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Abstract

We characterise the strongly dualisable three-element unary algebras and show that every fully dualisable
three-element unary algebra is strongly dualisable. It follows from the characterisation that, for dualisable
three-element unary algebras, strong dualisability is equivalent to a weak form of injectivity.
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The theory of natural dualities is a study of quasi-varieties of the form 0§P(M),
where M is a finite algebra. We aim to set up a natural dual equivalence between
the category &Z := 0§P(M) and a category X of structured topological spaces. This
duality can often provide a practical representation of the algebras in si in terms
of simpler objects. Priestley's duality for the quasi-variety of distributive lattices is
a prime example of a very useful duality (see [9]). As well as finding and using
practical dualities, natural-duality theoreticians tackle more esoteric problems. We
are interested in understanding which finite algebras M allow us to set up a natural
duality for BSP(M), and what the existence (or non-existence) of this duality can tell
us about the quasi-variety 0§IP(M).

The theory of natural dualities is well developed and contains some powerful theo-
rems for creating dualities. Nevertheless, our understanding of what makes an algebra
dualisable, fully dualisable or strongly dualisable is rather limited. In this paper,
we aim to gain some insight into strong and full dualisability by investigating three-
element unary algebras. Unary algebras, especially three-element unary algebras,
may seem very simple. But, from the point of view of natural-duality theory, they
are rather complicated. This study complements the paper [4], by Clark, Davey and
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Pitkethly, which classifies the dualisable three-element unary algebras. We give a
characterisation of the strongly and fully dualisable three-element unary algebras. In
particular, we show that strong and full dualisability are equivalent within this class. In
general, it is not known whether every fully dualisable algebra is strongly dualisable.
The strong dualisability of an algebra seems to depend on how close the algebra is
to being injective. We show that, for dualisable three-element unary algebras, strong
dualisability is equivalent to a weak form of injectivity. In [7], Hyndman and Willard
give an example of a three-element unary algebra that is dualisable but not fully dual-
isable. It follows from our characterisation that there are many three-element unary
algebras that are dualisable but not fully dualisable.

The (strong) dualisability of a three-element unary algebra is related to the number
of different patterns of its unary term functions. Consider a finite unary algebra M.
We shall define a kernel of M to be an equivalence relation on M that is the kernel of
a unary term function of M which is not a constant map or a permutation. We call M
an n -kernel unary algebra if n is the number of kernels of M.

The following theorem gives the classification of dualisable three-element unary
algebras from [4]. This classification is most complicated within the family of two-
kernel algebras. To simplify the statement of the theorem, we use the fact that every
two-kernel three-element unary algebra is isomorphic to a unary algebra, on the set
{0, 1, 2}, with kernels {01|2} and {02|l}. (See Lemma 4.1 [4].) We denote a unary
operation u : {0, 1, 2} -» {0, 1, 2} by the string u(0)u(l)u(2).

DUALISABLE THREE-ELEMENT UNARY ALGEBRAS. Let M be a three-element unary
algebra.

(i) If Mis a zero-kernel or one-kernel algebra, then M is dualisable.
(ii) Assume that M is a two-kernel algebra, on the set {0, 1, 2], with kernels {0112}

and {0211}. Then M is dualisable if and only if none of the following conditions hold:

(a) ppq and pqp are term functions of M, for some p,q € M with p ^ q,
but 010 or 002 is not a term function of M;

(b) 010, 001 and 110 are term functions of M, but 222 isn 7;
(c) 002, 020 and 202 are term functions of M, but 111 isn't.

(iii) If Mis a three-kernel algebra, then M is not dualisable.

In this paper, we shall establish the characterisations of strongly and fully dualisable
three-element unary algebras given below.

STRONGLY DUALISABLE THREE-ELEMENT UNARY ALGEBRAS. Let M be a three-
element unary algebra.

(i) If M is a zero-kernel or one-kernel algebra, then M is strongly dualisable.
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[3] Strong and full dualisability 189

(ii) Assume that M is a two-kernel algebra, on the set {0, 1, 2], with kernels {0112}
and {02|l}. Then M is strongly dualisable if and only if both 010 and 002 are term
functions of M and neither of the following conditions holds:

(a) p p q and qpq are term functions of M , for some p , q e M with p ^ q;
(b) 101 and 220 are term functions of M.

(iii) If Mis a three-kernel algebra, then M is not strongly dualisable.

Explicit examples of strongly dualisable two-kernel three-element unary algebras
may be obtained from Lemma 3.6.

FULLY DUALISABLE THREE-ELEMENT UNARY ALGEBRAS. Let M be a three-element
unary algebra. Then M is fully dualisable if and only if M is strongly dualisable.

We have given an algorithm for deciding whether or not a particular three-element
unary algebra is strongly dualisable. However, this algorithm does not really give us a
feel for what makes a three-element unary algebra strongly dualisable. We shall show
that, for dualisable three-element unary algebras, strong dualisability is equivalent to
a weak form of injectivity. To make this more precise, we first need to give some
definitions. (Many of the concepts we use throughout this paper are introduced in
more detail, and with examples, in the paper [4].)

Let M be a finite unary algebra and choose an algebra A from the quasi-variety
s/ := OSP(M). The centre of A is defined to be the subuniverse

CA := [mA | m e M is the value of a constant term function of M}

of A. There is a directed graph naturally associated with A. We define the graph
G(A) = <A;£A)by

£A := {(a, b) \ a e A and b e sgA(a)},

where sgA(a) denotes the subuniverse of A generated by a, for each a € A. The
relation £A is reflexive and transitive, and so is a quasi-order on A. Let G*(A) denote
the induced subgraph of G(A) with vertex set A\C\. For every a,b e A\CA and
n 6 N U {0}, we say that there is a fence from a to b in A of length n if there are edges
xuy{ xn,yn of G*(A) such that

in G*(A). A subalgebra P of A is called a petal of A if P\CA is the vertex set of a
connected component of the graph G*(A). So a, b € A\CA belong to the same petal
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of A if and only if there is a fence from a to b in A. It is easy to check that every
non-trivial algebra in si is the coproduct of its petals.

Now let P be a petal of A and let n e N. Define the distance function dP on
P\CA such that dp(a, b) is the length of the shortest fence from a to b in A, for all
a, b € P\CA- For each a € P\C\, the ball in A with centre a and radius n, given by

nA(a) := { b € P\CA | dP(a, b) ^ n) U CA,

determines a subalgebra of A. For a € C\, we set nK{a) := CA. Now define
«A(B) := LJ{"A(*) I * € B], for all fi C A. The algebra M is said to be n-quasi-
injective if, for all finite algebras A, B e .e/ such that B ^ A, every homomorphism
x : B -»• M that extends to n\(B) also extends to A. We shall show that the
theorem below follows from our description of strongly dualisable three-element
unary algebras.

QUASI-INJECnvrTY THEOREM. Let M be a dualisable three-element unary algebra.
Then M is strongly dualisable if and only if M is n-quasi-injective, for some n € N.

1. Natural dualities

This section provides a quick introduction to duality theory. A more detailed
account can be found in the text [1], by Clark and Davey. Let M = (M; F) be a finite
algebra and define si := iSIP(M). An alter ego of M is a structured topological
space M = (M; G, H, R, &), on the same underlying set as M, such that:

(i) G is a set of algebraic operations on M, that is, each g € G is a homomorphism
g : M" - • M, for some n € N U (0);

(ii) if is a set of algebraic partial operations on M, that is, each h e H is a
homomorphism /i : D —>• M, for some n € N and D < M";

(iii) /? is a set of algebraic relations on M, that is, each r € /? is the underlying set
of a subalgebra of M \ for some n e N ;

(iv) & is the discrete topology on M.

Let M be an alter ego of M and define X := DSCP+(M) to be the class of all
isomorphic copies of closed substructures of non-zero powers of M. There is a pair
of contravariant functors D : si —*• SE and E : 3£ —> si. For every A e si, define
D(A) to be the homset si (A, M) viewed as a closed substructure of M". The structure
D(A) is called the dual of A, for each A e si. For every X e 2E, define E(X) to be
the homset ^"(X, M) viewed as a subalgebra of Mx. It remains to define D and E on
morphisms. For <p : A —• B in si, define D(cp) : D(B) —• D(A) by D(<p)(x) := x oq>,
and for f : X - • Y in 3C, define E(V0 : E(Y) -> E(X) by E(^)(a) :=ao\jr.
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For each A e si, there is a natural embedding eA : A <̂->- ED (A), given by
ek{a)(x) := x(a), for all a e A and x e s/(\,M). Similarly, for each X e SC,
we can define an embedding ex : X -̂» DE(X) by £x(x)(a) := a(x). If eA is an
isomorphism, for all A € si, then we say that M yields a duality on si'. In this case,
we have a representation for si: each algebra A e si is isomorphic to the algebra
ED(A) of all morphisms from its dual D(A) into M. If eA and £x are isomorphisms,
for all A € si and X e i ' , then we say that M yields a full duality on s/. In this case,
the categories si and X are dually equivalent. The algebra M is (fully) dualisable if
there is an alter ego of M that yields a (full) duality on si.

As we shall see in Section 5, full dualities are rather complicated. There is a
simpler, stronger notion that we often use instead. First, let 5 be a non-empty set and
let FM(S) denote the set of all 5-ary term functions of M. A set X c Ms is term
closed if

X = f)[eq(o, T) | CT, r 6 FM(5) and a \x = r \x}.

It is known that M yields a full duality on si if and only if M yields a duality on si
and every closed substructure of a non-zero power of M is isomorphic to a term-closed
substructure of a power of M (see [1]). We now say that M yields a strong duality on
si if M yields a duality on si and every closed substructure of a non-zero power of
M is term closed. So every strong duality is also a full duality. At present, it is not
known whether every full duality is also strong. The algebra M is strongly dualisable
if there is an alter ego of M that yields a strong duality on si.

By the First Strong Duality Theorem [1], the structure M yields a strong duality
on si if and only if M yields a full duality on si and M is injective in 3E. There are
close connections between the injectivity of M in SC and the injectivity of M in si
(see [1, Section 3.2]). The strong dualisability of an algebra seems to be related to
how close the algebra is to being injective. Certainly, every dualisable algebra that
is injective in the quasi-variety it generates is strongly dualisable. This follows from
results of Willard [10], but it can also be proved directly using the results in [1].

LEMMA 1.1. Let M be a finite algebra that is injective in i§P(M). If M is dualis-
able, then M is strongly dualisable.

