Canad. Math. Bull. Vol. 21 (1), 1978

MOULTON AFFINE HJELMSLEV PLANES

BY
CATHARINE BAKER

1. Introduction. Desarguesian affine Hjelmslev planes (D.A.H. planes) were introduced by Klingenberg in [1] and generalized by Lane and Lorimer in [2]. D.A.H. planes are coordinatized by affine Hjelmslev rings (A.H. rings) which are local rings whose radicals are equal to their sets of two-sided zero divisors and whose principal right ideals are totally ordered. In [5], ordered D.A.H. planes were defined and the induced orderings of their A.H. rings were discussed. In this note an ordered non-Desarguesian A.H. plane is constructed from an arbitrary ordered D.A.H. plane. The existence of such planes ensures that the discussion of ordered non-Desarguesian A.H. planes by J. Laxton in [3] is meaningful. The basic idea employed is essentially the same as the one used in the construction of the classical Moulton plane from the real affine plane (cf. [4]).
2. Ordered A.H. rings. An A.H. ring H with radical η is ordered if there exists a subset H^{+}of H such that $a \in H$ implies exactly one of $a \in H^{+}, a=0$, $-a \in H^{+}$holds; $a, b \in H^{+}$implies $a+b \in H^{+} ; a, b \in H^{+}$and $b \notin \eta$ imply $a b \in H^{+}$ (cf. [5], 2.2). Let $H^{-}=\left\{a \in H \mid-a \in H^{+}\right\}$. H has the following properties.
2.1. Suppose $a \in \eta$. Then $-1<a<1$ and for any b such that $-a<b<a$, we have $b \in \eta$ (cf. [5], 6.1).
2.2. For $b, d \in H^{+}$, if $b+d \in \eta$, then $b, d \in \eta$.

Proof. Since $-(b+d)<b, d<b+d, b, d \in \eta$ by 2.1.
2.3. If $m \in H^{+} \backslash \eta$ and $p \in H^{-} \cup \eta$, then $m-p \in H^{+} \backslash \eta$.

Proof. If $p \in H^{-}$, then since $m,-p \in H^{+}, m-p \notin \eta$ by 2.2. Let $p \in H^{+} \cap \eta$. Since $m \notin \eta$ and $p \in \eta, m-p \notin \eta$. Suppose $m-p \in H^{-}$. Then $m, p-m \in H^{+}$and $p \in \eta$ imply $m \in \eta$ by 2.2 which is a contradiction.
2.4. The incidence structure with parallelism, \mathscr{H}, constructed over an ordered A.H. ring H in the usual manner is an ordered D.A.H. plane (cf. [5], Chapter 3). Thus, $H \times H$ is the set of points of \mathscr{H} and the lines of \mathscr{H} are of the form $[m, n]_{1}$ where $m \in \eta, n \in H$ and $[m, n]_{2}$ where $m, n \in H$. Here, $[m, n]_{1}=$ $\{(y m+n, y) \mid y \in H\}$ and $[m, n]_{2}=\{(x, x m+n) \mid x \in H\}$.
3. A Moulton A.H. plane. We shall consider a new incidence structure with parallelism, $\mathscr{H}^{\prime}=\langle\mathbb{P}, \mathbb{L}, I, \|\rangle$, where

$$
\begin{aligned}
\mathbb{P}= & H \times H ; \\
\mathbb{Q}= & \left\{[m, n]_{1} \mid m \in \eta, n \in H\right\} \cup\left\{[m, n]_{2} \mid m \in H^{-} \cup \eta, n \in H\right\} \cup \\
& \left\{[m, n]_{3} \mid m \in H^{+} \backslash \eta, n \in H\right\} .
\end{aligned}
$$

where $[m, n]_{1}$ and $[m, n]_{2}$ are defined as in \mathscr{H} and

$$
[m, n]_{3}=\left\{(x, x m+n) \mid x+n m^{-1} \in H^{+} \cup\{0\}\right\} \cup\left\{(x, x m k+n k) \mid x+n m^{-1} \in H^{-}\right\}
$$

for a fixed element of $H^{+} \backslash \eta$ such as $k-1 \notin \eta$;
I is set inclusion;
$[m, n]_{i} \|[p, q]_{j}$ if and only if $i=j$ and $m=p$.
We define a neighbour relation, \sim, on \mathbb{P} by:

$$
(a, b) \sim(c, d) \text { if and only if } a-c, b-d \in \eta
$$

and a neighbour relation, \sim, on \mathbb{L} by:

$$
[m, n]_{i} \sim[p, q]_{j} \quad \text { if and only if } \quad i=j \text { and } m-p, n-q \in \eta
$$

