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Fiber functors and reconstruction of Hopf
algebras
Simon Lentner and Martín Mombelli
Abstract. The main objective of the present paper is to present a version of the Tannaka–Krein type
reconstruction theorems: if F ∶ B→ C is an exact faithful monoidal functor of tensor categories, one
would like to realize B as category of representations of a braided Hopf algebra H(F) in C. We prove
that this is the case iff B has the additional structure of a monoidal C-module category compatible
with F, which equivalently means that F admits a monoidal section. For Hopf algebras, this reduces
to a version of the Radford projection theorem. The Hopf algebra is constructed through the relative
coend for module categories. We expect this basic result to have a wide range of applications, in
particular in the absence of fiber functors, and we give some applications. One particular motivation
was the logarithmic Kazhdan–Lusztig conjecture.

1 Introduction

1.1 Background

The main objective of the present paper is to present a version of the Tannaka–Krein
type reconstruction theorems. It is known that if B is a k-linear abelian locally finite
category and F ∶ B → vect k is a fiber functor, that is, an exact faithful functor, then the
coend

C = ∫
B∈B

F(B)⊗kF(B)∗

has structure of k-coalgebra, and the functor F factorizes as

B
F̂ ��

F
����

���
���

���
�� Comod(C)

f�����
���

���
�

vect k ,

where f ∶ Comod(C) → vect k is the forgetful functor, and F̂ is a category equivalence.
We refer the reader to [12, 18, 22] and the references therein. If, moreover, B is a
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2 S. Lentner and M. Mombelli

monoidal rigid category and F is a monoidal functor, then it is possible to endow
the coalgebra C with structure of Hopf algebra. Succinctly, monoidality of B gives C a
product, turning it into a bialgebra, and rigidity of B endows C with an antipode.

Some generalizations of this result appeared in the literature. We only mention
some of them. In these more general versions, a fiber functor F ∶ B → C is considered,
where C is an arbitrary monoidal category. In some versions, the object C is not a
Hopf algebra in C. For example, in [5], it is shown that if the functor F has a right
adjoint G ∶ C → B, then the associated monad to this adjunction T = F ○ G ∶ C → C is
a bimonad, and there is a commutative diagram

B
F̂ ��

F ���
��

��
��

� CT

f����
��
��
��

C.G

��

Here, f ∶ CT → C is the forgetful functor. Beck’s monadicity theorem implies that
the functor F̂ ∶ B → CT is a monoidal equivalence. Rigidity of both monoidal cat-
egories B,C implies that T has a Hopf monad structure. In [16, 17], Lyubashenko
reconstructed the object C as a coend ∫

B∈B F(B) ⊠ F(B)∗, belonging to some
completion of the Deligne tensor product C ⊠ C, and it turns out to be a squared
coalgebra. In the work of Majid [18, 19], he started with a monoidal functor F ∶ B → C,
where C is a braided monoidal category, and he reconstructed a Hopf algebra C =
∫

B∈B F(B)∗⊗F(B), and set up a commutative diagram

B
F̂ ��

F ���
��

��
��

�
CC

f����
��
��
��

C.

With this generality, the functor F̂ no longer need to be an equivalence.

1.2 Our approach

The point of view of this paper owes a lot to [23]. However, we shall work only with
finite categories. Let k be an arbitrary field, and let B,C be finite k-linear abelian
categories. Assume that both C,B are rigid monoidal categories and F ∶ B → C is
a monoidal functor. If F has a section G ∶ C → B, that is, F ○ G ≃ Id C as monoidal
functors, then it is possible to endow B with an action of C such that F is a monoidal
C-module functor. This action behaves well together with the monoidal product of B,
in a sense that we call monoidal module category.

Under these conditions, we aim at constructing a Hopf algebra H ∈ C and obtaining
a kind of Radford projection theorem in this categorical setting.

The reconstruction of such Hopf algebra is given in some steps, which we describe
as follows. If B is a right C-module category and F ∶ B → C is an exact faithful module
functor, then we construct a coalgebra C(F) ∈ C as

C(F) = ∮
B∈B

F(B)⊗∗F(B).
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Fiber functors and reconstruction of Hopf algebras 3

Here ∮ stands for the relative coend, a new tool, developed in [4], in the context
of module categories. This tool is one of the new features that we incorporate in
these reconstruction theorems. The coproduct and counit of C(F) are defined using
universal properties of the dinatural transformations associated with the relative
coend. See Proposition 7.2. Moreover, we show that the functor F factorizes as

B
F̂ ��

F ���
��

��
��

�
CC

f����
��
��
��

C.

Here, f ∶ CC → C is the forgetful functor and F̂ ∶ B → CC is an equivalence of C-
module categories. The existence of F̂ is stated in Proposition 7.4, and the proof that it
is an equivalence of categories is given in Theorem 7.7.

If, in addition, C is a braided rigid monoidal C-module category, B is a rigid
monoidal category, and F is a monoidal functor, then we endow the coalgebra C(F)
with a product, turning it into a bialgebra in C. Rigidity of B allows to define an
antipode on C(F), making it into a braided Hopf algebra. These results are stated in
Theorem 7.11 and Corollary 7.19.

The contents of the paper are the following. In Section 3, we give a brief account
of some basic facts about tensor categories and module categories that will be used
throughout the paper. In Section 4, we review the notion of relative (co)end of a functor
in the setting of module categories over a tensor category C. This tool was developed
by the second author in [4] as generalization of the usual (co)end. Let C be a tensor
category, M be a left C-module category, and A be some target category. If a functor
S ∶ Mop ×M → A has a prebalancing, that is, natural isomorphisms

βX
M ,N ∶ S(M , X ▷ N) → S(X∗▷ M , N),

then the relative coend

∮
M∈M

(S , β)

is an object in A equipped with dinatural transformations πM ∶ S(M , M) . .�→
∮

M∈M(S , β), such that it satisfies some extra condition (see, for example, (4.3)), and
it is universal with this property. When C = vect k, the relative (co)end coincides with
the usual (co)end.

Since relative (co)ends are objects defined by a universal property, they may not
exist in general. Section 4.1 is devoted to prove that all relative coends, used in this
work, actually exist. In this section, it is crucial that all categories, the tensor category
C and the module category M are finite. We also require that the action C ×M → M

is exact in each variable, allowing us to use [9, Theorem 2.24], that says that there is
an equivalence of module categories M ≃ CA, for some algebra A ∈ C.

In Section 5, we review the definition of a Hopf algebra H in a braided tensor
category C and its tensor category of comodules HC. We also review the definition
of H-H-Yetter–Drinfeld modules in this setting, which produces a braided tensor
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4 S. Lentner and M. Mombelli

category H
HYD(C). Then we introduce a notion of a C-module category B with a

compatible tensor structure in the sense that there is a natural isomorphism

lX ,B ∶ X ▷ B ≃�→ (X ▷ 1B)⊗B,

for all X ∈ C, B ∈ B, satisfying certain axioms. Note that there is a second reasonable
notion of a monoidal module category, where the action X ▷− is a monoidal functor,
and this definition is not equivalent. Under the presence of a monoidal functor
F ∶ B → C, compatibility of the monoidal product in B and the action of C on B is
equivalent to the existence of a section to F, that is a monoidal functor G ∶ C → B

such that there is a monoidal natural isomorphism F ○ G ≃ Id .

2 Preliminaries

Throughout this paper, k will denote an arbitrary field. We shall denote by vect k the
category of finite-dimensional k-vector spaces.

A finite category [10] is an abelian k-linear category such that it has only a finite
number of isomorphism classes of simple objects, Hom spaces are finite-dimensional
k-vector spaces, all objects have finite length, and every simple object has a projective
cover. All these conditions are equivalent to requiring that the category is equivalent to
the category of finite-dimensional representations of a finite-dimensional k-algebra.

If M,N are categories and F ∶ M → N is a functor, we shall denote by Fra , F la ∶
N → M its right and left adjoints, respectively. We shall denote by Mop the opposite
category. If f ∶ M → N is a morphism in M, sometimes we shall denote by f op ∶ N →
M the same map but understood as a morphism in Mop.

Any abelian k-linear category M has a canonical action of the category of finite-
dimensional k-vector spaces

● ∶ vect k ×M → M.(2.1)

See, for example, [23, Lemma 2.2.2]. Any additivek-linear functor F ∶ M → N between
abelian k-linear categories respects the action of vect k, that is, there are natural
isomorphisms

dV ,M ∶ F(V ● M) → V ● F(M),

V ∈ vect k, M ∈ M, satisfying certain axioms.
From now on, all categories will be assumed to be finite abelian k-linear categories,

and all functors will be additive k-linear. Here, k is an arbitrary field. All our proofs
work in the presence of an associator, but for simplicity we assume in the presentation
that the categories are strict.

3 Representations of tensor categories

3.1 Finite tensor categories

A finite tensor category C is a monoidal rigid category, with simple unit object 1 ∈ C.
We refer to [10] for more details on finite tensor categories. Without loss of generality,
we shall assume that tensor categories in this work are strict.
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Fiber functors and reconstruction of Hopf algebras 5

If C,D are monoidal categories, a monoidal functor is a functor F ∶ C → D

equipped with natural isomorphisms

ξA,B ∶ F(A)⊗F(B) → F(A⊗B),

such that

ξA,B⊗C(id F(A)⊗ξB ,C) = ξA⊗B ,C(ξA,B⊗id F(C)).(3.1)

If (F , ξ), (F̃ , ξ̃) ∶ C → D are two monoidal functors, a monoidal natural transforma-
tion between F and F̃ is a natural transformation α ∶ F → F̃ such that

αA⊗B ξA,B = ξ̃A,B(αA⊗αB),(3.2)

for any A, B ∈ C.
If C is a category, for any X ∈ C, we shall denote by

evX ∶ X∗⊗X → 1, coevX ∶ 1 → X⊗X∗

the evaluation and coevaluation. By abuse of notation, we shall also denote by

evX ∶ X⊗∗X → 1, coevX ∶ 1 → ∗X⊗X

the evaluation and coevaluation for the left duals. We will use the following basic
result. If f ∶ X → Y is an isomorphism in C, then

(id ∗X⊗ f )coevX = (∗ f ⊗id Y)coevY ,
evY( f ⊗id Y) = evX(id X⊗∗ f ).

(3.3)

It is well known that for any pair of objects X , Y ∈ C, there are canonical natural
isomorphisms

ϕr
X ,Y ∶ Y∗⊗X∗ → (X⊗Y)∗ ,(3.4)

ϕ l
X ,Y ∶ ∗Y⊗∗X → ∗(X⊗Y).(3.5)

These isomorphisms allow us to compute coevaluation and evaluation maps of duals;
more precisely, we shall need the following identity:

ev∗V = ∗(coevX)ϕ l
∗X ,X .(3.6)

We are going to make use, very often, of the canonical natural isomorphisms

ψZ
X ,Y ∶ HomB(X⊗∗Y , Z) → HomB(X , Z⊗Y),

ψZ
X ,Y( f ) = ( f ⊗id Y)(id X⊗coevY).

(3.7)

And, its inverse

ψ̄Z
X ,Y ∶ HomB(X , Z⊗Y) → HomB(X⊗∗Y , Z)

ψ̄Z
X ,Y(g) = (id Z⊗evY)(g⊗id ∗Y).

(3.8)

We shall also need the following basic fact.

Lemma 3.1 For any pair V , W ∈ C, the evaluation of V⊗W is given by

evV⊗W = evV(id V⊗evW⊗id ∗V)(id V⊗W⊗(ϕ l
V ,W)−1).(3.9)
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6 S. Lentner and M. Mombelli

3.2 Module categories over tensor categories

A left module category over C is a category M together with a k-bilinear bifunctor
⊳∶ C ×M → M, exact in each variable, endowed with natural associativity and unit
isomorphisms

mX ,Y ,M ∶ (X ⊗ Y) ▷ M → X ▷ (Y ▷ M), �M ∶ 1 ▷ M → M .

