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Abstract. The main objective of the present paper is to present a ver-
sion of the Tannaka-Krein type reconstruction Theorems: If F : B → C
is an exact faithful monoidal functor of tensor categories, one would
like to realize B as category of representations of a braided Hopf alge-
bra H(F ) in C. We prove that this is the case iff B has the additional
structure of a monoidal C-module category compatible with F , which
equivalently means that F admits a monoidal section. For Hopf alge-
bras, this reduces to a version of the Radford projection theorem. The
Hopf algebra is constructed through the relative coend for module cate-
gories. We expect this basic result to have a wide range of applications,
in particular in the absence of fibre functors, and we give some applica-
tions. One particular motivation was the logarithmic Kazhdan-Lusztig
conjecture.
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Introduction

Background. The main objective of the present paper is to present a ver-
sion of the Tannaka-Krein type reconstruction theorems. It is known that
if B is a k-linear abelian locally finite category, F : B → vect k is a fibre
functor, that is an exact faithful functor, then the coend

C =

∫ B∈B
F (B)⊗kF (B)∗,

has structure of k-coalgebra, and the functor F factorizes as

B F̂ //

F
''

Comod(C)

fxx
vect k,

where f : Comod(C) → vect k is the forgetful functor, and F̂ is a category
equivalence. We refer the reader to [12], [22] and references therein. If,
moreover, B is a monoidal rigid category, and F is a monoidal functor,
then it is possible to endow the coalgebra C with structure of Hopf algebra.
Succinctly, monoidality of B gives C a product, turning it into a bialgebra,
and rigidity of B endows C with an antipode.

Some generalizations of this result appeared in the literature. We only
mention some of them. In these more general versions, a fibre functor F :
B → C is considered, where C is an arbitrary monoidal category. In some
versions, the object C is not a Hopf algebra in C. For example in [4], it
is shown that if the functor F has a right adjoint G : C → B, then, the
associated monad to this adjunction T = F ◦G : C → C is a bimonad, and
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there is a commutative diagram

B F̂ //

F !!

CT

f}}
C.G

OO

Here f : CT → C is the forgeful functor. Beck’s monadicity Theorem

implies that the functor F̂ : B → CT is a monoidal equivalence. Rigidity of
both monoidal categories B, C imply that T has a Hopf monad structure. In

[13], [14] Lyubashenko reconstructed the object C as a coend
∫ B∈B

F (B)⊠
F (B)∗, belonging to some completion of the Deligne tensor product C ⊠ C,
and it turns out to be a squared coalgebra. In the work of Majid [19], he
started with a monoidal functor F : B → C, where C is a braided monoidal

category, and he reconstructed a Hopf algebra C =
∫ B∈B

F (B)∗⊗F (B), and
set up a commutative diagram

B F̂ //

F !!

CC

f}}
C.

With this generality, the functor F̂ no longer need to be an equivalence.

Our approach. The point of view of this paper owes a lot to [22]. However,
we shall work only with finite categories. Let k be an arbitrary field, and
let B, C be finite k-linear abelian categories. Assume both C,B are rigid
monoidal categories, and F : B → C is a monoidal functor. If F has a section
G : C → B, that is F ◦G ≃ Id C as monoidal functors, then it is possible to
endow B with an action of C, such that F is a monoidal C-module functor.
This action behaves well together with the monoidal product of B, in a sense
that we call monoidal module category.

Under these conditions, we aim at constructing a Hopf algebra H ∈ C and
obtaining a kind of Radford projection Theorem in this categorical setting.

The reconstruction of such Hopf algebra is given in some steps, that we
describe as follows. If B is a right C-module category, F : B → C is an exact
faithful module functor, we construct a coalgebra C(F ) ∈ C as

C(F ) =

∮ B∈B
F (B)⊗∗F (B).

Here
∮

stands for the relative coend, a new tool, developed in [3], in the
context of module categories. This tool is one of the new features that we
incorporate in these reconstruction theorems. The coproduct and counit of
C(F ) are defined using universal properties of the dinatural transformations
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4 LENTNER AND MOMBELLI

associated with the relative coend. See Proposition 6.2. Moreover, we show
that the functor F factorizes as

B F̂ //

F   

CC

f~~
C.

Here f : CC → C is the forgetful functor, and F̂ : B → CC is an equivalence

of C-module categories. The existence of F̂ is stated in Proposition 6.4, and
the proof that it is an equivalence of categories is given in Theorem 6.7.

If in addition C is a braided rigid monoidal C-module category, B is a
rigid monoidal category, and F is a monoidal functor, then we endow the
coalgebra C(F ) with a product, turning it into a bialgebra in C. Rigidity
of B allows to define an antipode on C(F ), making it into a braided Hopf
algebra. These results are stated in Theorem 6.11 and Corrollary 6.19.

The contents of the paper are the following. In Section 2 we give a brief
account of some basic facts about tensor categories and module categories
that will be used throughout the paper. In Section 3 we review the notion
of relative (co)end of a functor in the setting of module categories over a
tensor category C. This tool was developed by the second author in [3]
as generalization of the usual (co)end. Let C be a tensor category, M be
a left C-module category and A is some target category. If a functor S :
Mop ×M→ A has a prebalancing, that is natural isomorphisms

βXM,N : S(M,X ▷ N)→ S(X∗ ▷ M,N),

then the relative coend ∮ M∈M
(S, β)

is an object in A equipped with dinatural transformations πM : S(M,M)
..−→∮M∈M

(S, β), such that it satisfies some extra condition, see for example
(3.3), and it is universal with this property. When C = vect k, the relative
(co)end coincides with the usual (co)end.

Since relative (co)ends are objects defined by a universal property, they
may not exist in general. Section 3.1 is devoted to prove that all relative
coends, used in this work, actually exist. In this Section, it is crucial that all
categories, the tensor category C and the module categoryM are finite. We
also require that the action C ×M→M is exact in each variable, allowing
us to use [9, Thm 2.24], that says that there is an equivalence of module
categoriesM≃ CA, for some algebra A ∈ C.

In Section 4 we review the definition of a Hopf algebra H in a braided
tensor category C and its tensor category of comodules HC. We also review
the definition of H-H-Yetter Drinfeld modules in this setting, which pro-
duces a braided tensor category H

HYD(C). Then we introduce a notion of a
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C-module category B with a compatible tensor structure in the sense that
there is a natural isomorphism

lX,B : X ▷ B
≃−−→ (X ▷ 1B)⊗B,

for all X ∈ C, B ∈ B, satisfying certain axioms. Note that there is a second
reasonable notion of a monoidal module category, where the action X ▷− is
a monoidal functor, and this definition is not equivalent. Under the presence
of a monoidal functor F : B → C, compatibility of the monoidal product in
B and the action of C on B, is equivalent to the existence of a section to F ,
that is a monoidal functor G : C → B such that there is a monoidal natural
isomorphism F ◦G ≃ Id .

Acknowledgments. The work of both authors was partially done during
the Workshop on Hopf algebras and Tensor categories held in May 2023, in
Marburg, Germany. We thank the organizers, and in particular to Istvan
Heckenberger. The attendance of M.M., to this workshop, was possible due
to a grant of the Alexander von Humboldt Foundation, under a Research
Group Linkage Programme. Part of the work of M.M. was done during
a visit at Hamburg University, M.M. thanks Christoph Schweigert for the
warm hospitality and for providing us with reference [12]. The work of M.M.
was partially supported by Secyt-U.N.C., Foncyt and CONICET Argentina.
S.L. thanks T. Gannon and T. Creutzig for hospitality at the University of
Alberta and the Alexander von Humboldt Foundation for financial support
via the Feodor Lynen Fellowship.

1. Preliminaries

Throughout this paper, k will denote an arbitrary field. We shall denote
by vect k the category of finite dimensional k-vector spaces.

A finite category [10] is an abelian k-linear category such that it has only a
finite number of isomorphism classes of simple objects, Hom spaces are finite-
dimensional k-vector spaces, all objects have finite lenght and every simple
object has a projective cover. All these conditions are equivalent to requir-
ing that, the category is equivalent to the category of finite-dimensional
representations of a finite-dimensional k-algebra.

If M,N are categories, and F : M → N is a functor, we shall denote
by F ra, F la : N → M its right and left adjoint, respectively. We shall
denote byMop the opposite category. If f : M → N is a morphism inM,
sometimes we shall denote by fop : N → M the same map but understood
as a morphism inMop.

Any abelian k-linear category M has a canonical action of the category
of finite dimensional k-vector spaces

(1.1) • : vect k ×M→M.

See for example [22, Lemma 2.2.2]. Any additive k-linear functor F :M→
N between abelian k-linear categories respects the action of vect k, that is,
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6 LENTNER AND MOMBELLI

there are natural isomorphisms

dV,M : F (V •M)→ V • F (M),

V ∈ vect k, M ∈M, satisfying certain axioms.

From now on, all categories will be assumed to be finite abelian k-linear
categories, and all functors will be additive k-linear. Here k is an arbitrary
field. All our proofs work in the presence of an associator, but for simplicity
we assume in the presentation that the categories are strict.

2. Representations of tensor categories

2.1. Finite tensor categories. A finite tensor category C is a monoidal
rigid category, with simple unit object 1 ∈ C. We refer to [10] for more details
on finite tensor categories. Without loss of generality, we shall assume that
tensor categories in this work are strict.

If C,D are monoidal categories, a monoidal functor is a functor F : C → D
equipped with natural isomorphisms

ξA,B : F (A)⊗F (B)→ F (A⊗B),

such that

(2.1) ξA,B⊗C(id F (A)⊗ξB,C) = ξA⊗B,C(ξA,B⊗id F (C)).

If (F, ξ), (F̃ , ξ̃) : C → D are two monoidal functors, a monoidal natural

transformation between F and F̃ is a natural transformation α : F → F̃
such that

(2.2) αA⊗BξA,B = ξ̃A,B(αA⊗αB),

for any A,B ∈ C.
If C is a category, for any X ∈ C we shall denote by

evX : X∗⊗X → 1, coevX : 1→ X⊗X∗

the evaluation and coevaluation. By abuse of notation, we shall also denote
by

evX : X⊗∗X → 1, coevX : 1→ ∗X⊗X
the evaluation and coevaluation for the left duals. We will use the following
basic result. If f : X → Y is an isomorphism in C then

(id ∗X⊗f)coevX =(∗f⊗id Y )coevY ,

evY (f⊗id Y ) =evX(idX⊗∗f).
(2.3)

It is well known that for any pair of objects X,Y ∈ C there are canonical
natural isomorphisms

(2.4) ϕrX,Y : Y ∗⊗X∗ → (X⊗Y )∗,

(2.5) ϕlX,Y : ∗Y⊗∗X → ∗(X⊗Y ).
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These isomorphisms allow us to compute coevaluation and evaluation maps
of duals; more precisely we shall need the following identity

(2.6) ev∗V = ∗(coevX)ϕl∗X,X .

We are going to make use, very often, of the canonical natural isomor-
phisms

ψZ
X,Y : HomB(X⊗∗Y,Z)→ HomB(X,Z⊗Y ),

ψZ
X,Y (f) = (f⊗id Y )(idX⊗coevY ).

(2.7)

And its inverse

ψ̄Z
X,Y : HomB(X,Z⊗Y )→ HomB(X⊗∗Y,Z)

ψ̄Z
X,Y (g) = (id Z⊗evY )(g⊗id ∗Y ).

(2.8)

We shall also need the following basic fact.

Lemma 2.1. For any pair V,W ∈ C the evaluation of V⊗W is given by

(2.9) evV⊗W = evV (id V⊗evW⊗id ∗V )(id V⊗W⊗(ϕlV,W )−1). □

2.2. Module categories over tensor categories. A left module category
over C is a category M together with a k-bilinear bifunctor ▷ : C ×M →
M, exact in each variable, endowed with natural associativity and unit
isomorphisms

mX,Y,M : (X ⊗ Y ) ▷ M → X ▷ (Y ▷M), ℓM : 1 ▷ M →M.

These isomorphisms are subject to the following conditions:

(2.10)

(X ⊗ (Y ⊗ Z)) ▷ M

((X ⊗ Y )⊗ Z) ▷ M (X ⊗ Y ) ▷ (Z ▷M)

X ▷ (Y ▷ (Z ▷M))

X ▷ ((Y ⊗ Z) ▷ M)

∼

mX⊗Y,Z,M

mX,Y,Z▷M

mX,Y ⊗Z,M idX▷mY,Z,M

for any X,Y, Z ∈ C,M ∈M, as well as

(2.11) (idX ▷ ℓM )mX,1,M = id .