We shall prove (in sections 6 and 7) that \mathscr{H}^{\prime} is a non-Desarguesian A.H. plane.
4. The ordinary affine plane associated with \mathscr{H}^{\prime}. Let $\phi: H \rightarrow H^{*}=$ $H / \eta\left(a \leadsto a^{*}\right)$ be the usual quotient map. The map $\Phi=\left(\Phi_{\mathrm{P}}, \Phi_{\mathrm{L}}\right): \mathscr{H} \rightarrow \mathscr{A}=\mathscr{H} / \sim$, induced by ϕ, is given by $\Phi_{\mathrm{p}}(a, b)=\left(a^{*}, b^{*}\right)$ and $\Phi_{\mathrm{l}}\left([m, n]_{i}\right)=\left[m^{*}, n^{*}\right]_{i}$. Here, $\mathscr{A}=\langle\overline{\mathbb{P}}, \overline{\mathbb{L}}, \bar{I}, \|\rangle$ is the ordered ordinary Desarguesian affine plane which is coordinatized by the ordered division ring H^{*} (cf. [5], Chapter 5). Clearly, $H^{*+}=H^{+} /\left(H^{+} \cap \eta\right)$ and $H^{*-}=H^{-} /\left(H^{-} \cap \eta\right)$.

Now consider the incidence structure $\mathscr{A}^{\prime}=\langle\overline{\mathbb{P}}, \overline{\mathbb{L}}, \bar{I}, \mathbb{\|}\rangle$, where

$$
\begin{aligned}
\overline{\mathbb{R}^{\prime}}=\left\{\left[0, n^{*}\right]_{1} \mid n^{*}\right. & \left.\in H^{*}\right\} \cup\left\{\left[0, n^{*}\right]_{2} \mid n^{*} \in H^{*}\right\} \\
& \cup\left\{\left[m^{*}, n^{*}\right]_{2} \mid m^{*} \in H^{*-}, n \in H^{*}\right\} \cup\left\{\left[m^{*}, n^{*}\right]_{3} \mid m^{*} \in H^{*+}, n \in H^{*}\right\}
\end{aligned}
$$

with

$$
\begin{aligned}
{\left[0, n^{*}\right]_{1} } & =\left\{\left(n^{*}, y^{*}\right) \mid y^{*} \in H^{*}\right\}, \\
{\left[m^{*}, n^{*}\right]_{2} } & =\left\{\left(x^{*}, x^{*} m^{*}+n^{*}\right) \mid x^{*} \in H^{*},\right. \\
{\left[m^{*}, n^{*}\right]_{3} } & =\left\{\left(x^{*}, x^{*} m^{*}+n^{*}\right) \mid x^{*}+n^{*} m^{*-1} \in H^{*+} \cup\{0\}\right\} \\
& \cup\left\{\left(x^{*}, x^{*} m^{*} k^{*}+n^{*} k^{*} \mid x^{*}+n^{*} m^{*-1} \in H^{*-}\right\} .\right.
\end{aligned}
$$

\mathscr{A}^{\prime} is constructed from \mathscr{A} in the same manner as the classical Moulton plane is constructed from the real affine plane; hence \mathscr{A}^{\prime} is a non-Desarguesian affine plane. (Since $k-1 \notin \eta, k^{*} \neq 1$.) In addition, \mathscr{A}^{\prime} is the image of \mathscr{H}^{\prime} under the map $\Phi^{\prime}=\left(\Phi_{p}^{\prime}, \Phi_{\mathrm{L}}^{\prime}\right)$ induced by ϕ. Clearly, Φ^{\prime} preserves incidence and is onto. Φ^{\prime} also satisfies the following properties.
4.1. $(a, b) \sim(c, d)$ if and only if $\Phi_{\mathrm{P}}^{\prime}(a, b)=\Phi_{\mathrm{P}}^{\prime}(c, d)$.

