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Birkhoff and Pierce [2] introduced the concept of an /-ring and showed
that an /-ring is an /-ring if and only if it is a subdirect product of totally-
ordered rings. An /-ideal of an /-ring R is an algebraic ideal which is at the same
time a lattice ideal of R. Structure spaces (i.e. sets of prime ideals endowed with
the so-called hull-kernel or Stone topology) for ordinary rings have been studied
by many authors. In this paper we consider certain analogues for /-rings, and
give characterisations of/-rings for which these structure spaces are discrete.

DEFINITION 1. A proper /-ideal I of an /-ring R is said to be l-prime if it
satisfies the condition a /\b el implies a el or be I. We shall write / is an
Ip-ideal, following Pierce [6], if this condition is satisfied; the set of all Zp-ideals
of R will be denoted by LP(R), or simply LP if no confusion is likely.

DEFINITION 2. A proper /-ideal P of an /-ring R is said to be a P-ideal if it
satisfies the condition abeP implies aeP ox beP, i.e. if it is an (algebraic) prime
ideal; the set of all P-ideals will be denoted by AP(R), or simply AP.

We now give some characterisations of /p-ideals and P-ideals, which will
be used without reference in this paper.

LEMMA 1. / / / is an l-ideal of an f-ring R then the following conditions
are equivalent:

(1) / is an Ip-ideal;
(2) if A, B are l-ideals and I^ACiB then I 2 A or I 3 B;
(3) if A, B are l-ideals and I <= A and I <= B then I <=AnB;
(4) if a, beR+\I then a^beR+\I;
(5) if a, beR+\I then aAb>0;

(6) RH is totally-ordered;

(7) the l-ideals containing I form a chain;
(8) aAb=0 implies ael or be I;
(9) at A a2 A ••• A an = 0 implies atel for some i;
(10) ax A «2 A ••• A a « e / implies a{el for some i;
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PROOF. Conrad [3] proves the equivalence of (l)-(7) for /-groups while
Subramanian [7] does likewise for (8)-{9). The proofs for /-rings are identical.

The following result, characterising P-ideals, appears in Johnson [4].

PROPOSITION 1. / / / is an l-ideal of an f-ring R then the following condi-
tions are equivalent:

(1) ab e I implies ael or be I;
(2) (/ A, B are (l-)ideals of R, AB s / implies A^I or B^I;
(3) RII is totally-ordered and has no divisors of zero.

LEMMA 2. In an f-ring R, any P-ideal I is an Ip-ideal.

PROOF. This may be deduced from part (3) of proposition 1 and part (6)
of lemma 1, or deduced directly as follows: suppose a Ab = 0; then since
R is an /-ring, ab = Oel, so ael or be I.

It is now clear that both LP(R) and AP(R) can be given the well-known
hull-kernel topology — see, for example, Kist [5] for details of this topology.
The following result is then immediate.

LEMMA 3. The inclusion mapping i: AP -* LP is continuous.

NOTATION. If X £ LP(R) we define the kernel of S, denoted by k(L), as

/c(S) = r\{P -.Pel,}.

If A s R we define the hull of A, denoted by h(A), as

h(A) = {JeLP : J =? A}.

If I c LP(R),

for each a eR. It is well-known that the sets (LP)a (where a eR+) form a basis
for the open sets of LP. In this paper R will always denote an /-ring.

DEFINITION 3. For a non-empty subset A £ R put

A± = {x e R : | x | A | y | = 0 for all y e A}.

We write ax for {a}x. An /-ideal / is said to be a polar if / = 7X±, where 7X

stands for tfx)x.

Two preliminary results which will be used in the sequel have their analogues
proved in Kist [5], and are stated here for ease of reference.

PROPOSITION 2. / / 1 is a dense subset of LP(R), (i.e. if k(L) = (0)), then
or any non-empty set A £ R, A± = k(l. \h(A)). In particular, for aeR, a±= k(l.a).
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PROPOSITION 3. Suppose E is a dense subset of LP(R) and that any proper
l-ideal of R is contained in some element ofL. Then an l-ideal I of R is a direct
summand if and only if h(I) is open-closed in 2.

Since any direct summand is obviously a polar, we may deduce the following
result.

LEMMA 4. Every polar of R is a direct summand if and only if LP(R)
is extremally disconnected.

PROOF. It follows from proposition 2 that the polars are precisely those
/-ideals which are kernels of open subsets of LP(R). If each polar is a direct
summand then for each open subset F £ LP(R), h(k(rj) is open-closed by
proposition 3, and this means LP(R) is extremally disconnected. The converse
is obvious.

We now give a characterisation of those /-rings R for which LP(R) is
discrete, and subsequently this result will be sharpened.