PROOF (Sketch). Assume that M is dualisable. Then there is a relational structure
M = {M;R, &) that yields a duality on si := DSP(M). Define the set G :=
U{^(M"> M) I n 6 N U {0}} and define the alter ego M' := (M; G, R, &) of M.
Then M' also yields a duality on si. Since M is injective in si, every algebraic partial
operation on M is the restriction of an algebraic operation on M. It now follows
that M' yields a strong duality on si by Exercise 3.1 and the Second Strong Duality
Theorem, in [1]. (For the solution to Exercise 3.1, refer to the proof of Theorem 3.1.3
in [1].) •
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In this paper, we make use of two general methods for showing that a dualisable
algebra is strongly dualisable. The first method is due to Clark, Idziak, Sabourin,
Szabo and Willard [2].

THEOREM 1.2 ([2, Lemma 4.8]). Let M be a finite algebra and let M be an alter
ego of M. Then M yields a strong duality on si := DSP(M) if and only if

(i) M yields a duality on si, and
(ii) for every A € si and each proper closed substructure X of D(A), the maps

in X do not separate the elements of A.

The second method was introduced by Lampe, McNulty and Willard [8]. It is based
on a result of Willard [10]. For a set Y c &/(M", M), with n e N, define the natural
product map nY : M" -> Mr by nY(a)(y) := y(a). We say that M has enough
algebraic operations if there is a map / : N —• N for which the following condition
holds:

for all n e N, all algebras B < A < M" and all homomorphisms h : A -+ M,
there exists a set Y c si(M",M), with |y| ^ f(\B\), and a homomorphism
h' : r\Y(A) -> M such that the diagram below commutes.

M< ny(A)
h'

Although the definition of enough algebraic operations appears technical, it often
provides a relatively easy way to lift dualisability to strong dualisability.

THEOREM 1.3 ([8, Theorem 4.3]). Let M be a finite algebra with enough algebraic
operations. If M is dualisable, then M is also strongly dualisable.

2. Zero-kernel and one-kernel unary algebras
are strongly dualisable

The quasi-variety generated by a zero- or one-kernel unary algebra is especially
simple. Consider a finite (not necessarily three-element) zero- or one-kernel unary
algebra M and define si := DSP(M). There is a finite set 9S of algebras that
encapsulates the quasi-variety si: each finite algebra in si is 'nearly isomorphic' to
a coproduct of algebras from 88. The finiteness of the quasi-variety si suggests that
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[7] Strong and full dualisability 193

the algebra M should be dualisable. This is the case, and it is proven in [4]. To show
that M is strongly dualisable, it now suffices to show that M has enough algebraic
operations. We begin by describing the finiteness of sf precisely, using the definition
of a gentle basis from [4].

Let A be a finite unary algebra. An element a e A is called an outer element of Pi.
if sgA(a) is a maximal one-generated subalgebra of A. Otherwise, we say that a € A
is an inner element of A. Let Aout denote the set of all outer elements of A and let Am

denote the set of all inner elements of A. Then Am is a subuniverse of A. A surjection
<p : A -*> B is said to be gentle if <p \AjtiUsgA{a) is one-to-one, for all a 6 AoM.

Let M be a finite unary algebra and define s/ := D§P(M). An algebra P is called
a petal of s/ if P is a petal of an algebra belonging to sf. Let 98 be a set of finite
petals of si'. Then 9B is a gentle basis for si if, for every finite petal P of s/, there is a
gentle surjection <p : P -» B, for some B € @). The following three results are proven
in [4]. The first lemma shows that gentle surjections are 'nearly' isomorphisms.

LEMMA 2.1 ([4, Lemma 3.3]). Let A be a finite unary algebra and let <p : A -» B
be a gentle surjection. Then <p is a retraction and, for each subalgebra C of A such
that <p \c is one-to-one, there is a contraction \Jr : B «-»• A. for <p with C c \//(B).

LEMMA 2.2 ([4, Corollary 3.8]). Let M be a finite unary algebra. Then 0§P(M)
has a finite gentle basis if and only if M is a zero-kernel or one-kernel algebra.

THEOREM 2.3 ([4, Theorems 2.7 and 3.9]). Every finite zero-kernel or one-kernel
unary algebra is dualisable.

We shall also use the following general lemma due to Hyndman [6].

LEMMA 2.4 ([6, Lemma 2.2]). LetM be a finite algebra and define s/ := DSP(M).
Let B ^ M", for some n € N. Then there is a set Z c ^/(Mn, M) of projection
functions such that Z separates the elements of B and \Z\ ^ |B | — 1.

Using the results above, we now prove that finite zero- and one-kernel algebras
have enough algebraic operations.

LEMMA 2.5. Every finite zero-kernel or one-kernel unary algebra has enough al-
gebraic operations.

PROOF. Let M be a finite zero-kernel or one-kernel unary algebra. By Lemma 2.2,
there is a finite gentle basis SB for sf := DSP(M). Choose some k e N such that
k ^ \s/(¥, M)|, for all P e 98. Define the m a p / : N - • N by / (n) := k2n + n - 1.
Now let n e N, let B ^ A < M" and let h : A -> M.
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Define !? to be the set of all petals of M°. Let ^»B denote the set of all petals P of
M" such that PDB ^ CM" • For each P e ^ , there is a gentle surjection <pv : P -» P*,
where P* € BS, and we can write £/(P*, M) = [xPl,..., xPk}. For each P € & and
all i, y e {1, . . . ,&} , we can define the algebraic operation gr : M" ->• M by

gPij ••= (xn o tp,) LJ LJUQ,- O ?>Q I Q e

as M" is the coproduct of its petals.
By Lemma 2.4, there is a set Z c £/(M", M) of projection functions such that Z

separates the elements of B and \Z\ < |B| - 1. Define

Y := Z U fcpj, | P e ^ B and i,y e { 1 , . . . , *}}.

Then |y | < | S | - l + i t 2 | f l | = / ( | f i | ) . Define^ : M" -> MK by /i := nK. We wish
to find a homomorphism h! : fi(A) -> M such that /i' o /x ffl = h \B. We can assume
that the set Y is not empty. (Otherwise, we have | S | = 1 = \fJ-(A)\ and so we can
define h' to have the same value as h \B.)

The set D := U ( ^ I P e ^ \ ^ B } determines a subalgebra D of M". We will
show that /i(A) is the coproduct of {M(P n A) | P € ^ B ) U {/x(D n A)} in si. To do
this, it suffices to prove that

{/x(P n A)\cM(A) I P e ^ B } u ( M ( D n A)\cM(A)}

is a partition of/x(A)\C/i(A). Let a € (P l~l A)\CA and let fe e (Q D A)\CA, for some
P e ^ B and Q 6 ^*\{P}. It is now enough to show that fi(a) •£ fi(b).

As a ^ b in Af", there is a homomorphism z : M" - • M such that z(a) ^ z(b).
By Lemma 2.1, there is a coretraction ^ a : P* t-> P for ^> with sgP(a) c \j/a(P*).
It follows that i/ra o <pr(a) = a. The homomorphism z o f̂a : P* —• M belongs to
^ ( P * , M) = {JCP1, . . . , jcpt}. So there is some i e {1 it} such that z o ^ = xri

and therefore xVi o ^p(a) = z o f, o ^p(a) = z(a). Similarly, there exists some
j € (1, . . . , * } withXQJ O (^Q(Z») = z(b). Thus

^Piy (a) = xPi o ^pp(a) = z(a) ^ z(f>) = ^Q, O <pQ(b) = gPi>. (fc),

whence \i(a) ^ fi(b). We have shown that the algebra n(A) is the coproduct of
[lx(P n A) | P e ^ B } U {/X(D n A)} in a/.

Now let P € ^ B - To see that the surjection n \PnA : P f) A -» /x(P n A) is gentle,
let a € (PDA)outandletZ>, c € ( P D A)inUsgpnA(a) with b £ c. A s ( P n A ) i n c Pin

and ^ . is gentle, we have (f>v(b) ^ <pp(c). There must be some i € { 1 , . . . . it} with
xPi o ( .̂(fc) ^ JCPI o <pp(c). SO gPll(fe) # gPii(c) and therefore /x(fe) ^ n(c). Thus
/itP n A : P n A -» /t(P n A) is gentle. Since Y separates the elements of B, the
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[9] Strong and full dualisability 195

map n\PnB is one-to-one. It follows by, Lemma 2.1, that there is a coretraction
Up: / i (PnA)M. Pn\forix\PnA such that P n B C vpo /z (PnA) .

Since fi(A) ^ MY and the set Y is non-empty, there exists a homomorphism
x : M(A) —>• M. We can now define the homomorphism h' : ^t(A) —• M by

U \_\{h o vp I P €

To see that h' o /x \B = h \B, let P e ^ B and let b e P f) B. Since vP is a coretraction
for (J.\PnA such that Pflfl c vpoix(PDA), we have vPoix\PnB = id/>ns and therefore

Thus M has enough algebraic operations. D

The next theorem follows straight from Theorem 1.3, Theorem 2.3 and Lemma 2.5.

THEOREM 2.6. Every finite zero-kernel or one-kernel unary algebra is strongly
dualisable.

We finish this section by considering quasi-injectivity.

LEMMA 2.7. Every finite zero-kernel or one-kernel unary algebra is n-quasi-injec-
tive, for some n € N.

PROOF. Let M be a finite zero-kernel or one-kernel unary algebra. By Lemma 2.2,
there is a finite gentle basis 3) for s/ :— i§P(M). Every algebra in 38 is a finite petal
of s/. For each finite petal P of si, define

tuP : = max({dP(a, b)\a,b€ P \ C P } ) .

Now define

n := max({u>B I B e ®\ U {2}).

Let P be a finite petal of si'. There is a gentle surjection <p : P -» B, for some
B € SB. To see that wP ^ n, let a, b € P \C P with a ^ b. Define the subuniverse
Pa(,:=PinUsgP({a,Z>})ofP.

Case (a): ^f^ is one-to-one. By Lemma 2.1, there is a coretraction \}f : B °-> P
for <p with a, fo e ir{B). So <iP(a, ft) ^ d^^ia, b) < !%(B) = wB ^ n.

Case (ft): <p\Pat is not one-to-one. Since <p is gentle, we have a, b e Poat and
sgp(a) £ sgP(ft). There is ca G sgP(a)\/3

in and cfc e sgP(ft)\Pin with <o(ca) = <p(cb).
We must have sgp(a) = sgP(ca) and sgP(ft) = sgP(Q,), since ca and cfc are outer
elements of P. As ca and q, are connected by a fence in P, there must be a unary
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term function u of A such that u(ca) e Pin\CP. This gives us u(ca) = u(cb), since
<P(u(ca)) = (p(u(cb)) and <p is gentle. Therefore dP(a, b) ^ 2 ^ n, as a e sgP(ca) and
b e sgP(c6).