Proof. $(a, b) \sim(c, d)$ if and only if $\left(a^{*}, b^{*}\right)=\left(c^{*}, d^{*}\right)$.
4.2. $[m, n]_{i} \sim[p, q]_{j}$ if and only if $\Phi_{\mathrm{L}}^{\prime}\left([m, n]_{i}\right)=\Phi_{\mathrm{L}}^{\prime}\left([p, q]_{j}\right)$.

Proof. $[m, n]_{i} \sim[p, q]_{j}$ if and only if $i=j, m^{*}=p^{*}$ and $n^{*}=q^{*}$; i.e., $\Phi_{\mathrm{L}}^{\prime}\left([m, n]_{i}\right)=\Phi_{\mathrm{L}}^{\prime}\left([p, q]_{j}\right)$.

5. Properties of \mathscr{H}^{\prime}.

5.1. Any pair of points (a, b) and (c, d), incident with a line $[m, n]_{2}$, where $m \in H^{+} \backslash \eta$, of \mathscr{H}, are incident with a line $[p, q]_{3}$ in \mathscr{H}^{\prime}.

Proof. If $b, d \in H^{+} \cup\{0\}$, then $(a, b),(c, d) I[m, n]_{3}$ in \mathscr{H}^{\prime}. If $b, d \in H^{-} \cup\{0\}$, then $(a, b),(c, d) I\left[m k^{-1}, n k^{-1}\right]_{3}$ in \mathscr{H}^{\prime}. We now consider the case where $b,-d \in H^{+}$.

First, we show that there exists an $f \in H$ such that $(a-c) f k=d(k-1)$; i.e., such that $(a-c) f=d(k-1) k^{-1}=d\left(1-k^{-1}\right)$. If no such f exists, then there exists $g \in \eta$ such that $(a-c)=d\left(1-k^{-1}\right) g$. Since $(a, b),(c, d) I[m, n]_{2}$ in \mathscr{H}, we have $b-d=(a-c) m=d\left(1-k^{-1}\right) g m$. Hence, $b=d\left(\left(1-k^{-1}\right) g m+1\right)$; however, $g \in \eta$ implies $d\left(\left(1-k^{-1}\right) g m+1\right) \in H^{-}$; a contradiction since $b \in H^{+}$.

Take $p=m+f$ and $q=n-a f$. We shall show $(a, b),(c, d) I[p, q]_{3}$ in \mathscr{H}^{\prime}. Since $\quad a p+q=a m+a f+n-a f=b \quad$ and $\quad c p k+q k=c m k+c f k+n k-a f k=$ $(c m+n) k-(a-c) f k=d,[p, q]_{3}$ is the required line provided that $p \in H^{+} \backslash \eta$.

We now have two possibilities.
Suppose $k>1$. Since $(a-c) f=d\left(1-k^{-1}\right)$, where $a-c \in H^{+}, d \in H^{-}$, $1-k^{-1} \in H^{+} \backslash \eta$, then $f \notin H^{+} \backslash \eta$. Since $(a-c) f=d\left(1-k^{-1}\right)=(c m+b-a m)$ $\left(1-k^{-1}\right)$, we have $b\left(1-k^{-1}\right)=(a-c)\left(f+m\left(1-k^{-1}\right)\right)$ with $1-k^{-1} \in$ $H^{+} \backslash \eta$ and $b, a-c \in H^{+}$; hence $f+m\left(1-k^{-1}\right) \notin H^{-} \backslash \eta$. Therefore, $p=$ $\left(f+m\left(1-k^{-1}\right)\right)+m k^{-1} \in H^{+} \backslash \eta$.