Sometimes we shall also say that M is a C-module category or a represen-
tation of C.
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8 LENTNER AND MOMBELLI

Let M and M′ be a pair of C-module categories. A module functor
is a pair (F, c), where F : M → M′ is a functor equipped with natural
isomorphisms

cX,M : F (X ▷M)→ X ▷ F (M),

for X ∈ C, M ∈M, such that
(2.12)

F ((X ⊗ Y ) ▷ M)

F (X ▷ (Y ▷M)) X ▷ F (Y ▷M)

X ▷ (Y ▷ F (M))

(X ⊗ Y ) ▷ F (M)

F (mX,Y,M )

cX,Y ▷M

idX▷cY,M

cX⊗Y,M mX,Y,F (M)

for any X,Y ∈ C, M ∈M, as well as

ℓF (M) c1,M = F (ℓM ).(2.13)

Module functors are composable, if M′′ is a C-module category and
(G, d) :M′ →M′′ is another module functor then the composition

(2.14) (G ◦ F, e) :M→M′′, eX,M = dX,F (M) ◦G(cX,M ),

is also a module functor.

A natural module transformation, between module functors (F, c) and
(G, d), is a natural transformation θ : F → G such that

dX,MθX▷M = (idX ▷ θM )cX,M ,(2.15)

for anyX ∈ C,M ∈M. The vector space of natural module transformations
will be denoted by Natm(F,G). Two module functors F,G are equivalent
if there exists a natural module isomorphism θ : F → G. We denote by
FunC(M,M′) the category whose objects are module functors (F, c) from
M toM′ and arrows module natural transformations.

Two C-modulesM andM′ are equivalent if there exist module functors
F : M → M′, G : M′ → M, and natural module isomorphisms IdM′ →
F ◦G, IdM → G ◦ F .

A module category will be called strict if isomorphisms m and l are iden-
tities. Any module category is equivalent to a strict one. We will often
assume that the module category is strict without further mention.
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A right module category over C is a categoryM equipped with an exact
bifunctor ◁ :M×C →M and natural isomorphisms

m̃M,X,Y :M ◁ (X⊗Y )→ (M ◁X) ◁ Y, rM :M ◁ 1→M

such that
(2.16)

M ◁ ((X ⊗ Y )⊗ Z)

M ◁ (X ⊗ (Y ⊗ Z)) (M ◁X) ◁ (Y ⊗ Z)

((M ◁X) ◁ Y ) ◁ Z)

(M ◁ (X ⊗ Y )) ◁ Z

∼
m̃M,X,Y ⊗Z

m̃M◁X,Y,Z

m̃M,X⊗Y,Z m̃M,X,Y ◁idZ

as well as

(2.17) (rM ◁ idX)m̃M,1,X = id .

IfM,M′ are right C-modules, a module functor fromM toM′ is a pair
(T, d) where T :M→M′ is a functor and dM,X : T (M ◁X) → T (M) ◁ X
are natural isomorphisms such that for any X,Y ∈ C, M ∈M:
(2.18)

T (M ◁ (X ⊗ Y ))

T ((M ◁X) ◁ Y ) T (M ◁X) ◁ Y

(T (M) ◁ X) ◁ Y

T (M) ◁ (X ⊗ Y ))

T (m̃M,X,Y )

dM◁X,Y

dM,X◁id Y

dM,X⊗Y m̃T (M),X,Y

as well as

rT (M) dM,1 = T (rM ).(2.19)

2.3. The internal Hom. Let C be a tensor category and M be a left C-
module category. For any pair of objects M,N ∈ M, the internal Hom is
an object Hom(M,N) ∈ C representing the left exact functor

HomM(− ▷ M,N) : Cop → vect k.
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This means that, there are natural isomorphisms

HomC(X,HomM(M,N)) ≃ HomM(X ▷M,N).

The internal Hom for right C-module categories is defined similarly.

The next technical result will be needed later. Recall natural isomor-
phisms ϕl defined in (2.5).

Lemma 2.2. Let M be a right C-module category with action given by
◁ : M× C → M. If (F, c) : M → C is a module functor, then, for any
B ∈M, X ∈ C, the following diagrams commute.
(2.20)

(F (B)⊗X)⊗∗(F (B)⊗X)

F (B ◁ X)⊗∗F (B ◁ X) (F (B)⊗X)⊗(∗X⊗∗F (B))

1

id⊗(ϕl
F (B),X

)−1cB,X⊗∗c−1
B,X

evF (B◁X) evF (B)(id⊗evX⊗id)

(2.21)

(∗X⊗∗F (B))⊗(F (B)⊗X)

∗F (B ◁ X)⊗ F (B ◁ X) ∗(X⊗F (B))⊗(F (B)⊗X)

1

∗cB,X⊗c−1
B,X

ϕl
F (B),X

⊗id

coevF (B◁X) (id⊗coevF (B)⊗id)coevX

Proof. The proof follows, by simply checking that morphisms

evF (B◁X) = evF (B)

(
id⊗evX⊗id

)(
cB,X⊗(∗cB,Xϕ

l
F (B),X)−1

)
,

coevF (B◁X) =
(∗cB,Xϕ

l
F (B),X⊗c

−1
B,X

)(
id⊗coevF (B)⊗id

)
coevX ,

satisfy rigidity axioms. □

3. The (co)end for module categories

In this Section we recall the notion of relative (co)ends; a tool developed
in [3] in the context of representations of tensor categories, generalizing the
well-known notion of (co)ends in category theory.

Let C be a tensor category andM be a left C-module category. Assume
that A is a category and S : Mop ×M → A is a functor equipped with
natural isomorphisms

(3.1) βXM,N : S(M,X ▷ N)→ S(X∗ ▷ M,N),
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for any X ∈ C,M,N ∈ M. We shall say that β is a prebalancing of the
functor S. Sometimes we shall say that it is a C-prebalancing, to emphasize
the dependence on C.

Definition 3.1. The relative end of the pair (S, β) is an object E ∈ A
equipped with dinatural transformations πM : E

..−→ S(M,M) such that
(3.2)

S(M,M)

S((X∗ ▷ X) ▷ M,M) S(X∗ ▷ (X ▷M),M)

S(X ▷M,X ▷M)

E

S(evopX ▷idM ,idM )

S(mop
X∗,X,M

,idM )

βX
X▷M,M

πX▷MπM

for any X ∈ C,M ∈ M, and is universal with this property. This means

that, if Ẽ ∈ A is another object with dinatural transformations ξM : Ẽ
..−→

S(M,M), such that they fulfill (3.2), there exists a unique morphism h :

Ẽ → E such that ξM = πM ◦ h.

The relative end depends on the choice of the prebalancing. We will
denote the relative end as

∮
M∈M(S, β), or sometimes simply as

∮
M∈M S,

when the prebalancing β is understood from the context.

The relative coend of the pair (S, β) is defined dually. This is an object
C ∈ A equipped with dinatural transformations πM : S(M,M)

..−→ C such
that
(3.3)

S(M,M)

S(M, (X∗ ⊗X) ▷ M) S(M,X ▷ (X∗ ▷ M))

S(X∗ ▷ M,X∗ ▷ M)

C

S(idM ,coevX▷idM )

S(idM ,mX,X∗,M )

βX
M,X∗▷M

πX∗▷MπM

for any X ∈ C,M ∈ M, universal with this property. This means that, if

C̃ ∈ A is another object with dinatural transformations λM : S(M,M)
..−→ C̃
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12 LENTNER AND MOMBELLI

such that they satisfy (3.3), there exists a unique morphism g : C → C̃ such

that g ◦ πM = λM . The relative coend will be denoted
∮M∈M

(S, β), or

simply as
∮M∈M

S.

A similar definition can be made for right C-module categories. Let A
be a category, and N be a right C-module category endowed with a functor
S : N op ×N → A with a prebalancing

γXM,N : S(M ◁X,N)→ S(M,N ◁ ∗X),

for any M,N ∈ N , X ∈ C.

Definition 3.2. The relative end for S is an object E ∈ A equipped with
dinatural transformations λN : E

..−→ S(N,N) such that
(3.4)

S(N,N)

S(N,N ◁ (X ⊗ ∗X)) S(N, (N ◁X) ◁ ∗X)

S(N ◁X,N ◁ X)

E

S(idN ,idN◁ evX)

S(id,id⊗m−1
N,X,∗X)

γX
N,N◁X

λN◁XλN

for any N ∈ N , X ∈ C. We shall also denote this relative end by
∮
N∈N (S, γ).

Similarly, the relative coend is an object C ∈ B with dinatural transfor-
mations λN : S(N,N)

..−→ C such that
(3.5)

S(N,N)

S(N ◁ (∗X ⊗X), N) S((N ◁ ∗X) ◁ X,N)

S(N ◁ ∗X,N ◁ ∗X)

C

S(idN◁ coevopX ,idN )

S(m−1 op
N,∗X,X

,idN )

γX
N◁∗X,N

λN◁∗XλN

for any N ∈ N , X ∈ C. We shall also denote this relative coend by∮ N∈N
(S, γ).
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In the next Proposition we collect some results about the relative (co)end
that will be useful. The reader is referred to [3, Prop. 3.3], [3, Prop. 4.2].

Proposition 3.3. Assume M,N are left C-module categories, and S, S̃ :
Mop ×M→ A are functors equipped with C-prebalancings

βXM,N : S(M,X ▷ N)→ S(X∗ ▷ M,N),

β̃XM,N : S̃(M,X ▷ N)→ S̃(X∗ ▷ M,N),

X ∈ C,M,N ∈M. The following assertions holds

(i) Assume that the module ends
∮
M∈M(S, β),

∮
M∈M(S̃, β̃) exist and

have dinatural transformations π, π̃, respectively. If γ : S → S̃ is
a natural transformation such that

(3.6) β̃XM,Nγ(M,X▷N) = γ(X∗▷M,N)β
X
M,N ,

then there exists a unique map γ̂ :
∮
M∈M(S, β)→

∮
M∈M(S̃, β̃) such

that
π̃M γ̂ = γ(M,M)πM

for any M ∈ M. If γ is a natural isomorphism, then γ̂ is an iso-
morphism.

(ii) For any pair of C-module functors (F, c), (G, d) :M→N , the func-
tor

HomN (F (−), G(−)) :Mop ×M→ vect k

has a canonical prebalancing given by

(3.7) βXM,N : HomN (F (M), G(X ▷ N))→ HomN (F (X∗ ▷ M), G(N))

βXM,N (α) = (evX ▷ idG(N))m
−1
X∗,X,G(N)(idX∗ ▷ dX,Nα)cX∗,M ,

for any X ∈ C,M,N ∈M. There is an isomorphism

Natm(F,G) ≃
∮
M∈M

(HomN (F (−), G(−)), β).

□

The next result will be needed later. It follows from a combination of [3,
Prop. 3.3] (ii) and [3, Lemma 3.6]. LetM be a left C-module category, then
N =Mop is a right C-module category with right action given by

M ◁X = X∗ ▷ M.

Assume A is a category equipped with a functor

S : N op ×N → A,
together with a prebalancing

βXM,N : S(M ◁X,N)→ S(M,N ◁ ∗X).

The functor
HomA(S(−,−), U) :Mop ×M→ vect k,
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14 LENTNER AND MOMBELLI

has a natural prebalancing

γXM,N : HomA(S(M,N ◁ ∗X), U)→ HomA(S(M ◁X,N), U),

γXM,N (f) = f ◦ βXM,N .

The proof of the next statement is similar to the proof of [3, Prop. 3.3 (ii)].

Proposition 3.4. If the coend
∮
M∈N (S, β) exists, then for any object U ∈

A, the end
∮
M∈MHomA(S(−,−), U) exists, and there is an isomorphism∮
M∈M

HomA(S(−,−), U) ≃ HomA(

∮ M∈N
(S, β), U).

Moreover, if
∮
M∈MHomA(S(−,−), U) exists for any U ∈ A, then the coend∮M∈N

(S, β) exists. □

The proof of the next result is completely analogous to the proof in the
case of usual coend.

Lemma 3.5. Let M be a right C-module category, S : Mop × M → A
a functor equipped with a prebalancing γ. If F : A → A′ is a right exact
functor, then there is an isomorphism

F (

∮ M∈M
(S, γ)) ≃

∮ M∈M
(F ◦ S, F (γ)).

□

We shall also need the next result.

Lemma 3.6. LetM,N be right C-module categories and let (J, c) :M→N
be an equivalence of C-module categories. Assume that S : N op × N → A
is a functor equipped with a prebalancing β. The functor S(J(−), J(−)) :
Mop ×M→ A has a prebalancing γ given by

γVM,N = S(id J(M), cN,∗V )β
V
J(M),J(N)S(c

−1
M,V , id J(N))

for any M,N ∈M. There is an isomorphism∮ M∈M
(S(J(−), J(−)), γ) ≃

∮ N∈N
(S, β).