We have shown that wr ^ n, for all finite petals P of si'. To see that M is n-quasi-
injective, choose a pair of finite algebras A , B e ^ with B < A. Let x : B -> M
and assume that x extends to tt\(B). Let P be a petal of A with P n B ^ CA. Then
P £ flA(fi), since u;P ^ n. So x fPnB extends to P. Since A is the coproduct of its
petals, it follows that x extends to A. •

3. Two-kernel three-element unary algebras
that are strongly dualisable

The family of two-kernel three-element unary algebras is surprisingly complicated.
It contains strongly dualisable algebras, dualisable algebras that are not fully dual-
isable, and non-dualisable algebras. We begin this section by giving two different
classifications of the two-kernel three-element unary algebras. To give the classifica-
tions, we require the following easy lemmas from [4].

LEMMA 3.1 ([4, Lemma 4.1 ]). Let Mbea two-kernel three-element unary algebra.
There is an isomorphic copy of M, on the set {0, 1, 2}, that has kernels {0112} and

LEMMA 3.2 ([4, Lemma 4.2]). Let M be a two-kernel unary algebra, on the set
{0, 1, 2}, with kernels {0112) and {02|l}. Then the unary term functions of M all
belong to the set {012, 021} U {ppq, pqp \ p,q € M}.

We can now restrict our attention to those two-kernel algebras, on the set {0, 1, 2},
that have kernels {0112} and {02|l}. The most complicated algebra of this kind is
M» = ({0, 1, 2}; F»>, where F« := {012, 021} U {ppq, pqp \p,q € M). Define the
idempotent operations f\ := 010 and f2 •= 002 in Fs. The next result divides the
two-kernel three-element unary algebras up into four types.

THEOREM 3.3 ([4, Theorem 4.3]). Let M be a two-kernel unary algebra, on the set
{0, 1, 2}, with kernels {0112} and {02|l}. Let F be the set of unary term functions
of M. Then at least one of the following is true:

(2)0 each map in F preserves the order =̂  with 1 =3! 0 =̂  2;
(2)p {/i,/2} £ F, and {ppq, pqp} C F, for some p, q € M with p ±. q;
(2)M {010, 001, 110} c F and 222 £ F, or {002, 020, 202} c F and 111 i F;
(2)R { / I , / 2 } Q F, and condition (2)M fails.
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In [4], it is shown that the algebras of type (2)o and type (2)R are dualisable, and
that the algebras of type (2)P and type (2)M are non-dualisable. We shall use a different
classification for our characterisation of strong dualisability.

THEOREM 3.4. Let M be a two-kernel unary algebra, on the set {0, 1, 2}, with
kernels {0112} and {02|l}. Let F be the set of unary term functions of M. Then at
least one of the following is true:

(2)p {/i,/2) $£ F, and {ppq,pqp} ^ F, for some p, q 6 M with p ^ q;
(2)Q [ppq, qpq) ^ F, for some p, q € M with p ^ q;
(2)c {101, 220} C F ;
(2)s l / i . / i l c f , and conditions (2)Q and (2)c both fail.

PROOF. First assume that M has type (2)0 but not type (2)Q. We will show
that {010,002} c F c {012,010,002,000, 111,222}. Since {0112} and {02|l} are
kernels of M, there are p, q, r, s e M, withp ^ q and r ^ s, such that ppq e F and
rsr 6 F. As M does not have type (2)Q, we must have qpq £ Fandssr £ F. Theonly
non-constant maps in MM that preserve the order ^ are 012, 110, 112, 002,010, 212
and 202. As rsrollO = rsrolU = ssr £ F and ppq o2l2 = ppq o202 = qpq i F,
it follows that {010,002} C f c {012,010,002,000, 111, 222}.

To see that the four types in the statement of the theorem are exhaustive, assume that
M has neither type (2)P, type (2)Q, nor type (2)c. We need to prove that {/], f2] c F.
Since M does not have type (2)Q, we have {110,010} £ F and {202,002} £ F-
Therefore M does not have type (2)M- So, by Theorem 3.3, we can assume that M
has type (2)0. We have just shown that this implies that [f\, f2] ^ F. •

Throughout the rest of this paper, we shall prove that the algebras of type (2)s

are strongly dualisable, and that the algebras of type (2)Q and type (2)c are not fully
dualisable. This will provide us with plenty of examples of dualisable algebras that are
not fully dualisable: for instance, each algebra ({0,1, 2}; F) such that {101, 220} c
F C Fa.

In [3] (see also [4]), it is shown that a finite unary algebra is dualisable if its
operations form a set of lattice endomorphisms. The proof is particularly short and
elegant. So it is slightly surprising that not all of these lattice-endomorphism unary
algebras are fully dualisable. In fact, most of the two-kernel three-element lattice-
endomorphism unary algebras are not fully dualisable. In the proof of Theorem 3.4,
we showed that a two-kernel unary algebra whose operations preserve the order =4,
with 1 =̂  0 ^ 2, must have type (2)Q unless it is polynomially isomorphic to
({0,1, 2); 010, 002).

Every algebra of type (2)s also has type (2)R, and is therefore dualisable. We shall
prove that every algebra of type (2)s has enough algebraic operations and is therefore
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strongly dualisable. The following lemma has nearly the same proof as that of Lemma
4.7 in [4].

LEMMA 3.5. Assume that M has type (2)s. Let A e DSP(M), let A, ^ A such
that fi(A) U /2(A) c A, and let x : A» —• M be a homomorphism. Then x has
an extension to A if and only if x(f\{a)) = 0 or x(f2(a)) = 0, for all a € A\At.
Moreover, if x has an extension to A, then that extension is unique.

Assume that M has type (2)s and let F be the set of unary term functions of M.
Then {101,220} £ F, since M does not have type (2)c. We shall consider the two
cases 101, 220 £ F and 101 € F separately. The case 220 € F is symmetric, under
conjugation by 021, to the case 101 € F. To see this, assume that 220 6 F. We can
create an isomorphic copy of M by interchanging the labels 1 and 2. More precisely,
there is a unary algebra M', on the set {0, 1,2}, such that 021 : M -*• M' is an
isomorphism. The set F' :— {021 o u o 021 | u € F] is the set of all unary term
functions of M'. It is easy to check that M' has type (2)s and that 101 € F'.

LEMMA 3.6. Let Mbe a unary algebra with type (2)s.

(i) If neither 101 nor 220 is a termfunction o/M, then all the unary termfunctions
ofMbelong to {012, 021, 010, 020, 001, 002, 000, 111, 222}.

(ii) If 101 is a termfunction of M, then all the unary termfunctions of M belong
to {012, 101, 010, 002, 000, 111, 222}.

PROOF. Let F denote the set of all unary term functions of M and assume that
220 i F. Since 010,002 € F and M does not have type (2)Q, we know that 110 £ F
and202 £ F. Letppq € Fwithp ^ q. ThenOlOoppg € Fand002oppq € F. As
110, 220 i F, this implies that p = 0. We have 212 £ F, as 002 o 212 = 202 $ F.
Since F c Fi, by Lemma 3.2, it now follows that

F C {012,021,010,020,101,121,001,002,000,111,222}.

To prove (i), assume that 101 i F. Then 121 $ F, asOlOo 121 = 101 i F. So claim
(i) holds. To prove (ii), assume that 101 6 F. We must have 021,001 £ F, since
101o021 = lOloOOl = 110 i F. As020ol01 = 202 £ Fand 121ol01 = 212 f F,
we have 020,121 i F. Thus claim (ii) holds. •

Given a set S, for each m e W w e use m to denote the constant map in Ms with
value m.

LEMMA 3.7. Let Mbe a unary algebra with type (2)s. Assume that neither 101
nor 220 is a termfunction ofM.LetB^A in DSP(M) and let x : B -> M. Then the
following are equivalent:
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(i) x extends to A;
(ii) x extends to 1A(B);

(iii) whenever ux € {010, 020} and u2 6 {002, 001} are term functions of M and
a € A with Ui(a), u2(a) e B, we havex{ux{a)) = 0orx(u2(a)) = 0.

In particular, the algebra M is 1 -quasi-injective.

PROOF. Define F to be the set of all unary term functions of M. We can assume that
A ^ M5, for some set 5. Clearly (i) implies (ii). To see that (ii) implies (iii), assume
that x : 1A(B) -* M is an extension of x. Let a € A and let ux € F n {010, 020}
and u2 e F n {002, 001}, with ux(a), u2(a) e B, such thatx(Ki(a)) # 0. We want to
show that x(u2(a)) = 0. First assume that ux{a) € CA Q \0,T,%- Then ux(a) £ t),
and so a = 1. Since 000 = fx o f2 is a constant term function of M, this implies
that x(u2(a)) = x(0) = 0. Now assume that ux(a) $ Ck. Then a e \A(B) and
«i(x(a)) = x(ui(a)) ^ 0. Sox(a) — 1 and therefore x(u2(a)) = u2(x(a)) = 0.

It remains to show that (iii) implies (i). So assume that condition (iii) holds. By
Lemma 3.6 (i), the set At := A n ({0, 1}S U {0, 2}5) determines a subalgebra of A.
We want to define xt : A, —>• M by

x.(a) =
2 if u(a) €x"'(«(2)), for some u € FD {002, 001};

1 ifu(a) e r ' ( « ( l ) ) , for some u € FD {010, 020};

0 otherwise.

To see that JC* is well defined, let ux € F (1 {010, 020}, u2 e F D {002, 001} and
a € A.withui(a), u2(a) € B. Thenx(ux(a)) = 0 ^ M,(1) orx(u2(a)) = 0j^ u2(2),
by (iii). So xt is well defined.

Now let b € B n A,. Then *,(&) = 2 implies x(b) = 2, and

x(b) = 2 = > 002(x(fc)) = 2 =>• *(002(&)) =002(2) = > *.(6) = 2.

Similarly, we have xt(b) = 1 if and only if x(b) = 1. Thus xt extends x \BnAt. Using
Lemma 3.6 (i), it is easy to check that xt is a homomorphism.