Suppose $k<1$. As $(a-c) f=d\left(1-k^{-1}\right)$, where $a-c \in H^{+}, d \in H^{-},\left(1-k^{-1}\right) \in$ $H^{-} \backslash \eta$, we have $f \notin H^{-} \backslash \eta$. Then $p=m+f \in H^{+} \backslash \eta$.
5.2. If two points (a, b) and (c, d) are incident with some line $[p, q]_{3}$ of \mathscr{H}^{\prime}, then there exists a line $[m, n]_{2}$ of \mathscr{H}, with $m \in H^{+} \backslash \eta$, through both points.
Proof. If $b, d \in H^{+} \cup\{0\}$, take $[m, n]_{2}=[p, q]_{2}$; if $b, d \in H^{-} \cup\{0\}$, take [$m, n]_{2}=[p k, q k]_{2}$. If $b,-d \in H^{+}$, by the argument used in 5.1 there exists $f \in H^{-} \cup \eta$ such that $(a-c) f=d\left(1-k^{-1}\right)$. By $2.3 p-f \in H^{+} \backslash \eta$. Therefore, take $[m, n]_{2}=[p-f, q+a f]_{2}$.

5.3. All lines of \mathscr{H}^{\prime} joining two given distinct points are of the same kind.

Proof. From the properties of \mathscr{H}, it is clear that two distinct points cannot be incident with a line of the first kind and a line of the second kind in \mathscr{H}^{\prime}. If the two distinct point are incident with a line of the third kind of \mathscr{H}^{\prime}, then there exists a line $[m, n]_{2}$ in \mathscr{H} with $m \in H^{+} \backslash \eta$, joining these points. These two points
could not be incident with a line of the first kind in \mathscr{H}^{\prime} or in \mathscr{H}^{\prime}. By 2.3 $m-p \in H^{+} \backslash \eta$, if $p \in H^{-} \cup \eta$, which implies the two points cannot be incident with any $[p, q]_{2}$, where $p \in H^{-} \cup \eta$, in \mathscr{H} and thus, cannot be incident with any line of the second kind in \mathscr{H}^{\prime}.
5.4. Two points of \mathscr{H}^{\prime} are neighbours if and only if there exist more than one line of \mathscr{H}^{\prime} through them.

Proof. (\Rightarrow) Any distinct neighbour points (a, b) and (c, d) are incident wit a least two distinct lines $[m, n]_{i},[p, q]_{i}$ in \mathscr{H}. Either they are incident with the same two lines in \mathscr{H}^{\prime} (if these lines exist in \mathscr{H}^{\prime}) or they are incident with $[m, n]_{3}$, $[p, q]_{3}$ if $b, d \in H^{+} \cup\{0\}$, with $\left[m k^{-1}, n k^{-1}\right]_{3},\left[p k^{-1}, q k^{-1}\right]_{3}$ if $b, d \in H^{-} \cup\{0\}$ or with $[m+f, n-a f]_{3},[p+f, q-a f]_{3}$ if $b,-d \in H^{+}$, where $(a-c) f=d\left(1-k^{-1}\right)$ (by 5.1).
(\Leftarrow) Now assume there exist more than one line of \mathscr{H}^{\prime} through the distinct points (a, b) and (c, d). By 5.3 , these lines are of the same kind. If they also exist in \mathscr{H}, then $(a, b) \sim(c, d)$.
If (a, b) and (c, d) are incident with two lines of the third kind in \mathscr{H}^{\prime}, say $[m, n]_{3}$ and $[p, q]_{3}$, then $(a, b),(c, d) I[m, n]_{2},[p, q]_{2}$ in \mathscr{H}, if $b, d \in H^{+} \cup\{0\}$; $(a, b),(c, d) I[m k, n k]_{2},[p k, q k]_{2}$, in \mathscr{H}, if $b, d \in H^{-} \cup\{0\} ;(a, b),(c, d) I$ $[m-f, n+a f]_{2},[p-f, q+a f]_{2}$ in \mathscr{H}, where $(a-c) f=d\left(1-k^{-1}\right)$ (by 5.1), if $b,-d \in H^{+}$. Hence, (a, b) and (c, d) are neighbours in \mathscr{H} and thus also in \mathscr{H}^{\prime}.
5.5. Two lines of \mathscr{H}^{\prime} are neighbours if and only if for any points incident with either line, there exists a neighbour point incident with the other.

