 ([4, Corollary 3.8]). Let M be a finite unary algebra. Then ISP(M)
has a finite gentle basis if and only if M is a zero-kernel or one-kernel algebra.

THEOREM 2.3 ([4, Theorems 2.7 and 3.9]). Every finite zero-kernel or one-kernel
unary algebra is dualisable.

We shall also use the following general lemma due to Hyndman [6].

LEMMA 2.4 ([6, Lemma 2.2]). Let M be a finite algebra and define & ;= ISP(M).
Let B < M", for some n € N. Then there is a set Z C o/ (M", M) of projection
Sunctions such that Z separates the elements of B and |Z| < |B| — 1.

Using the results above, we now prove that finite zero- and one-kernel algebras
have enough algebraic operations.

LEMMA 2.5. Every finite zero-kernel or one-kernel unary algebra has enough al-
gebraic operations.

PROOF. Let M be a finite zero-kernel or one-kernel unary algebra. By Lemma 2.2,
there is a finite gentle basis & for & := ISP(M). Choose some k& € N such that
k> | P, M), forall P € B. Definethemap f : N - Nby f(n) :=k’n+n— 1.
Nowletn e N,letB< A< M"andleth: A - M.
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Define £ to be the set of all petals of M". Let 4y denote the set of all petals P of
M" such that PN B # Cy-. Foreach P € &, there is a gentle surjection gp : P — P*,
where P* € &, and we can write & (P*, M) = {xp,, ..., xpz}. Foreach P € & and
alli,j € {l,...,k}, we can define the algebraic operation 8pj ° M" - M by

gp; = (riogp) U|_J{xqj 000 | Q € P\{P}},

as M" is the coproduct of its petals.
By Lemma 2.4, there is a set Z C &/ (M", M) of projection functions such that Z
separates the elements of B and |Z]| < |B| — 1. Define

Yi=ZU{gy, |Pec Ppandi,j €{l,....k}}.

Then [Y| < {B| — 1 + k?|B| = f (|B|). Define u : M* - M” by 1 := NY. We wish
to find a homomorphism 4’ : (A) — M such that A’ o ufz = h[;. We can assume
that the set Y is not empty. (Otherwise, we have |B] = 1 = |u(A)| and so we can
define A’ to have the same value as h[j.)

The set D := | J{P | P € £\ D3} determines a subalgebra D of M". We will
show that 1t (A) is the coproduct of {u(PNA) |P e g} U{u(DNA)}in&. Todo
this, it suffices to prove that

(PN ANCuw | P € Pg}U (u(DNANCuny)

is a partition of £(A)\C,)- Leta € (P NA)\C, and let b € (Q N A)\C,, for some
P € g and Q € P \{P}. It is now enough to show that u(a) # w(b).

As a # bin M", there is a homomorphism z : M" — M such that z(a) # z(b).
By Lemma 2.1, there is a coretraction ¥, : P* < P for gp with sgp(a) € ¥,(P*).
It follows that v, o gp(a) = a. The homomorphism z o ¥, : P* — M belongs to
A P*, M) = {xpy,...,xp}. Sothereis some i € {1,..., k} such that z o ¥, = xp;
and therefore xp; o gp(a@) = z o ¥, o gp(a) = z(a). Similarly, there exists some
Jj €{l,..., k} withxq; o ¢o(b) = z(b). Thus

8p;; (@) = xpi 0 pp(a) = z(a) # 2(b) = xq; © Po(b) = gy, (b),

whence p(a) # wn(b). We have shown that the algebra p(A) is the coproduct of
{u@PNA) | Pe PglU{udDNA)ing.

Now let P € £g. To see that the surjection u[pn, : PNA — w(PNA) is gentle,
letae (PNA)yandleth, c € (PNA)yUsgp,,(a) withb # c. As(PNA), € Py

and gp is gentle, we have ¢p(b) # @p(c). There must be some i € {1, ..., k} with

xp; o pp(b) # xpi 0 gp(c). So gp, (D) # gp,, (c) and therefore p(b) # pu(c). Thus
Wlipna : PNA — pu(PNA)is gentle. Since Y separates the elements of B, the
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map U[pnp i One-to-one. It follows by, Lemma 2.1, that there is a coretraction
vp: u(PNA)— PNAforufp,, suchthat PN B C vpo u(P NA).

Since u(A) < M and the set Y is non-empty, there exists a homomorphism
x : u(A) - M. We can now define the homomorphism /' : £(A) - M by

K = X100 U] J(hove | P e Py).

Toseethat h o uly, = hlg, let P € g andlet b € PN B. Since vp is a coretraction
for [ pn4 suchthat PNB C vpo (PN A), we have vpo [ pnpg = idpnp and therefore

h o u(b) = hovpou(b) = h(b).

Thus M has enough algebraic operations. O

The next theorem follows straight from Theorem 1.3, Theorem 2.3 and Lemma 2.5.

THEOREM 2.6. Every finite zero-kernel or one-kernel unary algebra is strongly
dualisable.

We finish this section by considering quasi-injectivity.

LEMMA 2.7. Every finite zero-kernel or one-kernel unary algebra is n-quasi-injec-
tive, for some n € N,

PROOF. Let M be a finite zero-kernel or one-kernel unary algebra. By Lemma 2.2,
there is a finite gentle basis & for & := [SP(M). Every algebra in 48 is a finite petal
of &/. For each finite petal P of &, define

wp := max({dp(a, b) | a, b € P\Gp}).
Now define
n:= max({wn | B e £}V {2}).

Let P be a finite petal of &/. There is a gentle surjection ¢ : P — B, for some
B € #B. To see that wp < n, let a, b € P\Cp with a # b. Define the subuniverse
Pay = PqUsgp({a, b)) of P.

Case (a): ¢[p, is one-to-one. By Lemma 2.1, there is a coretraction ¢ : B < P
for ¢ with a, b € ¥ (B). So dp(a, b) < dy@)(a, b) < wy@ = ws < n.

Case (b): ¢!, is not one-to-one. Since ¢ is gentle, we have a,b € P, and
sgp(a) # sgp(b). There is ¢, € sgp(a)\ Py, and ¢, € sgp(b)\ P, with ¢(c,) = @(cs).
We must have sgp(a) = sgp(c,) and sgp(b) = sgp(cs), since ¢, and ¢, are outer
elements of P. As ¢, and ¢, are connected by a fence in P, there must be a unary
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term function u of A such that u(c,) € P,\Cp. This gives us u(c,) = u(c,), since
@ (u(c,)) = ¢(u(cp)) and ¢ is gentle. Therefore dp(a, b) < 2 < n,as a € sgp(c,) and
b € sgp(cp).

We have shown that wp < n, for all finite petals P of 2. To see that M is n-quasi-
injective, choose a pair of finite algebras A,B € &/ with B < A. Letx : B> M
and assume that x extends to n,(B). Let P be a petal of A with P N B # C,. Then
P C na(B), since wp < n. So x[p,p €xtends to P. Since A is the coproduct of its
petals, it follows that x extends to A. O

3. Two-kernel three-element unary algebras
that are strongly dualisable

The family of two-kernel three-element unary algebras is surprisingly complicated.
It contains strongly dualisable algebras, dualisable algebras that are not fully dual-
isable, and non-dualisable algebras. We begin this section by giving two different
classifications of the two-kernel three-element unary algebras. To give the classifica-
tions, we require the following easy lemmas from [4].

LEMMA 3.1 ([4, Lemma 4.1]). Let M be a two-kernel three-element unary algebra.
There is an isomorphic copy of M, on the set {0, 1, 2}, that has kernels {012} and
{02]1}.

LEMMA 3.2 ({4, Lemma 4.2]). Let M be a two-kernel unary algebra, on the set
{0, 1, 2}, with kernels {012} and {02|1}. Then the unary term functions of M all
belong to the set {012,021} U {ppq, pqp | p.q € M}.

We can now restrict our attention to those two-kernel algebras, on the set {0, 1, 2},
that have kernels {01|2} and {02|1}. The most complicated algebra of this kind is
M = ({0, 1, 2}; F*), where F* := {012,021} U {ppq, pqp | p, g € M). Define the
idempotent operations f, := 010 and f, := 002 in F*. The next result divides the
two-kernel three-element unary algebras up into four types.