These isomorphisms are subject to the following conditions:

(X ⊗ (Y ⊗ Z)) ▷ M

((X ⊗ Y) ⊗ Z) ▷ M (X ⊗ Y) ▷ (Z ▷ M)

X ▷ (Y ▷ (Z ▷ M))

X ▷ ((Y ⊗ Z) ▷ M)

∼

mX⊗Y ,Z ,M

mX ,Y ,Z▷M

mX ,Y⊗Z ,M idX▷mY ,Z ,M

(3.10)

for any X , Y , Z ∈ C, M ∈ M, as well as

(id X ▷ �M)mX ,1,M = id .(3.11)

Sometimes we shall also say that M is a C-module category or a representation of C.
Let M and M′ be a pair of C-module categories. A module functor is a pair (F , c),

where F ∶ M → M′ is a functor equipped with natural isomorphisms

cX ,M ∶ F(X ▷ M) → X ▷ F(M),

for X ∈ C, M ∈ M, such that

F((X ⊗ Y) ▷ M)

F(X ▷ (Y ▷ M)) X ▷ F(Y ▷ M)

X ▷ (Y ▷ F(M))

(X ⊗ Y) ▷ F(M)

F(mX ,Y ,M)

cX ,Y▷M

idX▷cY ,M

cX⊗Y ,M mX ,Y ,F(M)

(3.12)
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Fiber functors and reconstruction of Hopf algebras 7

for any X , Y ∈ C, M ∈ M, as well as

�F(M) c1,M = F(�M).(3.13)

Module functors are composable, if M′′ is a C-module category and (G , d) ∶ M′ →
M′′ is another module functor, then the composition

(G ○ F , e) ∶ M → M′′ , eX ,M = dX ,F(M) ○ G(cX ,M)(3.14)

is also a module functor.
A natural module transformation, between module functors (F , c) and (G , d), is a

natural transformation θ ∶ F → G such that

dX ,M θX▷M = (id X ▷ θM)cX ,M ,(3.15)

for any X ∈ C, M ∈ M. The vector space of natural module transformations will be
denoted by Natm(F , G). Two module functors F , G are equivalent if there exists a
natural module isomorphism θ ∶ F → G. We denote by FunC(M,M′) the category
whose objects are module functors (F , c) from M to M′ and arrows module natural
transformations.

Two C-modules M and M′ are equivalent if there exist module functors F ∶ M →
M′, G ∶ M′ → M, and natural module isomorphisms Id M′ → F ○ G, Id M → G ○ F.

A module category will be called strict if isomorphisms m and l are identities. Any
module category is equivalent to a strict one. We will often assume that the module
category is strict without further mention.

A right module category over C is a category M equipped with an exact bifunctor
◁ ∶ M × C → M and natural isomorphisms

m̃M ,X ,Y ∶ M ◁ (X⊗Y) → (M ◁ X) ◁ Y , rM ∶ M ◁ 1 → M

such that

M ◁ ((X ⊗ Y) ⊗ Z)

M ◁ (X ⊗ (Y ⊗ Z)) (M ◁ X) ◁ (Y ⊗ Z)

((M ◁ X) ◁ Y) ◁ Z)

(M ◁ (X ⊗ Y)) ◁ Z

∼

m̃M ,X ,Y⊗Z

m̃M◁X ,Y ,Z

m̃M ,X⊗Y ,Z m̃M ,X ,Y◁idZ

(3.16)

as well as

(rM ◁ id X)m̃M ,1,X = id .(3.17)

If M,M′ are right C-modules, a module functor from M to M′ is a pair (T , d)
where T ∶ M → M′ is a functor and dM ,X ∶ T(M ◁ X) → T(M) ◁ X are natural
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8 S. Lentner and M. Mombelli

isomorphisms such that for any X , Y ∈ C, M ∈ M:

T(M ◁ (X ⊗ Y))

T((M ◁ X) ◁ Y) T(M ◁ X) ◁ Y

(T(M) ◁ X) ◁ Y

T(M) ◁ (X ⊗ Y))

T(m̃M ,X ,Y)

dM◁X ,Y

dM ,X◁id Y

dM ,X⊗Y m̃T(M),X ,Y

(3.18)

as well as

rT(M) dM ,1 = T(rM).(3.19)

3.3 The internal Hom

Let C be a tensor category and M be a left C-module category. For any pair of objects
M , N ∈ M, the internal Hom is an object Hom(M , N) ∈ C representing the left exact
functor

HomM(−▷ M , N) ∶ Cop → vect k .

This means that there are natural isomorphisms

HomC(X , HomM(M , N)) ≃ HomM(X ▷ M , N).

The internal Hom for right C-module categories is defined similarly.
The next technical result will be needed later. Recall natural isomorphisms ϕ l

defined in (3.5).

Lemma 3.2 LetM be a rightC-module category with action given by ◁ ∶ M × C → M.
If (F , c) ∶ M → C is a module functor, then, for any B ∈ M, X ∈ C, the following diagrams
commute.

(F(B)⊗X)⊗∗(F(B)⊗X)

F(B ◁ X)⊗∗F(B ◁ X) (F(B)⊗X)⊗(∗X⊗∗F(B))

1

id⊗(ϕ l
F(B),X)

−1cB ,X⊗
∗c−1

B ,X

evF(B◁X) evF(B)(id⊗evX⊗id)
(3.20)
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Fiber functors and reconstruction of Hopf algebras 9

(∗X⊗∗F(B))⊗(F(B)⊗X)

∗F(B ◁ X) ⊗ F(B ◁ X) ∗(X⊗F(B))⊗(F(B)⊗X)

1

∗cB ,X⊗c−1
B ,X ϕ l

F(B),X⊗id

coevF(B◁X) (id⊗coevF(B)⊗id)coevX

(3.21)

Proof The proof follows by simply checking that morphisms

evF(B◁X) = evF(B)(id⊗evX⊗id )(cB ,X⊗(∗cB ,X ϕ l
F(B),X)−1),

coevF(B◁X) = (∗cB ,X ϕ l
F(B),X⊗c−1

B ,X)(id⊗coevF(B)⊗id )coevX

satisfy rigidity axioms. ∎

4 The (co)end for module categories

In this section, we recall the notion of relative (co)ends, a tool developed in [4] in the
context of representations of tensor categories, generalizing the well-known notion of
(co)ends in category theory.

Let C be a tensor category and M be a left C-module category. Assume that A is a
category and S ∶ Mop ×M → A is a functor equipped with natural isomorphisms

βX
M ,N ∶ S(M , X ▷ N) → S(X∗▷ M , N),(4.1)

for any X ∈ C, M , N ∈ M. We shall say that β is a prebalancing of the functor S.
Sometimes we shall say that it is a C-prebalancing to emphasize the dependence on C.
Definition 4.1 The relative end of the pair (S , β) is an object E ∈ A equipped with
dinatural transformations πM ∶ E . .�→ S(M , M) such that

S(M , M)

S((X∗▷ X) ▷ M , M) S(X∗▷ (X ▷ M), M)

S(X ▷ M , X ▷ M)

E

S(evo p
X ▷idM ,idM)

S(mo p
X∗ ,X ,M

,idM)

βX
X▷M ,M

πX▷MπM

(4.2)

for any X ∈ C, M ∈ M, and is universal with this property. This means that, if Ẽ ∈ A
is another object with dinatural transformations ξM ∶ Ẽ . .�→ S(M , M), such that they
fulfill (4.2), there exists a unique morphism h ∶ Ẽ → E such that ξM = πM ○ h.
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10 S. Lentner and M. Mombelli

The relative end depends on the choice of the prebalancing. We will denote the
relative end as ∮M∈M(S , β), or sometimes simply as ∮M∈M S, when the prebalancing
β is understood from the context.

The relative coend of the pair (S , β) is defined dually. This is an object C ∈ A
equipped with dinatural transformations πM ∶ S(M , M) . .�→ C such that

S(M , M)

S(M , (X∗ ⊗ X) ▷ M) S(M , X ▷ (X∗▷ M))

S(X∗▷ M , X∗▷ M)

C

S(idM ,coevX▷idM)

S(idM ,mX ,X∗ ,M)

βX
M ,X∗▷M

πX∗▷MπM

(4.3)

for any X ∈ C, M ∈ M, universal with this property. This means that, if C̃ ∈ A is another
object with dinatural transformations λM ∶ S(M , M) . .�→ C̃ such that they satisfy (4.3),
there exists a unique morphism g ∶ C → C̃ such that g ○ πM = λM . The relative coend
will be denoted ∮

M∈M(S , β), or simply as ∮
M∈M S.

A similar definition can be made for right C-module categories. LetA be a category,
and letN be a rightC-module category endowed with a functor S ∶ Nop ×N → Awith
a prebalancing

γX
M ,N ∶ S(M ◁ X , N) → S(M , N ◁ ∗X),

for any M , N ∈ N, X ∈ C.
Definition 4.2 The relative end for S is an object E ∈ A equipped with dinatural
transformations λN ∶ E . .�→ S(N , N) such that

S(N , N)

S(N , N ◁ (X ⊗ ∗X)) S(N , (N ◁ X) ◁ ∗X)

S(N ◁ X , N ◁ X)

E

S(idN ,idN◁ evX)

S(id,id⊗m−1
N ,X ,∗X)

γX
N ,N◁X

λN◁XλN

(4.4)

for any N ∈ N, X ∈ C. We shall also denote this relative end by ∮N∈N(S , γ).
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Similarly, the relative coend is an object C ∈ B with dinatural transformations λN ∶
S(N , N) . .�→ C such that

S(N , N)

S(N ◁ (∗X ⊗ X), N) S((N ◁ ∗X) ◁ X , N)

S(N ◁ ∗X , N ◁ ∗X)

C

S(idN◁ coevo p
X ,idN)

S(m−1 o p
N ,∗X ,X

,idN)

γX
N◁∗X ,N

λN◁∗XλN

(4.5)

for any N ∈ N, X ∈ C. We shall also denote this relative coend by ∮
N∈N(S , γ).

In the next proposition, we collect some results about the relative (co)end that will
be useful. The reader is referred to [4, Proposition 3.3] and [4, Proposition 4.2].

Proposition 4.3 Assume that M,N are left C-module categories and that S , S̃ ∶ Mop ×
M → A are functors equipped with C-prebalancings

βX
M ,N ∶ S(M , X ▷ N) → S(X∗▷ M , N),

β̃X
M ,N ∶ S̃(M , X ▷ N) → S̃(X∗▷ M , N),

X ∈ C, M , N ∈ M. The following assertions holds:

(i) Assume that the module ends ∮M∈M(S , β), ∮M∈M(S̃ , β̃) exist and have dinatural
transformations π, π̃, respectively. If γ ∶ S → S̃ is a natural transformation such that

β̃X
M ,N γ(M ,X▷N) = γ(X∗▷M ,N)βX

M ,N ,(4.6)

then there exists a unique map γ̂ ∶ ∮M∈M(S , β) → ∮M∈M(S̃ , β̃) such that

π̃M γ̂ = γ(M ,M)πM

for any M ∈ M. If γ is a natural isomorphism, then γ̂ is an isomorphism.
(ii) For any pair of C-module functors (F , c), (G , d) ∶ M → N, the functor

HomN(F(−), G(−)) ∶ Mop ×M → vect k

has a canonical prebalancing given by

βX
M ,N ∶ HomN(F(M), G(X ▷ N)) → HomN(F(X∗▷ M), G(N))(4.7)

βX
M ,N(α) = (evX ▷ id G(N))m−1

X∗ ,X ,G(N)(id X∗ ▷ dX ,N α)cX∗ ,M ,
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12 S. Lentner and M. Mombelli

for any X ∈ C, M , N ∈ M. There is an isomorphism

Natm(F , G) ≃ ∮
M∈M

(HomN(F(−), G(−)), β).

The next result will be needed later. It follows from a combination of [4, Proposition
3.3] (ii) and [4, Lemma 3.6]. LetM be a leftC-module category, thenN = Mop is a right
C-module category with right action given by

M ◁ X = X∗▷ M .

Assume that A is a category equipped with a functor

S ∶ Nop ×N → A

together with a prebalancing

βX
M ,N ∶ S(M ◁ X , N) → S(M , N ◁ ∗X).

The functor

HomA(S(−, −), U) ∶ Mop ×M → vect k
has a natural prebalancing

γX
M ,N ∶ HomA(S(M , N ◁ ∗X), U) → HomA(S(M ◁ X , N), U),

γX
M ,N( f ) = f ○ βX

M ,N .

The proof of the next statement is similar to the proof of [4, Proposition 3.3(ii)].

Proposition 4.4 If the coend ∮M∈N(S , β) exists, then for any object U ∈ A, the end
∮M∈M HomA(S(−, −), U) exists, and there is an isomorphism

∮
M∈M

HomA(S(−, −), U) ≃ HomA(∮
M∈N

(S , β), U).

Moreover, if ∮M∈M HomA(S(−, −), U) exists for any U ∈ A, then the coend
∮

M∈N(S , β) exists.

The proof of the next result is completely analogous to the proof in the case of usual
coend.

Lemma 4.5 LetM be a rightC-module category, S ∶ Mop ×M → A a functor equipped
with a prebalancing γ. If F ∶ A → A′ is a right exact functor, then there is an isomorphism

F(∮
M∈M

(S , γ)) ≃ ∮
M∈M

(F ○ S , F(γ)).

We shall also need the next result.

Lemma 4.6 Let M,N be right C-module categories, and let (J , c) ∶ M → N be an
equivalence of C-module categories. Assume that S ∶ Nop ×N → A is a functor equipped
with a prebalancing β. The functor S(J(−), J(−)) ∶ Mop ×M → A has a prebalancing
γ given by

γV
M ,N = S(id J(M) , cN ,∗V)βV

J(M), J(N)S(c−1
M ,V , id J(N))
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for any M , N ∈ M. There is an isomorphism

∮
M∈M

(S(J(−), J(−)), γ) ≃ ∮
N∈N

(S , β).