Proof. Consider two neighbour lines $[m, n]_{i},[p, q]_{j}$. If these lines are of the first or second kind, the result is clear. Suppose they are of the third kind. Take any $(a, b) I[m, n]_{3}$. Then $b=a m+n$ if $a+n m^{-1} \in H^{+} \cup\{0\}[b=a m k+n k$ if $\left.a+n m^{-1} \in H^{-}\right]$. We have two possibilities: either $a+q p^{-1} \in H^{+} \cup\{0\}$ or $a+q p^{-1} \in H^{-}$. First suppose $a+q p^{-1} \in H^{+} \cup\{0\}$. Then ($a, a p+q$) $I[p, q]_{3}$ and $a m+n-a p-q=a(m-p)+n-q \in \eta$ [and $a m k+n k-a p-q=(a m+n)(k-1)$ $+a(m-p)+(n-q) \in \eta$, since $a m+n \in \eta$ by 2.2]. Thus the point $(a, a p+q)$ is the required neighbour point if $a+q p^{-1} \in H^{+} \cup\{0\}$. A similar argument would prove ($a, a p k+q k$) to be the required neighbour point if $a+q p^{-1}$ $\in H^{-}$.

Now consider two lines $[m, n]_{i},[p, q]_{j}$ such that for any point incident with either line, there exists a neighbour point incident with the other line. Take any $(a, b),(c, d) I[m, n]_{i}$ such that $(a, b) \nsucc(c, d)$. Then there exist $\left(a^{\prime}, b^{\prime}\right),\left(c^{\prime}, d^{\prime}\right) I$ $[p, q]_{j}$ such that $\left(a^{\prime}, b^{\prime}\right) \sim(a, b)$ and $\left(c^{\prime}, d^{\prime}\right) \sim(c, d)$. Hence,

$$
\Phi_{\mathrm{L}}^{\prime}\left([m, n]_{i}\right)=\Phi_{\mathrm{p}}^{\prime}((a, b)) \Phi_{\mathrm{p}}^{\prime}((c, d))=\Phi_{\mathrm{L}}^{\prime}\left([p, q]_{j}\right) .
$$

By 4.2, $[m, n]_{i} \sim[p, q]_{j}$.
5.6. If two lines $[m, n]_{i}$ and $[p, q]_{j}$ of \mathscr{H}^{\prime} do not intersect, then $i=j$ and $m-p \in \eta$.

Proof. If $[m, n]_{i}$ and $[p, q]_{j}$ also appear in \mathscr{H}, then $i=j$ and $m-p \in \eta$ by [2], 2.14.

If $i=1$ and $j=3$, then in $\mathscr{H},[m, n]_{1} \wedge[p, q]_{2}=\left((q m+n)(1-p m)^{-1}\right.$, $\left.(n p+q)(1-m p)^{-1}\right)$ and $[m, n]_{1} \wedge[p k, q k]_{2}=\left((q k m+n)(1-p k m)^{-1},(n p k+q k)\right.$ $(1-m p k)^{-1}$) (cf. [2], 2.14), Since $m \in \eta, 1-m p, 1-m p k \in H^{+} \backslash \eta$; therefore, $(n p+q)(1-m p)^{-1}$ and $(n p k+q k)(1-m p k)^{-1}$ are both in $H^{+} \cup\{0\}$ [in H^{-}] if $n p+q$ lies in $H^{+} \cup\{0\}$ [in $\left.H^{-}\right]$. Hence, $\left((q m+n)(1-p m)^{-1}\right.$, $(n p+q)$ $\left.(1-m p)^{-1}\right)=[m, n]_{1} \wedge[p, q]_{3}$, if $n p+q \in H^{+} \cup\{0\}$ and $\left((q k m+n)(1-p k m)^{-1}\right.$, $\left.(n p k+q k)(1-m p k)^{-1}\right)=[m, n]_{1} \wedge[p, q]_{3} \quad$ if $\quad n p+q \in H^{-}$. Thus $\quad[m, n]_{1} \wedge$ $[p, q]_{3} \neq \varnothing$.