THEOREM 3.3 ([4, Theorem 4.3]). Let M be a two-kernel unary algebra, on the set
{0, 1, 2}, with kernels {01|2} and {02|1}. Let F be the set of unary term functions
of M. Then at least one of the following is true:

(2)o each map in F preserves the order < with1 <0 < 2;

(@)p {f1.f2) € F,and {ppq, pgp} C F, for some p,q € M withp # q;
(2)m {010,001, 110} € F and 222 ¢ F, or (002,020,202} C Fand 111 ¢ F,
)r  {f1,f2} C F, and condition (2)y fails.
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In [4], it is shown that the algebras of type (2)o and type (2)r are dualisable, and
that the algebras of type (2)p and type (2)y are non-dualisable. We shall use a different
classification for our characterisation of strong dualisability.

THEOREM 3.4. Let M be a two-kernel unary algebra, on the set {0, 1,2}, with
kernels {01|2} and (02|1}. Let F be the set of unary term functions of M. Then at
least one of the following is true:

(¢ {f1,f2) € F,and {ppq.pqp} S F, for some p,q € M with p # q;
(2o {ppq.qpq) S F, for some p,q € M withp # q;
(2)c {101,220} C F;

. 2)s {f1,f2} € F, and conditions (2)q and (2)¢ both fail.

PROOF. First assume that M has type (2)o but not type (2)q. We will show
that {010, 002} € F C {012, 010, 002, 000, 111, 222}. Since {01|2} and {02]1} are
kernels of M, there are p, g, r,s € M, with p # g and r # s, such that ppg € F and
rsr € F. As M does not have type (2)q, wemusthave gpg ¢ F andssr ¢ F. Theonly
non-constant maps in M™ that preserve the order < are 012, 110, 112, 002, 010, 212
and 202. Asrsroll0 =rsroll2 = ssr ¢ Fandppqo212 = ppqo202 =gpq ¢ F,
it follows that {010, 002} € F < {012, 010, 002, 000, 111, 222}.

To see that the four types in the statement of the theorem are exhaustive, assume that
M has neither type (2)p, type (2)q, nor type (2)c. We need to prove that {f,, f,} € F.
Since M does not have type (2)q, we have {110,010} ¢ F and {202,002} ¢ F.
Therefore M does not have type (2)y. So, by Theorem 3.3, we can assume that M
has type (2)o. We have just shown that this implies that {f,, f,} € F. d

Throughout the rest of this paper, we shall prove that the algebras of type (2)s
are strongly dualisable, and that the algebras of type (2)q and type (2)c are not fully
dualisable. This will provide us with plenty of examples of dualisable algebras that are
not fully dualisable: for instance, each algebra ({0, 1, 2}; F) such that {101, 220} <
FCF*

In [3] (see also [4]), it is shown that a finite unary -algebra is dualisable if its
operations form a set of lattice endomorphisms. The proof is particularly short and
elegant. So it is slightly surprising that not all of these lattice-endomorphism unary
algebras are fully dualisable. In fact, most of the two-kernel three-element lattice-
endomorphism unary algebras are not fully dualisable. In the proof of Theorem 3.4,
we showed that a two-kernel unary algebra whose operations preserve the order <,
with 1 < 0 < 2, must have type (2)q unless it is polynomially isomorphic to
({0, 1, 2}; 010, 002).

Every algebra of type (2)s also has type (2)gr, and is therefore dualisable. We shall
prove that every algebra of type (2)s has enough algebraic operations and is therefore
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strongly dualisable. The following lemma has nearly the same proof as that of Lemma
4.7 in [4].

LEMMA 3.5. Assume that M has type (2)s. Let A € ISP(M), let A, < A such
that f1(A) U f2(A) C A, and let x : A, > M be a homomorphism. Then x has
an extension to A if and only if x(f1(a)) = 0 or x(f,(a)) = 0, for all a € A\A..
Moreover, if x has an extension to A, then that extension is unique.

Assume that M has type (2)s and let F be the set of unary term functions of M.
Then {101, 220} ;(_ F, since M does not have type (2)c. We shall consider the two
cases 101,220 ¢ F and 101 € F separately. The case 220 € F is symmetric, under
conjugation by 021, to the case 101 € F. To see this, assume that 220 € F. We can
create an isomorphic copy of M by interchanging the labels 1 and 2. More precisely,
there is a unary algebra M, on the set {0, 1, 2}, such that 021 : M — M’ is an
isomorphism. The set F’ := {021 o u 0 021 | u € F} is the set of all unary term
functions of M'. It is easy to check that M’ has type (2)s and that 101 € F”.

LEMMA 3.6. Let M be a unary algebra with type (2)s.

(i) Ifneither 101 nor220 is a term function of M, then all the unary term functions
of M belong to {012, 021, 010, 020, 001, 002, 000, 111, 222}.

(ii) If 101 is a term function of M, then all the unary term functions of M belong
to {012, 101, 010, 002, 000, 111, 222}.

PROOF. Let F denote the set of all unary term functions of M and assume that
220 ¢ F. Since 010, 002 € F and M does not have type (2)q, we know that 110 ¢ F
and202 ¢ F. Letppg € F withp # q. Then0100ppq € Fand0020ppqg € F. As
110,220 ¢ F, this implies that p = 0. We have 212 ¢ F,as 0020212 =202 ¢ F.
Since F C F*, by Lemma 3.2, it now follows that

F € {012,021, 010, 020, 101, 121, 001, 002, 000, 111, 222}.

To prove (i), assume that 101 ¢ F. Then 121 ¢ F,as 0100121 = 101 ¢ F. Soclaim
(i) holds. To prove (ii), assume that 101 € F. We must have 021,001 ¢ F, since
1010021 = 1010001 =110 ¢ F. As0200101 =202 ¢ Fand 1210101 =212 ¢ F,
we have 020, 121 ¢ F. Thus claim (ii) holds. O

Given a set S, for each m € M we use m to denote the constant map in M5 with
value m.

LEMMA 3.7. Let M be a unary algebra with type (2)s. Assume that neither 101
nor 220 is a term function of M. Let B < A in ISP(M) and let x : B — M. Then the
following are equivalent:
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(i) x extendsto A;
(i) x extends to 1,(B);
(iii) whenever u, € {010, 020} and u, € {002, 001} are term functions of M and
a € A with u(a), u(a) € B, we have x (u,(a)) = 0 or x(uy(a)) = 0.

In particular, the algebra M is 1-quasi-injective.

PROOF. Define F to be the set of all unary term functions of M. We can assume that
A < M, for some set S. Clearly (i) implies (ii). To see that (ii) implies (iii), assume
that X : 1,(B) — M is an extension of x. Leta € A and let ¥; € F N {010, 020}
and u, € F N {002, 001}, with u,(a), u;(a) € B, such that x (u;(a)) # 0. We want to
show that x (u;(a)) = 0. First assume that u;(a) € Cs C {0, 1,2}. Then u,(a) # 0,
and so a = 1. Since 000 = f10 [, is a constant term function of M, this implies
that x (uy(a)) = x(ﬁ) = 0. Now assume that u;(a) ¢ Cs. Then a € 1,(B) and
u(x(a)) = x(u;(a)) # 0. Sox(a) = 1 and therefore x (uy(a)) = u,(x(a)) = 0.

It remains to show that (iii) implies (i). So assume that condition (iii) holds. By
Lemma 3.6 (i), the set A, := A N ({0, 1}5 U {0, 2}°) determines a subalgebra of A.
We want to define x, : A, > M by

2 if u(a) € x~'(u(2)), for some u € F N {002, 001};
x,(a) =131 ifu(a) € x'(u(l)), for some u € F N {010, 020};
0 otherwise.

To see that x, is well defined, let u; € F N {010,020}, u, € F N {002,001} and
a € A, with u;(a), uy(a) € B. Thenx(u(a)) =0 # u;(1) or x(uy(a)) = 0 # uy(2),
by (iii). So x, is well defined.

Now let b € BN A,. Then x,(b) = 2 implies x(b) = 2, and

x(b) =2 = 002(x(b)) =2 = x(002(b)) =002(2) = x.(b) =2.

Similarly, we have x,(b) = 1 if and only if x(b) = 1. Thus x, extends x [, . Using
Lemma 3.6 (i), it is easy to check that x, is a homomorphism.