Proof We only sketch the proof. Let λN ∶ S(N , N) → ∮
N∈N(S , β) be the associated

dinatural transformations. If we define πM = λJ(M), for any M ∈ M, one can verify that
these are dinatural transformations and they satisfy (4.5). Universality of π follows
from the universality of λ and the fact that J is an equivalence of categories. ∎

4.1 Existence of (co)ends

In this section, we shall prove that certain (co)ends exists. All these (co)ends will be
used in subsequent sections. We shall use ideas from [24, 25].

Let C be a tensor category, and let B be a right C-module category. Since our
definition of module category includes that the action is right exact in each variable,
the hypothesis of [9, Theorem 2.24] are fulfilled. This means that there exists an algebra
A ∈ C such that

B ≃ AC(4.8)

as module categories. ConsiderC as a rightC-module category with the regular action.
We shall denote by Rex C(B,C) the category of right exact C-module functors. The
functor

Φ ∶ Bop → Rex C(B,C),

Φ(B)(D) = Hom(D, B)∗

is an equivalence of categories, since, under identification (4.8), the functor Φ is the
composition of equivalences

(AC)op (−)
∗

��→ CA
R�→ Rex C(AC,C).

Here, R ∶ CA → Rex C(AC,C) is the functor given by R(V)(W) = V⊗AW . Let be
(F , c) ∈ Rex C(B,C). In particular, we have natural isomorphisms

cB ,X ∶ F(B ◁ X) → F(B)⊗X ,

for B ∈ B, X ∈ C. Consider the functor

Bop ×B → B,

(D, B) ↦ D ◁ ∗F(B).

This functor possesses a C-prebalancing

γV
B ,D ∶ D ◁ ∗F(B ◁ V) → D ◁ ∗V⊗∗F(B),(4.9)

γV
B ,D = id D ◁ (ϕ l

F(B),V)−1∗(c−1
B ,V).

Proposition 4.7 Let B be a right C-module category. For any right exact C-module
functor (F , c) ∶ B → C, the coend
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14 S. Lentner and M. Mombelli

C̃(F , c) = ∮
B∈B

(B ◁ ∗F(B), γ) ∈ B,

exists. Moreover, the functor (F , c) ↦ C̃(F , c) is a quasi-inverse of Φ.

Proof For any D ∈ B, we have

Natm(Φ(D), F) ≃ ∮
B∈B

HomC(Φ(D)(B), F(B))

≃ ∮
B∈B

HomC(HomB(B, D)∗ , F(B))

≃ ∮
B∈B

HomC(∗F(B), HomB(B, D))

≃ ∮
B∈B

HomB(B ◁ ∗F(B), D)

≃ HomB(∮
B∈B

B ◁ ∗F(B), D)

= HomBop(D, ∮
B∈B

B ◁ ∗F(B)).

The first isomorphism is Proposition 4.3(ii), and the fifth isomorphism is Proposition
4.4. Observe that, to prove the existence of the fourth isomorphism, one has to check
that the natural isomorphisms

HomC(∗F(B), HomB(B, D) ≃ HomB(B ◁ ∗F(B), D)
commute with the respective prebalancings and then use Proposition 4.3(i). This
calculation is left to the reader. This proves both that the coend C̃(F , c) exists and
that the quasi-inverse of Φ is given by

Φ̄ ∶ Rex C(B,C) → Bop ,

Φ̄(F , c) = ∮
B∈B

(B ◁ ∗F(B), γ). ∎

For a pair of module functors (F , c), (F̃ , c̃) ∶ B → C, the functor

Bop ×B → C,

(A, B) ↦ F̃(B)⊗∗F(A)
has a canonical prebalancing, given by

βX
A,B ∶ F̃(B)⊗∗F(A ◁ X) → F̃(B ◁ ∗X)⊗∗F(A),

βX
A,B = (c̃−1

B ,∗X⊗id )(id F̃(B)⊗(ϕ l
F(A),X)−1∗(c−1

A,X)).
(4.10)

As a consequence of Lemma 4.5, one can apply F̃ to the coend in Proposition 4.7.
Thus, we get the next result.

Corollary 4.8 For any pair of right exact C-module functors F , F̃ ∶ B → C, the coend

∮
B∈B

(F̃(B)⊗∗F(B), β) ∈ B

exists.
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5 Hopf algebras in braided tensor categories

5.1 Hopf algebras in braided tensor categories

Let us briefly recall the notion of Hopf algebras in braided tensor categories, and how
their corepresentation categories are again tensor categories. For more details, the
reader is referred to [19, 20, 26] and the references therein.

A braided tensor category is a pair (C, σ) where C is a tensor category and σV ,W ∶
V⊗W → W⊗V is a braiding, that is, a family of natural isomorphisms satisfying

σV ,U⊗W = (id U⊗σV ,W)(σV ,U⊗id W),
σV⊗U ,W = (σV ,W⊗id U)(id V⊗σU ,W).(5.1)

Remark 5.1 Note that in the above axioms we are assuming that C is a strict tensor
category.

The braiding fulfills the braid relation, whence the name. We illustrate this identity
in terms of string diagrams, which we read bottom to top.

U V W

W V U

=

U V W

W V U

Definition 5.2 A bialgebra in C is a collection (H, m, u, Δ, ε), where (H, m, u) is an
algebra, (H, Δ, ε) is a coalgebra, and Δ, ε are algebra morphisms. That is,

Δ ○ m = (m⊗m)(id⊗σH ,H⊗id )(Δ⊗Δ),(5.2)
Δ ○ u = (u⊗u),(5.3)
ε ○ m = (ε⊗ε),(5.4)
ε ○ u = id 1 .(5.5)

We illustrate the first identity:

H

H

H

H

=

H

H

H

H
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16 S. Lentner and M. Mombelli

If H is a bialgebra, then the space HomC(H, H) has a convolution product with
unit given by u ○ ε. If the identity id H has an inverse S under the convolution product,
then H is a Hopf algebra, and S is called the antipode. The next theorem is well known
(see, for example, [19]).

Theorem 5.3 If H is a Hopf algebra in a braided tensor category C, then the category
of left H-comodules HC is a tensor category. Moreover, if C is a finite tensor category,
then HC is also a finite tensor category, and the forgetful functor f ∶ HC → C is an exact
faithful monoidal functor.

The tensor product of two left H-comodules is given as follows: if (V , ρV),
(W , ρW) are objects in HC, then the tensor product V⊗W in C has a left H-comodule
structure given by

ρV⊗W = (m⊗id V⊗W)(id H⊗σV ,H⊗id W)(ρV⊗ρW).(5.6)

H

V W

V W

If (V , ρV) ∈ HC, then ∗V ∈ HC. The coaction is given by

ρ∗V = ((S⊗id )σ∗V ,H⊗evV)(id ∗V⊗ρV⊗id ∗V)(coevV⊗id ∗V).(5.7)

The coaction of the right dual V∗ is defined similarly.
For any V ∈ C, we can endow V with a trivial H-comodule structure given by

ρt
V ∶ V → H⊗V , ρt

V = u⊗id V .

5.2 Yetter–Drinfeld modules

Let H be a finite-dimensional Hopf algebra in vect k. Then we shall denote by H
HYD the

category of finite-dimensional Yetter–Drinfeld modules. An object V ∈ H
HYD(vect k) is

a left H-module ⋅ ∶ H⊗kV → V and a left H-comodule λ ∶ V → H⊗kV such that

λ(h ⋅ v) = h(1)v(−1)S(h(3))⊗h(2) ⋅ v(0) ,(5.8)

for any h ∈ H, v ∈ V . If V ∈ H
HYD(vect k), the map σX ∶ V⊗kX → X⊗kV , given by

σX(v⊗x) = v(−1) ⋅ x⊗v(0), is a half-braiding for V.
This notion had been generalized in [3] to Hopf algebras H inside a braided tensor

category C:
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Definition 5.4 Let H be a Hopf algebra in a braided tensor categoryC. Then an H-H-
Yetter–Drinfeld module V is an object V ∈ C, together with a structure of H-module m ∶
H ⊗ V → V and structure of H-comodule in ρ ∶ V → H ⊗ V in the tensor category C,
compatible in the following way:

H

H

V

V

=

H

H

V

V

The category H
HYD(C) consists of Yetter–Drinfeld modules and of H-linear and

H-colinear morphisms. It becomes a tensor category with the usual tensor product of
H-modules and H-comodules V ⊗ W . An useful feature of this tensor category is that
it admits, by construction, a braiding

c(V ,mV ,ρV),(W ,mW ,ρW) ∶ V ⊗ W → W ⊗ V

which is given on objects (V , mV , ρV) and (W , mW , ρW) by

c(V ,mV ,ρV),(W ,mW ,ρW) ∶= (ρW ⊗ id V) ○ (id H ⊗ cV ,W) ○ (ρV ⊗ id W)

and is invertible if H has a bijective antipode

(c(V ,mV ,ρV),(W ,mW ,ρW))−1 ∶= c−1
V ,W ○ (mW ⊗ id V) ○ (c−1

H ,W ⊗ id V)
○ (id W ⊗ S−1 ⊗ id V) ○ (id W ⊗ ρV).

If C is rigid, then the dual object in C with the standard dual action and coaction
gives a dual object in H

HYD(C). The structure is summarized in the following statement
proven in [3].

Theorem 5.5 Let H be a Hopf algebra in C. The Yetter–Drinfeld modules over H in C

have a natural structure of a braided tensor category H
HYD(C). If C is rigid, then so is

H
HYD(C).

Recall that the Drinfeld center Z(B) is a braided tensor category associated with any
tensor category B. The construction of Yetter–Drinfeld modules gives a realization of
a special case of the construction of a relative Drinfeld center ZC(B), a braided tensor
category associated with any tensor categoryBwith a braided subcategoryC ↪ Z(B).
More precisely, we have

H
HYD(C) = ZC(HC).
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18 S. Lentner and M. Mombelli

6 Monoidal module categories

Assume that C, B tensor categories. We shall define what means that a tensor category
C acts on B.

Definition 6.1 We call B a monoidal left C-module category if B is a left C-module
category, with action given by▷ ∶ C ×B → B, such that 1 ▷ 1 ≃ 1, and there are natural
isomorphisms lX ,B ∶ X ▷ B ≃�→ (X ▷ 1)⊗B, for any X ∈ C, B ∈ B, such that

l1,B = id B , lX ,1 = id X▷1 ,(6.1)

X▷ (Y ▷ B)

(X▷ 1) ⊗ (Y ▷ B)

(X▷ 1) ⊗ ((Y ▷ 1) ⊗ B)

((X▷ 1) ⊗ (Y ▷ 1)) ⊗ B

(X▷ (Y ▷ 1)) ⊗ B

((X ⊗ Y) ▷ 1) ⊗ B

(X ⊗ Y) ▷ B

lX ,Y▷B

idX▷1⊗lY ,B

∼

m−1
X ,Y ,B

lX⊗Y ,B

mX ,Y ,1⊗idB

lX ,Y▷1⊗id B

(6.2)

for any X , Y ∈ C, B ∈ B. Similarly, we shall say that B is a monoidal right C-module
category, with action ◁ ∶ B × C → B, such that

1 ◁ 1 ≃ 1,

and there are natural isomorphisms lB ,X ∶ B ◁ X → B⊗(1 ◁ X), such that for any
X , Y ∈ C, B ∈ B,

lB ,1 = id B , l1,X = id 1◁X ,(6.3)
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(B◁ X) ◁ Y

(B◁ X) ⊗ (1◁ Y)

(B ⊗ (1◁ X)) ⊗ (1◁ Y)

B ⊗ ((1◁ X) ⊗ (1◁ Y))

B ⊗ ((1◁ X) ◁ Y))

B ⊗ (1◁ (X ⊗ Y))

B◁ (X ⊗ Y)

lB◁X ,Y

lB ,X⊗id1◁Y

∼

m̃−1
B ,X ,Y

lB ,X⊗Y

idB⊗m̃1,X ,Y

id B⊗l1◁X ,Y

(6.4)

Example 6.2 (i) Any tensor category C is a monoidal vect k-module category, with
the canonical action

● ∶ vect k × C → C.

(ii) Let C be a tensor category. Any tensor subcategory D acts on C by

X ▷ Y = X⊗Y .

In particular, any tensor category acts on itself.
(iii) Let (C, σ) be a braided tensor category and D ⊆ C be a tensor subcategory. Then

Drev acts on C as

X ▷ Y = Y⊗X .