LEMMA 5. LP(R) is discrete if and only if each of the following conditions
holds:

(1) each PeLP(R) is a minimal Ip-ideal; and
(2) each PeLP(R) is a direct summand.

PROOF. Suppose, firstly, that LP(R) is discrete. Then for each PeLP(R),
{P} is open in the /ifc-topology. Thus there exists xeR such that Pe{LP)X s {P},
i.e. P is the unique /p-ideal not containing x. If M is any minimal /p-ideal
contained in P — such an M exists by Zorn's lemma — then x ^ M so by the
uniqueness of P, M = P ; so P minimal. Thus the /p-ideals are not comparable
(under set inclusion) and hence {P} = h(P) and proposition 3 implies P is a
direct summand.

Conversely, suppose conditions (1) and (2) hold, and suppose PeLP(R).
Then (1) implies {P} = h(P) and (2) implies h(P) is open. Thus LP(R) is discrete.

It shall be shown shortly that, in fact, condition (2) implies condition (1),
but firstly we give some properties of/-rings R for which LP(R) is discrete.

(A) Condition (1) implies that each /p-ideal of R is a maximal /-ideal.
Hence each totally ordered homomorphic image of R has no proper /-ideals.

(B) If R is any /-ring then MaxL(i?) — the space of all maximal /-deals — is
a subspace of LP(R). If there exists e e R such that e is not contained in any
maximal /-ideal (e.g. if e is a multiplicative identity or a strong order unit) then
it can be shown that MaxL(i?) is compact. Hence, if in addition R satisfies
the conditions of lemma 5, R has only a finite number of maximal /-ideals.
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(C) If LP(R) is discrete then for all x e R, <x> — the smallest /-ideal
containing x — is a direct summand. In fact each /-ideal is a direct summand
since h{I) is open. Thus R = <x> © x x for all x e R, and this implies that

(D) The two conditions in (C) imply that R is a projectable (or Stone)
/-ring, i.e. xx±®xx — R for all xeR.

(E) The discreteness of LP(R) is not related to the existence of nilpotent
elements in R, as the following examples show.

(i) Consider U3 with the usual pointwise operations and order. Then the
(minimal) Zp-ideals are (0) x R x R, R x (0) x R, and R x R x (0). These are
the only Zp-ideals and each is a direct summand. There are no nilpotents.

(ii) Consider R3 with the usual pointwise order and addition and with
multiplication given by {au a2, a3)(bu b2, b3) = (0, a2b2, a3b3). The /p-ideals
are the same as before : (1, 0, 0) is a non-zero nilpotent.

(iii) The ring C(N) of continuous real-valued functions defined on the
natural numbers can be shown to have a non-discrete structure space (making
use of remark (B)) and yet it has no non-zero nilpotent elements.

The next result shows which rings with discrete structure spaces have no
non-zero nilpotent elements.

LEMMA 6. Suppose LP(R) is discrete. Then R has no non-zero nilpotent
elements if and only if LP(R) equals AP(R) (see definition 2).

PROOF. If LP(R) = AP(R) then k(AP) = k(LP) = (0) and this implies
R has no nilpotents (Johnson [4]).

Conversely, suppose R has no nilpotent elements, P e LP and xy e P. Since
LP(R) is discrete, P is a direct summand, and hence P is a polar. Thus

P = P ± x

Since P is an Zp-ideal, x±J~ c f o r y±JL £ P, thus xeP or ye P.

To improve Lemma 5, we shall use results concerning polars and /p-ideals
which have some independent interest.

PROPOSITION 4. / / A is a non-zero l-ideal of an f-ring R, the following
conditions are equivalent:

(1) A1' is an Ip-ideal;
(2) each aeA\(0) has precisely one value;
(3) A is totally-ordered;
(4) Ax is a minimal Ip-ideal;
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(5) Axx is a minimal polar;
(6) Ax is a maximal polar;
(7) Ax = ax, for all aeA\(0);
(8) Axx is a maximal totally-ordered l-ideal;

PROOF. Conrad [3] has proved the equivalence of these conditions in the
setting of Z-groups. Since /-rings are characterised among the /-rings by the
property <a A b} = <a> n <fo> for a, b positive (unpublished result of the
author), the result for /-groups can be used to prove the analogue for /-rings.

As a corollary to this we have the following lemma which extends a result
of Anderson [1, lemma 5], but the method of proof here is different.

LEMMA 7. Let R be an f-ring and consider the following conditions for
an l-ideal I of R:

(1) / is a P-ideal and Ix ¥= (0);
( 2 ) / is an I p-ideal and Ix^(0);
(3) / is a maximal (proper) polar in R.

Then (1) implies (2), (2) implies (3), and (3) implies (2). / / in addition R has
no non-zero nilpotent elements then (3) implies (1), and hence in this case the
conditions are equivalent.