We shall prove that x, extends to a homomorphism x : A — M using Lemma 3.5.
Choose some a € A\A, and suppose that x,(f(a)) # 0 and x,(f2(a)) # 0. Since f,
and f, are both idempotent, we must have x,(f,(a)) = 1 and x,(f2(a)) = 2. There
exist u; € F N {010, 020} and u, € F N {002, 001} such that u, o f,(a) € x~1(u;(1))
and uyo0f,(a) € x~'(u3(2)). This implies that x (1,0 f;(a)) # 0and x (uy0f,(a)) # 0,
which contradicts (iii). So there is an extension X : A — M of x,. By Lemma 3.5,
the extension x : B — M of x[p,,, is unique. Thus X is an extension of x, as

fanA, =x anA.- O

THEOREM 3.8. Let M be a unary algebra, with type (2)s, such that neither 101 nor
220 is a term function of M. Then M is strongly dualisable.
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PROOF. By [4], the algebra M is dualisable. So, using Theorem 1.3, it will follow
that M is strongly dualisable once we have shown that M has enough algebraic
operations. Define f : N — Nby f(n) :==n. Letn € N, let B < A < M" and let
h:A—> M

By Lemma 3.6 (i), the set fi(M") U fo(M") = {0, 1}* U {0, 2} determines a
subalgebra of M". Let m € (1,2} and let b € f,,,(B)\{ﬁ}. Using Lemma 3.5
and Lemma 3.6 (i), there is a homomorphism g, : M" — M such that, for all
a e fi(M*)U f,(M"), we have

m ifa=bora=im;
gs(a) = 3021(m) if a = 021(b) or a = 021(m);
0 otherwise.

Define
Y :={gy | b € (fi(B) U £(B)\{0}}.

Then |Y| < [B| — 1< f(IB]).

Define the homomorphism p : M" — MY by p := nY. To see that uf, is
an embedding, we need to show that Y separates the elements of B. Let b,c € B
with b ;éAc. Then f,(b) # fm(c), for some m € {1,2}. We can assume that
fm(d) # 0and fn(c) # m. So gr.my(fm(b)) = m # g5 . i(fm(c)), which implies
that w(f. (b)) # u(fm(c)) and therefore u(b) # u(c).

We shall use Lemma 3.7 to prove that h o (u]p)~! : u(B) — M extends to u(A).
Choose any a € A. Let 4, and u, be unary term functions of M, with u, € {010, 020}
and u, € {002, 001}, such that u;(u(a)), u,(i(a)) € u(B). Define m; := u,(1) and
my := uy(2). Then f,,, o u; = u, and f,, o u, = u,. So there is some b, € f, (B)
and b, € f,,,(B) with u(u;(a)) = p(by) and pu(uz(a)) = u(b,;). We want to show
that h(b;) = 0 or h(b;) = 0. So we can assume that b, b, # 0. Since wlp is
one-to-one, we have (b)), u(b;) # u(ﬁ). This implies that a ¢ {T, 5}, and so
ui(a), uz(a) ¢ {T,i}. For each i € {1,2}, we have m; = g, (b)) = gp (u:(a))
and therefore u;(a) = b;. As h[g extends to A, it follows, by Lemma 3.7, that
h(b)) = h(u,(a)) =0 or h(b,) = h(uz(a)) = 0. We have shown that

ho (1ulg)™" (u;(u(@) = ho (ulp) ™ (u(b))) = h(b)) =0,

for some j € {1,2). Hence h o (u]z)~! extends to u(A), whence M has enough
algebraic operations. O

To make the next two proofs easier to read, we introduce some notation. Assume
that M has type (2)s and let A € [SP(M). There is a natural binary relation ~, on A
that reflects part of the structure of A. For all a, b € A, we set a —~, b if and only if
there is some ¢ € A such that a = f,(¢) and b = f,(c).
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LEMMA 3.9. Let M be a unary algebra with type (2)s. Assume that 101 is a term
Sunction of M. Let B < A in ISP(M) and let x : B — M. Then the following are
equivalent:

(i) x extends to A,
(ii) x extends to 1,(B);
(iii) the following conditions both hold.
(1) x(b)=0o0rx(c) =0, forallb,c € B suchthat b ~, c;
2) x(b)=00rx(c) =0, forallb,c € Banda € A such that a ~, b and
101(a) —~a c.

In particular, the algebra M is 1-quasi-injective.

PROOF. Assume that A < MY, for some set S. To prove that (ii) implies (iii),
assume that x extends to a homomorphism x : 1,(B) — M. We first prove two
claims.

(x); Leta,be A,witha € Cyorb € C,,suchthata —~, b. Thena =0orb =0.

There isA some ¢ € A with f,(c) = a and f,(c) = b. Since either a or b belongi to
the set {0, 1, 2}, we must have ¢ € {0, m}®, for some m € {1, 2}. Soa = f,(c) =0or
b=fi(c)=0.

(¥), Leta e A and b e B\C, suchthata ~4 b. Thenx(a) =0orx(b) =0.

There is some ¢ € A such that f,(c) = a and f,(c) = b. Since b ¢ C,, we have
a, ¢ € 1,(B). Assume that x(b) # 0. Then f,(x(c)) = x(b) # 0 and so X(c) = 2.
Therefore x(a) = x(f1(c)) = f1(X(c)) = 0.

We can now show that (iii) holds. Since 000 is a term function of M, we have
x(ﬁ) = 0. So (1) follows straight from claims (*); and (*),. To see that (2) holds,
let b,c € Banda € A, witha —~, b and 101(a) —~4 c, such that x(b) # 0. First
assume that b, ¢ ¢ C,. By (*),, we must have X(a) = 0 and therefore x(101(a)) =
101(x(a)) = 1. Using (*), again, we get x(c) = 0. Now assume that b € C;.
Then b # 0, since x(b) # 0. So a = 0, by (*),, and therefore 101(a) = 1. As
101(a) —~a c, it follows that ¢ = 6 whence x(c¢) = 0. Finally, assume that ¢ € Cy.
Since b # Danda ~a b, we have a # 1. This implies that 101(a) # 6, whence
¢ =0, by (x),. Thus (iii) is satisfied.

To prove that (iii) implies (i), assume that (iii) holds. By Lemma 3.6 (ii), the sets
A| = f1(A)UC, and A, := f,(A)U C, both determine subalgebras of A. Let 7 be a
transversal of {{a, 101(a)} | a € f1(A)} and define the homomorphismx; : A; > M
such that, for all @ € 7, we have

x(a) ifa € B;
xi(a) =10 ifa ¢ B and a ~, b, for some b € x~'(2);
1 otherwise.
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We can define x, : A; - M by

x(a) ifa € B;

0 otherwise.

x(a) = [

Now define A, ;= A|UAzandx, :=x; Ux, : A, > M.

To see that x, extends to A, using Lemma 3.5, let a € A\A, with x,(f2(a)) = 2.
Then f,(a) € x~!(2). First assume that f,(a) € B. Then x,(f,(a)) = x(f1(a)) =0,
by (1). Now assume that f(a) ¢ Band f(a) € . Thenx.(f (a)) = x,(fi1(a)) = 0.
Finally, assume that f,(a) ¢ B and 101(a) € . We must have x.(101(a)) =
x1(101(a)) = 1, by (2), and therefore x,(f(a)) = 101(x.(101(a))) = 0. So there
is a homomorphism x : A — M that extends x,. By Lemma 3.5, the extension
x :B —> Mofx[zn,, =X[pn,, is unique, whence X extends x. O

THEOREM 3.10. Let M be a unary algebra, with type (2)s, such that either 101 or
220 is a term function of M. Then M is strongly dualisable.

PROOF. By symmetry, we can assume that 101 is a term function of M. The algebra
M is dualisable, by [4]. So, using Theorem 1.3, it suffices to show that M has enough
algebraic operations. Define & := [SP(M) and define the map f : N — N by
f():=3n—2. LetneN,letB< A M andleth: A > M.

Now let b € f2(B)\{6}. By Lemma 3.6 (ii), the set f,(M") U Cy determines a
subalgebra of M". Using Lemma 3.6 (ii) and Lemma 3.9, there is a homomorphism
g5+ M" — M such that, for all a € f,(M"), we have

2 ifa-_—bora=’2\;

0 otherwise.

gs(a) = {

The set f1(M") U Cy determines a subalgebra of M". By Lemma 3.6 (ii) and
Lemma 3.9, there is a homomorphism g; : M" — M such that, for a € f,(M"), we
have

g(a) if a ~p bor 101(a) ~, b;

8(@) = IlOl(g,,(a)) otherwise.

By Lemma 2.4, there is a set Z C &/ (M", M) of projections such that Z separates the
elements of B and |Z| < |B| — 1. Define
Y:i=ZU (g 8,1 bef2(B\0).