In this case, lX ,B = σB ,X .
(iv) Let C be a tensor category and C ∈ C be a coalgebra. Then the category CC, of left

C-comodules in C, is a right C-module category. The action is given as follows.
If (W , ρ) ∈ CC, then W ◁ Y = W⊗Y , where the coaction on W⊗Y is given by
ρ⊗id Y .
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Definition 6.3 If B, B′ are right monoidal C-module categories, a monoidal module
functor is a collection (F , c, ξ) ∶ B → B′ where (F , c) is a C-module functor, (F , ξ) is
a monoidal functor, and equation

lF(B),V cB ,V = (id F(B)⊗c1,V)ξ−1
B ,1◁V F(lB ,V)(6.5)

is fulfilled for any B ∈ B, V ∈ C.

6.1 Sections of monoidal functors

Definition 6.4 LetC,B be tensor categories. If F ∶ B → C is a tensor functor, a section
to F is a right exact tensor functor G ∶ C → B such that F ○ G ≃ Id C as monoidal
functors.

Example 6.5 (1) Any (linear) tensor functor F ∶ B → vect k has a canonical section
given by

G ∶ vect k → B,

G(V) = V ● 1.

Here, the action ● ∶ vect k ×B → B is the one presented in (2.1).
(2) The previous example can be generalized to other kinds of fiber functors. If C

is a tensor category that acts on another tensor category B, then any monoidal
functor F ∶ B → C that is also a C-module functor has a section given by G ∶ C →
B, G(V) = V ▷ 1. See Proposition 6.6 below.

(3) If (C, σ) is a braided tensor category and H ∈ C is a Hopf algebra with unit given
by u ∶ 1 → H, then the forgetful functor f ∶ HC → C has a section given by G ∶ C →
HC, G(V) = (V , ρt

V). Here, ρt
V = u⊗id V is the trivial comodule structure.

(4) Let H be a Hopf algebra and R be a Hopf algebra in the category of Yetter–
Drinfeld modules H

HYD. Consider the corresponding Hopf algebra obtained by
bosonization R#H. Let us consider the functor

F ∶ Rep(R#H) → Rep(H), F(V) = V .

The action of H on V is given by h ⋅ v = (1#h) ⋅ v. The functor F has a section given
by G ∶ Rep(H) → Rep(R#H) given by G(V) = V , where the action of R#H on V
is given by

(r#h) ⋅ v = ε(r)h ⋅ v .

(5) Let (C, σ) be a braided tensor category. The forgetful functor from the center of
C, f ∶ Z(C) → C, has a section given by the inclusion C ↪ Z(C), V ↦ (V , σ).

Proposition 6.6 Let B,C be tensor categories, and let (F , ξ) ∶ B → C be a monoidal
functor. The following notions are equivalent:
(i) The functor F has a section.

(ii) B is a right monoidal C-module category (in the sense of Definition 6.1) and F is a
monoidal module functor.

Proof Let us only give a sketch of the proof. (i) implies (ii): assume that (G , ζ) ∶ C →
B is a monoidal section to F. Let α ∶ F ○ G → Id be a natural monoidal isomorphism.
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Define the right action of C on B as

B ◁ V ∶= B⊗G(V),

for any B ∈ B, V ∈ C. The associativity of this action is given by

mB ,V ,W ∶ B ◁ (V⊗W) → (B ◁ V) ◁ W ,

mB ,V ,W = id B⊗ζ−1
V ,W ,

for any B ∈ B, V , W ∈ C. Turns out that B is a monoidal module category with
isomorphisms

lB ,V ∶ B ◁ V → B⊗(1 ◁ V),

lB ,V = id B⊗G(V).

With this action, F is a module functor. The module structure of the functor F is
given by

cB ,V ∶ F(B ◁ V) → F(B)⊗V ,

cB ,V = (id F(B)⊗αV)ξ−1
B ,G(V)F(lB ,V).

Since c1,V = αV , then it follows that equation (6.5) is fulfilled, that is, (F , ξ, c) is a
monoidal module functor.

Let us prove now that (ii) implies (i): assume that (F , ξ, c) ∶ B → C is a monoidal
C-module functor. Define G ∶ C → B, G(V) = 1 ◁ V . Axiom (6.4) implies that iso-
morphisms

l−1
1◁V ,W ∶ G(V)⊗G(W) → G(V⊗W)

endow G with the structure of monoidal functor. Define natural isomorphisms αV ∶
F(G(V)) = F(1 ◁ V) → V , αV = c1,V . Let us check that they are monoidal natural
isomorphisms. For this, we need to verify that equation

(c1,V⊗c1,W) = c1,V⊗W F(l−1
1◁V ,W)ξ1◁V ,1◁W(6.6)

is satisfied. Using that c satisfies diagram (3.18), it follows that the right-hand side of
equation (6.6) is equal to

= (c1,V⊗id W)c1◁V ,W F(l−1
1◁V ,W)ξ1◁V ,1◁W

= (c1,V⊗id W)(id F(1◁V)⊗c1,W)ξ−1
1◁V ,1◁W F(l1◁V ,W)F(l−1

1◁V ,W)ξ1◁V ,1◁W

= (c1,V⊗c1,W).

The second equation follows from (6.5) ∎

Remark 6.7 Constructions in Proposition 6.6 are reciprocal in the following sense.
If B is a right monoidal C-module category and G ∶ C → B is the monoidal functor
G(V) = 1 ◁ V , then one can endow B with a right C-module structure

B ◂ V = B⊗G(V),
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for any B ∈ B, V ∈ C. Turns out, that the identity functor Id ∶ (B, ◁) → (B, ◂) is an
equivalence of module categories.

6.2 Some natural module transformations

It is known that natural transformations between additive functors are additive. For
example, if (F , ξ) is an additive monoidal functor, then natural isomorphisms

ξA,B ∶ F(A)⊗F(B) → F(A⊗B)

are additive in each variable. In this section, we shall study what happens when F is a
monoidal module functor. We aim at proving that ξ is a module natural transformation
in the second variable.

Lemma 6.8 IfB is a right monoidalC-module category, then for any A ∈ B, the functor
LA ∶ B → B, LA(B) = A⊗B is a C-module functor.

Proof For any B ∈ B, V ∈ C, the module structure of the functor LA is given by

ηB ,V ∶ A⊗(B ◁ V) → (A⊗B) ◁ V ,

ηB ,V = l−1
A⊗B ,V(id A⊗lB ,V).

Let us prove that η satisfies (3.18). Using that isomorphisms l satisfy diagram (6.4), it
follows that for any C ∈ B and any V , W ∈ C, we have that

l−1
C ,V⊗W = l−1

C◁V ,W(l−1
C ,V⊗id 1◁W)(id C⊗l1◁V ,W).(6.7)

On one hand, we have that

ηB ,V⊗W = l−1
A⊗B ,V⊗W(id A⊗lB ,V⊗W)

= l−1
(A⊗B)◁V ,W(l−1

A⊗B ,V⊗id 1◁W)(id A⊗B⊗l1◁V ,W)(id A⊗B⊗l−1
1◁V ,W)

(id A⊗lB ,V⊗id 1◁W)(id A⊗lB◁V ,W)
= l−1
(A⊗B)◁V ,W(l−1

A⊗B ,V⊗id 1◁W)(id A⊗lB ,V⊗id 1◁W)(id A⊗lB◁V ,W).

The second equation follows from using (6.7). On the other hand,

(ηB ,V ◁ id W)ηB◁V ,W

is equal to

= (l−1
A⊗B ,V ◁ id W)(id A⊗lB ,V⊗id 1◁W)l−1

A⊗(B◁V),W(id A⊗lB◁V ,W)
= (l−1

A⊗B ,V ◁ id W)l−1
A⊗B⊗(1◁V),W(id A⊗lB ,V⊗id 1◁W)(id A⊗lB◁V ,W)

= l−1
(A⊗B)◁V ,W(l−1

A⊗B ,V⊗id 1◁W)(id A⊗lB ,V⊗id 1◁W)(id A⊗lB◁V ,W).

The second and third equalities follow from the naturality of l. ∎

Proposition 6.9 Assume that B is a monoidal right C-module category and that
(F , c, ξ) ∶ B → C a monoidal module functor. The following assertions hold.
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(i) The category B has structure of C-bimodule category.
(ii) There are C-module functors

H, H̃ ∶ B ⊠C B → C

such that

H(A ⊠ B) = F(A⊗B), H̃(A ⊠ B) = F(A)⊗F(B),

for any A, B ∈ B.
(iii) The monoidal structure of the functor F defines a natural module isomorphism

ξ ∶ H̃ → H.

Proof (i). From Proposition 6.6, there is a section G ∶ C → B of the functor F. Define
the left action ▷ ∶ C ×B → B as V ▷ B = G(V)⊗B. With this action, B becomes a C-
bimodule category. Thus, we can consider the Deligne tensor product over C, B ⊠C B.
This category has an obvious right C-module category structure.

One can prove that functors B ×B → C given by

(A, B) ↦ F(A⊗B), (A, B) ↦ F(A)⊗F(B)

are C-balanced, thus defining functors H and H̃. The (right) C-module structure of
the functor H̃ is the one inherited from the functor F. The module structure of the
functor H is more involved. One can prove that natural transformations

eA,B ,V ∶ F(A⊗(B ◁ V)) → F(A⊗B)⊗V ,

eA,B ,V = cA⊗B ,V F(l−1
A⊗B ,V(id A⊗lB ,V))

are C-balanced, thus defining natural transformations

eX ,V ∶ H(X ◁ V) → H(X) ◁ V ,

for any X ∈ B ⊠C B, V ∈ C. One can prove also that (H, e) is a module functor. Note
that e is the module structure resulting from the composition of module structures of
F and the functor LA, presented in Lemma 6.8. This proves (ii).

(iii). To prove that ξ is a natural module transformation in the second variable, we
need to verify that the diagram

H̃(A, B ◁ V)

id F(A)⊗cB ,V

		

ξA,B◁V �� H(A, B ◁ V)

eA,B ,V

		
H̃(A, B)⊗V

ξA,B⊗id V

�� H(A, B)⊗V

(6.8)

is commutative for any A, B ∈ B, V ∈ C. Here,

eA,B ,V = cA⊗B ,V F(l−1
A⊗B ,V(id A⊗lB ,V)).

We have

eA,B ,V ξA,B◁V = cA⊗B ,V F(l−1
A⊗B ,V(id A⊗lB ,V))ξA,B◁V

= (id⊗c1,V)ξ−1
A⊗B ,1◁V F(id A⊗lB ,V)ξA,B◁V
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= (id⊗c1,V)ξ−1
A⊗B ,1◁V ξA,B⊗(1◁V)(id F(A)⊗F(lB ,V))

= (id⊗c1,V)(ξA,B⊗id F(1◁V))(id F(A)⊗ξ−1
B ,1◁V)(id F(A)⊗F(lB ,V))

= (ξA,B⊗id V)(id F(A)⊗(id F(B)⊗c1,V)ξ−1
B ,1◁V F(lB ,V))

= (ξA,B⊗id V)(id F(A)⊗cB ,V).

The second equality follows from (6.5), the third equality follows from the naturality
of ξ, and the fourth one follows from (3.1). The last equality follows from (6.5). ∎

7 Fiber functors and reconstruction results

It is a classical result that, out of a fiber functor, which is a monoidal, exact, and faithful
functor F ∶ B → vect k, one can reconstruct a (usual) Hopf algebra H such that B is
monoidally equivalent to the category of left H-comodules. We shall generalize these
reconstruction theorems for a fiber functor F ∶ B → C, where C is an arbitrary braided
tensor category acting monoidally on B. The reconstruction of the Hopf algebra from
these data will be described in a similar way as the case C = vect k. See, for example,
[19, 23]. The main new ingredient will be the use of the relative coend, introduced in
[4], and the splitting condition, that is, the existence of a section G ∶ C → B of F. While
dealing with the relative (co)end, the primary new challenge will be demonstrated that
some dinatural transformations satisfy equation (4.5).

7.1 Coalgebras constructed from a coend

Let C be a tensor category, and let B be a right C-module category. For the rest of this
section, (F , c) ∶ B → C will denote a right exact module functor.

Consider the functor

SF ∶ Bop ×B → C,

SF(A, B) = F(B)⊗∗F(A).

This functor has a canonical prebalancing given by

βX
A,B ∶ F(B)⊗∗F(A ◁ X) → F(B ◁ ∗X)⊗∗F(A),

βX
A,B = (c−1

B ,∗X⊗id ∗F(A))(id F(B)⊗(ϕ l
F(A),X)−1∗(c−1

A,X)).(7.1)

We define

C(F , c) = C(F) = ∮
B∈B

(SF , β) = ∮
B∈B

F(B)⊗∗F(B).