Proof. We only sketch the proof. Let λN : S(N,N) →
∮ N∈N

(S, β) the
associated dinatural transformations. If we define πM = λJ(M), for any
M ∈ M, one can verify that these are dinatural transformations and they
satisfy (3.5). Universality of π follows from the universality of λ and the
fact that J is an equivalence of categories. □
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3.1. Existence of (co)ends. In this Section we shall prove that certain
(co)ends exists. All these (co)ends will be used in subsequent sections. We
shall use ideas from [25].

Let C be a tensor category, B be a right C-module category. Since our
definition of module category includes that the action is right exact in each
variable, hypothesis of [9, Thm. 2.24] are fulfilled. This means that, there
exists an algebra A ∈ C such that

(3.8) B ≃ AC

as module categories. Consider C as a right C-module category with the
regular action. We shall denote by Rex C(B, C) the category of right exact
C-module functors. The functor

Φ : Bop → Rex C(B, C),

Φ(B)(D) = Hom(D,B)∗

is an equivalence of categories, since, under identification (3.8), the functor
Φ is the composition of equivalences

(AC)op
(−)∗−−−→ CA

R−→ Rex C(AC, C).

Here R : CA → Rex C(AC, C) is the functor given by R(V )(W ) = V⊗AW.
Let be (F, c) ∈ Rex C(B, C). In particular, we have natural isomorphisms

cB,X : F (B ◁ X)→ F (B)⊗X,

for B ∈ B, X ∈ C. Consider the functor

Bop × B → B,

(D,B) 7→ D ◁ ∗F (B).

This functor posses a C-prebalancing

(3.9) γVB,D : D ◁ ∗F (B ◁ V )→ D ◁ ∗V⊗∗F (B),

γVB,D = idD ◁ (ϕlF (B),V )
−1∗(c−1

B,V ).

Proposition 3.7. Let B be a right C-module category. For any right exact
C-module functor (F, c) : B → C the coend

C̃(F, c) =

∮ B∈B
(B ◁ ∗F (B), γ) ∈ B,

exists. Moreover, the functor (F, c) 7→ C̃(F, c) is a quasi-inverse of Φ.
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16 LENTNER AND MOMBELLI

Proof. For any D ∈ B we have

Natm(Φ(D), F ) ≃
∮
B∈B

HomC(Φ(D)(B), F (B))

≃
∮
B∈B

HomC(HomB(B,D)∗, F (B))

≃
∮
B∈B

HomC(
∗F (B),HomB(B,D))

≃
∮
B∈B

HomB(B ◁ ∗F (B), D)

≃ HomB(

∮ B∈B
B ◁ ∗F (B), D)

= HomBop(D,

∮ B∈B
B ◁ ∗F (B)).

The first isomorphism is Proposition 3.3 (ii), and the fifth isomorphism is
Proposition 3.4. Observe that, to prove the existence of the fourth isomor-
phism, one has to check that the natural isomorphisms

HomC(
∗F (B),HomB(B,D) ≃ HomB(B ◁ ∗F (B), D)

commute with the respective prebalancings and then use Proposition 3.3
(i). This calculation is left to the reader. This proves both, that the coend

C̃(F, c) exists and that the quasi-inverse of Φ is given by

Φ̄ : Rex C(B, C)→ Bop,

Φ̄(F, c) =

∮ B∈B
(B ◁ ∗F (B), γ).

□

For a pair of module functors (F, c), (F̃ , c̃) : B → C, the functor

Bop × B → C,

(A,B) 7→ F̃ (B)⊗∗F (A)

has a canonical prebalancing, given by

βXA,B : F̃ (B)⊗∗F (A ◁ X)→ F̃ (B ◁ ∗X)⊗∗F (A),

βXA,B = (c̃−1
B,∗X⊗id )(id F̃ (B)

⊗(ϕlF (A),X)−1∗(c−1
A,X)).

(3.10)

As a consequence of Lemma 3.5, one can apply F̃ to the coend in Propo-
sition 3.7. Thus we get the next result.

Corollary 3.8. For any pair of right exact C-module functors F, F̃ : B → C,
the coend ∮ B∈B

(F̃ (B)⊗∗F (B), β) ∈ B,

exists. □

https://doi.org/10.4153/S0008414X24000531 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000531


FIBRE FUNCTORS AND RECONSTRUCTION OF HOPF ALGEBRAS 17

4. Hopf algebras in braided tensor categories

4.1. Hopf algebras in braided tensor categories. Let us briefly recall
the notion of Hopf algebras in braided tensor categories, and how their
corepresentation categories are again tensor categories. For more details,
the reader is referred to [19], [20], [26] and references therein.

A braided tensor category is a pair (C, σ) where C is a tensor category and
σV,W : V⊗W → W⊗V is a braiding, that is, a family of natural isomor-
phisms satisfying

σV,U⊗W = (id U⊗σV,W )(σV,U⊗idW ),

σV⊗U,W = (σV,W⊗id U )(id V⊗σU,W ).
(4.1)

Remark 4.1. Note that in the above axioms we are assuming that C is a
strict tensor category.

The braiding fulfills the braid relation, whence the name. We illustrate
this identity in terms of string diagrams, which we read bottom to top

U V W

W V U

=

U V W

W V U

Definition 4.2. A bialgebra in C is a collection (H,m, u,∆, ε), where (H,m, u)
is an algebra, (H,∆, ε) is a coalgebra, and ∆, ε are algebra morphisms. I.e.

∆ ◦m = (m⊗m)(id⊗σH,H⊗id )(∆⊗∆),(4.2)

∆ ◦ u = (u⊗u)(4.3)

ε ◦m = (ε⊗ε)(4.4)

ε ◦ u = id 1(4.5)

We illustrate the first identity

H

H

H

H

=

H

H

H

H
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18 LENTNER AND MOMBELLI

If H is a bialgebra, then the space HomC(H,H) has a a convolution
product with unit given by u ◦ ε. If the identity idH has an inverse S
under the convolution product, then H is a Hopf algebra, and S is called the
antipode. The next Theorem is well known, see for example [19].

Theorem 4.3. If H is a Hopf algebra in a braided tensor category C, then
the category of left H-comodules HC is a tensor category. Moreover, if C
is a finite tensor category, then HC is also a finite tensor category, and the
forgetful functor f : HC → C is an exact faithful monoidal functor. □

The tensor product of two left H-comodules is given as follows: If (V, ρV ),
(W,ρW ) are objects in HC, then the tensor product V⊗W in C has a left
H-comodule structure given by

(4.6) ρV⊗W = (m⊗id V⊗W )(idH⊗σV,H⊗idW )(ρV⊗ρW ).

H

V W

V W

If (V, ρV ) ∈ HC then ∗V ∈ HC. The coaction is given by

(4.7) ρ∗V =
(
(S⊗id )σ∗V,H⊗evV

)(
id ∗V⊗ρV⊗id ∗V

)(
coevV⊗id ∗V

)
.

The coaction of the right dual V ∗ is defined similarly.

For any V ∈ C we can endow V with a trivial H-comodule structure,
given by

ρtV : V → H⊗V, ρtV = u⊗id V .

4.2. Yetter-Drinfeld modules. Let H be a finite dimensional Hopf al-
gebra in vect k. Then we shall denote by H

HYD the category of finite-
dimensional Yetter-Drinfeld modules. An object V ∈ H

HYD(vect k) is a left
H-module · : H⊗kV → V , and a left H-comodule λ : V → H⊗kV such that

(4.8) λ(h · v) = h(1)v(−1)S(h(3))⊗h(2) · v(0),

for any h ∈ H, v ∈ V . If V ∈ H
HYD(vect k), the map σX : V⊗kX → X⊗kV ,

given by σX(v⊗x) = v(−1) · x⊗v(0) is a half-braiding for V .

This notion had been generalized in [5] to Hopf algebrasH inside a braided
tensor category C:

Definition 4.4. Let H be a Hopf algebra in a braided tensor category C.
Then an H-H-Yetter-Drinfeld module V is an object V ∈ C, together with
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a structure of H-module m : H ⊗ V → V and structure of H-comodule in
ρ : V → H ⊗ V in the tensor category C, compatible in the following way

H

H

V

V

=

H

H

V

V

The category H
HYD(C) consists of Yetter-Drinfeld modules and ofH-linear

and H-colinear morphisms. It becomes a tensor category with the usual
tensor product of H-modules and H-comodules V ⊗W . An useful feature
of this tensor category is that, it admits, by construction, a braiding

c(V,mV ,ρV ),(W,mW ,ρW ) : V ⊗W →W ⊗ V

which is given on objects (V,mV , ρV ) and (W,mW , ρW ) by

c(V,mV ,ρV ),(W,mW ,ρW ) := (ρW ⊗ id V ) ◦ (idH ⊗ cV,W ) ◦ (ρV ⊗ idW )

and is invertible if H has a bijective antipode

(c(V,mV ,ρV ),(W,mW ,ρW ))
−1 := c−1

V,W ◦ (mW ⊗ id V ) ◦ (c−1
H,W ⊗ id V )

◦ (idW ⊗ S−1 ⊗ id V ) ◦ (idW ⊗ ρV ).

If C is rigid, then the dual object in C with the standard dual action and
coaction gives a dual object in H

HYD(C). The structure is summarized in
the following statement proven in [5]:

Theorem 4.5. Let H be a Hopf algebra in C. The Yetter-Drinfeld modules
over H in C have a natural structure of a braided tensor category H

HYD(C).
If C is rigid, then so is H

HYD(C).

Recall that the Drinfeld center Z(B) is a braided tensor category associ-
ated to any tensor category B. The construction of Yetter-Drinfeld modules
gives a realization of a special case of the construction of a relative Drinfeld
center ZC(B), a braided tensor category associated to any tensor category
B with a braided subcategory C ↪→ Z(B). More precisely we have

H
HYD(C) = ZC(

HC)
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20 LENTNER AND MOMBELLI

5. Monoidal module categories

Given C, B tensor categories. We shall define what means that a tensor
category C acts on B.

Definition 5.1. We call B a monoidal left C-module category if B is a left
C-module category, with action given by ▷ : C ×B → B, such that 1 ▷1 ≃ 1,

and there are natural isomorphisms lX,B : X ▷ B
≃−−→ (X ▷ 1)⊗B, for any

X ∈ C, B ∈ B, such that

(5.1) l1,B = idB, lX,1 = idX▷1,

(5.2)

X ▷ (Y ▷ B)

(X ▷ 1)⊗ (Y ▷ B)

(X ▷ 1)⊗ ((Y ▷ 1)⊗B)

((X ▷ 1)⊗ (Y ▷ 1))⊗B

(X ▷ (Y ▷ 1))⊗B

((X ⊗ Y ) ▷ 1)⊗B

(X ⊗ Y ) ▷ B

lX,Y ▷B

idX▷1⊗lY,B

∼

m−1
X,Y,B

lX⊗Y,B

mX,Y,1⊗idB

lX,Y ▷1⊗id B

for any X,Y ∈ C, B ∈ B. Similarly, we shall say that B is a monoidal
right C-module category, with action ◁ : B × C → B, such that

1 ◁ 1 ≃ 1,

and there are natural isomorphisms lB,X : B ◁ X → B⊗(1 ◁ X), such that
for any X,Y ∈ C, B ∈ B

(5.3) lB,1 = idB, l1,X = id 1◁X ,
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(5.4)

(B ◁ X) ◁ Y

(B ◁ X)⊗ (1 ◁ Y )

(B ⊗ (1 ◁ X))⊗ (1 ◁ Y )

B ⊗ ((1 ◁ X)⊗ (1 ◁ Y ))

B ⊗ ((1 ◁ X) ◁ Y ))

B ⊗ (1 ◁ (X ⊗ Y ))

B ◁ (X ⊗ Y )

lB◁X,Y

lB,X⊗id1◁Y

∼

m̃−1
B,X,Y

lB,X⊗Y

idB⊗m̃1,X,Y

id B⊗l1◁X,Y

Example 5.2. (i) Any tensor category C is a monoidal vect k-module
category, with the canonical action

• : vect k × C → C.
(ii) Let C be a tensor category. Any tensor subcategory D acts on C by

X ▷ Y = X⊗Y.
In particular any tensor category acts on itself.

(iii) Let (C, σ) be a braided tensor category and D ⊆ C be a tensor
subcategory. Then Drev acts on C as

X ▷ Y = Y⊗X.
In this case lX,B = σB,X .

(iv) Let C be a tensor category and C ∈ C be a coalgebra. Then the
category CC, of left C-comodules in C, is a right C-module category.
The action is given as follows. If (W,ρ) ∈ CC, then W ◁ Y =W⊗Y ,
where the coaction on W⊗Y is given by ρ⊗id Y .