Then [Y] < [B| -1+ 2(I1B] = 1) < f(IB)).
Define u : M" — M¥ by u := Y. Then w5 is an embedding, as Y separates the
elements of B. We shall begin by proving the following claim.
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(¥) Leta € A and b € B with p(a) ~,@) 1(d). Then fi(a) —~a b.

Since f1(a) ~4 0, we can assume that b € B\{0}. There is c € A with f,(u(c)) =
u(a) and fr(u(c)) = u(b). As f, is idempotent, this implies that u(f,(c)) =
u(f1(a)). We have u(f,(b)) = u(b) and therefore b € f,(B), as u [ is one-to-one.
This gives us g,(f2(c)) = g,(b) = 2, which implies that g,(¢) = 2, and also that
fale)=borc= 2. So &, (f1(@) = g,(f1(c)) = gs(f1(c)) = gp(f1(a)), which tells
us that f;(a) ~a bor 101(a) —~ b. We have g,(b) = 2 and

8:(101(a)) = 101(gs(f1(@))) = 101(gs(f1(c))) = 101(gs(c)) = 101(2) = 1.

As g, preserves f| and f5, it follows that 101(a) /A4 b. Thus f,(a) —~4 b, and (*)
holds.

We will use Lemma 3.9 to prove that h o (u]5)~' : u(B) = M extends to u(A).
To see that (1) holds, let b, c € B such that u(b) —~,@y u(c). Then fi(b) —~,4 c,
by (x). We have f(b) = b, as f1(u(b)) = u(b) and u[, is one-to-one. So h(b) =0
or h(c) = 0, by Lemma 3.9, since h [, extends to A.

To check that (2) holds, let b,c € B and a € A such that u(a) —~,@) 1(b) and
101(u(a)) —~uay u(c). Then fi(a) ~a b and 101(a) —~a c, by (*), which implies
that (b) = 0 or h(c) = 0. It now follows that i o (u[,)~! extends to u(A). |

4. Dualisable three-element unary algebras
that are not strongly dualisable

In this section, we will show that every algebra that has type (2)q or type (2)¢
is not strongly dualisable. This will complete our characterisation of the strongly
dualisable three-element unary algebras. Our proof is based on the proof by Hyndman
and Willard [7] that the unary algebra ({0, 1, 2}; 001, 122) is not strongly dualisable.
Most of the results in this section will also be used in the following section to finish
the classification of fully dualisable three-element unary algebras. In our proof, we
make use of a special pair of ordered sets.

LEMMA 4.1 ([7, Lemma 4.1]). There is a chain T' = {I"'; <) and an ordered set
I" = (I"; <) such that < is strictly contained in < and the following condition holds:
forallc,d € I’ withc < dand ¢ 4 d, there exists {c, |n e N}JU{d, |neN}C I
suchthat ¢ < ¢, and d, < d and ¢, € d, < €y, forevery n € N.

Throughout the rest of this paper, I and I'" will denote a fixed pair of ordered sets
satisfying the conditions of Lemma 4.1. The following lemma gives a general method
for proving that a finite algebra is not strongly dualisable. Let ¢4 denote the category
of directed graphs.
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LEMMA 4.2. Let M be a finite algebra and let B < A in & := ISP(M) such that
I' C B. Assume there is a chain C = (C; <), with C C M, for which the maps
~Ir: dAM - 4T,C) and —[ : B,M) > 4T, C) are well-defined

bijections.
(i) Theset X := {x], | x € (A, M)} forms a closed substructure of M®, for
each alter ego M of M.

(i) The algebra M is not strongly dualisable.

PROOF. Let M = (M; G, H, R, ') be an alter ego of M. There are ¢, d € I" with
¢ < dandc 4 d. There also exist 0,1 € C such that 0 # 1 and 0 < 1. Define the
mapw : I" — Cby

{1 ifc < a;

w(a) =

0 otherwise.

Then w € 4(I'", C) and so there is a homomorphism w € &/ (B, M) for which
Wl =w. Asw ¢ 4T, C), we must have w ¢ X and therefore X # &/(B,M).
We will show that X forms a closed substructure of D(B) < MB . As X separates the
elements of B, it will follow by Theorem 1.2 that M does not yield a strong duality
on & .

Let : : B — A denote the inclusion map. Then X is the image of the morphism
D() : D(A) — D(B). This implies that X is topologically closed in D(B) and that
X is closed under the operations in G. It remains to check that X is closed under
the partial operations in H. So let h € H be a k-ary partial operation, for some
ke N,andlet x,...,x; € X with (x4, ...,x) € dom(h)P®. We will show that
z2:=h(x,...,x) € X.

To show that z € X, it is enough to prove that z[, € 4(I',C). Soletc,d e I'
with ¢ < d. Now we wish to show that z(c¢) < z(d). Since z € & (B, M), we
know that z[ € 4(I'",C). So we can assume that ¢ 4 d. There exists a subset
{c, |neN}yU{d, | n € N}of I"'suchthat c < ¢, and d, < d and ¢, £ d, < Cny1)
for all n € N. We have x;{, € 4(I',C), foreach i € {1,...,k}. As C is finite,
there are n,m € N, with n < m, such that x;(c,) = x;(c), forall i € {1,...,k}.
Since ¢, € d, < ¢, We get x;(c,) = x;(d,), for all i € {1,...,k}, and therefore
2(c,) = z(d,). As z[, € 4(I',C), with ¢ < ¢, and d, < d, it follows that
z2(¢) € z(c,) = z(d,) < z(d). Thus z € X, whence X is a closed substructure
of D(B). O

Now let M be a unary algebra on the set {0, 1, 2}. In order to apply Lemma 4.2,
we shall give a method for constructing algebras in the quasi-variety & := ISP(M)
using ordered sets.
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DEFINITION 4.3. Let M be a unary algebra on the set {0, 1, 2}, lgt P = (P;<) be
an ordered set and let <1 be a subset of <. Define the set P* := P U {T, L}. For all
a,b € P suchthat a < b, define ab € M?* by ab(l) =2, ab(T) =1and

2 ife<a;
ab(e)=1{0 ifc<bandcg a;
1 otherwise,

for all ¢ € P. Define the algebra fl;q = Sgyet ({Z\b la,b e Panda « b}). If the
relation < on P is reflexive, we can define the injection ¢p : P — /PZ by tp(a) := aa.
If < isequal to <, then we write P instead of P_.

The following lemma describes the structure of /I\’q under some special conditions
on < and M. For each set S and each a € {0, 1, 2}5, define the partition

P(a) = {a”'(0),a”' (1), a”' QN\{2)

of S. For every algebra A < M%, the set A, := {a € A | |P(a)] < 2)isa
subuniverse of A.

LEMMA 4.4. Let M be a unary algebra with type (2)q. Let P = (P;<) be an
ordered set, let <1 be a reflexive subset of < and define A := P.

(i) Then sg,(ab)\(ab,021(ab)} C sg,({@a, bb)), foralla, b € P witha < b.
(i) The set of petals of A, is {sg,(aa) | a € P}.

PROOF. Leta, b € P such that a < b. For all unary term functions «, and u, of M,
withker(u;) = {02[1} and ker(u,) = {01|2}, we have u,(ab) = u,(bb) and u,(ab) =
u(@a). Using Lemma 3.2, it follows that sg, (ab)\{ab, 021(ab)} C sg,({@a, bb}).
So claim (i) holds and A, = | J{sg,(aa) | a € P}.

To prove (ii), it is enough to show that sg, (aa) N sgA(Z?)) = Cy,foralla,be P
with a # b. Assume that u(aa) = v(Z\b), for some a, b € P with a # b and some
unary term functions « and v of M. Since the two-block partitions £ (aa) and P (bb)
of P* are different, we have u(@a) € {0,1,2). But @a € {1,2}"" and M does not
have any unary term functions with kernel {0]12}. So « is a constant term function
of M, which implies that u(aa) € C,. O

To illustrate Lemma 4.4, we consider a particular example.

EXAMPLE 4.5. Let M be a unary algebra with type (2)q. Define the three-element
chain P = ({a, b, ¢}; <), such that a < b < ¢, and define the ordered set P’ =
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FIGURE 1. Example 4.5

{{a, b, c}; <), such that < = <\{(a, b)}. Denote each element x € M"" by the
5-tuple (x (1), x(a), x(b), x(c), x(T)). Then

@ =(,2001), bc=(22201),
=(2,2,1,1,1), T =(2,2221), b =(2,2,2,1,1).

The structure of the algebra A := ?q is shown in Figure 1. The three petals of A |,
are sg, (aa), sg, (bb) and sg, (c¢).