Let πB ∶ F(B)⊗∗F(B) → C(F) be the associated dinatural transformations. Existence
of this coend follows from Corollary 4.8. The following lemma is a generalization of
[23, Lemma 2.1.9]. Recall that for any M , N ∈ B, X ∈ C, we have natural isomorphisms

ψV
F(M),F(N) ∶ HomC(F(M)⊗∗F(N), V) → HomC(F(M), V⊗F(N))

described in (3.7).

https://doi.org/10.4153/S0008414X24000531 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000531


Fiber functors and reconstruction of Hopf algebras 25

Lemma 7.1 The functor V ↦ Natm(F , V⊗F) is represented by C(F). That is, for any
V ∈ C, there are natural isomorphisms

ω ∶ HomC(C(F), V) → Natm(F , V⊗F),

ω(g)B = (g⊗id F(B))ψC(F)
F(B),F(B)(πB).(7.2)

Proof Fix some object V ∈ C. The functor V⊗F is a right module functor, then we
can consider the prebalancing of the functor

HomC(F(−), V⊗F(−)) ∶ B ×Bop → vect k ,

given by

γX
B ,N ∶ HomC(F(N ◁ ∗X), V⊗F(B)) → HomC(F(N), V⊗F(B ◁ X)),

γX
N ,B( f ) = (id V⊗cB ,X)( f ⊗id X)(c−1

N ,∗X⊗id X)(id F(N)⊗coevX).

Note that here we are considering Bop as a left C-module category, with action X ▷
B ∶= B ◁ ∗X. Proposition 4.3(ii) tells us that there is an isomorphism

∮
B∈B

(HomC(F(B), V⊗F(B)), γ) ≃ Natm(F , V⊗F).

From the proof of Proposition 4.4, one can see that the dinatural transformations of
the end ∮B∈B HomC(F(B)⊗∗F(B), V) are given by

π̂B ∶ ∮
B∈B

HomC(F(B)⊗∗F(B), V) → HomC(F(B)⊗∗F(B), V),

π̂B(g) = g ○ πB .

Here, we are using identification

∮
B∈B

HomC(F(B)⊗∗F(B), V) = HomC(∮
B∈B

F(B)⊗∗F(B), V).

It follows by a straightforward computation that

γX
M ,N(ψV

F(M◁∗X),F(N)( f )) = ψV
F(M),F(N◁X)( f ○ βX

N ,M),

for any M , N ∈ B and any f ∈ HomB(F(M ◁ ∗X)⊗∗F(N), V). This implies, using
Proposition 4.3(i) that, for any V ∈ C, there exists an isomorphism

ψ̂V ∶ ∮
B∈B

HomC(F(B)⊗∗F(B), V) → ∮
B∈B

HomC(F(B), V⊗F(B)),

such that μB ○ ψ̂V = ψV
F(B),F(B) ○ π̂B . For any V ∈ C, we have that

HomC(C(F), V) ≃ ∮
B∈B

HomC(F(B)⊗∗F(B), V)

≃ ∮
B∈B

HomC(F(B), V⊗F(B))

≃ Natm(F , V⊗F).

The first isomorphism is Proposition 4.4. Tracing this chain of isomorphisms, one can
see that the composition coincides with ω defined by equation (7.2). ∎
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Proposition 7.2 Let C be a tensor category, and let B be a right C-module category.
Let (F , c) ∶ B → C be a right exact module functor. The object C(F) ∈ C has a coalgebra
structure Δ ∶ C(F) → C(F)⊗C(F), ε ∶ C(F) → 1 determined by diagrams

F(B)⊗∗F(B)

id⊗coevF(B)⊗id
		

πB �� C(F)

Δ
		

F(B)⊗∗F(B)⊗F(B)⊗∗F(B) πB⊗πB

�� C(F)⊗C(F),

(7.3)

F(B)⊗∗F(B) πB ��

evF(B)



��
��

��
��

��
C(F)

ε
��		
		
		
		

1,

(7.4)

for any B ∈ B.

Proof It follows by a straightforward computation that the maps

evF(B) ∶ F(B)⊗∗F(B) → 1,

(πB⊗πB)(id⊗coevF(B)⊗id ) ∶ F(B)⊗∗F(B) → C(F)⊗C(F)

are dinatural maps. It follows from diagram (3.20) that evF(B) satisfies (4.5). It follows
from diagram (3.21) and the fact that π satisfies (4.5) that (πB⊗πB)(id⊗coevF(B)⊗id )
also satisfies equation (4.5). Whence, the existence of Δ and ε follows from the
universal property of the relative coend.

The proof that (C(F), Δ, ε) is a coalgebra is standard, and it follows from diagrams
(7.3) and (7.4). ∎

Let C be a tensor category, and let C ∈ C be a coalgebra. The category CC, of left
C-comodules in C, is a right C-module category. The action is given as follows. If
(W , ρ) ∈ CC, then W ◁ Y = W⊗Y , where the coaction on W⊗Y is given by ρ⊗id Y .
The forgetful functor f ∶ CC → C is a C-module functor. The next result says that the
coalgebra reconstructed from the forgetful functor f coincides with C.

In this case, the functor S f has a prebalancing given by

βX
A,B = id B⊗(ϕ l

A,X)−1 ,

for any A, B ∈ CC, X ∈ C.

Lemma 7.3 There exists an isomorphism of coalgebras C( f ) ≃ C in C.

Proof In this particular case, if T ∈ C is an object, and λW ∶ W⊗∗W → T is a
dinatural transformation, equation (4.5) writes as

λW⊗∗V(id W⊗(ϕ l
W⊗∗V ,V)−1) = λW(id W⊗∗(id W⊗coevV)),(7.5)

for any W ∈ CC, V ∈ C.
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If W ∈ CC has comodule structure given by ρW → C⊗W , then we define πW ∶
W⊗∗W → C , the morphisms given by πW = ψ̄C

W ,W(ρ). Recall that natural isomor-
phisms ψ̄ were defined in (3.8). Maps πW are dinatural transformations, and they
satisfy equation (7.5).

Let A ∈ C be another object, equipped with dinatural transformations λW ∶
W⊗∗W → A such that they satisfy equation (7.5). Define h as the composition

h ∶ C id C⊗
∗ε����→ C⊗∗C λC�→ A.

Since λ is dinatural, and it satisfies (7.5), one can see that h ○ πW = λW . This proves
that, indeed, C( f ) ≃ C. ∎

Proposition 7.4 Let B be a right C-module category, and let (F , c) ∶ B → C be a right
exact module functor. Set C = C(F) the coalgebra defined in Proposition 7.2.
1. The functor (F , c) ∶ B → C factorizes as

CC
f

���
��

��
��

�

B

F̂
��









F
�� C.

(7.6)

Here, f ∶ CC → C is the forgetful functor, and the functor F̂ is a C-module functor.
2. If F is exact (resp. faithful), then F̂ is exact (resp. faithful).

Proof 1. For any A ∈ B, define F̂(A) = (F(A), ρA), where

ρA = ψC
F(A),F(A)(πA) ∶ F(A) → C⊗F(A).

Using diagrams (7.3) and (7.4), one can prove that

(id C⊗ρA)ρA = (Δ⊗id )ρA,

(ε⊗id )ρA = id F(A) .

2. Clearly, if F is faithful, then F̂ is faithful. Assume that F is left exact. Let f ∶ A → B
be a morphism in B with kernel k = ker f ∶ K → A. Since F is left exact, then F(k) =
ker F( f ). We only need to prove that the morphism F(k) ∶ F(K) → F(A) is a map of
C-comodules. That is, we need to prove the equality

(id⊗F(k))ψC
F(K),F(K)(πK) = ψC

F(A),F(A)(πA)F(k).(7.7)

Using the naturality of ψ, it follows that

ψC
F(A),F(A)(πA)F(k) = ψC

F(K),F(A)(πA(F(k)⊗id ))
= ψC

F(K),F(A)(πK(id⊗∗F(k)))
= (id⊗F(k))ψC

F(K),F(K)(πK).

The second equality follows from the dinaturality of π, and the third equality follows
again by the naturality of ψ. The proof that if F is right exact then F̂ is right exact
follows similarly. ∎
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7.2 Some auxiliary results

In this section, we shall present some technical results that will be used later. In
particular, these results will be used in the proof of our main result Theorem 7.7.

Let B be a right C-module category, and (F , c) ∶ B → C be a module functor.
To make calculations easier, we shall assume that the associativity of the C-module
category B is trivial. Recall the relative coend

C̃(F , c) = C̃ = ∮
B∈B

B ◁ ∗F(B) ∈ B(7.8)

presented in Proposition 4.7. Let us denote by

λB ∶ B ◁ ∗F(B) → C̃(F , c)

the associated dinatural transformations. Analogous to the definition of Δ, given in
(7.3), we shall define a map

δ ∶ C̃(F , c) → C̃(F , c) ◁ C(F , c).(7.9)

Lemma 7.5 There exists a unique morphism δ ∶ C̃(F , c) → C̃(F , c) ◁ C(F , c) such
that

B ◁ ∗F(B)

id◁(coevF(B)⊗id )
		

λB �� C̃

δ
		

B ◁ ∗F(B)⊗F(B)⊗∗F(B) λB◁ πB �� C̃ ◁ C .

(7.10)

Proof Let us denote dB ,V the following natural isomorphism:

dB ,V ∶ ∗F(B ◁ V) → ∗V⊗∗F(B),

dB ,V = (ϕ l
F(B),V)−1∗(c−1

B ,V).

Recall from equation (4.9) that the prebalancing used in the coend C̃(F , c) is given by

γV
B ,D ∶ D ◁ ∗F(B ◁ V) → D ◁ ∗V⊗∗F(B),

γV
B ,D = id D ◁ dB ,V .

Using that c satisfies (3.18), it is not difficult to prove that

dB ,∗V⊗V = (ϕ l
∗V ,V⊗id )(id ∗V⊗dB ,∗V)dB◁∗V ,V ,(7.11)

for any B ∈ B, V ∈ C. The naturality of ϕ l and c implies that

F(∗(id B ◁ coevV)) = (∗(coevV)⊗id ∗F(B))dB ,∗V⊗V ,(7.12)

for any B ∈ B, V ∈ C. Whence, using (3.6), it follows that

F(∗(id B ◁ coevV))d−1
B◁∗V ,V = (ev∗V)⊗id ∗F(B))(id ∗V⊗dB ,∗V).(7.13)
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In this case, if A ∈ B, a dinatural transformation νB ∶ B ◁ ∗F(B) → A satisfies equa-
tion (4.5) if and only if

νB(id B ◁ F(∗(id B ◁ coevV)) = νB◁∗V γV
B◁∗V ,B .(7.14)

Using that dinatural transformations λ and π both satisfy (4.5) and using (7.13), it
follows that dinatural transformation

(λB ◁ πB)(id B ◁ (coevF(B)⊗id ∗F(B))

also satisfies (7.14). Now, existence of the map δ ∶ C̃(F , c) → C̃(F , c) ◁ C(F , c) satis-
fying (7.10) follows from the universal property of the relative coend. ∎

For any A, B ∈ B and V ∈ C, define

ψ̃V
B ,A ∶ HomB(B ◁ ∗V , A) → HomB(B, A ◁ V),

ψ̃V
B ,A( f ) = ( f ◁ id V)(id B ◁ coevV).(7.15)

Compare with natural isomorphisms given in (3.7). For any B ∈ B, define also

ρ̃B = ψ̃F(B)
B ,C̃

(λB) ∶ B → C̃ ◁ F(B).(7.16)

One could check that, using Lemma 4.5, whenever F is right exact, F(C̃) = C. The
dinatural transformations of F(C̃) is given by F(λB). In particular, this implies that

cC̃ ,F(B)F(ρ̃B) = ρB ,(7.17)

for any B ∈ B. Using definition of Δ ∶ C → C⊗C given by diagram (7.2), one can see
that

cC̃ ,C F(δ) = F(Δ).(7.18)

If h1 , h2 ∶ C⊗F(B) → C⊗C⊗F(B) are defined as

h1 = id C⊗ρB , h2 = Δ⊗id F(B) ,

then it is a standard result that the kernel of the difference h1 − h2 is ρB . Using the
above, we have the following.

Proposition 7.6 Assume that the module functor (F , c) ∶ B → C is faithful and exact.
The map ρ̃B ∶ B → C̃ ◁ F(B) is the kernel of the difference of morphisms

C̃ ◁ F(B)
h̃1 ��

h̃2

�� C̃ ◁ (C⊗F(B)),

where h̃1 = id C̃ ◁ ρB and h̃2 = δ ◁ id F(B) .

Proof Note that we are using that F is right exact so that F(C̃) = C. See Lemma 4.5.
Using (7.17), (7.18), and the naturality of c, one can prove that

cC̃ ,C⊗F(B)F(h̃1 − h̃2) = (h1 − h2)cC̃ ,F(B) .

This implies that F(ρ̃B) = ker F(h̃1 − h̃2) = F(ker h̃1 − h̃2), since F is also left exact.
The result follows, since F is faithful. ∎
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7.3 Reconstruction results

The following theorem is one of our main results and is a generalization of [23,
Theorem 2.2.8].