Definition 5.3. If B, B′ are right monoidal C-module categories, a monoidal
module functor is a collection (F, c, ξ) : B → B′ where (F, c) is a C-module
functor, (F, ξ) is a monoidal functor and equation

(5.5) lF (B),V cB,V = (id F (B)⊗c1,V )ξ−1
B,1◁V F (lB,V ),
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is fulfilled, for any B ∈ B, V ∈ C.

5.1. Sections of monoidal functors.

Definition 5.4. Let C,B be tensor categories. If F : B → C is a tensor
functor, a section to F is a right exact tensor functor G : C → B such that
F ◦G ≃ Id C as monoidal functors.

Example 5.5. (1) Any (linear) tensor functor F : B → vect k has a
canonical section given by

G : vect k → B,
G(V ) = V • 1.

Here the action • : vect k × B → B, is the one presented in (1.1).
(2) The previous example can be generalized to other kinds of fiber func-

tors. If C is a tensor category that acts on another tensor category B
then, any monoidal functor F : B → C that is also a C-module func-
tor has a section given by G : C → B, G(V ) = V ▷1. See Proposition
5.6 below.

(3) If (C, σ) is a braided tensor category, and H ∈ C is a Hopf algebra
with unit given by u : 1→ H, then the forgetful functor f : HC → C
has a section given by G : C → HC, G(V ) = (V, ρtV ). Here ρtV =
u⊗id V is the trivial comodule structure.

(4) Let H be a Hopf algebra and R be a Hopf algebra in the category
of Yetter-Drinfeld modules H

HYD. Consider the corresponding Hopf
algebra obtained by bosonization R#H. Let us consider the functor

F : Rep(R#H)→ Rep(H), F (V ) = V.

The action of H on V is given by h ·v = (1#h) ·v. The functor F has
a section given by G : Rep(H) → Rep(R#H) given by G(V ) = V ,
where the action of R#H on V is given by

(r#h) · v = ε(r)h · v.
(5) Let (C, σ) be a braided tensor category. The forgetful functor from

the center of C, f : Z(C) → C, has a section given by the inclusion
C ↪→ Z(C), V 7→ (V, σ).

Proposition 5.6. Let B, C be tensor categories, and (F, ξ) : B → C be a
monoidal functor. The following notions are equivalent:

(i) The functor F has a section;
(ii) B is a right monoidal C-module category (in the sense of Definition

5.1) and F is a monoidal module functor.

Proof. Let us only give a sketch of the proof. (i) implies (ii): Assume that
(G, ζ) : C → B is a monoidal section to F . Let α : F ◦G→ Id be a natural
monoidal isomorphism. Define the right action of C on B as

B ◁ V := B⊗G(V ),

https://doi.org/10.4153/S0008414X24000531 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000531


FIBRE FUNCTORS AND RECONSTRUCTION OF HOPF ALGEBRAS 23

for any B ∈ B, V ∈ C. The associativity of this action is given by

mB,V,W : B ◁ (V⊗W )→ (B ◁ V ) ◁ W,

mB,V,W = idB⊗ζ−1
V,W ,

for any B ∈ B, V,W ∈ C. Turns out that B is a monoidal module category
with isomorphisms

lB,V : B ◁ V → B⊗(1 ◁ V ),

lB,V = idB⊗G(V ).

With this action, F is a module functor. The module structure of the
functor F is given by

cB,V : F (B ◁ V )→ F (B)⊗V,

cB,V = (id F (B)⊗αV )ξ
−1
B,G(V )F (lB,V ).

Since c1,V = αV , then it follows that Equation (5.5) is fulfilled, that is
(F, ξ, c) is a monoidal module functor.

Let us prove now that (ii) implies (i): Assume that (F, ξ, c) : B → C is a
monoidal C-module functor. Define G : C → B, G(V ) = 1 ◁ V . Axiom (5.4)
implies that isomorphisms

l−1
1◁V,W : G(V )⊗G(W )→ G(V⊗W ),

endow G with the structure of monoidal functor. Define natural isomor-
phisms αV : F (G(V )) = F (1 ◁ V ) → V , αV = c1,V . Let us check that
they are monoidal natural isomorphisms. For this, we need to verify that
equation

(5.6) (c1,V⊗c1,W ) = c1,V⊗WF (l
−1
1◁V,W )ξ1◁V,1◁W

is satisfied. Using that c satisfies diagram (2.18), it follows that the right
hand side of Equation (5.6) is equal to

= (c1,V⊗idW )c1◁V,WF (l
−1
1◁V,W )ξ1◁V,1◁W

= (c1,V⊗idW )(id F (1◁V )⊗c1,W )ξ−1
1◁V,1◁WF (l1◁V,W )F (l−1

1◁V,W )ξ1◁V,1◁W

= (c1,V⊗c1,W ).

The second equation follows from (5.5) □

Remark 5.7. Constructions in Proposition 5.6 are reciprocal in the following
sense. If B is a right monoidal C-module category and G : C → B is the
monoidal functor G(V ) = 1◁V , then one can endow B with a right C-module
structure

B ◀ V = B⊗G(V ),

for any B ∈ B, V ∈ C. Turns out, that the identity functor Id : (B, ◁) →
(B,◀) is an equivalence of module categories.

https://doi.org/10.4153/S0008414X24000531 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000531


24 LENTNER AND MOMBELLI

5.2. Some natural module transformations. It is known that natural
transformations between additive functors are additive. For example, if
(F, ξ) is an additive monoidal functor, then, natural isomorphisms

ξA,B : F (A)⊗F (B)→ F (A⊗B),

are additive in each variable. In this section, we shall study what happens
when F is a monoidal module functor. We aim at proving that ξ is a module
natural transformation in the second variable.

Lemma 5.8. If B is a right monoidal C-module category, then for any
A ∈ B, the functor LA : B → B, LA(B) = A⊗B is a C-module functor.

Proof. For any B ∈ B, V ∈ C, the module structure of the functor LA is
given by

ηB,V : A⊗(B ◁ V )→ (A⊗B) ◁ V,

ηB,V = l−1
A⊗B,V (idA⊗lB,V )

Let us prove that η satisfies (2.18). Using that isomorphisms l satisfy dia-
gram (5.4), it follows that for any C ∈ B and any V,W ∈ C we have that

(5.7) l−1
C,V⊗W = l−1

C◁V,W (l−1
C,V⊗id 1◁W )(id C⊗l1◁V,W ).

On one hand we have that

ηB,V⊗W =l−1
A⊗B,V⊗W (idA⊗lB,V⊗W )

=l−1
(A⊗B)◁V,W (l−1

A⊗B,V⊗id 1◁W )(idA⊗B⊗l1◁V,W )(idA⊗B⊗l−1
1◁V,W )

(idA⊗lB,V⊗id 1◁W )(idA⊗lB◁V,W )

=l−1
(A⊗B)◁V,W (l−1

A⊗B,V⊗id 1◁W )(idA⊗lB,V⊗id 1◁W )(idA⊗lB◁V,W )

The second equation follows from using (5.7). On the other hand

(ηB,V ◁ idW )ηB◁V,W

is equal to

=(l−1
A⊗B,V ◁ idW )(idA⊗lB,V⊗id 1◁W )l−1

A⊗(B◁V ),W (idA⊗lB◁V,W )

=(l−1
A⊗B,V ◁ idW )l−1

A⊗B⊗(1◁V ),W (idA⊗lB,V⊗id 1◁W )(idA⊗lB◁V,W )

=l−1
(A⊗B)◁V,W (l−1

A⊗B,V⊗id 1◁W )(idA⊗lB,V⊗id 1◁W )(idA⊗lB◁V,W ).

The second and third equalities follow from the naturality of l. □

Proposition 5.9. Assume that B is a monoidal right C-module category
and (F, c, ξ) : B → C a monoidal module functor. The following assertions
hold.

(i) The category B has structure of C-bimodule category.
(ii) There are C-module funtors

H, H̃ : B ⊠C B → C,

https://doi.org/10.4153/S0008414X24000531 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000531


FIBRE FUNCTORS AND RECONSTRUCTION OF HOPF ALGEBRAS 25

such that

H(A⊠B) = F (A⊗B), H̃(A⊠B) = F (A)⊗F (B),

for any A,B ∈ B.
(iii) The monoidal structure of the functor F defines a natural module

isomorphism ξ : H̃ → H.

Proof. (i). From Proposition 5.6 there is a section G : C → B of the functor
F . Define the left action ▷ : C × B → B as V ▷ B = G(V )⊗B. With this
action B becomes a C-bimodule category. Thus, we can consider the Deligne
tensor product over C, B⊠C B. This category has an obvious right C-module
category structure.

One can prove that functors B × B → C given by

(A,B) 7→ F (A⊗B), (A,B) 7→ F (A)⊗F (B),

are C-balanced, thus defining functors H and H̃. The (right) C-module

structure of the functor H̃ is the one inherited from the functor F . The
module structure of the functor H is more involved. One can prove that
natural transformations

eA,B,V : F (A⊗(B ◁ V ))→ F (A⊗B)⊗V,

eA,B,V = cA⊗B,V F (l
−1
A⊗B,V (idA⊗lB,V ))

are C-balanced, thus defining natural transformations

eX,V : H(X ◁ V )→ H(X) ◁ V,

for any X ∈ B ⊠C B, V ∈ C. One can prove also that (H, e) is a module
functor. Note that e is the module structure resulting from the composition
of module structures of F and the functor LA, presented in Lemma 5.8. This
proves (ii).

(iii). To prove that ξ is a natural module transformation in the second
variable, we need to verify that the diagram

(5.8) H̃(A,B ◁ V )

id F (A)⊗cB,V
��

ξA,B◁V // H(A,B ◁ V )

eA,B,V

��
H̃(A,B)⊗V

ξA,B⊗id V

// H(A,B)⊗V,

is commutative for any A,B ∈ B, V ∈ C. Here

eA,B,V = cA⊗B,V F (l
−1
A⊗B,V (idA⊗lB,V )).
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We have

eA,B,V ξA,B◁V = cA⊗B,V F (l
−1
A⊗B,V (idA⊗lB,V ))ξA,B◁V

= (id⊗c1,V )ξ−1
A⊗B,1◁V F (idA⊗lB,V )ξA,B◁V

= (id⊗c1,V )ξ−1
A⊗B,1◁V ξA,B⊗(1◁V )(id F (A)⊗F (lB,V ))

= (id⊗c1,V )(ξA,B⊗id F (1◁V ))(id F (A)⊗ξ−1
B,1◁V )(id F (A)⊗F (lB,V ))

= (ξA,B⊗id V )(id F (A)⊗(id F (B)⊗c1,V )ξ−1
B,1◁V F (lB,V ))

= (ξA,B⊗id V )(id F (A)⊗cB,V ).

The second equality follows from (5.5), the third equality follows from the
naturality of ξ, the fourth one follows from (2.1). The last equality follows
from (5.5). □

6. Fiber functors and reconstruction results

It is a classical result that, out of a fiber functor, which is a monoidal,
exact and faithful functor F : B → vect k, one can reconstruct a (usual)
Hopf algebra H such that B is monoidally equivalent to the category of left
H-comodules. We shall generalize these reconstruction theorems for a fiber
functor F : B → C, where C is an arbitrary braided tensor category acting
monoidally on B. The reconstruction of the Hopf algebra from these data
will be described in a similar way as the case C = vect k. See for example
[19], [22]. The main new ingredient will be the use of the relative coend, in-
troduced in [3], and the splitting condition; that is, the existence of a section
G : C → B of F . While dealing with the relative (co)end, the primary new
challenge will be demonstrate that some dinatural transformations satisfy
Equation (3.5).

6.1. Coalgebras constructed from a coend. Let C be a tensor category,
and B be a right C-module category. For the rest of this section, (F, c) : B →
C will denote a right exact module functor.

Consider the functor

SF : Bop × B → C,
SF (A,B) = F (B)⊗∗F (A).

This functor has a canonical prebalancing, given by

βXA,B : F (B)⊗∗F (A ◁ X)→ F (B ◁ ∗X)⊗∗F (A),

βXA,B = (c−1
B,∗X⊗id ∗F (A))(id F (B)⊗(ϕlF (A),X)−1∗(c−1

A,X)).
(6.1)

We define

C(F, c) = C(F ) =

∮ B∈B
(SF , β) =

∮ B∈B
F (B)⊗∗F (B).