If $i=2$ and $j=3$, then $m \in H^{-} \cup \eta$ and $p \in H^{+} \backslash \eta$, so $p-m, p k-m \in H^{+} \backslash \eta$, by 2.3. By [2], 2.15, in $\mathscr{H}[p, q]_{2} \wedge[m, n]_{2}=\left((n-q)(p-m)^{-1},(n-q)(p-\right.$ $\left.m)^{-1} p+q\right)$ and $[p k, q k]_{2} \wedge[m, n]_{2}=\left((n-q k)(p k-m)^{-1},(n-q k)(p k-m)^{-1} p k+\right.$ $q k)$. However, both $(n-q)(p-m)^{-1} p+q$ and $(n-q k)(p k-m)^{-1} p k+q k$ lie in $H^{+} \cup\{0\}$ [in H^{-}] if and only if $n \geq q p^{-1} m\left[n<q p^{-1} m\right.$]. Therefore, in $\mathscr{H}^{\prime}, \quad[m, n]_{2} \wedge[p, q]_{3}=\left((n-q)(p-m)^{-1}, \quad(n-q)(p-m)^{-1} p+q\right)$, if $n \geq q p^{-1} m$ and $\quad[m, n]_{2} \wedge[p, q]_{3}=\left((n-q k)(p k-m)^{-1}, \quad(n-q k)(p k-m)^{-1} p k+q k\right), \quad$ if $n<q p^{-1} m$. Thus, $[m, n]_{2} \wedge[p, q]_{3} \neq \varnothing$.
Let $i=j=3$. We may assume, without loss of generality, that $p-m \in H^{+} \cup\{0\}$. If $m-p \notin \eta$, then in $\mathscr{H},[\hat{p}, q]_{2} \wedge[m, n]_{2}=\left((n-q)(p-m)^{-1},(n-q)(p-m)^{-1} p+q\right)$ and $[p k, q k]_{2} \wedge[m k, n k]_{2}=\left((n-q)(p-m)^{-1},(n-q)(p-m)^{-1} p k+q k\right)$, by [2], 2.15. In addition, $(n-q)(p-m)^{-1} p+q$ and $(n-q)(p-m)^{-1} p k+q k$ both lie in $H^{+} \cup\{0\}$ [in H^{-}] if and only if $n \geq q p^{-1} m$ [if and only if $n<q p^{-1} m$]. Therefore, in $\mathscr{H}^{\prime},[m, n]_{3} \wedge[p, q]_{3}=\left((n-q)(p-m)^{-1},(n-q)(p-m)^{-1} p+q\right)$ if $n \geq q p^{-1} m$ and $[m, n]_{3} \wedge[p, q]_{3}=\left((n-q)(p-m)^{-1},(n-q)(p-m)^{-1} p k+q k\right)$ if $n<q p^{-1} m$. Thus, $[m, n]_{3} \wedge[p, q]_{3} \neq \varnothing$ if $m-p \notin n$.
6. In this section, we verify that \mathscr{H}^{\prime} is an A.H. plane; i.e., we show that \mathscr{H}^{\prime} satisfies the following conditions 6.1-6.4 (cf. [2], 2.2)
6.1. Any pair of points of \mathscr{H}^{\prime} is joined by a line of \mathscr{H}^{\prime}, by the properties of \mathscr{H} and by 5.1.
6.2. Two lines of \mathscr{H}^{\prime} which have a point in common meet exactly once if and only if they are not neighbours.

Proof. (\Leftarrow) Consider any pair of lines $[m, n]_{i},[p, q]_{j}$ of \mathscr{H}^{\prime} which meet in two distinct points (a, b) and (c, d). By $5.3, i=j ; i, j \in\{1,2,3\}$. If $i=1$ or 2 , then $[m, n]_{i} \sim[p, q]_{i}$, by the properties of \mathscr{H}. Let $i=3$. Then by $5.2,(a, b),(c, d)$ are incident with lines of the second kind in \mathscr{H}.