We shall prove that xt extends to a homomorphism x : A —• M using Lemma 3.5.
Choose some a e A\At and suppose thatxt(fi(a)) ^ 0 andxt(f2(a)) ^ 0. Since/i
and/2 are both idempotent, we must have x^if^a)) = 1 and xt(f2(a)) = 2. There
exist «i € F (1 {010,020} and u2 e Ff~l{002, 001} such that ux o/,(a) €^"'("1(1))
andM2o/2(a) e x~l(u2(2)). This implies thatx(uiofx (a)) ^ 0and^(M2o/2(a)) ^ 0,
which contradicts (iii). So there is an extension x : A —> M of xt. By Lemma 3.5,
the extension x : B —>• M of x \BnAt is unique. Thus x is an extension of x, as
x \BDA, = x \BDA.- I—'

THEOREM 3.8. Let Mbe a unary algebra, with type (2)s, such that neither 101 nor
220 I'S a term function of M. T/ien M is strongly dualisable.
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PROOF. By [4], the algebra M is dualisable. So, using Theorem 1.3, it will follow
that M is strongly dualisable once we have shown that M has enough algebraic
operations. Define / : N - • N by / (n) := n. Let n € N, let B ^ A ^ M" and let
h : A -> M.

By Lemma 3.6 (i), the set / , (M") U / 2 (M") = {0, 1}" U {0, 2}n determines a
subalgebra of M". Let m e {1,2} and let b e fm(B)\{0}. Using Lemma 3.5
and Lemma 3.6 (i), there is a homomorphism gb : M" -> M such that, for all
a € fi(M") U/ 2 (M") , we have

m if a = bot a = m\

gb(a)= |021(/n) ifa =

0 otherwise.

Define

^:={^l^e(/,(B)U/2(fi))\{0}}.

Define the homomorphism /x : M" -» M y by /x := r\Y. To see that ^L\B is
an embedding, we need to show that Y separates the elements of B. Let b,c e B
with b ^ c. Then fm(b) ^ fm(c), for some ra € (1,2). We can assume that
fm(Jb) £ 0 and fm(c) £ in. So gfm(b)(fm(b)) = m £ g/m(b)(fm(c)), which implies
that n(fm(b)) £ ix(fm(c)) and therefore n(b) £ n(c).

We shall use Lemma 3.7 to prove that h o (/z \B)~* : /A(B) —*• M extends to /x(A).
Choose any a € A. Let «i and M2 be unary term functions of M, with u{ € {010, 020}
and «2 € {002, 001}, such that ^ ( ^ ( a ) ) , u2(fi(a)) e fi(B). Define mx := Mi(l) and
m2 := «2(2). Then/ m i OMI = «, and/m 2 o u2 = M2- SO there is some £>i e fmi(B)
and ft2 e fm2(B) with /^(M^a)) = ^(Z?!) and (j,(u2(a)) = /x(fc2). We want to show
that /JC&O = 0 or h(b2) — 0. So we can assume that bu b2 ^ 0. Since fi\B is
one-to-one, we have [i{b{), /x(fc2) 7̂  M(0) . This implies that a £ {1,2}, and so
ui(a),u2(a) i [\,%. For each i € {1,2}, we have m, = gbi{jbi) = gbi(Ui(a))
and therefore «/(a) = i,-. As /ifB extends to A, it follows, by Lemma 3.7, that
h(bi) = h(ui(a)) — OOT h(b2) = h(u2(a)) = 0. We have shown that

h o (n\B)-\ujQi(a))) = h o (n\Br\iJL(bj)) = h(bj) = 0,

for some j € {1,2}. Hence h o (/xffl)~' extends to /i(A), whence M has enough
algebraic operations. •

To make the next two proofs easier to read, we introduce some notation. Assume
that M has type (2)s and let A e ISP(M). There is a natural binary relation ^ A on A
that reflects part of the structure of A. For all a, b e A, we set a ^ A b if and only if
there is some c € A such that a = / i ( c ) and b = / 2 ( c ) .
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LEMMA 3.9. Let Mbe a unary algebra with type (2)s. Assume that 101 is a term
function of M. Let B ^ A i n i§P(M) and let x : B -»• M. Then the following are
equivalent:

(i) x extends to A;
(ii) x extends to 1A(B);

(iii) the following conditions both hold:

(1) x(b) = 0orx(c) = 0, for all b,c€ B such that b —A c;

(2) x(b) = 0orx(c) = 0, for all b, c G B and a € A such that a -~-A b and

101 (a) - A a

/n particular, the algebra M is 1 -quasi-injective.

PROOF. Assume that A ^ M s , for some set S. To prove that (ii) implies (iii),
assume that x extends to a homomorphism x : 1A(B) —*• M. We first prove two
claims.

(*)i Let a, b e A, with a € CA or b € CA, such that a ^ A ft. Then a = 0 or b = 0.

There is some c e A with / i ( c ) = a and / 2 (c ) = ft. Since either a or b belongs to
the set {0,1, 2), we must have c € {0, m}s, for some m e {1, 2}. So a = / i ( c ) = () or
ft = / 2 (c) = 0.

(*)2 Let a e A and ft e S\CA such that a ^A b. Then 3c(a) = 0 or x(ft) = 0.

There is some c e A such that / i ( c ) = a and / 2 (c ) = ft. Since b £ CA, we have
a,ce 1A(5). Assume that x(ft) ^ 0. Then /2(3c(c)) = x(ft) ^ 0 and so J(c) = 2.
Therefore 3c (a) =3c(/i(c)) =/i(3c(c)) = 0.

We can now show that (iii) holds. Since 000 is a term function of M, we have
JC(O) = 0. So (1) follows straight from claims (*)i and (*)2. To see that (2) holds,
let b, c e B and a e A, with a —A b and 101(a) —A c, such that *(fc) ^ 0. First
assume that b, c £ CA. By (*)2, we must have 3c(a) = 0 and therefore 3c(101(a)) =
101 (3c(a)) = 1. Using (*)2 again, we get x(c) = 0. Now assume that b e CA.
Then b £ 0, since x(b) ^ 0. So a = 0, by (*)i, and therefore 101(a) = T. As
101(a) -̂̂ A c, it follows that c = 0, whence x(c) — 0. Finally, assume that c e CA.
Since b ^ 0 and a ^ A ft, we have a ^ l . This implies that 101 (a) ^ 0, whence
c = 0, by (*)i. Thus (iii) is satisfied.

To prove that (iii) implies (i), assume that (iii) holds. By Lemma 3.6 (ii), the sets
A i := / i (A) U CA and A2 := / 2 (A) U CA both determine subalgebras of A. Let <7 be a
transversal of {{a, 101 (a)} | a e / i ( A ) } and define the homomorphism x\ : A| —> M
such that, for all a € <!7, we have

*(a) if a e B;

0 if a £ B and a ^ A ft, for some ft e *~'(2);

1 otherwise.
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We can define x2 : A2 —• M by

\x(a) if a € B;

10 otherwise.

Now define At := A i U A2 and Jt* := X\ U x2 : A* -> M.
To see that x» extends to A, using Lemma 3.5, let a e A\At with ^.(/^(a)) = 2.

Then/2(a) € ̂ "'(2). First assume that/,(a) e B. Then jc.C/^a)) = x(fi(a)) = 0,
by(l). Now assume that/, (a) i Sand/i(a) e ^ . Then *,(/•, (a)) =*i(/i(a)) = 0.
Finally, assume that/i(a) g B and 101(a) € &. We must have jt»(101(a)) =
*i(101(a)) = 1, by (2), and therefore xt (fi(a)) = 101(x,(101(a))) = 0. So there
is a homomorphism x : A -> M that extends x*. By Lemma 3.5, the extension
x : B ->• M of x \BnAt = x\BnA. is unique, whence J extends x. D

THEOREM 3.10. Let M be a unary algebra, with type (2)s, such that either 101 or
220 is a term function of M. 77ic« M is strongly dualisable.

PROOF. By symmetry, we can assume that 101 is a term function of M. The algebra
M is dualisable, by [4]. So, using Theorem 1.3, it suffices to show that M has enough
algebraic operations. Define si := 0§P(M) and define the map / : N ->• N by
/ (n) := 3n - 2. Let n e N, let B ^ A ̂  M" and let h : A -> M.

Now let b e /2(B)\{0}- By Lemma 3.6 (ii), the set/2(M") U CM- determines a
subalgebra of M". Using Lemma 3.6 (ii) and Lemma 3.9, there is a homomorphism
gb '• M" ->• M such that, for all a € /2(M"), we have

I 2 if a = b or a = 2;
\ .
10 otherwise.

The set f\(M") U CM- determines a subalgebra of M". By Lemma 3.6 (ii) and
Lemma 3.9, there is a homomorphism g'b : M" —• M such that, for a e f\(Mn), we
have

>(a)=\8bia) if a ~A b or l0l(a) ~A b;
\l0l(gb(a)) otherwise.

By Lemma 2.4, there is a set Z c js/(M",M) of projections such that Z separates the
elements of B and |Z| ^ |B| — 1. Define

Y:=ZU{gb,g'b\bef2(B)\{d}).

Then | r | < |B| - 1 + 2(|B| - 1)
Define fx : M" —*• MY by fi := n Y. Then /A fB is an embedding, as Y separates the

elements of B. We shall begin by proving the following claim.
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(*) Let a € A and b € B with fi(a) ^V<A> n(b). Then/i(a) -^A b.

Since/i (a) -^A 0, we can assume that b G B\{0}. There i s c e A with/^/nCc)) =
fi(a) and fi(n{c)) = n(b). As / ! is idempotent, this implies that ix(fi(c)) —
M(/i(«))- We have iitjjib)) = [i(b) and therefore b e f2(B), as /x\B is one-to-one.
This gives us gb(f2(c)) = gb(b) = 2, which implies that gt(c) — 2, and also that
Me) = b or c = 2. So *i(f,(«)) = ^ ( A W ) = «*tf i(O) = gtifda)), which tells
us that / , (a) —A b or 101 (a) —A b. We have gb(b) = 2 and

= 101 (^(/-,(a))) = 101 (#„(/,(<:))) - 101fo(c)) = 101(2) = 1.

As gb preserves fx and f2, it follows that 101 (a) /^A *• Thus /i(<0 ^ A £, and (*)
holds.

We will use Lemma 3.9 to prove that h o Ofe)"1 : M(B) -> M extends to £i(A).
To see that (1) holds, let b,c € B such that fi(b) —M(A) M(C). Then fx(b) ^ A c,
by (*). We have/i (6) = fe, as/i(/*(&)) = /i(6) and /ifB is one-to-one. So /i(i) = 0
or h(c) = 0, by Lemma 3.9, since /i fB extends to A.

To check that (2) holds, let b, c e B and a e A such that /*(a) ^>(A) /t(i) and
101(/i(a)) — ̂ (A) /x(c). Then/!(a) ^ A fe and 101(a) ^ A c, by (*), which implies
that h(b) = 0 or h(c) = 0. It now follows that h o (/i fa)"1 extends to /i(A). D

4. Dualisable three-element unary algebras
that are not strongly dualisable

In this section, we will show that every algebra that has type (2)Q or type (2)c
is not strongly dualisable. This will complete our characterisation of the strongly
dualisable three-element unary algebras. Our proof is based on the proof by Hyndman
and Willard [7] that the unary algebra ({0, 1, 2}; 001,122) is not strongly dualisable.
Most of the results in this section will also be used in the following section to finish
the classification of fully dualisable three-element unary algebras. In our proof, we
make use of a special pair of ordered sets.