Let πB : F (B)⊗∗F (B)→ C(F ) be the associated dinatural transformations.
Existence of this coend follows from Corollary 3.8. The following Lemma is
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a generalization of [22, Lemma 2.1.9]. Recall that, for anyM,N ∈ B, X ∈ C
we have natural isomorphisms

ψV
F (M),F (N) : HomC(F (M)⊗∗F (N), V )→ HomC(F (M), V⊗F (N))

described in (2.7).

Lemma 6.1. The functor V 7→ Natm(F, V⊗F ) is represented by C(F ).
That is, for any V ∈ C there are natural isomorphisms

ω : HomC(C(F ), V )→ Natm(F, V⊗F ),

ω(g)B = (g⊗id F (B))ψ
C(F )
F (B),F (B)(πB).

(6.2)

Proof. Fix some object V ∈ C. The functor V⊗F is a right module functor,
then we can consider the prebalancing of the functor

HomC(F (−), V⊗F (−)) : B × Bop → vect k,

given by

γXB,N : HomC(F (N ◁ ∗X), V⊗F (B))→ HomC(F (N), V⊗F (B ◁ X)),

γXN,B(f) = (id V⊗cB,X)(f⊗idX)(c−1
N,∗X⊗idX)(id F (N)⊗coevX).

Note that here we are considering Bop as a left C-module category, with
action X ▷ B := B ◁ ∗X. Proposition 3.3 (ii) tells us that there is an
isomorphism∮

B∈B
(HomC(F (B), V⊗F (B)), γ) ≃ Natm(F, V⊗F ).

From the proof of Proposition 3.4, one can see that the dinatural transfor-
mations of the end

∮
B∈B HomC(F (B)⊗∗F (B), V ) are given by

π̂B :

∮
B∈B

HomC(F (B)⊗∗F (B), V )→ HomC(F (B)⊗∗F (B), V ),

π̂B(g) = g ◦ πB.
Here, we are using identification∮

B∈B
HomC(F (B)⊗∗F (B), V ) = HomC(

∮ B∈B
F (B)⊗∗F (B), V ).

It follows by a straightforward computation that

γXM,N (ψV
F (M◁∗X),F (N)(f)) = ψV

F (M),F (N◁X)(f ◦ β
X
N,M ),

for any M,N ∈ B and any f ∈ HomB(F (M ◁ ∗X)⊗∗F (N), V ). This implies,
using Proposition 3.3 (i) that, for any V ∈ C, there exists an isomorphism

ψ̂V :

∮
B∈B

HomC(F (B)⊗∗F (B), V )→
∮
B∈B

HomC(F (B), V⊗F (B)),
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such that µB ◦ ψ̂V = ψV
F (B),F (B) ◦ π̂B. For any V ∈ C we have that

HomC(C(F ), V ) ≃
∮
B∈B

HomC(F (B)⊗∗F (B), V )

≃
∮
B∈B

HomC(F (B), V⊗F (B))

≃ Natm(F, V⊗F ).
The first isomorphism is Proposition 3.4. Tracing this chain of isomorphisms,
one can see that, the composition coincides with ω defined by Equation
(6.2). □

Proposition 6.2. Let C be a tensor category, and B be a right C-module
category. Let (F, c) : B → C be a right exact module functor. The object
C(F ) ∈ C has a coalgebra structure ∆ : C(F )→ C(F )⊗C(F ), ε : C(F )→ 1
determined by diagramms

(6.3) F (B)⊗∗F (B)

id⊗coevF (B)⊗id
��

πB // C(F )

∆
��

F (B)⊗∗F (B)⊗F (B)⊗∗F (B)
πB⊗πB

// C(F )⊗C(F ),

(6.4) F (B)⊗∗F (B)
πB //

evF (B)
%%

C(F )

ε
}}

1,

for any B ∈ B.

Proof. It follows by a straightforward computation that, the maps

evF (B) : F (B)⊗∗F (B)→ 1,

(πB⊗πB)(id⊗coevF (B)⊗id ) : F (B)⊗∗F (B)→ C(F )⊗C(F ),
are dinatural maps. It follows from Diagram (2.20) that evF (B) satisfies
(3.5). It follows from Diagram (2.21) and the fact that π satisfies (3.5)
that, (πB⊗πB)(id⊗coevF (B)⊗id ) also satisfies Equation (3.5). Whence, the
existence of ∆ and ε follow from the universal property of the relative coend.

The proof that (C(F ),∆, ε) is a coalgebra is standard, and it follows from
Diagrams (6.3), (6.4). □

Let C be a tensor category and C ∈ C be a coalgebra. The category CC,
of left C-comodules in C, is a right C-module category. The action is given
as follows. If (W,ρ) ∈ CC, then W ◁ Y = W⊗Y , where the coaction on
W⊗Y is given by ρ⊗id Y . The forgetful functor f : CC → C is a C-module
functor. The next result says that the coalgebra reconstructed from the
forgetful functor f coincides with C.
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In this case, the functor Sf has a prebalancing given by

βXA,B = idB⊗(ϕlA,X)−1,

for any A,B ∈ CC, X ∈ C.

Lemma 6.3. There exists an isomorphism of coalgebras C(f) ≃ C in C.

Proof. In this particular case, if T ∈ C is an object, and λW : W⊗∗W → T
is a dinatural transformation, Equation (3.5) writes as

(6.5) λW⊗∗V (idW⊗(ϕlW⊗∗V,V )
−1) = λW (idW⊗∗(idW⊗coevV )),

for any W ∈ CC, V ∈ C.
If W ∈ CC has comodule structure given by ρW → C⊗W , then we de-

fine πW : W⊗∗W → C, the morphisms given by πW = ψ̄C
W,W (ρ). Recall

that, natural isomorphisms ψ̄ were defined in (2.8). Maps πW are dinatural
transformations, and they satisfy Equation (6.5).

Let A ∈ C be another object, equipped with dinatural transformations
λW : W⊗∗W → A such that they satisfy Equation (6.5). Define h as the
composition

h : C
id C⊗∗ε−−−−−→ C⊗∗C

λC−−→ A.

Since λ is dinatural, and it satisfies (6.5), one can see that h ◦ πW = λW .
This proves that, indeed, C(f) ≃ C. □

Proposition 6.4. Let B be a right C-module category, and (F, c) : B → C
be a right exact module functor. Set C = C(F ) the coalgebra defined in
Proposition 6.2.

1. The functor (F, c) : B → C factorizes as

(6.6) CC
f

  
B

F̂
>>

F
// C.

Here f : CC → C is the forgetful functor, and the functor F̂ is a
C-module functor.

2. If F is exact (respect. faithful) then F̂ is exact (respect. faithful).

Proof. 1. For any A ∈ B, define F̂ (A) = (F (A), ρA), where

ρA = ψC
F (A),F (A)(πA) : F (A)→ C⊗F (A).

Using diagrams (6.3), (6.4), one can prove that

(id C⊗ρA)ρA = (∆⊗id )ρA,

(ε⊗id )ρA = id F (A).
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2. Clearly, if F is faithful, then F̂ is faithful. Assume that F is left exact.
Let f : A → B be a morphism in B with kernel k = ker f : K → A. Since
F is left exact, then, F (k) = kerF (f). We only need to prove that, the
morphism F (k) : F (K)→ F (A) is a map of C-comodules. That is, we need
to prove the equality

(6.7) (id⊗F (k))ψC
F (K),F (K)(πK) = ψC

F (A),F (A)(πA)F (k).

Using the naturality of ψ, it follows that

ψC
F (A),F (A)(πA)F (k) = ψC

F (K),F (A)(πA(F (k)⊗id ))

= ψC
F (K),F (A)(πK(id⊗∗F (k)))

= (id⊗F (k))ψC
F (K),F (K)(πK).

The second equality follows from the dinaturality of π, the third equality
follows again by the naturality of ψ. The proof that, if F is right exact,

then F̂ is right exact, follows similarly. □

6.2. Some auxiliary results. In this section we shall present some tech-
nical results that will be used later. In particular, these results will be used
in the proof of our main result Theorem 6.7.

Let B be a right C-module category, and (F, c) : B → C be a module
functor. To make calculations easier, we shall assume that the associativity
of the C-module category B is trivial. Recall the relative coend

(6.8) C̃(F, c) = C̃ =

∮ B∈B
B ◁ ∗F (B) ∈ B,

presented in Proposition 3.7. Let us denote by

λB : B ◁ ∗F (B)→ C̃(F, c),

the associated dinatural transformations. Analogous to the definition of ∆,
given in (6.3), we shall define a map

(6.9) δ : C̃(F, c)→ C̃(F, c) ◁ C(F, c).

Lemma 6.5. There exists a unique morphism δ : C̃(F, c)→ C̃(F, c)◁C(F, c)
such that

(6.10) B ◁ ∗F (B)

id ◁(coevF (B)⊗id )

��

λB // C̃

δ
��

B ◁ ∗F (B)⊗F (B)⊗∗F (B)
λB◁ πB // C̃ ◁ C.

Proof. Let us denote dB,V the following natural isomorphism

dB,V : ∗F (B ◁ V )→ ∗V⊗∗F (B),

dB,V =
(
ϕlF (B),V

)−1∗(c−1
B,V ).
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Recall from Equation (3.9), that the prebalancing used in the coend C̃(F, c)
is given by

γVB,D : D ◁ ∗F (B ◁ V )→ D ◁ ∗V⊗∗F (B),

γVB,D = idD ◁ dB,V .

Using that c satisfies (2.18), it is not difficult to prove that

(6.11) dB,∗V⊗V = (ϕl∗V,V⊗id )(id ∗V⊗dB,∗V )dB◁∗V,V ,

for any B ∈ B, V ∈ C. The naturality of ϕl and c implies that

(6.12) F (∗(idB ◁ coevV )) = (∗(coevV )⊗id ∗F (B))dB,∗V⊗V ,

for any B ∈ B, V ∈ C. Whence, using (2.6), it follows that

(6.13) F (∗(idB ◁ coevV ))d
−1
B◁∗V,V = (ev∗V )⊗id ∗F (B))(id ∗V⊗dB,∗V ).

In this case, if A ∈ B, a dinatural transformation νB : B ◁ ∗F (B) → A
satisfies Equation (3.5) if and only if

(6.14) νB
(
idB ◁ F (

∗(idB ◁ coevV )
)
= νB◁∗V γ

V
B◁∗V,B.

Using that dinatural transformations λ and π both satisfy (3.5) and using
(6.13), it follows that dinatural transformation

(λB ◁ πB)(idB ◁ (coevF (B)⊗id ∗F (B))

also satisfies (6.14). Now, existence of the map δ : C̃(F, c) → C̃(F, c) ◁
C(F, c) satisfying (6.10) follows from the universal property of the relative
coend. □

For any A,B ∈ B and V ∈ C, define

ψ̃V
B,A : HomB(B ◁ ∗V,A)→ HomB(B,A ◁ V ),

ψ̃V
B,A(f) = (f ◁ id V )(idB ◁ coevV ).

(6.15)

Compare with natural isomorphisms given in (2.7). For any B ∈ B, define
also

(6.16) ρ̃B = ψ̃
F (B)

B,C̃
(λB) : B → C̃ ◁ F (B).

One could check that, using Lemma 3.5, whenever F is right exact,

F (C̃) = C. The dinatural transformations of F (C̃) is given by F (λB).
In particular, this implies that

(6.17) c
C̃,F (B)

F (ρ̃B) = ρB,

for any B ∈ B. Using definition of ∆ : C → C⊗C given by diagramm (6.2),
one can see that

(6.18) c
C̃,C

F (δ) = F (∆).

If h1, h2 : C⊗F (B)→ C⊗C⊗F (B) are defined as

h1 = id C⊗ρB, h2 = ∆⊗id F (B),
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then, it is a standard result that, the kernel of the difference h1 − h2 is ρB.
Using the above, we have the following:

Proposition 6.6. Assume that the module functor (F, c) : B → C is faithful

and exact. The map ρ̃B : B → C̃ ◁ F (B) is the kernel of the difference of
morphisms

C̃ ◁ F (B)
h̃1 //

h̃2

// C̃ ◁ (C⊗F (B)),

where h̃1 = id
C̃
◁ ρB and h̃2 = δ ◁ id F (B).

Proof. Note that, we are using that F is right exact so that F (C̃) = C. See
Lemma 3.5. Using (6.17), (6.18) and the naturality of c one can prove that

c
C̃,C⊗F (B)

F (h̃1 − h̃2) = (h1 − h2)cC̃,F (B)
.

This implies that F (ρ̃B) = kerF (h̃1 − h̃2) = F (ker h̃1 − h̃2), since F is also
left exact. The result follows, since F is faithful. □

6.3. Reconstruction results. The following Theorem is one of our main
results and is a generalization of [22, Thm. 2.2.8].