If $b, d \in H^{+} \cup\{0\}\left[b, d \in H^{-} \cup\{0\} ; b,-d \in H^{+}\right]$, then $(a, b),(c, d) I[m, n]_{2}$,
$[p, q]_{2}$ in $\mathscr{H}\left[(a, b),(c, d) I[m k, n k]_{2},[p k, q k]_{2}\right.$ in $\mathscr{H} ;(a, b),(c, d) I[m-f, n+$ $a f]_{2},[p-f, q+a f]_{2}$ in \mathscr{H} where $\left.(a-c) f=d\left(1-k^{-1}\right)\right]$. Thus, $m-p, n-q \in \eta$.
(\Rightarrow) Any pair of neighbour lines of the first or second kind in \mathscr{H}^{\prime} which have a point in common, meet more than once by the property 6.2 applied to \mathscr{H}. Consider two neighbour lines $[m, n]_{3}$ and $[p, q]_{3}$ and some (a, b) incident with both of them. Clearly, both $a+q p^{-1} \in H^{+} \cup\{0\}$ and $a+n m^{-1} \in H^{+} \cup\{0\}$ if and only if $b \in H^{+} \cup\{0\}$. If $b \in H^{+} \cup\{0\}$ [if $b \in H^{-}$], then $(a, b)=(a, a m+n)=$ $(a, a p+q)[(a, b)=(a, a m k+n k)=(a, a p k+q k)]$. Since $m-p \in \eta$, there exists $c \in H^{+} \cap \eta\left[c \in H^{-} \cap \eta\right]$ such that $c(m-p)=0$. Then $(a+c,(a+c) m+n)$ $[(a+c,(a+c) m k+n k)]$ is also incident with both $[m, n]_{3}$ and $[p, q]_{3}$.
6.3. For each flag $\left((a, b),[m, n]_{i}\right) \in \mathbb{P} \times \mathbb{L}$, there exists a unique line $L((a, b)$, $\left.[m, n]_{i}\right)$ such that $(a, b) I L\left((a, b),[m, n]_{i}\right)$ and $L\left((a, b),[m, n]_{i}\right) \|[m, n]_{i}$.

Proof. The result is clear if $i=1$ or 2 . If $i=3$, the required line is [$m, b-a m]_{3}$ if $b \in H^{+} \cup\{0\}$ or $\left[m, b k^{-1}-a m\right]_{3}$, if $b \in H^{-}$. The uniqueness of such a line is readily verified.
6.4. There exist an ordinary affine plane \mathscr{A}^{\prime} and an epimorphism $\Phi^{\prime}=$ $\left(\Phi_{p}^{\prime}, \Phi_{\mathrm{L}}^{\prime}\right): \mathscr{H}^{\prime} \rightarrow \mathscr{A}^{\prime}$ with the following properties.

1. $(a, b) \sim(c, d)$ in \mathscr{H}^{\prime} if and only if $\Phi_{p}^{\prime}(a, b)=\Phi_{p}^{\prime}(c, d)$.
2. $[m, n]_{i} \sim[p, q]_{j}$ in \mathscr{H}^{\prime} if and only if $\Phi_{\mathrm{L}}^{\prime}\left([m, n]_{i}\right)=\Phi_{\mathrm{L}}^{\prime}\left([p, q]_{j}\right)$.
3. If $[m, n]_{i} \wedge[p, q]_{j}=\varnothing$, then $\Phi_{\mathrm{L}}^{\prime}\left([m, n]_{i}\right) \| \Phi_{\mathrm{L}}^{\prime}\left([p, q]_{j}\right)$.

Proof. The ordinary affine plane \mathscr{A}^{\prime} and the epimorphism Φ^{\prime} defined in 4 satisfy these conditions by $4.1,4.2$ and 5.6.