LEMMA 4.1 ([7, Lemma 4.1]). There is a chain T = (F; ^) and an ordered set
T' = (/"; <) such that < is strictly contained in ^ and the following condition holds:
for all c,d e F with c ^ d and c jS d, there exists {cn \ n e N} U [dn \ n e N} C F
such that c < cn and dn < d and cn ^ dn ^ cn+i,for every n e N.

Throughout the rest of this paper, T and I" will denote a fixed pair of ordered sets
satisfying the conditions of Lemma 4.1. The following lemma gives a general method
for proving that a finite algebra is not strongly dualisable. Let <& denote the category
of directed graphs.
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LEMMA 4.2. Let M be a finite algebra and let B ^ A in si := DSP(M) such that
F c B. Assume there is a chain C = <C; ̂ ) , with C c M, for which the maps
-\r : s/(A,M) -+ #(F,C) and -\r : ^ (B ,M) - • <?(F', C) are well-defined
bijections.

(i) 77ie sef X := {x fB | x e £^(A, M)}/orwi5 a closed substructure of MB, for
each alter ego M of M.

(ii) The algebra M is not strongly dualisable.

PROOF. Let M = (M; G, H, R, &) be an alter ego of M. There are c, d € F with
c ^ d and c fS d. There also exist 0, 1 e C such that 0 ^ 1 and 0 ^ 1 . Define the
map w : F -> C by

I I i f c < a ;

0 otherwise.

Then iy € Sf (F', C) and so there is a homomorphism w e ^ ( B , M) for which
w\r = w. As w i &(T, C), we must have w $ X and therefore X ^ ^ ( B , M).
We will show that X forms a closed substructure of D(B) ^ M s . As X separates the
elements of B, it will follow by Theorem 1.2 that M does not yield a strong duality
on a/.

Let t : B -> A denote the inclusion map. Then X is the image of the morphism
D(t) : D(A) ->• D(B). This implies that X is topologically closed in D(B) and that
X is closed under the operations in G. It remains to check that X is closed under
the partial operations in H. So let h e H be a &-ary partial operation, for some
k € N, and let xu ..., xk e X with (xu...,xk) € dom(/i)D(B). We will show that
z •= h(xi xk) € X.

To show that z 6 X, it is enough to prove that z\r e &(T, C). So let c,d € F
with c ^ d. Now we wish to show that z(c) < z(rf). Since z € ^ ( B , M), we
know that zfr e ^ ( F ' , C). So we can assume that c •$ d. There exists a subset
{cn | n 6 N} U {dn | n e N} of F such that c < cn and dn <\ d and cn ^ dn ^ cn+i,
for all n € N. We have x, fr e # ( F , C), for each i € { 1 , . . . , k}. As C is finite,
there are n, m € N, with n < m, such that JC,(CB) = x,(cm), for all i e { 1 , . . . , k}.
Since cn ^ dn ^ cm, we get x,(cn) = X;(dn), for all / € { 1 , . . . , k], and therefore
z{cn) = z(dn). As zfr e <#{Y\ C), with c < cn and dn < a1, it follows that
z(c) ^ z(cn) = z(dn) < z(d). Thus z 6 X, whence X is a closed substructure
ofD(B). D

Now let M be a unary algebra on the set {0, 1,2}. In order to apply Lemma 4.2,
we shall give a method for constructing algebras in the quasi-variety si := OSP(M)
using ordered sets.
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DEFINITION 4.3. Let M be a unary algebra on the set {0, 1, 2}, let P = (P; <> be
an ordered set and let <d be a subset of ^ . Define the set P+ := P U {T, J.}. For all
a,b e P such that a < b, define 'ab e Mp+ by aZ>(-L) = 2, afc(T) = 1 and

ab(c) =

2 if c ^ a;

0 if c ^ £ and c ^ a;

1 otherwise,

for all c e P. Define the algebra P<, := sgMp+ ({afe \ a,b € P and a < £}). If the

relation < on P is reflexive, we can define the injection iP : P -*• P< by tp(a) := aa.

If < is equal to $C, then we write P instead of P ^

The following lemma describes the structure of P<, under some special conditions
on < and M. For each set S and each a e {0, 1, 2}s, define the partition

of 5. For every algebra A ^ Ms, the set Ai2 := {a € A | \&(a)\ ^ 2} is a
subuniverse of A.

LEMMA 4.4. Let NL be a unary algebra with type (2)Q. Let P — {P; <) fee an
ordered set, let < be a reflexive subset of ^ and define A := P<,.

(i) 77iensgA(afe)\{afe,021(afe)} C sgA({aa, W»}),/or all a, ft e P with a < fe.
(ii) 77ic set of petals of \ i 2 is {sgA (aa) \ a e P}.

PROOF. Let a,b e P such that a < b. For all unary term functions u\ and «2 of M,
withker(M!) = {02j 1} andker(w2) = {0112}, we have ui(ab) = Ui(bb) and u2(ab) =
u2(aa). Using Lemma 3.2, it follows that sgA(ab)\{ab, 021(afe)} c sgA({aa, bb}).
So claim (i) holds and Ai2 = \J[sgA(aa) \ a e P}.

To prove (ii), it is enough to show that sgA(aa) n sgA(bb) = CA, for all a, b e P
with a T£ b. Assume that u(aa) = v(bb), for some a,b € P with a ^ b and some
unary term functions u and v of M. Since the two-block partitions &(aa) and &{bb)
of P + are different, we have u(aa) G {0, 1, 2}. But aa e {1, 2}p + and M does not
have any unary term functions with kernel {0j 12}. So u is a constant term function
of M, which implies that u(aa) € C&. D

To illustrate Lemma 4.4, we consider a particular example.

EXAMPLE 4.5. Let M be a unary algebra with type (2)Q. Define the three-element
chain P = {{a, b, c}; <) , such that a ^ b ^ c, and define the ordered set P' =
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A : = P

FIGURE 1. Example 4.5

([a, b, c); <) , such that < = ^\{(a, b)}. Denote each element x e Mp* by the
5-tuple (x(±.),x(a),x(b),x(c),x(T)). Then

ac = (2,2,0,0, 1), Tc = (2,2,2,0, 1),

ah = (2,2, 1, 1, 1), cc = (2,2,2,2, 1), Vb = (2, 2, 2, 1, 1).

The structure of the algebra A := P< is shown in Figure 1. The three petals of Aj,2
are sgA(aa), sgA(bb) and sgA( cc).

The following lemma shows that the algebra P < and the graph (P; <) are intimately
connected. Define the two-element chain 2 = {{1,2};^) such that 1 ^ 2 . For each
set 5 and s e 5, let ns : Ms -» M denote the .sth projection function.

LEMMA 4.6. Let M be a unary algebra with type (2)Q and define si :— i§P(M).
Let P = (P;^) be an ordered set, let <\ be a reflexive subset of ^ and define

(i) For all x e tfC?*, M) and a,b € P such that a < b, we have x(ab) = 2 if
and only if x(aa) = 2, andx(ab) = 1 if and only if x(bb) = 1.

(ii) 77ie map — o tP : £^( P< 5 M) -* # ( F , 2) w a well-definedbijection.

PROOF. AS M has type (2)Q, there are p,q e M, with p ^ q, such that both ppq
and qpq are term functions of M. Define A := P<,. For all x e £/(\,M) and
a, b € P with a < &, we have

= 2 ppq(x(ab)) = q
x(ppq(aa)) =q

x(aa) =2

x(ppq(ab)) = q
ppq(x(aa)) = q

and, similarly, x (ab) = 1 if and only if x(bb) = 1. So (i) holds.
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We want to define the map r? : s/(A, M) -*• ^ (P ' , 2) by r)(x) := x o iP. To see
that this will work, let x e £?(A, M). For each a e P, we have

ppq(x(aa)) = x(ppq(aa)) = x(qpq(aa)) = qpq(x(aa)),

which implies that *(aa) € {1,2}. Therefore * o iP(P) c {1,2}. For all a,b e P
such that a < fc and * (aa) = 2, we have x(ab) = 2 and therefore x(bb) — 2, by (i).
Thus * o j P € # ( P \ 2) and r) is well defined.

Let x, y e sf(A, M) such that r](x) = rj(y) and let a,b e P with a < b. Then

y(aa) = 2 ^==» y(afe) = 2,

by (i), and, similarly, x(ab) = 1 if and only if y(ab) = 1. So x = y and r\ is
one-to-one.

It remains to show that r\ is onto. Let z € S?(P', 2). By Lemma 4.4 (ii), there is a
homomorphism z, : Ai2 —*• M- given by

z< := U ^ T r ^ c a > I a e z-'(l)} u |J{7rxrsgA(^ > I a e Z-'(2)},

such that z» o iP = z. We will show that z* extends to a homomorphism z : A ->
M. Let a, b e P such that a ^ b and a <\ b. We want to find c e P + with
z*rsgA((-sa .'B )) = *ctsgA(CSa , ^ »• W e w i l 1 then define z(aby.= 'ab(c) and, if 021 is
a term function of M, we will define z(021(Q>)) := 021(aZ>)(c). It will follow by
Lemma 4.4 (i) that z» extends to A.

We can assume that z(fl) ^ z(b). Therefore z(a) = 1 andz(&) = 2, asz(a) ^ z(b).
We have z*(aa) = 7ij(aa) = 1 = 'aa(b) and z*(bb) = 7t±(bb) = 2 = bb(b), which
implies that z* l ^ , ^ ^ }) = nb \nM^ , ^ „. Thus t) is a bijection. D

THEOREM 4.7. Let Mbe a unary algebra with type (2)Q. Then M is not strongly
dualisable.

PROOF. Define stf := DSP(M). Using Lemma 4.1 and Definition 4.3, we have
algebras Td < T in si and an injection i r : V ->• F^ By Lemma 4.6 (ii), the maps
- o i r : ^ ( T , M ) - > ^ ( r , 2 ) a n d - o i r : ^ ( T < , M ) -^ ^{T1,2) are well-defined
bijections. It follows by Lemma 4.2 (ii) that M is not strongly dualisable. D

The algebra M" = {{0, 1, 2}; F"), defined near the beginning of Section 3, has
type (2)Q. Every two-kernel algebra, with kernels {0112} and {02| 1}, is a reduct of M8.
We will use M9 to prove that none of the algebras of type (2)c are strongly dualisable.