The following lemma shows that the algebra T’< and the graph ( P; <) are intimately
connected. Define the two-element chain 2 = ({1, 2}; <) such that 1 < 2. For each
set Sand s € S, let , : M® — M denote the sth projection function.

LEMMA 4.6. Let M be a unary algebra with type (2)q and define & := ISP(M).
Let P = (P; <) be an ordered set, let < be a reflexive subset of < and define
P = (P;<).

(1) Forallx € .(zf’(/i, M) and a, b € P such that a a < b, we have x(ab) =2 lf
and only if x(aa) = 2, andx/_(\ ab) = 1 if and only tfx(bb) =1
(ii)) Themap —otp: H (P, M) > 4P, 2) is a well-defined bijection.

PROOF. As M has type (2)q, there are p, g € M, with p # g, such that both ppgq
and gpq are term functions of M. Define A := P_. For all x € 2/(A,M) and
a, b € P witha < b, we have

x(ab)=2 < ppqx(ab)=q <  x(ppq(ab)) =gq
=  x(ppq(aa))=gq <  ppq(x(aa))=gq
= x(aa) =2

and, similarly, x (ab) = 1 if and only if x(bb) = 1. So (i) holds.

https://doi.org/10.1017/51446788700008806 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700008806

[21] Strong and full dualisability 207

We want to define the map n : & (A,M) — 4 (P, 2) by n(x) := x otp. To see
that this will work, let x € &/(A, M). For each a € P, we have

ppq(x(aa)) = x(ppq(aa)) = x(gpq(aa)) = qpq(x(aa)),

which implies that x(aa) € {1, 2}. Therefore x o (p(P) C {1,2}. Foralla,b € P
such that @ <1 b and x(aa) = 2, we have x(zz\b) = 2 and therefore x(777)) = 2, by (i).
Thus x o (p € 4P, 2) and 7 is well defined.

Letx,y € & (A, M) such that n(x) = n(y) and leta, b € P with a < b. Then

x(ab) =2 <= x(aa) =2 < y(au) =2 <> y(ab) =2,

by (i), and, similarly, x(ab) = 1 if and only if y(ab) = 1. Sox = y and 7 is
one-to-one.

It remains to show that 7 is onto. Let z € 4(P’, 2). By Lemma 4.4 (ii), there is a
homomorphism z, : A;; — M, given by

o= |rrlgem, la € ' OVU| [milgym) la € 7' @),

such that z, o tp = z. We will show that z, extends to a homomorphism Z : A —
M. Leta,b € Psuchthata # band a < b. Wewanttoﬁndc € P* with
Zlga@m By = Telsg,qa 35 ). We will then define z(ab) = ab(c) and, if 021 is
a term function of M, we will define z(021(ab)) = 021(ab)(c) It will follow by
Lemma 4.4 (i) that z, extends to A.

‘We can assume that z(a) # z(b). Therefore z(a) = 1 and z(b) = 2, as z(a) < z(b).
We have z,(a@a) = nr(aa) = 1 = @a(b) and z,(bb) = 7, (bb) = 2 = bb(b), which
implies that z. [, (2 55 1) = Tblsg, a2 55 p- Thus 7 is a bijection. |

THEOREM 4.7. Let M be a unary algebra with type (2)q. Then M is not strongly
dualisable.

PROOF. Define & := ISP(M). Using Lemma 4.1 and Definition 4.3, we have
algebras T.< T in o andan injectionir : I' — /I\“Q, By Lemma 4.6 (ii), the maps
—otr: .czx/(rl: M) > 4T,2)and —or : .cz/(/f‘q,w — ¥(I'', 2) are well-defined
bijections. It follows by Lemma 4.2 (ii) that M is not strongly dualisable. 0

The algebra M* = ({0, 1, 2}; F*), defined near the beginning of Section 3, has
type (2)o. Every two-kernel algebra, with kernels {01]2} and {021}, is a reduct of M".
We will use M" to prove that none of the algebras of type (2) are strongly dualisable.

LEMMA 4.8. Let M be a unary algebra with type (2)c. Let A be an algebra in
" := ISP(M") and let A’ be the reduct of A in of := ISP(M). Then o/ (A’, M) =
(A, M)
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PROOF. We begin by proving that the only homomorphisms from M? to M are the
two projections. Let x : M> — M be a homomorphism. Then x (0, 1) € {0, 1}, since
x preserves 010 = 101 o 101. First assume that x(0, 1) = 1. In M2, we have

101 101 220 220 220

0,1) «— (1,00 «— 2,) = ©0,2) < 2,00 <«— (1,2).
Applying the homomorphism x gives us
L O O T - S PR

in M. The constant operations 000, 111 and 222 are all term functions of M. So it
follows that x = m,. Now assume that x (0, 1) = 0. Thenx(1,0) = 101(x(0,1)) =1
and, by symmetry, we have x = ;.

We can assume that A < (M")%, for some non-empty set S. Let a € A such that
P (a) has two blocks. Then sg,(a) = {b € M’ | P(b) = P(a) or P(b) = {S}}, as
every map in F* is an operation of M". Let sg, (a)’ denote the reduct of sg, (a) in &/.
It now follows that sg, (a)” is isomorphic to M?, via repetition of coordinates. Since
the only homomorphisms from M? to M are the projections, every homomorphism
from sg, (a)’ to M is the restriction of a projection.

Now let y € &/(A°, M) and let a € A. To prove that y € &/*(A, M"), it suffices to
show that y [, (, is the restriction of a prOJectxon The constant maps 000, 111 and
222 are all term functions of M. So if a € {0,1,2), then ¥ [sg, @ 1S the restriction of
a projection. Ifa. € A u\{O 1 2} then %?(a) has two blocks and so we know that
¥ g, 18 the restriction of a projection. Therefore we can assume that a € A\A .
Foreach m € (1, 2}, define P, := sg, (fn(a)). Thensg,(a) = P,U P,U{a, 021(a)}.
Since |2 (a)| = 3, we can choose some s € a~!(y(a)). For each m € {1, 2}, we have
y(fm(a)) = fu(y(@)) = fula(s)) and so y[,, = ;{5 , as y[p is the restriction of
a projection and all the elements of P.\{0, 1,2} determine the same partition of S.
For each m € (1,2}, we have f, o 021(a) € P, U P, and so f,(y(021(a))) =
y(fm(021(a))) = fn(021(a(s))). Therefore y(021(a)) = 021(a(s)), since f, and f,
separate M. We have shown that y [, () = 7, o) Whence y € & H(A, M. O

THEOREM 4.9. Let M be a unary algebra with type (2)c. Then M is not strongly
dualisable.

PROOF. Define & := ISP(M) and &% := ISP(M"). Using Lemma 4.1 and
Definition 4.3, we have T, < T in " and an injection ir : I' — T',. The maps
—ou : T, M) > 4(T,2) and — o > o w(?q, M*) - (I, 2) are well-
defined bijections, by Lemma 4.6 (ii). Let T ° and l" * denote the reducts of T and
I'<, in the quasi-variety &1 Then, by Lemma 4.8, the maps — o ir : & T°, M) —
¥4((T,2)and —op : &( l"q, M) - ¢(I'", 2) are bijections. So Lemma 4.2 (ii) tells
us that M is not strongly dualisable. O
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We have now finished establishing the classification of strongly dualisable three-
element unary algebras given in the introduction. Part (i) of the characterisation
follows from Theorem 2.6. It is shown in [4] that each unary algebra with type (2)p
is not dualisable. So part (ii) of the characterisation follows from Theorems 3.4, 3.8,
3.10, 4.7 and 4.9. The three-kernel three-element unary algebras are shown to be not
dualisable, and therefore not strongly dualisable, in [4].

LEMMA 4.10. Let M be a unary algebra with type (2)q or type (2)¢c. Then M is not
n-quasi-injective, for all n € N.

PROOF. First assume that M has type (2)q. Let n € N and define k :=2n + 1. Let
= ({0, ..., k}; <) bea (k+1)-element chain with 0 < - - - < k. Define the relations
4:={Gi)|ieD)U{Ui+1)]|i e D\{k}}) and < := 4\{(n,n + 1)} on D.
Using Definition 4.3, we can define A := D and C := D 4» Where C is a subalgebra
of A. By Lemma 4.4 (ii), the coproduct B := sgA((f)\O) * Sg, (7(7() is also a subalgebra
of A. Define the homomorphlsm x:B->M by x =7yl () U [sgA( ™)
Then x o (p(0) = x(OO) = 2 and x o (p(k) = x(kk) = 1. To prove that M is not
n-quasi-injective, we shall show that x extends to n, (B) but not to A.