Theorem 7.7 Let C be a tensor category, and let B be a right C-module category. Let
(F , c) ∶ B → C be an exact and faithful module functor. Let C = ∮

B∈B F(B)⊗∗F(B) ∈
C be the relative coend coalgebra introduced in Proposition 7.2 and consider its category of
comodules CC. Then the functor F factorizes into an equivalence of C-module categories
F̂ ∶ B ∼�→ CC and the forgetful functor f ∶ CC → C:

B
F̂ ��

F �
��

��
��

�
CC

f����
��
��
��

C.

(7.19)

Proof Recall that we denote by

πA ∶ F(A)⊗∗F(A) → ∮
B∈B

F(B)⊗∗F(B)

the dinatural transformations of the relative coend C(F). The definition of the functor
F̂ ∶ B → CC was given in Proposition 7.4. Since F is faithful, F̂ is also faithful. We need
to prove that F̂ is essentially surjective and full.

Let us prove first that F̂ is essentially surjective. Take (M , ρ) ∈ CC. We endowed
C⊗M structure of left C-comodule via Δ, then ρ ∶ M → C⊗M is actually a morphism
in CC. We begin with the observation that (M , ρ) is the kernel (in CC) of the difference
of morphisms

C⊗M
Δ⊗id ��

id⊗ρ
�� C⊗C⊗M .

Recall from Proposition 7.4 that for any A ∈ B, the object F(A) has a left H-comodule
structure given by ρA = ψC

F(A),F(A)(πA). Hence, for any V ∈ C, the object F(A)⊗V
has a left comodule structure given by ρA⊗id V . The next claim will be crucial for the
proof. To prove this claim, it is essential that the dinatural maps π satisfy equation
(4.5).

Claim 7.1 For any A ∈ B, V ∈ C, morphisms cA,V ∶ F(A ◁ V) → F(A)⊗V are
C-comodule maps. ∎

Proof of Claim We need to prove that

(ψH
F(A),F(A)(πA)⊗id V)cA,V = (id H⊗cA,V)ψH

F(A◁V),F(A◁V)(πA◁V).

This equation is equivalent to

(πA⊗id F(A)⊗V)(id⊗coevF(A)⊗id V)cA,V = (πA◁V⊗cA,V)(id⊗coevF(A◁V)).
(7.20)
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Since π satisfies equation (4.5), it follows that

πA◁V = πA(id F(A)⊗∗(F(id A ◁ coevV∗)))(βV∗
A◁V ,A)

−1 .

Using the description of the prebalancing β given in (4.10), we obtain that

πA◁V = πA(id F(A)⊗∗(cA◁V ,V∗F(id A ◁ coevV∗)))(id⊗ϕ l
F(A◁V),V∗)

(cA,V⊗id ∗F(A◁V)).(7.21)

It follows from the naturality of c that

cA,V⊗V∗F(id A ◁ coevV∗) = (id F(A)⊗coevV∗).

Using equation (3.18), it follows that

cA◁V ,V∗F(id A ◁ coevV∗) = (c−1
A,V⊗id V∗)(id F(A)⊗coevV∗).

Whence

πA◁V = πA(id F(A)⊗∗(id F(A)⊗coevV∗))(id F(A)⊗∗(c−1
A,V⊗id V∗))

(id F(A)⊗ϕ l
F(A◁V),V∗)(cA,V⊗id ∗F(A◁V))(7.22)

= πA(id F(A)⊗∗(id F(A)⊗coevV∗))(id F(A)⊗ϕ l
V∗ ,F(A)⊗V)

(cA,V⊗∗(c−1
A,V)).

The second equality follows from the naturality of ϕ l . It follows by a tedious, but
straightforward, computation that

(∗(id F(A)⊗coevV∗)⊗id F(A)⊗V)(ϕ l
V∗ ,F(A)⊗V⊗id F(A)⊗V)

(id V⊗coevF(A)⊗V) = coevF(A)⊗id V .(7.23)

Let us prove now equation (7.20). The right-hand side of (7.20) is equal to

= (πA◁V⊗id F(A)⊗V)(id⊗cA,V)(id F(A◁V)⊗coevF(A◁V))
= (πA⊗id F(A)⊗V)(id F(A)⊗∗(id F(A)⊗coevV∗)⊗id F(A)⊗V)
(id F(A)⊗ϕ l

V∗ ,F(A)⊗V⊗id F(A)⊗V)(cA,V⊗∗(c−1
A,V)⊗id F(A)⊗V)

(id⊗cA,V)(id F(A◁V)⊗coevF(A◁V))
= (πA⊗id F(A)⊗V)(id F(A)⊗∗(id F(A)⊗coevV∗)⊗id F(A)⊗V)
(id F(A)⊗ϕ l

V∗ ,F(A)⊗V⊗id F(A)⊗V)(cA,V⊗coevF(A)⊗V)
= (πA⊗id F(A)⊗V)(id F(A)⊗coevF(A)⊗id V)cA,V .

The second equality follows from equation (7.22), the third equality follows from (3.3),
and the last equality follows from (7.23). This finishes the proof of the claim. ∎

It follows from Claim that natural isomorphisms c endow the functor F̂ with
structure of module functor. Let

C̃ = C̃(F , c) = ∮
B∈B

B ◁ ∗F(B) ∈ B
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be the object defined in Proposition 4.7, together with the map

δ ∶ C̃ → C̃ ◁ C ,

presented in diagram (7.10). Since F(C̃) = C, it also follows from Claim 7.1 that there
are C-comodule isomorphisms

F(C̃ ◁ M) ≃ C⊗M ,

F(C̃ ◁ (C⊗M)) ≃ C⊗C⊗M .

Hence, (M , ρ) is the kernel of the difference of morphisms

F(C̃ ◁ M)
F(h1) ��

F(h2)
�� F(C̃ ◁ (C⊗M)),

where h1 = δ ◁ id M , h2 = id C̃ ◁ ρ. Since F is left exact, (M , ρ) ≃ F(ker(h1 − h2)).
This proves that F̂ is essentially surjective.

Let us prove now that F̂ is full. Take A, B ∈ B and f ∶ F(A) → F(B) a C-comodule
morphism. We have a commutative diagram

F(A)

f
		

ρA

�� C⊗F(A)

id H⊗ f
		

F(B)
ρB

�� C⊗F(B).

(7.24)

This implies that we have a commutative diagram

0 �� F(A)
ρA ��

f
		

C⊗F(A)
hA

1 −hA
2 ��

id⊗ f
		

C⊗(C⊗F(A))

id⊗ f
		

0 �� F(B)
ρB �� C⊗F(B)

hB
1 −hB

2 �� C⊗(C⊗F(B)).

Where hA
1 = id H⊗ρA, hA

2 = Δ⊗id F(A) . Note that, by the universal property of the
kernel, the map f ∶ F(A) → F(B) is the unique morphism fitting in this diagram.
Define

C̃ = C̃(F , c) = ∮
B∈B

B ◁ ∗F(B) ∈ B.

See Proposition 4.7 for the definition of this coend. Using Proposition 7.6, for any
B ∈ B, we have an exact sequence

0 → B
ρ̃B���→ C̃ ◁ F(B) h̃����→ C̃ ◁ (C⊗F(B)),

where h̃B = id C̃ ◁ ρB − δ ◁ id F(B) . For the definition of δ and ρ̃B , see (7.9) and (7.10).
Since f is a comodule morphism, by the universal property of the kernel, there exists
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a unique morphism η that fits into the diagram

0 �� A
ρ̃A ��

η

		

C̃ ◁ F(A) h̃A ��

id◁ f
		

C̃ ◁ (C⊗F(A))

id◁(id⊗ f )
		

0 �� B
ρ̃B �� C̃ ◁ F(B) h̃B �� C̃ ◁ (C⊗F(B)).

(7.26)

Applying F to this diagram, we obtain diagram (7.25). By the uniqueness of f, we get
that F(η) = f , proving that F̂ is full.

7.4 Hopf algebras in C constructed from a coend

In the case B is a monoidal C-module category and the functor (F , c, ξ) ∶ B → C is
a monoidal module functor, one can endow the coalgebra C = C(F) with a Hopf
algebra structure. In this section, we shall explain the construction of the product and
antipode on C(F). The new hypothesis needed to construct such Hopf algebra is that
C possesses a braiding.

To construct the product m ∶ C(F)⊗C(F) → C(F), we shall use ideas from [19].
In few words, we shall construct some natural module transformation F⊗F →
C(F)⊗F⊗F and use Lemma 7.1 to find m ∶ C(F)⊗C(F) → C(F).

Lemma 7.8 Let C be a braided tensor category, B be a monoidal C-module category,
and a monoidal module functor (F , c, ξ) ∶ B → C. Let us denote dB ,V the following
natural isomorphism:

dB ,V ∶ ∗F(B ◁ V) → ∗V⊗∗F(B),

dB ,V = (ϕ l
F(B),V)−1∗(c−1

B ,V).

Then, for any B ∈ B, V ∈ C, we have

dB ,∗V⊗V = (ϕ l
∗V ,V⊗id )(id ∗V⊗dB ,∗V)dB◁∗V ,V ,(7.27)

Proof It follows by a straightforward calculation using (3.18). ∎

Recall, from Proposition 6.9, the functors

H, H̃ ∶ B ⊠C B → C,

determined by

H(A ⊠ B) = F(A⊗B), H̃(A ⊠ B) = F(A)⊗F(B),

for any A, B ∈ B. Recall also that we are denoting by πB ∶ F(B)⊗∗F(B) → C(F) the
dinatural transformations and the associated left C(F)-coaction ρB = ψC

F(B),F(B)(πB).

Remark 7.9 In the case C = vect k, the following proposition is trivial, since it only
says that some natural transformation is additive. In the general case, where C is
arbitrary, it is far from obvious, and it is a crucial step toward the reconstruction of
the product in C(F). Its proof will highlight the importance of all required axioms.
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For later use, π has to satisfy equation (4.5), using prebalancing (7.1). This means
that

πB◁V = πB(id F(B)⊗∗F(id B ◁ coevV∗))(id F(B)⊗d−1
B◁V ,V∗)(cB ,V⊗id ∗F(B◁V)).

(7.28)

Proposition 7.10 Let C be a braided tensor category, B be a monoidal C-module cate-
gory, and (F , c, ξ) ∶ B → C be a monoidal module functor. The natural transformation
μ ∶ H̃ → C(F)⊗H̃ determined by the composition

H̃(A, B) ξA,B��→ H(A, B) ρA⊗B��→ C(F)⊗H(A, B)
id⊗ξ−1

A,B����→ C(F)⊗H̃(A, B)

is a natural module transformation. That is, μ ∈ Natm(H̃, C(F)⊗H̃).

Proof It follows from Proposition 6.9 that ξ is a natural module transformation.
Once it has been established that the diagram

H(A, B ◁ V)

eA,B ,V

		

ρA⊗B◁V �� C(F)⊗H(A, B ◁ V)

id C(F)⊗eA,B ,V

		
H(A, B)⊗V

ρA⊗B⊗id V �� C(F)⊗H(A, B)⊗V

(7.29)

is commutative, the proof will follow. Recall, from the proof of Proposition 6.9, that

eA,B ,V ∶ F(A⊗(B ◁ V)) → F(A⊗B)⊗V ,

eA,B ,V = cA⊗B ,V F(l−1
A⊗B ,V(id A⊗lB ,V)).

We shall also keep the notation

ηA,B ,V ∶ A⊗(B ◁ V) → (A⊗B) ◁ V ,

ηA,B ,V = l−1
A⊗B ,V(id A⊗lB ,V).

Using the definition of ρA, one can see that diagram (7.29) amounts to

(id C(F)⊗eA,B ,V)(πA⊗B◁V⊗id F(A⊗B◁V))(id F(A⊗B◁V)⊗coevF(A⊗B◁V)) =
= (πA⊗B⊗id F(A⊗B)⊗V)(id F(A⊗B)⊗coevF(A⊗B)⊗id V)eA,B ,V .