PROOF. (1) implies (2), obviously.
(2) => (3). Since Ix # (0) Ixx is a proper /-ideal, and since / s 1^, Ixx is

an /p-ideal. By the previous proposition, I'11' is a minimal /p-ideal, so / = Ixx,
and again by that proposition, / is a maximal polar of R. (3) implies (2): This,
also, follows from the previous proposition.

Now suppose R has no nilpotents. To complete the proof it suffices to show
that (2) implies (1). Therefore suppose Ix # (0), / is an /p-ideal, and that ab el.
Then / = Ixx 2 (ab)xx = a±xnbxx and since / is an /p-ideal it follows that
a el or be I.

THEOREM 1. If R is an f-ring the following conditions are equivalent:
(1) LP(R) is discrete;
(2) each lp-ideal is a direct summand;
(3) R is a direct sum of totally ordered rings with no proper l-ideals;
(4) each l-ideal of R is a direct summand;
(5) each lp-ideal is a polar.

PROOF. (1) implies (2): by lemma 5. (2) implies (3): For each /p-ideal Px,
R = Pf.®Tx where Tx is a totally ordered ring. We show that R is the direct
sum of these totally ordered rings. Firstly by proposition 4, each Tk has no
has no proper /-ideals. Thus the direct sum ST ; of these /-ideals is contained in
R. If there were an element r e R \(2TA) then there would be an /p-ideal Pa 2 ET;
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such that r$Pa. By assumption Pa is a direct summand, so R = Pa®Tx, and
by choice of Pa, Ta s Pa. Hence R = Pa®TaZ Pa, which is a contradiction.
Thus i? = ZTX.

(3) implies (4): If J is any /-ideal of of of R, and R = I,ARX, where for each
a e A, S , is a totally order ring with no proper /-ideals, then J = T,(RaC\J)
and for each aRx O J = Pa or Ra O J = (0). Thus J = SA R for some subset
A ' S A.

(4) implies (5): Trivial since any direct summand is a polar.
(5) implies (1): Let PeLP(R). Then by the previous lemma P x # (0).

Since P is a polar, proposition 4 implies P is a minimal /p-ideal; hence LP(R)
equals Jl — the space of minimal /p-ideals. Also by proposition 4, P = P1-1 = ax

for all a e P ^ O ) . So,

P = ax = /ctfLP).) = k(J?a).

Now, it is easy to show that Jta is open-closed (in Jf), so h(P) = hk(Jifa) = ^#a,
which implies P is a direct summand. Hence, by lemma 5, LP(R) is discrete.

There is another characterisation, in terms of the lattice of all /-ideals of R,
of those /-rings R for which the structure space LP(R) is discrete, and we note
this result now.

DEFINITION 4. The set SC(R) of all /-ideals of an /-ring R is a lattice under
the operations + and n . It is well known that this lattice is distributive. (R) is
said to be complemented if for each / e £?(R) there exists an /-ideal J such that
/ + J = R and I C\J = (0). Clearly, in this case / x = J.

LEMMA 8. (R) is complemented if and only if LP(R) is discrete.

PROOF. Obvious.

Theorem 1 can be strengthened for /-rings with no nilpotent elements which
also satisfy another fairly innocuous condition.

THEOREM 2. Suppose that R is an f-ring with no non-zero nilpotent
elements, and that each proper l-ideal of R is contained in a P-ideal. Then
the following conditions are equivalent:

(1) AP(R) is discrete;
(2) each P-ideal is a direct summand;
(3) each P-ideal is a polar;
(4) each P-ideal I is a minimal Ip-ideal, and /•""#(());
(5) each Ip-ideal I is a minimal Ip-ideal, and / x ^ ( 0 ) ;
(6) LP(R) is discrete;
(7) R is a direct sum of totally ordered integral domains with no proper

l-ideals;
(8) each l-ideal of R is a direct summand.
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PROOF. (1) implies (2): Since R has no nilpotents k(AP(R)) = (0), and
proposition 3 may be applied.

(2) implies (3): Obviously.
(3) implies (4): Follows from proposition 4.
(4) implies (5): Follows from the hypothesis.
(5) implies (6): Follows from lemma 7.
(6) implies (1): Obviously.

Clearly, by theorem 1, (6), (7), and (8) are equivalent.

REMARKS. (1) Any /-ring with identity satisfies the condition that each
proper /-ideal is contained in a P-ideal.

(2) It is possible to have AP(R) = LP(R) even when LP(R) is not discrete.
Rings characterised by the property that AP(R) = LP(R) are the subject of
another paper.

The author takes this opportunity to acknowledge improvements to theorems 1
and 2 suggested by the referee.

The work for this paper was carried out while the author held a Common-
wealth Postgraduate Research Award at Monash University.
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