Theorem 6.7. Let C be a tensor category, and B be a right C-module cat-
egory. Let (F, c) : B → C be an exact and faithful module functor. Let

C =
∮ B∈B

F (B)⊗∗F (B) ∈ C be the relative coend coalgebra introduced in

Proposition 6.2 and consider its category of comodules CC. Then the functor

F factorizes into an equivalence of C-module categories F̂ : B ∼−→ CC and
the forgetful functor f : CC → C:

(6.19) B F̂ //

F ��

CC

f~~
C.

Proof. Recall that we denote by

πA : F (A)⊗∗F (A)→
∮ B∈B

F (B)⊗∗F (B)

the dinatural transformations of the relative coend C(F ). The definition of

the functor F̂ : B → CC was given in Proposition 6.4. Since F is faithful, F̂

is also faithful. We need to prove that F̂ is essentially surjective and full.

Let us prove first that F̂ is essentially surjective. Take (M,ρ) ∈ CC. We
endowed C⊗M structure of left C-comodule via ∆, then ρ :M → C⊗M is
actually a morphism in CC. We begin with the observation that, (M,ρ) is
the kernel (in CC) of the difference of morphisms

C⊗M
∆⊗id //

id⊗ρ

// C⊗C⊗M.
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Recall from Proposition 6.4 that, for any A ∈ B, the object F (A) has a left
H-comodule structure given by ρA = ψC

F (A),F (A)(πA). Hence, for any V ∈ C,
the object F (A)⊗V has a left comodule structure given by ρA⊗id V . The
next Claim will be crucial for the proof. To prove this claim, it is essential
that the dinatural maps π satisfy equation (3.5).

Claim 6.1. For any A ∈ B, V ∈ C, morphisms cA,V : F (A◁V )→ F (A)⊗V
are C-comodule maps.

Proof of Claim. We need to prove that

(ψH
F (A),F (A)(πA)⊗id V )cA,V = (idH⊗cA,V )ψ

H
F (A◁V ),F (A◁V )(πA◁V )

This equation is equivalent to
(6.20)
(πA⊗id F (A)⊗V )(id⊗coevF (A)⊗id V )cA,V = (πA◁V⊗cA,V )(id⊗coevF (A◁V )).

Since π satisfies equation (3.5), it follows that

πA◁V = πA(id F (A)⊗∗(F (idA ◁ coevV ∗)))
(
βV

∗
A◁V,A

)−1
.

Using the description of the prebalancing β given in (3.10), we obtain that

πA◁V =πA(id F (A)⊗∗(cA◁V,V ∗F (idA ◁ coevV ∗)))(id⊗ϕlF (A◁V ),V ∗)

(cA,V⊗id ∗F (A◁V )).
(6.21)

It follows from the naturality of c that

cA,V⊗V ∗F (idA ◁ coevV ∗) = (id F (A)⊗coevV ∗).

Using Equation (2.18), it follows that

cA◁V,V ∗F (idA ◁ coevV ∗) = (c−1
A,V⊗id V ∗)(id F (A)⊗coevV ∗).

Whence

πA◁V = πA(id F (A)⊗∗(id F (A)⊗coevV ∗))(id F (A)⊗∗(c−1
A,V⊗id V ∗))

(id F (A)⊗ϕlF (A◁V ),V ∗)(cA,V⊗id ∗F (A◁V ))

= πA(id F (A)⊗∗(id F (A)⊗coevV ∗))(id F (A)⊗ϕlV ∗,F (A)⊗V )

(cA,V⊗∗(c−1
A,V )).

(6.22)

The second equality follows from the naturality of ϕl. It follows by a tedious,
but straightforward, computation that

(∗(id F (A)⊗coevV ∗)⊗id F (A)⊗V

)(
ϕlV ∗,F (A)⊗V⊗id F (A)⊗V

)(
id V⊗coevF (A)⊗V

)
= coevF (A)⊗id V

(6.23)
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Let us prove now equation (6.20). The right hand side of (6.20) is equal to

= (πA◁V⊗id F (A)⊗V )(id⊗cA,V )(id F (A◁V )⊗coevF (A◁V ))

=
(
πA⊗id F (A)⊗V

)(
id F (A)⊗∗(id F (A)⊗coevV ∗)⊗id F (A)⊗V

)(
id F (A)⊗ϕlV ∗,F (A)⊗V⊗id F (A)⊗V

)(
cA,V⊗∗(c−1

A,V )⊗id F (A)⊗V

)
(id⊗cA,V )(id F (A◁V )⊗coevF (A◁V ))

=
(
πA⊗id F (A)⊗V

)(
id F (A)⊗∗(id F (A)⊗coevV ∗)⊗id F (A)⊗V

)(
id F (A)⊗ϕlV ∗,F (A)⊗V⊗id F (A)⊗V

)(
cA,V⊗coevF (A)⊗V

)
= (πA⊗id F (A)⊗V )(id F (A)⊗coevF (A)⊗id V )cA,V .

The second equality follows from Equation (6.22), the third equality follows
from (2.3), and the last equality follows from (6.23). This finishes the proof
of the Claim. □

From this Claim follows that, natural isomorphisms c endow the functor

F̂ with structure of module functor. Let

C̃ = C̃(F, c) =

∮ B∈B
B ◁ ∗F (B) ∈ B

be the object defined in Proposition 3.7, together with themap

δ : C̃ → C̃ ◁ C,

presented in Diagram (6.10). Since F (C̃) = C, it also follows from Claim
6.1 that, there are C-comodule isomorphisms

F (C̃ ◁ M) ≃ C⊗M,

F (C̃ ◁ (C⊗M)) ≃ C⊗C⊗M.

Hence (M,ρ) is the kernel of the difference of morphisms

F (C̃ ◁ M)
F (h1) //

F (h2)
// F (C̃ ◁ (C⊗M)),

where h1 = δ ◁ idM , h2 = id
C̃
◁ ρ. Since F is left exact (M,ρ) ≃ F (ker(h1−

h2)). This proves that F̂ is essentially surjective.

Let us prove now that F̂ is full. Take A,B ∈ B and f : F (A) → F (B) a
C-comodule morphism. We have a commutative diagram

(6.24) F (A)

f
��

ρA // C⊗F (A)

id H⊗f
��

F (B)
ρB // C⊗F (B).
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This implies that, we have a commutative diagram

0 // F (A)
ρA //

f
��

C⊗F (A)
hA
1 −hA

2 //

id⊗f
��

C⊗(C⊗F (A))

id⊗f
��

0 // F (B)
ρB // C⊗F (B)

hB
1 −hB

2 // C⊗(C⊗F (B)).

(6.25)

Where hA1 = idH⊗ρA, hA2 = ∆⊗id F (A). Note that, by the universal property
of the kernel, the map f : F (A) → F (B) is the unique morphism fitting in
this diagram. Define

C̃ = C̃(F, c) =

∮ B∈B
B ◁ ∗F (B) ∈ B.

See Proposition 3.7 for the definition of this coend. Using Proposition 6.6,
for any B ∈ B, we have an exact sequence

0→ B
ρ̃B−−−→ C̃ ◁ F (B)

h̃−−−−→ C̃ ◁ (C⊗F (B)),

where h̃B = id
C̃
◁ ρB − δ ◁ id F (B). For the definition of δ and ρ̃B see (6.9),

(6.10). Since f is a comodule morphism, by the universal property of the
kernel, there exists a unique morphism η that fits into the diagram

0 // A
ρ̃A //

η

��

C̃ ◁ F (A)
h̃A //

id ◁f
��

C̃ ◁ (C⊗F (A))

id ◁(id⊗f)
��

0 // B
ρ̃B // C̃ ◁ F (B)

h̃B // C̃ ◁ (C⊗F (B)).

(6.26)

Applying F to this diagram we obtain diagram (6.25). By the uniqueness

of f , we get that F (η) = f , proving that F̂ is full. □

6.4. Hopf algebras in C constructed from a coend. In the case B is a
monoidal C-module category, and the functor (F, c, ξ) : B → C is a monoidal
module functor, one can endow the coalgebra C = C(F ) with a Hopf algebra
structure. In this Section, we shall explain the construction of the product
and antipode on C(F ). The new hypothesis needed to construct such Hopf
algebra is that C posses a braiding.

To construct the product m : C(F )⊗C(F ) → C(F ) we shall use ideas
from [19]. In few words, we shall construct some natural module transfor-
mation F⊗F → C(F )⊗F⊗F and use Lemma 6.1 to findm : C(F )⊗C(F )→
C(F ).
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Lemma 6.8. Let C be a braided tensor category, B be a monoidal C-module
category, and a monoidal module functor (F, c, ξ) : B → C. Let us denote
dB,V the following natural isomorphism

dB,V : ∗F (B ◁ V )→ ∗V⊗∗F (B),

dB,V =
(
ϕlF (B),V

)−1∗(c−1
B,V ).

Then, for any B ∈ B, V ∈ C, we have

(6.27) dB,∗V⊗V = (ϕl∗V,V⊗id )(id ∗V⊗dB,∗V )dB◁∗V,V ,

Proof. It follows by a straightforward calculation, using (2.18). □

Recall, from Proposition 5.9, the functors

H, H̃ : B ⊠C B → C,
determined by

H(A⊠B) = F (A⊗B), H̃(A⊠B) = F (A)⊗F (B),

for any A,B ∈ B. Recall also that, we are denoting by πB : F (B)⊗∗F (B)→
C(F ) the dinatural transformations, and the associated left C(F )-coaction
ρB = ψC

F (B),F (B)(πB).

Remark 6.9. In the case C = vect k, the following Proposition is trivial, since
it only says that some natural transformation is additive. In the general
case, where C is arbitrary, it is far from obvious, and it is a crucial step
towards the reconstruction of the product in C(F ). Its proof will highlight
the importance of all required axioms.

For later use, π has to satisfy Equation (3.5), using prebalancing (6.1).
This means that
(6.28)
πB◁V = πB

(
id F (B)⊗∗F (idB ◁coevV ∗)

)(
id F (B)⊗d−1

B◁V,V ∗
)(
cB,V⊗id ∗F (B◁V )

)
.

Proposition 6.10. Let C be a braided tensor category, B be a monoidal
C-module category, and (F, c, ξ) : B → C be a monoidal module functor. The

natural transformation µ : H̃ → C(F )⊗H̃ determined by the composition

H̃(A,B)
ξA,B−−−→ H(A,B)

ρA⊗B−−−→ C(F )⊗H(A,B)
id⊗ξ−1

A,B−−−−−−→ C(F )⊗H̃(A,B)

is a natural module transformation. That is µ ∈ Natm(H̃, C(F )⊗H̃).

Proof. It follows from Proposition 5.9 that ξ is a natural module transfor-
mation. Once it has been established that the diagram

(6.29) H(A,B ◁ V )

eA,B,V

��

ρA⊗B◁V // C(F )⊗H(A,B ◁ V )

id C(F )⊗eA,B,V

��
H(A,B)⊗V

ρA⊗B⊗id V// C(F )⊗H(A,B)⊗V.
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is commutative, the proof will follow. Recall, from the proof of Proposition
5.9 that

eA,B,V : F (A⊗(B ◁ V ))→ F (A⊗B)⊗V,

eA,B,V = cA⊗B,V F (l
−1
A⊗B,V (idA⊗lB,V ))

We shall also keep the notation

ηA,B,V : A⊗(B ◁ V )→ (A⊗B) ◁ V,

ηA,B,V = l−1
A⊗B,V (idA⊗lB,V ).

Using the definition of ρA, one can see that diagram (6.29) amounts to

(id C(F )⊗eA,B,V )(πA⊗B◁V⊗id F (A⊗B◁V ))(id F (A⊗B◁V )⊗coevF (A⊗B◁V )) =

= (πA⊗B⊗id F (A⊗B)⊗V )(id F (A⊗B)⊗coevF (A⊗B)⊗id V )eA,B,V

(6.30)

Using the dinaturality of π, one can see that the left hand side of (6.30) is
equal to

=
(
π(A⊗B)◁V (F (ηB,V )⊗∗F (η−1

A,B,V ))⊗eA,B,V

)
(id F (A⊗B◁V )⊗coevF (A⊗B◁V ))

=
(
π(A⊗B)◁V⊗cA⊗B,V

)(
F (ηA,B,V )⊗coevF ((A⊗B)◁V )

)
=

(
π(A⊗B)◁V⊗id

)(
F (ηA,B,V )⊗id⊗cA⊗B,V

)(
id⊗coevF ((A⊗B)◁V )

)
=

(
π(A⊗B)◁V⊗id

)(
F (ηA,B,V )⊗id⊗cA⊗B,V

)(
id⊗d−1

A⊗B,V⊗c
−1
A⊗B,V

)
(id F (A⊗B◁V )⊗∗V⊗coevA⊗B⊗id V

)(id F (A⊗B◁V )⊗coevV )

=
(
π(A⊗B)◁V⊗id

)(
F (ηA,B,V )⊗d−1

A⊗B,V⊗id F (A⊗B)⊗V

)
(id F (A⊗B◁V )⊗∗V⊗coevA⊗B⊗id V )(id F (A⊗B◁V )⊗coevV )
= (πA⊗B⊗id F (A⊗B)⊗V )(id F (A⊗B)⊗coevF (A⊗B)⊗id V )eA,B,V

The second equality follows from the definition of eA,B,V and (2.3), the
fourth follows from (2.21). The last equation follows by using (6.28) and
(6.27). □

Theorem 6.11. Assume (C, σ) is a braided tensor category, B is a monoidal
right C-module category, and (F, c, ξ) : B → C is an exact and faithful
monoidal module functor with monoidal structure

ξA,B : F (A)⊗F (B)→ F (A⊗B).