The map x o tpfygy : {0, k} — {1, 2} does not extend to a morphism from (D; «)
to 2. So, by Lemma 4.6 (ii), the homomorphism x : B — M does not extend to A.
There is an extension y : (D; <) — 2 of x o tp[igy- Using Lemma 4. 6 (ii) agam
there i is a homomorphlsm y : C -> M such that y oyp = y. We have y(OO) = x(OO)
and y(kk) = x(kk). So y is an extension of x. We have shown that x extends to C
but not to A. It remains to prove that n,(B) C C.

Define n’ := n + 1. Then A\C C {nn’,021(nn’)}, by Lemma 4.4 (i). Using
Figure 2 and Lemma 4.4, the reader can check that dy(a, b) =2 n+ 1, foralla € A\C
and b € B\C,. Thus n,(B) € C, whence M is not n-quasi-injective.

Now assume that M has type (2)¢c and let n € N. We have just shown that M is
not n-quasi-injective. So there are finite algebras B < A in [SP(M") for which there
is a homomorphism x : B — M that extends to n,(B) but not to A. Let A® denote
the reduct of A in ISP(M). The algebras M and M" have the same constant term
functions. So Cy = C,. It follows that ny(B) C nA(B). Thus x extends to ny (B)
but not to A’, using Lemma 4.8. a

The Quasi-injectivity Theorem, given in the introduction, now follows from Lem-
ma 2.7, Theorem 3.4, Lemma 3.7, Lemma 3.9 and Lemma 4.10.

5. Dualisable three-element unary algebras that are not fully dualisable

In this section, we prove that each unary algebra with type (2)q or type (2)c is not
fully dualisable. It will then follow that every fully dualisable three-element unary
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!

n

FIGURE 2. Lemma 4.10

algebra is strongly dualisable. Our proof is an extension of that given by Hyndman and
Willard [7] to show that the unary algebra ({0, 1, 2}; 001, 122} is not fully dualisable.
The proof in [7] used the fact that both the operations 001 and 122 preserve the total
order with 0 < 1 < 2. Our proof is more complicated since it must work, in particular,
for the algebra M", and there is no total order on {0, 1, 2} that is preserved by every
operation in F*.

A full duality for a quasi-variety & := ISP(M) is more subtle than either a duality
or a strong duality. At the moment, we have no reason to believe that, if M is a
structure that yields a full duality on &, then every extension of M, via algebraic
relations, also yields a full duality on &. However, there are some relations that can
always be added to a structure M without destroying a full duality. The following
lemma is proved in [7], by Hyndman and Willard.

Let n € N and consider an n-ary algebraic relation » on M. Then r is the
underlying set of a subalgebra r of M". The relation r is said to be balanced if
L,M) = {m, |ie{l,...,n}}, and m;[, # m;[,, forall i,j € {1,...,n} with
i#j.

LEMMA 5.1. [7, Lemma 4.7] Let M be a finite algebra and assume that the
structure M = (M; G, H, R, T) yields a full duality on ISP(M). Let r be a balanced
algebraic relation on M. Then M’ := (M; G, H, RU{r}, T also yields a full duality
on ISP(M).

Now assume that M is a unary algebra of type (2)q or type (2)c. Let < denote the
order on {0, 1, 2} with 1 < 0 < 2. We will define some algebraic relations on M. The
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definitions of these relations will depend on the type of M. If M has type (2)q, then
we define the algebraic relations on M by

< =sgyp(laeM | 1=al) 5 < aln) =2}),
for all n € N\(1}, and
< i=sgye({a e M® |1 =a(l) < - < a(6) =2)\{(1,1,0,0,2,2)}).

If M has type (2)c but not type (2)q, then, since M is a reduct of M*, we can define
the algebraic relations on M by

<o = sgup(lae M" | 1=a() 5 - S aln) =2)),
for all n € N\{1}, and
<= sgame({a € M® | 1 =a(l) < -+~ < a(6) =2}\{(1,1,0,0,2,2)}).

The relations <{4 and v« will play an important role in our proof that M is not fully
dualisable.

LEMMA 5.2. Let M be a unary algebra with type (2)q or type (2)c. The relations
%4 and < on M are balanced.

PROOF. First assume that M has type (2)q and define & := ISP(M). Define the
three-element chain C = ({0, 1, 2}; <) such that 0 < 1 < 2. Using Definition 4.3, we
have

C =sgye(lae M | 1=a(T) 5 a2) < a(l) < a(0) = a(L) =2}).

So C is isomorphic to the algebra 4. By Lemma 4.6 (ii), we have |2/ (4, M)| =
|2 (C ,M)| = |4(C, 2)| = 4 and therefore <, is balanced.

Define the five-element chain D = ({0, 1,2, 3, 4}; <) with 0 < < 4. Define
the graph D' = (D; <}, where < := <\{(1, 3)}. Write each element a € M D" as the
7-tuple (a(T),a ), ..., a(0), a(l)). Then

D.= ng,,+({a eM” |1=a(M) ga@) < <a) =a(L) =2\
{(1,1,0,0,2,2,2)}),
and /ﬁq is isomorphic to the algebra p«. Using Lemma 4.6 (ii), this implies that
| (ba, M)| = | (D, M)| = |4, 2)| = 6. Thus v« is balanced.
Now assume that M has type (2)c but not type (2)q. The relations =<, and =,

defined on M, are algebraic on M®. We have just shown that <, and o< are balanced
on M*. So <, and v« are balanced on M, by Lemma 4.8. O
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We will work with the relations <{,,, for each n € N\{1}, and o< using the properties
given in the following lemma.

LEMMA 5.3. Let M be a unary algebra of type (2)q or type (2)c. Let m, n € N\{1)}
andleta,,...,a, € {0,1,2}.

(1) Leti,j,ke(l,...,n}suchthati < j < k. If a; = a, and a; # a;, then

(ar,...,a,) &€ Xpand(ay,...,a,) ¢
(i) Leto : {1,...,m} — {1,...,n) such that 6(1) = 1, o(m) = nand o
preserves the natural order. If (ay, ..., a,) € <, then (a,qy, - - - » Qy(m) € Sm.

(iii) We have <6\p< € {(1,1,0,0,2,2),(2,2,0,0, 1, 1)} € M®\o<.

PROOF. The three claims follow from the definitions, since all the unary term
functions of M belong to the set F*. O

Assume that M has type (2)q. The algebras T and ’f“q in & = ISP(M) are
given by Lemma 4.1 and Definition 4.3 in the previous section. Let M be an alter ego
of M that has <4 and < in its type. By Lemma 4.2 (i) and Lemma 4.6 (ii), we know
that X = {x[7_|x € & (? , M)} determines a closed substructure X of I}V'I/Fq.
To show that M does not yield a full duality on &, we shall prove, via a sequence of
technical lemmas, that X is not isomorphic to the dual of any algebra in &

Now assume that M has type (2)q or type (2)c. We will associate a graph with
each algebra in ISP(M). Let A < MY, for some non-empty set S. Recall that
Ap = {a € A | |P(a)| < 2} determines a subalgebra of A, where we define the
partition 2(a) := {a~'(0),a"'(1),a '(2)}\{@} of S, for each a € A. For each
two-block partition 2 of S, we define the subuniverse of A, determined by 2 to be

Ag:={aeA| P =20 Pa)={5}}
Define the set
Py =|A2| 2= P(a)forsomea e ApN0,T,2) 1.

Then £, contains all the partition-determined subuniverses of A |, that do not lie in the
set {6, T, 5}. There are unary term functions u#, and u, of M such that ker(u;) = {02]1}
and ker(u;) = {01|2}. Let ¢ € S and define the reflexive binary relation —>, on
P, such that P —>, Q if and only if P = Q or there exists a € A\A; and
{m, m} = (1,2} with u,,(a) € P, uz(a) € Q and a(t) = m. The definition of —>,
is independent of our choice of u; and u,. Let —» , denote the transitive closure
of —>4. Then —» , is a quasi-order on &,. To illustrate the definition of —>,, we
revisit the algebra constructed in Example 4.5.

EXAMPLE 5.4. Let M be a unary algebra with type (2)q. Define the ordered set
P’ and the algebra A := P, as in Example 4.5. We shall show that (%,; —p4)
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is isomorphic to P’. Let 4, and u; be unary term functions of M with ker(u;) =
{02|1} and ker(u;) = {01|2}). The partitions $?(aa), 9’(?[)) and Z(cc¢) of P+ are
distinct. So, using Lemma 4.4 (ii), we have &, = {sg, (aa), sgA(@), sga(ct)}. By
Lemma 4.4 (i), we get

A\Ay; C {@c, be, 021(ae), 021(be)).