LEMMA 4.8. Let M be a unary algebra with type (2)c. Let A be an algebra in
j ^ f := D§P(M") and let A" be the reduct of A in st := DSP(M). Then &/(A\ M) =

, M").
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PROOF. We begin by proving that the only homomorphisms from M2 to M are the
two projections. Let* : M2 —>• M b e a homomorphism. Then;t(0,1) € {0,1}, since
x preserves 010 = 101 o 101. First assume thatx(O, 1) = 1. In M2, we have

( 0 , i ) ^ ( l t 0 ) JOL ( 2 ) 1 ) J$ (o ,2) A (2,0) ^ (1,2).

Applying the homomorphism x gives us

Q] A 0 £L 1 ^ 2 A 0 ^- 2

in M. The constant operations 000, 111 and 222 are all term functions of M. So it
follows that* = JT2. Now assume that x(0, 1) = 0. Then;t(l ,0) = 101(;c(0, 1)) = 1
and, by symmetry, we have x = ni.

We can assume that A ^ (M*)s, for some non-empty set 5. Let a e A such that
&>(a) has two blocks. Then sgA(a) = {b e Ms \ &(b) = &(a) or &(b) = {S}}, as
every map in F" is an operation of M8. Let sgA(a)b denote the reduct ofsgA(a) in sJ'.
It now follows that sgA(a)b is isomorphic to M2, via repetition of coordinates. Since
the only homomorphisms from M2 to M are the projections, every homomorphism
from sgA(a)t> to M is the restriction of a projection.

Now let y € .^(A", M) and let a € A. To prove that y € ^ " ( A , M"), it suffices to
show that y fsg (a) is the restriction of a projection. The constant maps 000, 111 and
222 are all term functions of M. So, if a e {0,1,2}, then y fsgA<a) is the restriction of
a projection. If a e Aj.2\{0,1, 2}, then &(a) has two blocks and so we know that
y fsgA(a) is the restriction of a projection. Therefore we can assume that a € A\Ai2-
Foreachm e {1,2}, define Pm := sgA(/m(a)). ThensgA(a) = P, UP2U{a,O21(<z)}.
Since \£?(a)\ = 3, we can choose some s € a~l{y{a)). For each m e (1, 2}, we have
y(fm(a)) = fm(y(a)) = fm(a(s)) and so^y \jpmj= ns \Pm, as y \Pm is the restriction of
a projection and all the elements of Pm\{0, 1, 2} determine the same partition of S.
For each m € (1, 2}, we have fm o 021(a) e P, U P2 and so /m(y(021(a))) =
y(fm(02l(a))) = fm(02l(a(s))). Therefore y(021(a)) = 021(a(i)), s ince/ , and / 2

separate M. We have shown that y f ia) = ns fsgA(a), whence y e ^ " ( A , M"). •

THEOREM 4.9. Let Mbe a unary algebra with type (2)c. Then M is not strongly
dualisable.

PROOF. Define si := 0§P(M) and s/* := i§P(Mtt). Using Lemma 4.1 and
Definition 4.3, we have F < ^ F in s/* and an injection i r : I" -*• ^V The maps
- o ir : s/«(T -M") - • ^ ( F , 2 ) and - o i r : s/t(T<,M*) - • 9{T',D are well-
defined bijections, by Lemma 4.6 (ii). Let T * and T ^ denote the reducts of T and
r<, in the quasi-variety s/. Then, by Lemma 4.8, the maps - o i r : s/(f *, M) ->

<#(Y, 2) and - o t r : s/(?^,M) -> ^ ( r ' , 2) are bijections. So Lemma 4.2 (ii) tells
us that M is not strongly dualisable. •
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We have now finished establishing the classification of strongly dualisable three-
element unary algebras given in the introduction. Part (i) of the characterisation
follows from Theorem 2.6. It is shown in [4] that each unary algebra with type (2)P

is not dualisable. So part (ii) of the characterisation follows from Theorems 3.4, 3.8,
3.10,4.7 and 4.9. The three-kernel three-element unary algebras are shown to be not
dualisable, and therefore not strongly dualisable, in [4].

LEMMA 4.10. Let M be a unary algebra with type (2)Q or type (2)c. Then M is not
n-quasi-injective, for all n e N.

PROOF. First assume that M has type (2)Q. Let n e N and define it := 2n + 1. Let
D = ({0 , . . . , fc};^)bea(]fc-|-l)-elementchainwithO < • • • < * . Define the relations
•4 := {(/, i) | i G D) U {(i, i + 1) | i e D\{k}} and < := M\{(n, n + 1)} on D.
Using Definition 4.3, we can define A := D < and C := D <,, where C is a subalgebra
of A. By Lemma 4.4 (ii), the coproduct B := sgA(00) * sgA(kk) is also a subalgebra
of A. Define the homomorphism x : B -*• M by x := TTxtsg f̂x) > U nj\sgA(Tli >•
Then x o tD(0) = x(00) = 2 and x o iD(k) = x(kk) = 1. To prove that M is not
n-quasi-injective, we shall show that x extends to nA(B) but not to A.

The map x o in\[Ok] : {0, k] ->• {1,2} does not extend to a morphism from {D; •<}
to 2. So, by Lemma 4.6 (ii), the homomorphism x : B -> M does not extend to A.
There is an extension y : {D; <) -* 2 of x o LD\{Ok). Using Lemma 4.6 (ii) again,
there is a homomorphism y : C -»• M such that y o tD = y. We have y(00) = J C ( O O )

and y(kk) = x(kk). So y is an extension of x. We have shown that x extends to C
but not to A. It remains to prove that n\(B) C C.

Define ri := n + 1. Then A\C c {nh1,021 (nh')}, by Lemma 4.4 (i). Using
Figure 2 and Lemma 4.4, the reader can check that dk(a, b) ^ n + 1, for all a e A\C
and b e B\C\. Thus nA(B) c C, whence M is not n-quasi-injective.

Now assume that M has type (2)c and let n e N. We have just shown that M11 is
not n-quasi-injective. So there are finite algebras B ^ A in DSPCNI8) for which there
is a homomorphism JC : B -> M* that extends to nA(B) but not to A. Let Ab denote
the reduct of A in ISP(M). The algebras M and M* have the same constant term
functions. So CA> = CA. It follows that nA»(#) £ nA(B). Thus x extends to nA>(B)
but not to A\ using Lemma 4.8. •

The Quasi-injectivity Theorem, given in the introduction, now follows from Lem-
ma 2.7, Theorem 3.4, Lemma 3.7, Lemma 3.9 and Lemma 4.10.

5. Dualisable three-element unary algebras that are not fully dualisable

In this section, we prove that each unary algebra with type (2)Q or type (2)c is not
fully dualisable. It will then follow that every fully dualisable three-element unary
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nn'

FIGURE 2. Lemma 4.10

algebra is strongly dualisable. Our proof is an extension of that given by Hyndman and
Willard [7] to show that the unary algebra {{0,1,2}; 001, 122) is not fully dualisable.
The proof in [7] used the fact that both the operations 001 and 122 preserve the total
order with 0 ^ 1 ^ 2 . Our proof is more complicated since it must work, in particular,
for the algebra M", and there is no total order on {0, 1, 2} that is preserved by every
operation in F".

A full duality for a quasi-variety s/ := OSIP(M) is more subtle than either a duality
or a strong duality. At the moment, we have no reason to believe that, if M is a
structure that yields a full duality on s/, then every extension of M, via algebraic
relations, also yields a full duality on si'. However, there are some relations that can
always be added to a structure M without destroying a full duality. The following
lemma is proved in [7], by Hyndman and Willard.

Let n e N and consider an n-ary algebraic relation r on M. Then r is the
underlying set of a subalgebra r of M". The relation r is said to be balanced if

r , M ) = { 7 r , \r \ i € [ I , . . . , n}}, a n d 7 r , \r ^ n s \r, f o r a l l i , j e [ I , . . . , n } w i t h

LEMMA 5.1. [7, Lemma 4.7] Let M be a finite algebra and assume that the
structure M = (M; G, H, R, f?) yields a full duality on 0§P(M). Let r be a balanced
algebraic relation onM. ThenM' := (M; G, H, RV{r], !7) also yields a full duality
on I§P(M). ~

Now assume that M is a unary algebra of type (2)Q or type (2)c. Let =̂  denote the
order on {0, 1,2} with 1 =$ 0 =<! 2. We will define some algebraic relations on M. The
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definitions of these relations will depend on the type of M. If M has type (2)Q, then
we define the algebraic relations on M by

4n •= s g M - ( { a € M" I 1 = a(\) *$•••*$ a{n) = 2 } ) ,

for all « € N\{1}, and

x := sgMe({a e M6 | 1 = a{\) ^ • • • 4 aifi) = 2}\{(1, 1, 0, 0, 2, 2)}).

If M has type (2)c but not type (2)Q, then, since M is a reduct of M8, we can define
the algebraic relations on M by

*>n •= sg(M«,»({a e M" | 1 = a(l) ^ • • • ̂  a(n) = 2}),

for all n e N\{l},and

x := sg(M,)6({a 6 M6 \ 1 = a(l) ^ • • • ̂  a(6) = 2}\{(1, 1, 0, 0, 2, 2)}).

The relations =̂ 4 and x will play an important role in our proof that M is not fully
dualisable.

LEMMA 5.2. Let M.be a unary algebra with type (2)Q or type (2)c- 77ie relations
=̂ 4 and x on M are balanced.

PROOF. First assume that M has type (2)Q and define srf :— DSP(M). Define the
three-element chain C = ({0, 1, 2}; ^) such that 0 ^ 1 ^ 2. Using Definition 4.3, we
have

C = sgMc+ ([a € Mc+ | 1 = a(T) ^ a(2) 4 a(l) ^ fl(0) = a(±) = 2)).

So C is isomorphic to the algebra =^4. By Lemma 4.6 (ii), we have \£/(=44, M)| =
\*/(C . M)l = I^(C, 2)| = 4 and therefore =̂ 4 is balanced.

Define the five-element chain D = ({0, 1, 2, 3,4}; sQ with 0 < • • • ^ 4. Define
the graph D' = (D; <>, where < := ^\{(1, 3)}. Write each element a € MD+ as the
7-tuple (a(T), a(4) , . . . , a(0), a(i.)). Then

D< = sgMD+({a e MD+ | 1 = a(T) ^ fl(4) ^ • • • ̂  a(0) = a(X) = 2}\

{(1,1,0,0,2,2,2)}),

and D <, is isomorphic to the algebra x Using Lemma 4.6 (ii), this implies that
K ( x , M ) | = | ^ ( D < f M ) | = |^(D',2)| = 6 . Thus DX is balanced.