The relative coend coalgebra C(F ) from Theorem 6.7 has an algebra struc-
ture, with unit u = π1 and product m : C(F )⊗C(F ) → C(F ) determined
by

(m⊗id )(πA⊗πB⊗id F (A)⊗F (B))(id⊗σF (A),F (B)⊗∗F (B)⊗id F (B))

(id F (A)⊗coevF (A)⊗id F (B)⊗coevF (B)) = (id C(F )⊗ξ−1
A,B)ρA⊗BξA,B,

(6.31)
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for any A,B ∈ B. The object C(F ) becomes a bialgebra in C. Moreover,

the equivalence of C-module categories F̂ : B → C(F )C is an equivalence of
tensor categories.

Proof. Recall from Lemma 6.3 that, if f : C⊗CC → C is the forgetful functor,
then C(f) = C⊗C and the dinatural transformations of this coend are given
by

λ(W,ρ) :W⊗∗W → C⊗C,

λ(W,ρ) = ψ̄C⊗C
W,W (ρ).

Since the functor F : B → C factorizes as F = f ◦ F̂ , then the functor

H̃ = ⊗ ◦ (F ⊠ F ) : B ⊠C B → C factorizes as

B ⊠C B
H̃ //

F̂⊠F̂
��

C

CC ⊠C
CC

⊗
��

C⊗CC

f

>>

Using Lemma 3.6, since F̂ is an equivalence of right C-module categories, it
follows that

C(H̃) =

∮ X∈B⊠CB
H̃(X)⊗∗H̃(X) = C(F )⊗C(F ).

Lemma 3.6 also explains how to compute dinatural transformations of this

coend. If πX : H̃(X)⊗∗H̃(X)→ C(F )⊗C(F ), X ∈ B⊠CB, are the dinatural
transformations associated to this coend, then

πA⊠B = λ(F (A)⊗F (B),ρ) =
(
id C(F )⊗C(F )⊗evD

)(
id C⊗σF (A),C⊗id F (B)⊗∗D

)(
πA⊗id F (A)⊗πB⊗id

)
(id F (A)⊗coevF (A)⊗id F (B)⊗coevF (B)⊗id ∗D),

for any A,B ∈ B. Here D = F (A)⊗F (B). Here ρ : F (A)⊗F (B) →
C(F )⊗F (A)⊗F (B) is the comodule structure of the tensor product accord-
ing to formula (4.6). It follows from Lemma 6.1 that there is an isomorphism

ω : HomC(C(F )⊗C(F ), C(F ))→ Natm(H̃, C(F )⊗H̃),

ω(g)X = (g⊗id
H̃(X)

)ψ
C(F )⊗C(F )

H̃(X),H̃(X)
(πX).

Since, by Proposition 6.10, (id C(F )⊗ξ−1
A,B)ρA⊗BξA,B is a natural module

transformation, that is

(id C(F )⊗ξ−1
A,B)ρA⊗BξA,B ∈ Natm(H̃, C(F )⊗H̃),

then there exists a morphism m : C(F )⊗C(F )→ C(F ) such that

ω(m)A⊠B = (id C(F )⊗ξ−1
A,B)ρA⊗BξA,B.
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Using the rigidity axioms, the naturality of σ and the formula for πA⊠B, this
equation implies (6.31). Using (6.31), follows that

m ◦ (m⊗id ) = m ◦ (id⊗m),

m ◦ (u⊗id ) = id = m ◦ (id⊗u).

It follows also from (6.31) that ξ is a comodule morphism, giving the

functor F̂ structure of monoidal functor. □

Definition 6.12. For any monoidal module functor F : B → C we shall
denote by

H(F ) =

∮ B∈B
F (B)⊗∗F (B) ∈ C

the bialgebra with product given by Theorem (6.11) and coproduct (6.3).

Remark 6.13. In Theorem 6.11, some hypothesis on the functor F : B → C
are superfluous. It follows from [8, Corollaire 2.10] that, if F is right exact
then it is exact and faithful.

Let (H,∆,m) be a bialgebra in C. In the next results, we shall be devoted
to prove that the bialgebra reconstructed in Theorem 6.11, from the forgetful
functor f : HC → C, coincides with the original bialgebra H.

In Lemma 6.3 we already proved that the reconstructed coalgebra coin-
cides with H. Moreover, if (W,ρW ) ∈ HC, then we have defined dinatural
transformations

πW :W⊗∗W → H,

πW = ψ̄H
W,W (ρW ) = (idH⊗evW )(ρW⊗id ∗W ).

See (2.8) for the definition of isomorphisms ψ̄. In order to see that, the
reconstructed multiplication coincides with the product of H, we only need
to prove that the original product m satisfies diagram (6.31). This will be
done in the next Proposition.

Proposition 6.14. Let (H,∆,m) be a bialgebra in C. Using dinatural trans-
formations πW :W⊗∗W → H, πW = ψ̄H

W,W (ρW ), we have that equation

m(πV⊗πW⊗id V⊗W )(id V⊗∗V⊗σV,W⊗∗W⊗idW )(id⊗coevV⊗id⊗coevW ) =

= ρV⊗W .

holds for any pair (V, ρV ), (W,ρW ) ∈ HC.

Proof. It follows using the naturality of σ and (4.6). □
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6.5. The antipode of H(F ). In the next results we shall construct an
antipode S : H(F )→ H(F ), making the bialgebra H(F ) a Hopf algebra in
C.

Lemma 6.15. Let (C, σ) be a braided tensor category, and B be a monoidal
right C-module category. Let (F, c) : B → C be an exact and faithful monoidal
module functor. For any B ∈ B, V ∈ C there are natural isomorphisms

(6.32) tB,V : ∗(B ◁ V )→ ∗B ◁ ∗V

such that the diagram

(6.33) ∗F (B ◁ V )

∗(c−1
B,V )

��

F (tB,V )
// F (∗B ◁ ∗V )

c∗B,∗V
��

∗(F (B)⊗V )
σ∗V,∗F (B)(ϕ

l
F (B),V

)−1
// F (∗B)⊗∗V,

is commutative.

Proof. We shall freely use the fact that F (∗B) = ∗F (B), for any B ∈ B.
Since we are under the same hypothesis as Theorem 6.7, the functor F :
B → HC is full. Since F (∗B◁ ∗V ) is a left H-comodule, and the composition

h = c−1
∗B,∗V σ∗V,F (B)(ϕ

l
F (B),V )

−1∗(c−1
B,V ) :

∗F (B ◁ V )→ F (∗B ◁ ∗V ),

is an isomorphism, we can endow ∗F (B◁V ) with someH-comodule structure
such that, h is a H-comodule map. Fullness of F implies that, there exist
some tB,V such that F (tB,V ) = h. □

We shall use the same notation as in previous sections. We denote by

πA : F (A)⊗∗F (A)→ H(F ) =

∮ B∈B
F (B)⊗∗F (B)

the dinatural transformations of the relative coend H(F ). Also, recall from
Proposition 6.4, that for any A ∈ B we have that (F (A), ρA) is a left H(F )-
comodule, with structure given by

ρA = ψ
H(F )
F (A),F (A)(πA) = (πA⊗id F (A))(id F (A)⊗coevF (A)).

Henceforth, for simplicity, we shall denote H = H(F ).

Lemma 6.16. Let (C, σ) be a braided tensor category, and B be a monoidal
right C-module category. For any B ∈ B, V ∈ C, let us recall morphisms
dB,V , defined in Lemma 6.8, as

dB,V : ∗F (B ◁ V )→ ∗V⊗∗F (B),

dB,V =
(
ϕlF (B),V

)−1∗(c−1
B,V ).

Then, for any B ∈ B, V ∈ C, we have

(6.34) (σ−1
∗V,H⊗id ∗F (B))(idH⊗dB,V )ρ∗(B◁V ) = (id ∗V⊗ρ∗B)dB,V .
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Proof. Using Lemma 6.15, there are natural isomorphisms tB,V : ∗(B◁V )→
∗B ◁ ∗V such that

(6.35) c∗B,∗V F (tB,V ) = σ∗V,F (B)dB,V .

The naturality of ϕl and c implies that

(6.36) F (∗(idB ◁ coevV )) = (∗(coevV )⊗id ∗F (B))dB,∗V⊗V ,

for any B ∈ B, V ∈ C. Using the dinaturality of π we obtain that

(6.37) π∗(B◁V ) = π∗B◁∗V

(
F (tB,V )⊗∗F (t−1

B,V )
)
,

for any B ∈ B, V ∈ C. Also, dinatural transformations π satisfy (3.5), this
implies that, for any B ∈ B, V ∈ C, we have

πB◁∗V =πB
(
id F (B)⊗F (∗(idB ◁ coevV ))

)(
id F (B)⊗d−1

B◁∗V,V

)(
cB,∗V⊗id ∗F (B◁∗V )

)
.

(6.38)

Next, when it is not absolutely necessary, as a space saving measure, we
shall write the identities id , without using subscripts. Using the definition
or ρ we obtain that

(σ−1
∗V,H⊗id ∗F (B))(idH⊗dB,V )ρ∗(B◁V )d

−1
B,V

is equal to

= (σ−1
∗V,H⊗id ∗F (B))(idH⊗dB,V )(π∗(B◁V )⊗id )(id⊗coev∗F (B◁V ))d

−1
B,V

= (σ−1
∗V,H⊗id ∗F (B))(π∗B◁∗V⊗dB,V )(F (tB,V )⊗∗F (t−1

B,V )⊗id )

(id⊗coev∗F (B◁V ))d
−1
B,V

= (σ−1
∗V,H⊗id ∗F (B))(π∗B◁∗V⊗dB,V )(F (tB,V )⊗id ∗F (∗B◁∗V )⊗F (t−1

B,V ))

(id⊗coevF (∗B◁∗V ))d
−1
B,V

= (σ−1
∗V,H⊗id ∗F (B))(π∗B⊗id )(id⊗F (∗(id ∗B ◁ coevV ))⊗id )(id⊗d∗B◁∗V,V⊗id )

(c∗B,∗V⊗id )
(
F (tB,V )d

−1
B,V⊗id ∗F (∗B◁∗V )⊗dB,V F (t

−1
B,V )

)
(id⊗d−1

∗B,∗V⊗c
−1
∗B,∗V )

(id⊗coev∗F (B)⊗id ∗V )(id ∗F (B◁V )⊗coev∗V )

= (σ−1
∗V,H⊗id ∗F (B))(π∗B⊗id )(id⊗(∗(coevV )⊗id ∗B))dB,∗V⊗V⊗id )

(id⊗d∗B◁∗V,V⊗id )
(
c∗B,∗V F (tB,V )d

−1
B,V⊗id ∗F (∗B◁∗V )⊗dB,V F (t

−1
B,V )c

−1
∗B,∗V

)
(id⊗d−1

∗B,∗V⊗id )(id⊗coev∗F (B)⊗id ∗V )(id ∗F (B◁V )⊗coev∗V )

= (id ∗V⊗π∗B⊗id )(σ−1
∗V,F (∗B)⊗∗F (∗B)⊗id )(id⊗ev∗V⊗id ∗F (∗B)⊗∗V⊗∗F (B))

(σ∗V,∗F (B)⊗id ∗∗V⊗∗F (∗B)⊗σ∗V,∗F (B))(id ∗V⊗∗F (B)⊗∗∗V⊗coev∗F (B)⊗id ∗V )

(id⊗coev∗V )

= (id ∗V⊗ρ∗B).

The second equality follows from (6.37), the third equality follows from (2.3),
the fourth one follows from (6.38), the fifth equality follows from (6.36). The
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sixth equality follows by using (2.6) and (6.35), and the last equality follows
by using the rigidity axioms and (4.1). □

Recall that, sometimes we are denoting H = H(F ).