(7.30)

Using the dinaturality of π, one can see that the left-hand side of (7.30) is equal to

= (π(A⊗B)◁V(F(ηB ,V)⊗∗F(η−1
A,B ,V))⊗eA,B ,V)(id F(A⊗B◁V)⊗coevF(A⊗B◁V))

= (π(A⊗B)◁V⊗cA⊗B ,V)(F(ηA,B ,V)⊗coevF((A⊗B)◁V))
= (π(A⊗B)◁V⊗id )(F(ηA,B ,V)⊗id⊗cA⊗B ,V)(id⊗coevF((A⊗B)◁V))
= (π(A⊗B)◁V⊗id )(F(ηA,B ,V)⊗id⊗cA⊗B ,V)(id⊗d−1

A⊗B ,V⊗c−1
A⊗B ,V)

(id F(A⊗B◁V)⊗∗V⊗coevA⊗B⊗id V )(id F(A⊗B◁V)⊗coevV)
= (π(A⊗B)◁V⊗id )(F(ηA,B ,V)⊗d−1

A⊗B ,V⊗id F(A⊗B)⊗V)
(id F(A⊗B◁V)⊗∗V⊗coevA⊗B⊗id V)(id F(A⊗B◁V)⊗coevV)
= (πA⊗B⊗id F(A⊗B)⊗V)(id F(A⊗B)⊗coevF(A⊗B)⊗id V)eA,B ,V .
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The second equality follows from the definition of eA,B ,V and (3.3), and the fourth
follows from (3.21). The last equation follows by using (7.28) and (7.27). ∎

Theorem 7.11 Assume that (C, σ) is a braided tensor category,B is a monoidal right C-
module category, and (F , c, ξ) ∶ B → C is an exact and faithful monoidal module functor
with monoidal structure

ξA,B ∶ F(A)⊗F(B) → F(A⊗B).

The relative coend coalgebra C(F) from Theorem 7.7 has an algebra structure, with unit
u = π1 and product m ∶ C(F)⊗C(F) → C(F) determined by

(m⊗id )(πA⊗πB⊗id F(A)⊗F(B))(id⊗σF(A),F(B)⊗∗F(B)⊗id F(B))
(id F(A)⊗coevF(A)⊗id F(B)⊗coevF(B)) = (id C(F)⊗ξ−1

A,B)ρA⊗B ξA,B ,
(7.31)

for any A, B ∈ B. The object C(F) becomes a bialgebra in C. Moreover, the equivalence
of C-module categories F̂ ∶ B → C(F)C is an equivalence of tensor categories.

Proof Recall from Lemma 7.3 that, if f ∶ C⊗CC → C is the forgetful functor, then
C( f ) = C⊗C and the dinatural transformations of this coend are given by

λ(W ,ρ) ∶ W⊗∗W → C⊗C ,

λ(W ,ρ) = ψ̄C⊗C
W ,W(ρ).

Since the functor F ∶ B → C factorizes as F = f ○ F̂, then the functor H̃ = ⊗ ○ (F ⊠ F) ∶
B ⊠C B → C factorizes as

B ⊠C B
H̃ ��

F̂⊠F̂
		

C

CC ⊠C
CC

⊗

		
C⊗CC

f

���������������������

Using Lemma 4.6, since F̂ is an equivalence of right C-module categories, it follows
that

C(H̃) = ∮
X∈B⊠CB

H̃(X)⊗∗H̃(X) = C(F)⊗C(F).

Lemma 4.6 also explains how to compute dinatural transformations of this coend. If
πX ∶ H̃(X)⊗∗H̃(X) → C(F)⊗C(F), X ∈ B ⊠C B, are the dinatural transformations
associated with this coend, then

πA⊠B = λ(F(A)⊗F(B),ρ) = (id C(F)⊗C(F)⊗evD)(id C⊗σF(A),C⊗id F(B)⊗∗D)
(πA⊗id F(A)⊗πB⊗id )(id F(A)⊗coevF(A)⊗id F(B)⊗coevF(B)⊗id ∗D),

for any A, B ∈ B. Here, D = F(A)⊗F(B). Here, ρ ∶ F(A)⊗F(B) →
C(F)⊗F(A)⊗F(B) is the comodule structure of the tensor product according
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to formula (5.6). It follows from Lemma 7.1 that there is an isomorphism

ω ∶ HomC(C(F)⊗C(F), C(F)) → Natm(H̃, C(F)⊗H̃),

ω(g)X = (g⊗id H̃(X))ψC(F)⊗C(F)
H̃(X),H̃(X)

(πX).

Since, by Proposition 7.10, (id C(F)⊗ξ−1
A,B)ρA⊗B ξA,B is a natural module transforma-

tion, that is,
(id C(F)⊗ξ−1

A,B)ρA⊗B ξA,B ∈ Natm(H̃, C(F)⊗H̃),

then there exists a morphism m ∶ C(F)⊗C(F) → C(F) such that

ω(m)A⊠B = (id C(F)⊗ξ−1
A,B)ρA⊗B ξA,B .

Using the rigidity axioms, the naturality of σ , and the formula for πA⊠B , this equation
implies (7.31). Using (7.31), it follows that

m ○ (m⊗id ) = m ○ (id⊗m),

m ○ (u⊗id ) = id = m ○ (id⊗u).

It follows also from (7.31) that ξ is a comodule morphism, giving the functor F̂
structure of monoidal functor. ∎
Definition 7.12 For any monoidal module functor F ∶ B → C, we shall denote by

H(F) = ∮
B∈B

F(B)⊗∗F(B) ∈ C

the bialgebra with product given by Theorem (7.11) and coproduct (7.3).
Remark 7.13 In Theorem 7.11, some hypothesis on the functor F ∶ B → C are super-
fluous. It follows from [8, Corollaire 2.10] that if F is right exact, then it is exact and
faithful.

Let (H, Δ, m) be a bialgebra in C. In the next results, we shall be devoted to prove
that the bialgebra reconstructed in Theorem 7.11, from the forgetful functor f ∶ HC →
C, coincides with the original bialgebra H.

In Lemma 7.3, we already proved that the reconstructed coalgebra coincides with
H. Moreover, if (W , ρW) ∈ HC, then we have defined dinatural transformations

πW ∶ W⊗∗W → H,

πW = ψ̄H
W ,W(ρW) = (id H⊗evW)(ρW⊗id ∗W).

See (3.8) for the definition of isomorphisms ψ̄. In order to see that the reconstructed
multiplication coincides with the product of H, we only need to prove that the original
product m satisfies diagram (7.31). This will be done in the next proposition.
Proposition 7.14 Let (H, Δ, m) be a bialgebra in C. Using dinatural transformations
πW ∶ W⊗∗W → H, πW = ψ̄H

W ,W(ρW), we have that equation

m(πV⊗πW⊗id V⊗W)(id V⊗∗V⊗σV ,W⊗∗W⊗id W)(id⊗coevV⊗id⊗coevW) =
= ρV⊗W

holds for any pair (V , ρV), (W , ρW) ∈ HC.

https://doi.org/10.4153/S0008414X24000531 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000531


Fiber functors and reconstruction of Hopf algebras 37

Proof It follows using the naturality of σ and (5.6). ∎

7.5 The antipode of H(F)

In the next results, we shall construct an antipode S ∶ H(F) → H(F), making the
bialgebra H(F) a Hopf algebra in C.

Lemma 7.15 Let (C, σ) be a braided tensor category, and let B be a monoidal right C-
module category. Let (F , c) ∶ B → C be an exact and faithful monoidal module functor.
For any B ∈ B, V ∈ C, there are natural isomorphisms

tB ,V ∶ ∗(B ◁ V) → ∗B ◁ ∗V(7.32)

such that the diagram

∗F(B ◁ V)
∗(c−1

B ,V)

		

F(tB ,V) �� F(∗B ◁ ∗V)
c∗B ,∗V

		
∗(F(B)⊗V)

σ∗V ,∗F(B)(ϕ
l
F(B),V )

−1
�� F(∗B)⊗∗V

(7.33)

is commutative.

Proof We shall freely use the fact that F(∗B) = ∗F(B), for any B ∈ B. Since we
are under the same hypothesis as Theorem 7.7, the functor F ∶ B → HC is full. Since
F(∗B ◁ ∗V) is a left H-comodule and the composition

h = c−1
∗B ,∗V σ∗V ,F(B)(ϕ l

F(B),V)−1∗(c−1
B ,V) ∶ ∗F(B ◁ V) → F(∗B ◁ ∗V)

is an isomorphism, we can endow ∗F(B ◁ V) with some H-comodule structure such
that h is a H-comodule map. Fullness of F implies that there exist some tB ,V such that
F(tB ,V) = h. ∎

We shall use the same notation as in previous sections. We denote by

πA ∶ F(A)⊗∗F(A) → H(F) = ∮
B∈B

F(B)⊗∗F(B)

the dinatural transformations of the relative coend H(F). Also, recall from Proposi-
tion 7.4 that for any A ∈ B, we have that (F(A), ρA) is a left H(F)-comodule, with
structure given by

ρA = ψH(F)
F(A),F(A)(πA) = (πA⊗id F(A))(id F(A)⊗coevF(A)).

Henceforth, for simplicity, we shall denote H = H(F).

Lemma 7.16 Let (C, σ) be a braided tensor category, and let B be a monoidal right C-
module category. For any B ∈ B, V ∈ C, let us recall morphisms dB ,V , defined in Lemma
7.8, as

dB ,V ∶ ∗F(B ◁ V) → ∗V⊗∗F(B),

dB ,V = (ϕ l
F(B),V)−1∗(c−1

B ,V).
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Then, for any B ∈ B, V ∈ C, we have

(σ−1
∗V ,H⊗id ∗F(B))(id H⊗dB ,V)ρ∗(B◁V) = (id ∗V⊗ρ∗B)dB ,V .(7.34)

Proof Using Lemma 7.15, there are natural isomorphisms tB ,V ∶ ∗(B ◁ V) → ∗B ◁
∗V such that

c∗B ,∗V F(tB ,V) = σ∗V ,F(B)dB ,V .(7.35)

The naturality of ϕ l and c implies that

F(∗(id B ◁ coevV)) = (∗(coevV)⊗id ∗F(B))dB ,∗V⊗V ,(7.36)

for any B ∈ B, V ∈ C. Using the dinaturality of π, we obtain that

π∗(B◁V) = π∗B◁∗V(F(tB ,V)⊗∗F(t−1
B ,V)),(7.37)

for any B ∈ B, V ∈ C. Also, dinatural transformations π satisfy (4.5); this implies that,
for any B ∈ B, V ∈ C, we have

πB◁∗V = πB(id F(B)⊗F(∗(id B ◁ coevV)))(id F(B)⊗d−1
B◁∗V ,V)

(cB ,∗V⊗id ∗F(B◁∗V)).
(7.38)

Next, when it is not absolutely necessary, as a space saving measure, we shall write the
identities id , without using subscripts. Using the definition or ρ, we obtain that

(σ−1
∗V ,H⊗id ∗F(B))(id H⊗dB ,V)ρ∗(B◁V)d−1

B ,V

is equal to

= (σ−1
∗V ,H⊗id ∗F(B))(id H⊗dB ,V)(π∗(B◁V)⊗id )(id⊗coev∗F(B◁V))d−1

B ,V

= (σ−1
∗V ,H⊗id ∗F(B))(π∗B◁∗V⊗dB ,V)(F(tB ,V)⊗∗F(t−1

B ,V)⊗id )
(id⊗coev∗F(B◁V))d−1

B ,V

= (σ−1
∗V ,H⊗id ∗F(B))(π∗B◁∗V⊗dB ,V)(F(tB ,V)⊗id ∗F(∗B◁∗V)⊗F(t−1

B ,V))
(id⊗coevF(∗B◁∗V))d−1

B ,V

= (σ−1
∗V ,H⊗id ∗F(B))(π∗B⊗id )(id⊗F(∗(id ∗B ◁ coevV))⊗id )(id⊗d∗B◁∗V ,V⊗id )

(c∗B ,∗V⊗id )(F(tB ,V)d−1
B ,V⊗id ∗F(∗B◁∗V)⊗dB ,V F(t−1

B ,V))(id⊗d−1
∗B ,∗V⊗c−1

∗B ,∗V)
(id⊗coev∗F(B)⊗id ∗V)(id ∗F(B◁V)⊗coev∗V)
= (σ−1

∗V ,H⊗id ∗F(B))(π∗B⊗id )(id⊗(∗(coevV)⊗id ∗B))dB ,∗V⊗V⊗id )
(id⊗d∗B◁∗V ,V⊗id )(c∗B ,∗V F(tB ,V)d−1

B ,V⊗id ∗F(∗B◁∗V)⊗dB ,V F(t−1
B ,V)c−1

∗B ,∗V)
(id⊗d−1

∗B ,∗V⊗id )(id⊗coev∗F(B)⊗id ∗V)(id ∗F(B◁V)⊗coev∗V)
= (id ∗V⊗π∗B⊗id )(σ−1

∗V ,F(∗B)⊗∗F(∗B)⊗id )(id⊗ev∗V⊗id ∗F(∗B)⊗∗V⊗∗F(B))
(σ∗V ,∗F(B)⊗id ∗∗V⊗∗F(∗B)⊗σ∗V ,∗F(B))(id ∗V⊗∗F(B)⊗∗∗V⊗coev∗F(B)⊗id ∗V)
(id⊗coev∗V)
= (id ∗V⊗ρ∗B).
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The second equality follows from (7.37), the third equality follows from (3.3), the
fourth one follows from (7.38), and the fifth equality follows from (7.36). The sixth
equality follows by using (3.6) and (7.35), and the last equality follows by using the
rigidity axioms and (5.1). ∎

Recall that sometimes we are denoting H = H(F).