Now assume that M has type (2)c but not type (2)Q. The relations =̂ 4 and x ,
defined on M, are algebraic on M". We have just shown that =̂ 4 and xa are balanced
on M". SO =̂ 4 and x are balanced on M, by Lemma 4.8. •
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We will work with the relations =^n, for each n e N \ {1}, and tx using the properties
given in the following lemma.

LEMMA 5.3. LetMbea unary algebra of type (2)Q or type (2)c. Letm,n 6 N\{1}
andletau...,an € {0, 1,2}.

(i) Let i,j,k € { 1 , . . . , n} such that i ^ j ^ k. If a, = ak and a, ^ ar then

(ai, ...,an)$4n and (au ...,an)<£x.

(ii) Let a : { 1 , . . . , m] —>• [I,... ,n} such that CT(1) = 1, o(m) — n and a

preserves the natural order. If ( a 1 ; . . . , an) € ^ n , then (aam,..., aa(m)) e =<!m.

(iii) We have 46\x c {(1, 1,0,0, 2,2), (2, 2,0,0, 1, 1)} c M6\tx.

PROOF. The three claims follow from the definitions, since all the unary term
functions of M belong to the set F". •

Assume that M has type (2)Q. The algebras T and T<j in s/ := DSP(M) are
given by Lemma 4.1 and Definition 4.3 in the previous section. Let M be an alter ego
of M that has =̂ 4 and x in its type. By Lemma 4.2 (i) and Lemma 4.6 (ii), we know
that X := {x \-j>< | x € s/( T , M)} determines a closed substructure X of M <.
To show that M does not yield a full duality on s/, we shall prove, via a sequence of
technical lemmas, that X is not isomorphic to the dual of any algebra in si'.

Now assume that M has type (2)Q or type (2)c. We will associate a graph with
each algebra in OSP(M). Let A ^ Ms, for some non-empty set 5. Recall that
Aw := {a € A | \£*(a)\ ^ 2} determines a subalgebra of A, where we define the
partition &{a) := [a~l(0), a'1 (1), a'1 (2)}\{0) of 5, for each a € A. For each
two-block partition J2 of S, we define the subuniverse of A;2 determined by £1 to be

A2 := {a € A \ &(a) = £ ox &(a) = [S]}.

Define the set

for some a € Ai2\{(),?,!} }•

Then ^ A contains all the partition-determined subuniverses of A;2 that do not lie in the
set{0,1,2}. There are unary term functions ux and w2ofM such that ker(Hi) = {0211}
and ker(«2) = {0112}. Let t € 5 and define the reflexive binary relation —^A on
^*A such that P —?A Q if and only if P = Q or there exists a 6 A\Ai2 and
{m, m] = {1, 2} with um(a) e P, u%{a) € Q and a{t) = m. The definition of —^A

is independent of our choice of Mi and u2. Let —T*-A denote the transitive closure
of —T>A- Then —7* A is a quasi-order on ^ A . To illustrate the definition of —y>A, we
revisit the algebra constructed in Example 4.5.

EXAMPLE 5.4. Let M be a unary algebra with type (2)Q. Define the ordered set
P' and the algebra A := P^ as in Example 4.5. We shall show that <^A; —[>A)
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is isomorphic to P'. Let ux and u2 be unary term functions of M with ker(ui) =
{02|l} and ker(«2) = {01|2}. The partitions &(aa), &(bb) and &{Tc) of P+ are
distinct. So, using Lemma 4.4 (ii), we have &k = {sgA(Sa), sgA(bb), sgA("cc)}. By
Lemma 4.4 (i), we get

A\Ai2 c [at, Tc, 021 (ac), 021 (be)).

Now ac(_L) = 2, with u2(ac) = u2(aa) € sgA(aa) and Mi(ac) = Hifcc) €
sgACcc), which implies that sgA(aa) —J>A sgACcc). If 021 is a term function of M,
then we have 021(ac ) ( l ) = 1, with u,(021 (ac)) € sgA(2a) and u2(021(ac)) e
sgA (cc), which also implies that sgA(oa) —j-»A sgA (cc) . Similarly, using fee and
021(/?c), wehavesgA(fcfc) —^A sgA(cc). So there is an isomorphism i? : (P;<) -»
{^*A; —J+A) given by &(x) = sgA(xx).

Now define -/,(A) to be the set of all —^-increasing subsets of «^ai
A.

LEMMA 5.5. Let M be a unary algebra of type (2)Q or type (2)c, and define the
quasi-variety srf := DSP(M). Let A ^ M s , WJ7/I ^ A 7^ 0 , and /ef s , ( 6 S . A55M/ne

thatx \P = ns \P orx \P = ^, \P,forallx G *^(A, M) anda/Z P e ^»A. 77ien rte map
n : *^(A, M) -*• S,(A), given by t){x) := [P € ^ A | x \P = it, \p}, is a well-defined
bijection.

PROOF. There are unary term functions «i and u2 of M with ker(«i) = {0211}
and ker(«2) = {0112}. To see that r) is well defined, let x e srf(A, M) and choose
P,Q £ &A, with P £ Q, such that P 6 JJ(JC) and P — j * A Q. We want to show
that Q e r)(x). As P —^>A Q, there is some a e A\Ai2 and {m,m} = {1,2}
such that um(a) e P, «s(a) e 2 and a(f) = m. We must have um(x(a)) =
x(um(a)) = um(a(t)) = um{m), since x\P = n,\P. Therefore x(a) — m = a(r)
and A:(M^(a)) = u%(x(a)) = «^(a(/))- Since ^(M^(a)) has two blocks, we have
ns(u%(a)) ^ n,(usi(a)) and therefore x\Q = n, \Q. Thus ?j(x) € c/,(A) and ?j is well
defined.

To show that r) is a bijection, let Z e c/,(A). As {P\{0^,T,l} | P e 0>A) forms a
partition of A^MO, 1, 2), we can define the homomorphism x : A.i2 —>• M b y

TP I P e Z} U

We want to prove that x has a unique extension J : A -*• M. Let a € A\A;2 and let
<2m be the subuniverse of Ai2 determined by ^(um(a)), for each m € {1,2}. Then
sgA(a) C Q i U Q2U{a, 021(a)}, since every unary term function of M belongs to Fi.
We want to find some r e S such that x\QiUQ2 = nr\QiUQl. We shall then define
x(a) := a(r) and, if 021(a) € A, we shall define J(021 (a)) := 021(a)(r). It will
follow that x extends to A.
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For each m € {1, 2}, we have um(a(s)) = ns(um(a)) / n,{um{a)) = um(a(t)).
This implies that {a(s), a(t)} = {1,2}. Now define m := a(t) and in := a{s). Then
Qm —T>A Cm- We can assume that Q% € Z and <2m £ Z. Choose some r € a"1^)-
We have

um(a(s)) = um{m) = um(a(r)) and us(a(t)) = u%(m) = «s(a(r)).

The elements of 2m\{0, 1, 2} all determine the same partition of S. So xf^ =
^ f a . = n^Qm

 m^ similarly, x\Qs = 7T,\Q;. = Jr, .^. Thus x extends to a ho-
momorphism 3c e ^ ( A , M). Since ns\P ^ n,\P, for all P e <^A, we must have
rj(J) = Z.

Let y : A -»• M be an extension of x. For all a e A\A|2 and m € (1, 2}, we have

= m <=> um(x(a)) = um{m) «=>• J(«m(a)) = «m(m)

y(«m(a)) = um(m) ^=> um(y(a)) = um(m)

v(a) = m.

So JC is the unique extension of x to A. It follows that r\ is a bijection. D

We say that the algebra A ^ Ms is locally balanced if x \B is the restriction of a
projection, for each homomorphism x : A -> M and each finite subset 5 of A. For
all B ^ Ms and 5 e 5, define the homomorphism ps : B -»• M by ps := ^ fB.

LEMMA 5.6. Ler M k a Mnary algebra of type (2)Q or type (2)c,
^ := DSP(M). Let B ^ A ^ Ms

 SMC/I r/iar Ai2 = Bi2 and A w locally balanced.
Define the set X := {x \B | x € ^/(A, M)} and /ef s, I e 5. Aî M/ne f/ia/ //ie relation

^ := {(x,y) e X2 \ (Ps,x,y, Pl) e 4*}

on X is reflexive.

(i) For all x € X and P € &A, we have x\P = ns\P or x\P = n,\P.
(ii) There is a well-defined order-isomorphism t) : (X; ^> -*• (J?,(A); c) given by

r,(x):=[P€&>A\x\P=nt\P}.
(iii) For all n € N and all xlt..., xn 6 X such that X\ ^ • • • ^ xn, we have

(ps,xi xn,pt) € 4n+2.

PROOF. There are unary term functions u{ and u2 of M with ker(«i) = {02| 1} and
ker(M2) = {0112}. We must have ^ A = ^ B , since Ai2 = Bi2. To prove (i), let x € X
and P € &\. There is some a e P such that \!?{a)\ = 2 . The relation ^ is reflexive,
so (ps, x,x, p,)(a) € = 4̂. Since A is locally balanced, the map x \P is the restriction
of a projection. Therefore \[x(a), a(s), a(t)}\ ^ 2. By Lemma 5.3 (i), this implies

https://doi.org/10.1017/S1446788700008806 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008806


[29] Strong and full dualisability 215

that x(a) = a(s) orx(a) = a(t). Since all the elements of P\{(),T,^} determine the
same partition of 5, we must have x\P =ns \P orx\P = n, \P. Thus (i) holds and the
map r), given in (ii), is a well-defined bijection, by Lemma 5.5. (Note that r\ is still a
bijection even if &\ = 0 and we cannot use Lemma 5.5, as the algebra A is locally
balanced.)

We now want to show that r\ is an isomorphism. Let x,y e X and assume that
x ^ y. To see that r)(x) c rj(y), let P e r](x). There is some a € P such
that \&(a)\ = 2. We have (ps, pt, y, p,)(a) = (ps,x, y, p,)(a) e = 4̂ and therefore
y(a) = a(t), by Lemma 5.3 (i). Thus P e r)(y), which implies that r](x) c r)(y).