Theorem 6.17. Let C be a tensor category, and B be a monoidal right C-
module category. Let (F, c) : B → C be an exact and faithful monoidal module
functor. There exists a map S : H(F ) → H(F ), such that, it corresponds,
under isomorphism

ω : HomC(H(F ), V )→ Natm(F, V⊗F )

presented in (6.2), to the natural module transformation α : F → H(F )⊗F,

αB = (evF (B)⊗idH(F )⊗F (B))(id F (B)⊗σ−1
∗F (B),H(F )⊗id F (B))

(id F (B)⊗ρ∗B⊗id F (B))(id F (B)⊗coevF (B)).

That is ω(S) = α.

Proof. We only need to prove that, indeed, α is a module natural transfor-
mation, that is

(idH⊗cB,V )αB◁V = (αB⊗id V )cB,V ,

for any B ∈ B, V ∈ C. Equations (2.20) and (2.21) implies that

evF (B◁V ) = evF (B)

(
id⊗evV⊗id

)(
cB,V⊗dB,V

)
,

coevF (B◁V ) =
(
d−1
B,V⊗c

−1
B,V

)(
id⊗coevF (B)⊗id

)
coevV

(6.39)

Using the definition of α we obtain that (idH⊗cB,V )αB◁V c
−1
B,V is equal to

= (evF (B◁V )⊗idH⊗F (B)⊗V ))(id F (B◁V )⊗σ−1
∗F (B◁V ),H⊗cB,V )

(id F (B◁V )⊗ρ∗(B◁V )⊗id F (B◁V ))(id F (B◁V )⊗coevF (B◁V ))c
−1
B,V

= (evF (B)⊗idH⊗F (B)⊗V ))
(
id⊗evV⊗id ∗F (B)⊗H⊗F (B)⊗V

)
(id F (B)⊗V⊗σ−1

∗V⊗∗F (B),H⊗id F (B)⊗V )
(
cB,V⊗idH⊗dB,V⊗cB,V

)
(id F (B◁V )⊗ρ∗(B◁V )⊗id F (B◁V ))

(
id F (B◁V )⊗d−1

B,V⊗c
−1
B,V

)(
id F (B◁V )⊗∗V⊗coevF (B)⊗id V

)
(id F (B◁V )⊗coevV )c−1

B,V

= (evF (B)⊗idH⊗F (B)⊗V ))
(
id⊗evV⊗id ∗F (B)⊗H⊗F (B)⊗V

)
(id⊗σ−1

∗F (B),H⊗id )(id⊗σ
−1
∗V,H⊗id )

(
id⊗(idH⊗dB,V )ρ∗(B◁V )d

−1
B,V⊗id

)(
id F (B◁V )⊗∗V⊗coevF (B)⊗id V

)
(id F (B◁V )⊗coevV )

= αB⊗id V .

The second equality follows from (6.39) and the naturality of σ, the third
equality follows by (4.1). The last equality follows from (6.34) and rigidity
axioms. □
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Remark 6.18. The above result is the most sensitive statement to prove in
order to prove the existence of the antipode forH(F ). In the case C = vect k,
the isomorphism

ω : HomC(H(F ), V )→ Nat (F, V⊗F )

lands in the space of all natural transformations. So, in that case, there is
nothing to prove, and the existence of S is guaranteed by the fact that ω is
an isomorphism.

Corollary 6.19. The bialgebra H(F ), from Definition 6.12, is actually a
Hopf algebra. The antipode S : H(F ) → H(F ) is determined as the unique
morphism such that

(6.40) F (B)⊗∗F (B)

νB
��

πB // H(F )

S
��

F (B)⊗∗F (B)⊗H
evF (B)⊗id H(F )// H(F ),

is commutative. Here

νB = (id F (B)⊗σ−1
∗F (B),H(F ))(id F (B)⊗π∗B⊗id ∗F (B))(id F (B)⊗∗F (B)⊗coev∗F (B)).

Proof. Taking the map S : H(F ) → H(F ) defined in Theorem 6.17, and
using the definition of α, one can prove that S satisfies Diagram (6.40).

Axioms

m ◦ (idH⊗S) ◦∆ = u ◦ ε,

m ◦ (S⊗idH) ◦∆ = u ◦ ε,
follow from (6.40) by a lengthy, but straightforward, computation. □

Remark 6.20. A version of the Hopf algebra H(F ) has been previously con-
sidered in the work of Lyubashenko [13], [14], when F is some fiber functor
and in [15], [16], when F is the identity functor. See also the work of P.
Schauenburg [22], where C is the category of finite dimensional vector spaces.
However, there are new ingredients in our definition. We require that B is
actually a monoidal C-module category, and the functor F is a monoidal
module functor. The use of the relative coend is another new feature of our
construction.

Let (H,∆,m, S) be a Hopf algebra in C. In the next Proposition we
shall see that the reconstructed antipode given in Theorem 6.17, out of the
forgetful functor f : HC → C, coincides with the original antipode S : H →
H.

Proposition 6.21. Let (H,∆,m, S) be a Hopf algebra in C. Using the
identification H = H(f) proven in Lemma 6.3, the reconstructed antipode
obtained in Corollary 6.19 coincides with the antipode S of H.
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Proof. Let us denote by Ŝ : H → H the map reconstructed in Proposition
6.19. For any V ∈ C, recall the isomorphism (6.2)

ω : HomC(H(f), V )→ Natm(f, V⊗f),
ω(g)(W,ρW ) = (g⊗idW )ψH

W,W (πW ),

for any (W,ρW ) ∈ HC. Corollary 6.17 implies that, if α : f → H⊗f is the
module natural transformation defined as

α(W,ρW ) = (evW⊗idH⊗W )(idW⊗σ−1
∗W,H⊗idW )

(idW⊗ρ∗W⊗idW )(idW⊗coevW ),

for any (W,ρW ) ∈ HC, then
ω(Ŝ) = α.

Using formula (4.7) for ρ∗W we get that

α(W,ρW ) = (S⊗idW ) ρW = ω(S)(W,ρW ),

for any (W,ρW ) ∈ HC. Whence S = Ŝ. □

7. Examples and Applications

7.1. Generic Example. The next example was treated along the paper.
At the end we proved that the reconstructed Hopf algebra from the forgetful
functor F : HC → C coincides with H.

Example 7.1. Let H be a Hopf algebra in a braided finite tensor category C
and consider the tensor category B = HC. Then the forgetful functor admits
an exact faithful monoidal functor F : HC → C and the counit εH gives rise
to a monoidal section HC ← C that turns HC into a C-module category.

Example 7.2. Let H ⊂ L be Hopf algebras in vect k with ι : H → L the
inclusion and assume there is a left-inverse Hopf algebra map π : H → L,
called projection. Then we have the restriction functor ι∗ : Rep(H) ←
Rep(L) and in addition B = Rep(L) becomes a modules category over C =
Rep(H) via π∗ : Rep(H) ← Rep(L). Assume that H is quasitriangular.
Hence our result shows that there exists a Hopf algebra C ∈ Rep(H) such
that there is an equivalence of monoidal modular categories

Rep(L) ∼= C Rep(H).

We now discuss how this is related to the classical Radford Projection The-
orem [23]. This result states that the existence of a Hopf algebra projection
π implies that L is isomorphic to a Radford biproduct

L ∼= R#H

where R is a Hopf algebra in H
HYD(Vect k). In our case we have assumed

that H is quasitriangular and ι∗ lifts to a braided functor to the center of B.
This gives rise to a choice of a functor Rep(H) → H

HYD(Vect k) and shows
R to be in the image - more explicitly the R-matrix of H determines the
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H-coaction from the H-action. Then this R is precisely the dual of our Hopf
algebra C.

7.2. Generic Consequences. Our results has certain general implications,
for example

Example 7.3. If (C, σ) is a braided tensor category, then the forgetful
functor f : Z(C) → C has a section G : C → Z(C), G(V ) = (V, σV ). Theo-
rems 6.7 and 6.17 imply that there exists a Hopf algebra H ∈ C such that
Z(C) ≃ HC. For C = Rep(H) for a factorizable Hopf algebra H this can be
obtained from the defining equivalence Z(C) ≃ HC ⊠ HC, but in the non-
nondegenerate case or the case without fibre functor, we are not aware of
such a result. In general, we recover thereby the recent result [17].

7.3. Lifting and cocycles deformations. In the classification of (e.g.
pointed) Hopf algebras H the strategy in the Andruskiewisch-Schneider pro-
gram [2] is to consider the coradical H0 (which is assumed to be a Hopf
algebra, for example a group ring) and classify the possible Nichols algebras
R, and then obtain H as a lifting of gr(H) = R#H0. It is an important
question to determine whether this lifting is a 2-cocycle twist, and the ob-
servation is that this holds in almost all cases [1].

We view this problem in our setting: Since a main assumption is that
H0 ⊂ H we have a tensor functor ι∗ : Comod(H0)→ Comod(H). The lift-
ing is a 2-cocycle twist precisely iff there is a tensor functor Comod(H0)←
Comod(H), if the 2-cocycle is trivial then it comes from a Hopf algebra
projection π, and then our relative coend is R∗.

While this view does not allow to decide the difficult question when a
lifting is a 2-cocycle twist, it shows the natural categorical context of this
question and it produces general statements, for example if R as a coalgebra
has a trivial lifting, then there is a monoidal section and hence the lifting is
tensor functor and thus the lifting comes from a 2-cocycle twist.

7.4. The logarithmic Kazhdan Lusztig conjecture. In conformal field
theory, there is in good situations a modular tensor category of representa-
tions of a vertex algebra V, which reflects the analytic properties for example
of solution spaces to certain differential equations (e.g. the braiding reflects
the monodromy around the singularity z = 0). One is often confronted with
the very difficult question to determine the representation category of rep-
resentations of a vertex subalgebra W ⊂ V if the representation theory of
V is known, for example being a free-field realization. A brief introduction,
references and an account for the statements below can be found in [6].

Categorically, one can understand as Rep(W) being a modular tensor
category and A = V being a commutative algebra in this category and C =
Rep(V) is the category of local A-modules Reploc(A). Then by the results
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in [6] Section 3 we have under suitable conditions that Rep(W) is a relative
Drinfeld center of Rep(A) with respect to the subcategory C = Reploc(A).
In the cases relevant to logarithmic (i.e. nonsemisimple) conformal field
theory, it is often the case that all simple modules in Rep(A) are already
in Reploc(A). This gives rise via the socle filtration to a monoidal section
functor, see [6] Section 4

Reploc(A) ⇄ Reploc(A)

Then the results in our paper produce a Hopf algebra R∗, such that

Rep(A) = R∗C

and in this case the mentioned equivalence to the relative Drinfeld center
means explicitly (see Section 4.2)

Rep(W) ∼= R
RYD(C)

For example the celebrated and notoriously difficult logarithmic Kazhdan
Lusztig conjecture considers the lattice vertex algebra VΛ of the root lattice
of a semisimple complex finite dimensional Lie algebra g rescaled by an
integer p, whose category of representations is the category of vector spaces
graded by an abelian group

Rep(VΛ) = Vect Λ∗/Λ

Then it asserts that VΛ contains as kernel of screening operators a certain
vertex algebra Wp(g) ⊂ VΛ, whose category of representation is conjectured
to be equivalent to the category of representations of the small quantum
group uq(g) for q = eπi/p. In the first authors paper [6] the approach is
to view the small quantum group category as a category of Yetter-Drinfeld
modules over the Nichols algebra N

Rep(uq(g)) ∼= N
NYD(Vect Λ∗/Λ)

and develop the categorical tools above to reduce the equivalence in question
to proving that

Rep(A) ∼= NVect Λ∗/Λ

In the case sl2 the abelian category could be determined and this gives a
systematic proof of the conjecture in this case (initially we have used more
complicated proof methods for the case sl2, p = 2 in [6], while [11] have
used very different arguments for sl2, p). A main motivation for writing the
present paper is that now we have the clear statement that the category
Rep(A) is for abstract reasons given as category of representations of a
Hopf algebra N in C, and it now remains to determine that N is indeed the
expected Nichols algebra, namely the Nichols algebra of screenings.
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8. Questions

Question 8.1. The result should be applicable if C is merely locally finite
tensor category an/or if N is infinite. The example we have in mind is
maybe the quantum group Uq(g) at generic q.

Question 8.2. For given classes of semisimple modular tensor categories
C (for example: the category of representations of an affine Lie algebra at
positive integer level), can we classify semisimple Hopf algebras over C?

Question 8.3. Is there a general argument that the embedding of the coradi-
cal H0 into a pointed Hopf algebra H admits a categorical section of comodule
categories, if we assume in addition that the Yetter-Drinfeld module H1/H0

is semisimple over H0?
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