Theorem 7.17 Let C be a tensor category, and let B be a monoidal right C-module
category. Let (F , c) ∶ B → C be an exact and faithful monoidal module functor. There
exists a map S ∶ H(F) → H(F) such that it corresponds, under isomorphism

ω ∶ HomC(H(F), V) → Natm(F , V⊗F)

presented in (7.2), to the natural module transformation α ∶ F → H(F)⊗F ,

αB = (evF(B)⊗id H(F)⊗F(B))(id F(B)⊗σ−1
∗F(B),H(F)⊗id F(B))

(id F(B)⊗ρ∗B⊗id F(B))(id F(B)⊗coevF(B)).

That is, ω(S) = α.

Proof We only need to prove that, indeed, α is a module natural transformation, that
is,

(id H⊗cB ,V)αB◁V = (αB⊗id V)cB ,V ,

for any B ∈ B, V ∈ C. Equations (3.20) and (3.21) imply that

evF(B◁V) = evF(B)(id⊗evV⊗id )(cB ,V⊗dB ,V),
coevF(B◁V) = (d−1

B ,V⊗c−1
B ,V)(id⊗coevF(B)⊗id )coevV .(7.39)

Using the definition of α, we obtain that (id H⊗cB ,V)αB◁V c−1
B ,V is equal to

= (evF(B◁V)⊗id H⊗F(B)⊗V))(id F(B◁V)⊗σ−1
∗F(B◁V),H⊗cB ,V)

(id F(B◁V)⊗ρ∗(B◁V)⊗id F(B◁V))(id F(B◁V)⊗coevF(B◁V))c−1
B ,V

= (evF(B)⊗id H⊗F(B)⊗V))(id⊗evV⊗id ∗F(B)⊗H⊗F(B)⊗V)
(id F(B)⊗V⊗σ−1

∗V⊗∗F(B),H⊗id F(B)⊗V)(cB ,V⊗id H⊗dB ,V⊗cB ,V)
(id F(B◁V)⊗ρ∗(B◁V)⊗id F(B◁V))(id F(B◁V)⊗d−1

B ,V⊗c−1
B ,V)

(id F(B◁V)⊗∗V⊗coevF(B)⊗id V)(id F(B◁V)⊗coevV)c−1
B ,V

= (evF(B)⊗id H⊗F(B)⊗V))(id⊗evV⊗id ∗F(B)⊗H⊗F(B)⊗V)
(id⊗σ−1

∗F(B),H⊗id )(id⊗σ−1
∗V ,H⊗id )(id⊗(id H⊗dB ,V)ρ∗(B◁V)d−1

B ,V⊗id )
(id F(B◁V)⊗∗V⊗coevF(B)⊗id V)(id F(B◁V)⊗coevV)
= αB⊗id V .

The second equality follows from (7.39) and the naturality of σ , and the third equality
follows by (5.1). The last equality follows from (7.34) and rigidity axioms. ∎
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Remark 7.18 The above result is the most sensitive statement to prove in order to
prove the existence of the antipode for H(F). In the case C = vect k, the isomorphism

ω ∶ HomC(H(F), V) → Nat (F , V⊗F)

lands in the space of all natural transformations. So, in that case, there is nothing to
prove, and the existence of S is guaranteed by the fact that ω is an isomorphism.

Corollary 7.19 The bialgebra H(F), from Definition 7.12, is actually a Hopf algebra.
The antipode S ∶ H(F) → H(F) is determined as the unique morphism such that

F(B)⊗∗F(B)

νB

		

πB �� H(F)

S
		

F(B)⊗∗F(B)⊗H
evF(B)⊗id H(F) �� H(F)

(7.40)

is commutative. Here,

νB = (id F(B)⊗σ−1
∗F(B),H(F))(id F(B)⊗π∗B⊗id ∗F(B))(id F(B)⊗∗F(B)⊗coev∗F(B)).

Proof Taking the map S ∶ H(F) → H(F) defined in Theorem 7.17, and using the
definition of α, one can prove that S satisfies diagram (7.40).

Axioms

m ○ (id H⊗S) ○ Δ = u ○ ε,

m ○ (S⊗id H) ○ Δ = u ○ ε

follow from (7.40) by a lengthy, but straightforward, computation. ∎

Remark 7.20 A version of the Hopf algebra H(F) has been previously considered in
the work of Lyubashenko [16, 17] when F is some fiber functor and in [14, 15] when F is
the identity functor. See also the work of Schauenburg [23], where C is the category of
finite-dimensional vector spaces. However, there are new ingredients in our definition.
We require that B is actually a monoidal C-module category and the functor F is a
monoidal module functor. The use of the relative coend is another new feature of our
construction.

Let (H, Δ, m, S) be a Hopf algebra inC. In the next proposition, we shall see that the
reconstructed antipode given in Theorem 7.17, out of the forgetful functor f ∶ HC → C,
coincides with the original antipode S ∶ H → H.

Proposition 7.21 Let (H, Δ, m, S) be a Hopf algebra in C. Using the identification
H = H( f ) proven in Lemma 7.3, the reconstructed antipode obtained in Corollary 7.19
coincides with the antipode S of H.

Proof Let us denote by Ŝ ∶ H → H the map reconstructed in Proposition 7.19. For
any V ∈ C, recall the isomorphism (7.2)

ω ∶ HomC(H( f ), V) → Natm( f , V⊗ f ),
ω(g)(W ,ρW) = (g⊗id W)ψH

W ,W(πW)
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for any (W , ρW) ∈ HC. Corollary 7.17 implies that, if α ∶ f → H⊗ f is the module
natural transformation defined as

α(W ,ρW) = (evW⊗id H⊗W)(id W⊗σ−1
∗W ,H⊗id W)

(id W⊗ρ∗W⊗id W)(id W⊗coevW),

for any (W , ρW) ∈ HC, then

ω(Ŝ) = α.

Using formula (5.7) for ρ∗W , we get that

α(W ,ρW) = (S⊗id W) ρW = ω(S)(W ,ρW) ,

for any (W , ρW) ∈ HC. Whence S = Ŝ. ∎

8 Examples and applications

8.1 Generic example

The next example was treated along the paper. At the end, we proved that the
reconstructed Hopf algebra from the forgetful functor F ∶ HC → C coincides with H.

Example 8.1 Let H be a Hopf algebra in a braided finite tensor category C and
consider the tensor category B = HC. Then the forgetful functor admits an exact
faithful monoidal functor F ∶ HC → C and the counit εH gives rise to a monoidal
section HC ← C that turns HC into a C-module category.

Example 8.2 Let H ⊂ L be Hopf algebras in vect k with ι ∶ H → L the inclusion, and
assume that there is a left-inverse Hopf algebra map π ∶ H → L, called projection. Then
we have the restriction functor ι∗ ∶ Rep(H) ← Rep(L) and in addition B = Rep(L)
becomes a modules category over C = Rep(H) via π∗ ∶ Rep(H) ← Rep(L). Assume
that H is quasitriangular. Hence, our result shows that there exists a Hopf algebra C ∈
Rep(H) such that there is an equivalence of monoidal modular categories

Rep(L) ≅ C Rep(H).

We now discuss how this is related to the classical Radford Projection Theorem [21].
This result states that the existence of a Hopf algebra projection π implies that L is
isomorphic to a Radford biproduct

L ≅ R#H,

where R is a Hopf algebra in H
HYD(Vect k). In our case, we have assumed that H is

quasitriangular and ι∗ lifts to a braided functor to the center of B. This gives rise to a
choice of a functor Rep(H) → H

HYD(Vect k) and shows R to be in the image – more
explicitly the R-matrix of H determines the H-coaction from the H-action. Then this
R is precisely the dual of our Hopf algebra C.

8.2 Generic consequences

Our results has certain general implications, for example:
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Example 8.3 If (C, σ) is a braided tensor category, then the forgetful functor f ∶
Z(C) → C has a section G ∶ C → Z(C), G(V) = (V , σV). Theorems 7.7 and 7.17 imply
that there exists a Hopf algebra H ∈ C such that Z(C) ≃ HC. For C = Rep(H) for
a factorizable Hopf algebra H, this can be obtained from the defining equivalence
Z(C) ≃ HC ⊠ HC, but in the non-nondegenerate case or the case without fiber functor,
we are not aware of such a result. In general, we recover thereby the recent result [13].

8.3 Lifting and cocycles deformations

In the classification of (e.g., pointed) Hopf algebras H, the strategy in the
Andruskiewisch–Schneider program [1] is to consider the coradical H0 (which is
assumed to be a Hopf algebra, for example, a group ring) and classify the possible
Nichols algebras R, and then obtain H as a lifting of gr(H) = R#H0. It is an important
question to determine whether this lifting is a 2-cocycle twist, and the observation is
that this holds in almost all cases [2].

We view this problem in our setting: since a main assumption is that H0 ⊂ H,
we have a tensor functor ι∗ ∶ Comod(H0) → Comod(H). The lifting is a 2-cocycle
twist precisely iff there is a tensor functor Comod(H0) ← Comod(H), if the
2-cocycle is trivial then it comes from a Hopf algebra projection π, and then our
relative coend is R∗.

While this view does not allow to decide the difficult question when a lifting is a 2-
cocycle twist, it shows the natural categorical context of this question and it produces
general statements, for example, if R as a coalgebra has a trivial lifting, then there is
a monoidal section and hence the lifting is tensor functor and thus the lifting comes
from a 2-cocycle twist.

8.4 The logarithmic Kazhdan Lusztig conjecture

In conformal field theory, there is in good situations a modular tensor category
of representations of a vertex algebra V, which reflects the analytic properties, for
example, of solution spaces to certain differential equations (e.g., the braiding reflects
the monodromy around the singularity z = 0). One is often confronted with the very
difficult question to determine the representation category of representations of a
vertex subalgebra W ⊂ V if the representation theory of V is known, for example,
being a free-field realization. A brief introduction, references, and an account for the
statements below can be found in [6, 7].

Categorically, one can understand as Rep(W) being a modular tensor category
and A = V being a commutative algebra in this category and C = Rep(V) is the
category of local A-modules Reploc(A). Then, by the results in [6, Section 3], we have
under suitable conditions that Rep(W) is a relative Drinfeld center of Rep(A) with
respect to the subcategory C = Reploc(A). In the cases relevant to logarithmic (i.e.,
nonsemisimple) conformal field theory, it is often the case that all simple modules in
Rep(A) are already in Reploc(A). This gives rise via the socle filtration to a monoidal
section functor (see [6, Section 4])

Reploc(A) ⇄ Reploc(A).

https://doi.org/10.4153/S0008414X24000531 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000531


Fiber functors and reconstruction of Hopf algebras 43

Then the results in our paper produce a Hopf algebra R∗ such that

Rep(A) = R∗C,

and in this case the mentioned equivalence to the relative Drinfeld center means
explicitly (see Section 5.2)

Rep(W) ≅ R
RYD(C).

For example, the celebrated and notoriously difficult logarithmic Kazhdan Lusztig
conjecture considers the lattice vertex algebra VΛ of the root lattice of a semisimple
complex finite-dimensional Lie algebra g rescaled by an integer p, whose category of
representations is the category of vector spaces graded by an abelian group

Rep(VΛ) = Vect Λ∗/Λ .

Then it asserts that VΛ contains as kernel of screening operators a certain vertex
algebraWp(g) ⊂ VΛ , whose category of representation is conjectured to be equivalent
to the category of representations of the small quantum group uq(g) for q = eπi/p . In
the first author’s paper [6], the approach is to view the small quantum group category
as a category of Yetter–Drinfeld modules over the Nichols algebra N

Rep(uq(g)) ≅ N
NYD(Vect Λ∗/Λ)

and develop the categorical tools above to reduce the equivalence in question to
proving that

Rep(A) ≅ NVect Λ∗/Λ .

In the case sl2, the abelian category could be determined and this gives a systematic
proof of the conjecture in this case (initially we have used more complicated proof
methods for the case sl2 , p = 2 in [6], while [11] has used very different arguments
for sl2 , p). A main motivation for writing the present paper is that now we have the
clear statement that the category Rep(A) is for abstract reasons given as category of
representations of a Hopf algebra N in C, and it now remains to determine that N is,
indeed, the expected Nichols algebra, namely the Nichols algebra of screenings.

9 Questions

Question 9.1 The result should be applicable if C is merely locally finite tensor category
and/or if N is infinite. The example we have in mind is maybe the quantum group Uq(g)
at generic q.

Question 9.2 For given classes of semisimple modular tensor categoriesC (for example,
the category of representations of an affine Lie algebra at positive integer level), can we
classify semisimple Hopf algebras over C?

Question 9.3 Is there a general argument that the embedding of the coradical H0 into a
pointed Hopf algebra H admits a categorical section of comodule categories, if we assume
in addition that the Yetter–Drinfeld module H1/H0 is semisimple over H0?
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