Now ac(Ll) = 2, with uy(ac) = uy(aa) € sg,(aa) and u,(ac) = u(ce) €
sg, (ct), which implies that sg, (aa) —>a sg,(c¢). If 021 is a term function of M,
then we have 021(ac)(L) = 1, with u1(021(ac)) € sg,(aa) and u2(021(ac)) €
sgA(cc) which also 1mphes that sg, (aa) —>a sg,(cc). Similarly, using bc and
021(bc) wehavesgA(bb) —a sg, (ce). Sotherels an isomorphism 9 : (P; <) —
(Pa;—>a) given by ¥ (x) = sg, (xX).

Now define ., (A) to be the set of all —> -increasing subsets of Z,.

LEMMA 5.5. Let M be a unary algebra of type (2)q or type (2)c, and define the
quasi-variety &/ = ISP(M). Let A < M®, with P, #+ @, and let s,t € S. Assume
thatx[p =n,lporxfp =m|p forallx € &/ (A,M)andall P € 2,. Then the map
n: A AM > H(A) givenbyn(x) :={P € P, | x[p =m,[p}, is a well-defined
bijection.

PROOF. There are unary term functions u; and u, of M with ker(u;) = {02(1}
and ker(u;) = {01]2}. To see that n is well defined, let x € &/(A, M) and choose
P, Q € Py, with P # Q, such that P € n(x) and P —>, Q. We want to show
that Q € n(x). As P —>, 0, there is some a € A\A}; and {m,m} = (1,2}
such that u,(a) € P, uz(a) € Q and a(t) = m. We must have u,(x(a)) =
x(um(a)) = un(a(®)) = wum(m), since x[p = m,[p. Therefore x(a) = m = a(t)
and x(uz(a)) = uz(x(a)) = uz(a@®)). Since F(uz(a)) has two blocks, we have
7y (uz(a)) # m(uz(a)) and therefore x [, = 7, l'o- Thus n(x) € #,(A) and 7 is well

defined.
To show that n s a bijection, let Z € #,(A). As {P\{O 1, 2} | P € &,) forms a
partition of A n\{O 1, 2}, we can define the homomorphism x : Aj; — M by

= Jmls 1 PeZyuint, | P e 2i0\2Z).

We want to prove that x has a unique extensionx : A — M. Leta € A\A; and let
Q.. be the subuniverse of A |, determined by £ (u,,(a)), for each m € {1,2}. Then
sga(a) € QU Q,U{a, 021(a)}, since every unary term function of M belongs to F*.
We want to find some r € S such that x[, o, = 7,[p,u0,- We shall then define
X(a) := a(r) and, if 021(a) € A, we shall define x(021(a)) := 021(a)(r). It will
follow that x extends to A.
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For each m € {1, 2}, we have u,(a(s)) = m,(un(a)) # n(un(a)) = un(a(t)).
This implies that {a(s), a(t)} = {1, 2}. Now define m := a(t) and m := a(s). Then
Om —>a Qa. We can assume that Q5 € Z and Q,, ¢ Z. Choose some r € a~'(0).
We have

Un(a(s)) = up(mM) = un(a(r)) and uz(a(t)) = uz(m) = uz(a(r)).

The elements of Q,,,\{ﬁ, T, 5} all determine the same partition of S. So x[, =
i lo, = m, [, and, similarly, x[,. = n,[Qi = 7m,[,,. Thus x extends to a ho-
momorphism ¥ € & (A, M). Since n;[, # m,[p, for all P € &,, we must have
nx = Z.

Lety : A — M be an extension of x. Foralla € A\A; and m € {1, 2}, we have

x(@)=m = un(x(@)) = um(m) & X(um(a)) = um(m)
= y(un(a) = um(m) = un(y(@)) = up(m)
— y(a) =m.

So x is the unique extension of x to A. It follows that 7 is a bijection. U

We say that the algebra A < M is locally balanced if x [, is the restriction of a
projection, for each homomorphism x : A — M and each finite subset B of A. For
all B < M® and 5 € S, define the homomorphism p, : B — M by p; := n,[.

LEMMA 5.6. Let M be a unary algebra of type (2)q or type (2)c, and define
o = ISPM). Let B < A < M® such that A; = By, and A is locally balanced.
Define the set X = {x[g | x € (A, M)} and let s,t € S. Assume that the relation

<= {(x,y) € X*| (05, X, ¥, p1) € <a)

on X is reflexive.

(i) Forallx e Xand P € Py, we havex[p = n,[porx[p = m|p.
(ii) There is a well-defined order-isomorphism n : {(X; <) = (#,(A); C) given by
nx):={P € Py |x[p=mip})
(iii) Foralln € Nand all x,,...,x, € X such that x;, < --- < x, we have
(05, X1s o ooy Xny P1) € Sy

PROOF. There are unary term functions u; and u; of M with ker(u;) = {02|1} and
ker(u,) = {01|2}. We must have P, = P4, since A, = B|,. To prove (i), letx € X
and P € #,. Thereis some a € P such that |#?(a)| = 2. The relation < is reflexive,
s0 (ps, X, x, p)(a) € <4. Since A is locally balanced, the map x [, is the restriction
of a projection. Therefore |{x(a), a(s), a(t)}| £ 2. By Lemma 5.3 (i), this implies
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that x(a) = a(s) or x(a) = a(¢). Since all the elements of P\{0, T, 2} determine the
same partition of S, we must have x [, = 7, [, or x [, = 7, [ . Thus (i) holds and the
map 7, given in (ii), is a well-defined bijection, by Lemma 5.5. (Note that 7 is still a
bijection even if 2, = & and we cannot use Lemma 5.5, as the algebra A is locally
balanced.)

We now want to show that n is an isomorphism. Let x,y € X and assume that
x < y. To see that n(x) € n(y), let P € n(x). There is some a € P such
that [#(a)| = 2. We have (p;, 0;, y, p;)(@) = (p,, x, y, p.)(a) € <4 and therefore
y(a) = a(t), by Lemma 5.3 (i). Thus P € n(y), which implies that n(x) € n(y).

Now assume 7(x) € n(y) and let b € B. We will show that b(s) = x(b) or
x(b) = y(b) or y(b) = b(t). It will then follow that (p,, x, y, p,)(b) € <4, since
05, ¥, ¥, 01)s (05, X, X, p) € <4 and therefore (o, o5, ¥, 01, (05, X, 01, P1) € <4y
by Lemma 5.3 (ii). Assume that b(s) # x(b) and y(b) # b(t). There is some
m € {1, 2} such that u,(x(b)) # u,(b(s)). Define Q, to be the subuniverse of
A, determined by F(un(b)). Then x[, = m, [, , by (i). As n(x) C n(y), this
implies that y[, = n,[Qm and therefore u,,(y (b)) = u,(b(t)) = u,(x(b)). Define
m := 021(m) and let Q5 denote the subuniverse of A, determined by 2 (uz(b)).
We must have u;(y (b)) # uz(b(1)), since y(b) # b(t). Now n(x) < n(y) implies
that x[,. = 7[5, = Y[y, and therefore uz(x (b)) = um(b(s)) = um(y(d)). So
x(b) = y(b), as u, and u, separate M. Thus x < y. We have proven that n is an
isomorphism, and so (ii) holds.

To prove (iii), let n € Nand xy,...,x, € X withx; < --- < x,. Letb € B. We
will show that there are j, k € {1, ..., n}, with j < k, such that

pu(b) ifi<j;
xb) = {xk) ifj <i<k
oib) ifk < i,

forall i € {1,...,n}. As < is reflexive, it will then follow, by Lemma 5.3 (ii), that
(Dss X1y oo s Xny P )(B) € K42, Leti € {1,...,n}. If i # n and x;(b) = p,(b), then
(0s5s P1, Xiz1, p)(B) = (5, Xi, Xiz1, p)(b) € <4 and therefore x,;,(b) = p,(b), by
Lemma 5.3 (i). Similarly, if i # 1 and x;(b) = p,(b), then x,_;(b) = p,(b). Since the
algebra A is locally balanced, we know that [{x(b) | x € X}| < 3. Thus (iii) holds.

O

For each ordered set (X; <), define £ (X) to be the set of all x € X that have a
unique lower cover x* in (X; <).