Now assume r)(x) c r](y) and let b G B. We will show that b(s) = x(b) or
x(b) = y{b) or y(b) — b(t). It will then follow that (ps,x, y, p,)(b) 6 =^4, since
(P,,y,y,Pt),(Ps,x,x,p,) € =<U and therefore (ps, ps,y, pt),(ps,x, p,, p,) € =<U,
by Lemma 5.3 (ii). Assume that b(s) ^ x(b) and y{b) ^ b{t). There is some
m e {1,2} such that um{x{b)) ^ um(b{s)). Define Qm to be the subuniverse of
Ai2 determined by £?(um{b)). Then x\Qm = xt\Qm, by (i). As t)(x) c rj(y), this
implies that y\Qm = nl\Qm and therefore um{y{b)) = um(b(t)) = um(x(b)). Define
m := 021(m) and let Q% denote the subuniverse of Ai2 determined by ^(u^ib)).
We must have u%(y(b)) ^ u%(b(t)), since y(b) ^ b(t). Now r](x) C /j(y) implies
that x\Qs. = 7is\Qsi = y\Qs, and therefore ux(x(b)) = ugi(b(s)) = us(y(b)). So
^(4) = y(b), as Mi and u2 separate M. Thus x ^ y. We have proven that r\ is an
isomorphism, and so (ii) holds.

To prove (iii), let n € N and xt, ...,xn e X with *i ^ • • • < * „ . Let b € B. We
will show that there are./, & € { 1 , . . . , «}, withy ^ k, such that

x,(b) =

ps(b) if i<j;

xj(b) if j ^ i

Pi(b) if k < i,

for all i e { 1 , . . . , « } . As ^ is reflexive, it will then follow, by Lemma 5.3 (ii), that
(ps,xu ...,xn, p,)(b) e ^n+2. Let / € (1 n). If i ^ n andx,(^) = p,(b), then
(Ps,Pt,Xi+i,p,)(b) = (ps,Xi,xi+up,)(b) 6 =̂ 4 and therefore xi+l(b) = p,(b), by
Lemma5.3 (i). Similarly, if / ^ 1 andjc,(fc) = ps{b), then jc,-_!(fc) = ps(fc). Since the
algebra A is locally balanced, we know that \{x(b) \ x e X}\ ^ 3. Thus (iii) holds.

•
For each ordered set (X; ^ ) , define ^(X) to be the set of all x € X that have a

unique lower cover xl in (X; ^ ) .

LEMMA 5.7. Let M be a unary algebra of type (2)Q or type (2)c, and define

si := DSP(M). Ler B ^ A ^ M 5 such that Al2 = Bl2 and A is locally balanced.
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Define the set X :— [x \B \ x e . ^ ( A , M)} and let s,t 6 5. Assume that

^:={(x,y)eX2 \ (ps,x,y, p,) e =^4}

is an order on X and define

>* := {(x, y) € ^ ( X ) 2 | x ^ y and (p,, / , y , * ' , *, p,) i x } .

77ie« r/ie structures (-Sf^X); ^*, ^ ) am/ (<^*A; —T>B. —7* A) are isomorphic.

PROOF. There are unary term functions u{ and u2 of M with ker(«i) = {02|l} and
ker(M2) = (0112}. We must have <̂ >A = &B, since Ai2 — Bu- Lemma 5.6 tells
us that x \P = ns \P or x \P = n, \P, for all x e X and P 6 ^ A » and also that the
map x) : (X;<) - • <«/,(A);C), given by >J(JC) := {P € &k \ x\P = n,\P), is an
order-isomorphism.

For each P e ^ A . define the —^A -increasing subset

of ^»A. Then jSfs(^,(A)) = {ZP\P e &>k} and so we can define ? : ,^A ->
by <(F) := r)~y(ZP). Since rj is an isomorphism, the map £ is onto. To see that
£ is one-to-one, suppose that P, Q e ^ A such that P ^ Q and £(P) = £((>).
Then ZP = ZG. For all x e X, we have * t P u e = 7Tj \PUQ or x fPUG = 71, \PUQ, as
/](x) € c/,(A). This is a contradiction, since P and Q determine different partitions
of 5. Thus £ is a bijection.

We will show that f is an isomorphism between the structures (iPA; — ^ - B . - 7 * A)
and (J&f^X);^*, ^ ) . Let P , Q € ^ A such that P jL Q. Define A:P := £(P) and

)- Then

^ - T » A (2 < = • Zp 2 Z Q <=> »?"'(Z,) ^ i?- '(Zc) < = • JCP ^ *Q.

So —p» A is an order on ^ A .
By Lemma 5.3 (i), the relation ^* on -Sf^X) is reflexive. So it remains to prove

that P —j>B Q if and only if xP ^* xQ. First assume that P —j>B G- There is some
6 G B \ S | 2 and {m, m} = {1, 2} with um(b) 6 P , M S (6 ) € Q and 6(0 = m. We have
^Tc = XS\QOTX\Q = jt,\Q, for all x € X. So KS(Z>CS)) ^ u%(b(t)) = u^{m) and
therefore fe(s) = w. Since — j * A is an order on <̂ *A, we have r)(xP) = ZP = ZP\{P}
and ??(-*Q) = ZJ

G = ZQ\{Q}. AS P —^ A Q, it follows that

um(xx
Q(b)) =xl

Q{um{b)) = um(b(s)) = um{m),
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and, similarly,

um{xQ{b)) = um(Hs)) = «m(0), um{xQ(b)) = «a

um(xP(b)) = um(b(t)) = um(m), ua(xP(b)) = «*(&(*)) = ««(»»)•

This implies that (ps, x
l
Q, xQ, xP, xP, p,){b) — (m,ni,0,0,m,m), since u\ and u2

separate the elements of M. So (ps, XQ, XQ, xP,xP, p,) £ ex, by Lemma 5.3 (iii). As
P ~7* A Q and therefore xP ^ xQ, we have shown that xP ^* ;tQ.

Now assume that xP ^* x e . Then xl
Q ^ A:G ^ xP ^ A:P, which implies that

(ps,x
l
Q,xQ,xP,xp,p,) 6 =̂ 6, by Lemma 5.6 (iii). Since (ps, X'Q, XQ, xp,xP, p,) i ex,

there is some b e B and {/n,w} = {1,2} such that (ps,x
l
Q,xQ,xP,xP, p,)(b) =

(in, m, 0, 0, m, m), by Lemma 5.3 (iii). As A is locally balanced, this implies that
b i Bl2. We have

xP(um(b)) = «m(0) = um(b(s)), jc{j(«

««(»«) = ua(b(t)), xQ(Uf;i(b)) = um(0) = «a

It follows that the subuniverse of A 2̂ determined by £?(um{b)) belongs to ZP but
not to ZP\{P}. Therefore um(b) e P and, similarly, u%(b) € Q. Thus P —?B Q,
whence £ is an isomorphism. EH

The next lemma will complete the preparation for our proof that algebras with
type (2)Q or type (2)c are not fully dualisable. The algebras F and F < come from
Lemma 4.1 and Definition 4.3.

LEMMA 5.8. Let Mbe a unary algebra with type (2)Q and define si := OSIP(M).
Then f „ ^ T ^ Mr + such that (T)U = (T^u and T is locally balanced.
Define the set X :— {x\q> < \ x e si/(f , M)}. Then the relation

^ := {(x, y)€X2\ (pT,x, y, p±). e ^4)

on X is reflexive. The structures (^^ ; —j^-ffl. i ^ T ) and (̂ "; <•» ^) a/"e "o-

PROOF. It follows by Lemma 4.4 (ii) that (T)i2 = (T^p. To see that T is
locally balanced, let x e &f( F , M) and let B c T* be finite. There is a finite subset
To of r such that B c sg-p ({ofc | a, i e To and a ^ fe}). The map x o tr : F - • 2
is order preserving, by Lemma 4.6 (ii). First assume that x(bb) — 1, for all b e Fo.
By Lemma 4.6 (i), we have x(ab) = 1, for all a, b e Fo with a < fc, and therefore

https://doi.org/10.1017/S1446788700008806 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008806


218 J. G. Pitkethly [32]

x \B = nT\B. Now we can assume that there is a minimum element c of Fo in F such
that x(c~c) = 2. For all a, b e Fo with a ^ fc, we have

0 if a < c ^ Z>;

= ab(c),

by Lemma 4.6 (i). Thus * f B = nc \B and F is locally balanced.
For all a,b e F with a < b and all x e X, we have pj(ab) = 1 =̂  x(ab) =4 2 =

p±(ab) and therefore (pT, •*, •*. P±)(ab) € =^4. So ^ is reflexive. It is easy to check
that (&f ; — [ • T ^ . —[»• T ) and (T; < , <) are isomorphic; see Example 5.4. •

An algebra A ^ M s is called balanced if jrf(A, M) = {ns \A \ s € S], and
ns\A ^ n,\A, for all s, t 6 S with s ^ t. It is easy to check that every algebra in
0§P(M) is isomorphic to a balanced algebra.

THEOREM 5.9. Let Mbe a unary algebra of type (2)Q or type (2)c. Then M is not
fully dualisable.

PROOF. First assume that M has type (2)Q. Suppose there is an alter ego M of M
that yields a full duality on &/ := OSP(M). By Lemma 5.1 and Lemma 5.2, we can
assume that = 4̂ and tx are in the type of M. Using Lemma 4.1 and Definition 4.3,
there are algebras F <, and F in #/. The set X := [x \q> \ x e s/{ F , M)} forms a
closed substructure of M ", by Lemma 4.2 (i) and Lemma 4.6 (ii). Since M yields a
full duality on £/, there is an isomorphism <p : X —> D(A), for some balanced algebra
A ^ M s , with 5 a non-empty set.

As A is balanced, there exist s,teS with <p(pj) = ps and <p(px) = pt. By
Lemma 5.6 (ii) and Lemma 5.8, the relation ^ := [(x, y) e X2 | (pj,x,y, p±) e = 4̂}
is an order on X. Since <p is an isomorphism and = 4̂ is in the type of M, we have

<0«) = {(*, y) e ^ ( A , M)2 | (P j , x, y, p,) € ^ 4 ) .

Define

r := {(x, y) € _ ^ ( X ) 2 | JC > y and (pT> / , y, **, *, Pi) ^ x } -

Then <p&*) = {(x, y) e ^ ( O ( ^ ( A , M)) 2 1x <p&) y and (pJf y \ y, JC\JC, p,) ^ tx}.
Using Lemma 5.7 twice and Lemma 5.8, it follows that
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So (&A\ —7>A. —7* A) is isomorphic to {F; < , ^ ) , by Lemma 5.8. But this implies

that ^ is the transitive closure of O, which is a contradiction. Thus M is not fully

dualisable.

Now assume that M has type (2)c but does not have type (2)Q. Recall that

M8 — ({0, 1, 2); F"). We can show that M is not fully dualisable, using Lemma 4.8,

by following the proof given above with the algebras T ^ and F b in si', which are

the reducts of the algebras T , , and T in ISPCM11). •
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