LEMMA 5.7. Let M be a unary algebra of type (2)q or type (2)c, and define
o = ISPM). Let B < A < M’ such that A, = B 12 and A is locally balanced.
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Define the set X = {x[p | x € &/ (A, M)} and let s, t € S. Assume that

<= 16, 9) € X2 1 (9 x, y, p) € 4l
is an order on X and define
2" = {(x,y) € Z(X)* | x > y and (ps, ', y, x*, x, pi) & >}
Then the structures (ZL(X); 2*, 2) and (Py; —>B, —> A) are isomorphic.

PROOF. There are unary term functions u, and u, of M with ker(x,) = {02|1} and
ker(u;) = {01|2}. We must have P, = Py, since A, = Bj;. Lemma 5.6 tells
us that x[, = 7, [p or x[p = m,[p, forallx € X and P € £,, and also that the
map 5 : (X; <) > (F(A);C), given by n(x) := [P € Py | x[p = 7,[p), is an
order-isomorphism.

For each P € 2,, define the —> 4-increasing subset

Zp:={Q e Pr| P —»a Q)

of Py. Then L (F,(A)) = {Zp | P € Pa}and so we candefine £ : Py —» LX)
by {(P) := n~'(Zp). Since n is an isomorphism, the map ¢ is onto. To see that
¢ is one-to-one, suppose that P, Q € £, such that P # Q and {(P) = ¢(Q).
Then Zp = Zy. For all x € X, we have x[p,p = 7,[pyp OF X[ pup = il pug, a8
n(x) € £, (A). This is a contradiction, since P and Q determine different partitions
of S. Thus ¢ is a bijection.

We will show that ¢ is an isomorphism between the structures (J,; —>B, —>A)
and (L(X); 2*, 2). Let P, Q € &P, such that P # Q. Define xp := {(P) and
xg :=¢(Q). Then

P—»,Q &> Zp2Zy & n7'(Zp) 207 (Zy) < xp 2 x,.

So —», is an order on Z,.

By Lemma 5.3 (i), the relation 2* on Z(X) is reflexive. So it remains to prove
that P —>yg @ if and only if xp 2* x . First assume that P —>g Q. There is some
b € B\B; and {m, m} = {1, 2} with u,,(b) € P, uz(b) € Q and b(t) = m. We have
xlo=mdgorxly=mly forallx € X. So uz(b(s)) # uzu(b(t)) = uz(m) and
therefore b(s) = m. Since —»  is an order on &,, we have 1(xp) = Zp = Zp\[P}
and n(x,) = Z, = Zo\(Q}. As P —», Q, it follows that

Un(X (D)) = X o (tm(D)) = Up(b(s)) = um(m),
uz(x (b)) = x o (uu (b)) = uz(b(s)) = uz(m),
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and, similarly,

Un(x (b)) = Um(b(s)) = un(0), uz(x (b)) = uz (b(1)) = uz(0),
Un(xp (D)) = un(b(s)) = un(0), uz(xp (b)) = uz(b(t)) = uz(0),
Un(xp(D)) = Un(b(1)) = up(m), uz(xp(b)) = uz(b(#)) = uz(m).

This implies that (o, Xy, Xg, Xp, Xp, p)(b) = (m,m, 0,0, m, m), since u; and u,
separate the elements of M. So (s, X, X, Xp, Xp, p;) ¢ b, by Lemma 5.3 (iii). As
P —» 4 Q and therefore xp 2> xy, we have shown that xp >* x 4.
Now assume that x, >* xo. Then x;, < xp < xp < xp, which implies that
(s, X, X0, Xp, Xp, Pr) € <6, by Lemma 5.6 (iii). Since (o, Xy, X, Xp, Xp, 1) ¢ <,
there is some b € B and {m, m} = {1, 2} such that (p;, Xy, X0, Xp, Xp, p:)(b) =
(m, m,0,0, m, m), by Lemma 5.3 (iii). As A is locally balanced, this implies that
b ¢ Bj;. We have

Xp(Un(D)) = Un(0) = un(b(s)), xo(uz (b)) = uz(Mm) = uz(b(s)),
xp(Un(b)) = up(m) = un (b(t)), xo(uz (b)) = uiu(0) = uzm(b(1)).

It follows that the subuniverse of A |, determined by & (un,(b)) belongs to Zp but
not to Zp\{P}. Therefore u,(b) € P and, similarly, uz(b) € Q. Thus P —>p 0,
whence ¢ is an isomorphism. O

The next lemma will complete the preparation for our proof that algebras with
type (2)q or type (2)c are not fully dualisable. The algebras I' and T , come from
Lemma 4.1 and Definition 4.3.

LEMMA 5.8. Let M be a unary algebra with type (2)q and define &7 := ISP(M).
Then T, < T < M such that ('), = (T'y); and T is locally balanced.
Define the set X := {x[7_ | x € & (T, M)}. Then the relation

<:={(x,y) € X* | (o1,%, ¥, pL) € <4}

on X is reflexive. The structures (7t ;-7 T, —> T ) and (I'; Q, <) are iso-
morphic.

PROOF. It follows by Lemma 4.4 (ii) that (7‘ 2 = (T"q) 12- To see that T is
locally balanced, let x € & (T’ ,M)andlet B C T be finite. There is a finite subset
I of I' such that B C sg+ ({:;b la,be lyanda € b)). Themapx o : ' > 2
is order preserving, by Lemma 4.6 (ii). First assume that x(f;b) =1, forall b € Iy.
By Lemma 4.6 (i), we have x(;;b) = 1,forall a, b € I, with a < b, and therefore
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x[z = m1[5. Now we can assume that there is a minimum element ¢ of Iy in I such
that x(c¢) = 2. For all a, b € I, with a < b, we have

2 ife<a
x(ab) =40 ifa <c< b
1 ifb<ec,
= ab(o),

by Lemma 4.6 (i). Thus x5 = 7[5 and T is locally balanced.

For alla,b e I' witha < band allx € X, we have pT(ab) =1= x(ab)
pL(ab) and therefore (o7, x, x, pl)(ab) € <4. So < is reflexive. It is easy to check
that (P ; —7,, —> 7 ) and (I"; <, <) are isomorphic; see Example 5.4.  []

An algebra A < MY is called balanced if o (A,M) = {m, [+ | s € S}, and
w,l, # mf,, foralls,t € § withs 5 t. It is easy to check that every algebra in
ISP(M) is isomorphic to a balanced algebra.

THEOREM 5.9. Let M be a unary algebra of type (2)q or type (2)c. Then M is not
Sully dualisable.

PROOF. First assume that M has type (2)q. Suppose there is an alter ego M of M
that yields a full duality on & := {SP(M). By Lemma 5.1 and Lemma 5.2, we can
assume that =<, and >< are in the type of M. Using Lemma 4.1 and Definition 4.3,
there are algebras T,and T ing. ThesetX ={xl[p,lx e« (T, M)} forms a
closed substructure of M Ta , by Lemma 4.2 (i) and Lemma 4.6 (ii). Since M yields a
full duality on &, there is an isomorphism ¢ : X — D(A), for some balanced algebra
A < M5, with S a non-empty set.

As A is balanced, there exist 5,¢t € S with p(pr) = p; and ¢(p,) = p,- By
Lemma 5.6 (ii) and Lemma 5.8, the relation < := {(x, y) € X? | (o1, x,y, p1) € <4}
is an order on X. Since ¢ is an isomorphism and < is in the type of M, we have

(p(é) = {(x’y) € ‘d(Av M)z | (pst, Yy, pt) € #4}
Define
>* = {(x,y) € LAX)? | x = yand (pr, y*, ¥, x*, x, py) & <.

Then @(2*)={(x,y) € Lo (F (A, M)? | x 9(2) y and (p;, y*, y, x*, x, p;) ¢}
Using Lemma 5.7 twice and Lemma 5.8, it follows that

(P =4 —>a) S (Lo (T (A M);0(Z"), 0(2))
(LX) 2", 2)

(gr,—f To—TT)

I
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So (Py; — >, —> a) is isomorphic to (I"; <, <), by Lemma 5.8. But this implies
that < is the transitive closure of <1, which is a contradiction. Thus M is not fully
dualisable.

Now assume that M has type (2)c but does not have type (2)q. Recall that
M* = ({0, 1, 2}; F*). We can show that M is not fully dualisable, using Lemma 4.8,
by following the proof given above with the algebras /f: and T " in &, which are
the reducts of the algebras fl:q and T in ISP(M"). O
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