Therefore, \mathscr{H}^{\prime} is an A.H. plane.
7. Since \mathscr{A}^{\prime} is not Desarguesian, \mathscr{H}^{\prime} cannot be Desarguesian.
8. An ordering of \mathscr{H}^{\prime}. First we give an ordering of \mathscr{H}. We define a ternary relation ρ on the points of \mathscr{H} by $\left(P_{1}, P_{2}, P_{3}\right) \in \rho\left(P_{i}=\left(a_{i}, b_{i}\right), i=1,2,3\right)$ if $P_{1}, P_{2}, P_{3} I[m, n]_{1}$ and $b_{1}<b_{2}<b_{3}$ or $b_{1}>b_{2}>b_{3}$ or if $P_{1}, P_{2}, P_{3} I[m, n]_{2}$ and $a_{1}<a_{2}<a_{3}$ or $a_{1}>a_{2}>a_{3}$. It is easily verified that ρ satisfies the order axioms $01-07$ given in [5]; in fact, ρ is equivalent to the ordering of \mathscr{H} induced by the ordering of H in [5]. In particular, we have the following result.
8.1. In \mathscr{H}, if $P_{i}=\left(a_{i}, b_{i}\right) I\left[m, n_{i}\right]_{1} \quad\left[\left[m, n_{i}\right]_{2} ; \quad\left[m, n_{i}\right]_{2}\right], i \in\{1,2\} \quad$ and $P_{1}, P_{2} I[p, q]_{2}\left[[p, q]_{1} ;[p, q]_{2}\right.$ where $\left.p-m \notin \eta\right]$, then $a_{1}<a_{2}\left[b_{1}<b_{2} ; a_{1}<a_{2}\right.$ when $p-m \in H^{+}$and $a_{2}<a_{1}$ when $p-m \in H^{-}$] if and only if $n_{1}<n_{2}$.

Proof. Assume $n_{1}<n_{2}$. By [2], 2.14 [2.14; 2.15], $a_{2}-a_{1}=\left(n_{2}-n_{1}\right)$ $(1-p m)^{-1}>0 \quad$ since $\quad 1-p m \in H^{+} \backslash \eta\left[b_{2}-b_{1}=\left(n_{2}-n_{1}\right)(1-p m)^{-1}>0 \quad\right.$ since $1-p m \in H^{+} \backslash \eta ; a_{2}-a_{1}=\left(n_{2}-n_{1}\right)(p-m)^{-1}$ which is greater than zero if $p-m \in H^{+}$and less than zero if $\left.p-m \in H^{-}\right]$.

Conversely, if $a_{1}<a_{2}\left[b_{1}<b_{2} ; a_{1}<a_{2}\right.$ with $p-m \in H^{+}$or $a_{2}<a_{1}$ with $p-$ $m \in H^{-}$], then $n_{1} \nsupseteq n_{2}$ otherwise we obtain a contradiction.
8.2. In a similar manner, we may define a relation ρ^{\prime} on \mathscr{H}^{\prime} by putting ρ^{\prime} equal to ρ on the points of lines of the first or second kind and for $P_{i}=$ $\left(a_{i}, b_{i}\right) I[m, n]_{3}(i \in\{1,2,3\}),\left(P_{1}, P_{2}, P_{3}\right) \in \rho^{\prime}$ if and only if $a_{1}<a_{2}<a_{3}$ or $a_{1}>a_{2}>a_{3}$. The relation ρ^{\prime} clearly satisfies axioms 01-06 (cf. [5]), so it remains to verify 07 . Since ρ is an ordering of \mathscr{H}, any non-degenerate parallel projection which does not involve lines of the third kind will preserve the ordering ρ^{\prime}. We verify that the parallel projections involving lines of the third kind preserve order in the following sequence of lemmas. We shall prove the lemmas in one direction; the converses then follow as in 8.1.
8.3. Let $P_{i}=\left(a_{i}, b_{i}\right) I\left[m, n_{i}\right]_{1}\left[\left[m, n_{i}\right]_{2}\right], i \in\{1,2\}$ and $P_{1}, P_{2} I[p, q]_{3}$. Then $a_{1}<a_{2}$ if and only if $n_{1}<n_{2}$.

Proof. Assume $a_{1}<a_{2}$. If $a_{1}, a_{2} \geq-q p^{-1}$ or $a_{1}, a_{2} \leq-q p^{-1}$, then the result follows from 8.1. Therefore, let $a_{1}<-q p^{-1}<a_{2}$. Then $n_{2}-n_{1}=$ $a_{2}(1-p m)-q m-a_{1}(1-p k m)+q k m>-q p^{-1}((1-p m)-(1-p k m))-q m+q k m$ $=0$ since $1-p m, 1-p k m \in H^{+} \backslash \eta\left[n_{2}-n_{1}=a_{2}(p-m)+q+a_{1}(p k-m)-q k>\right.$ $-q p\left((p-m)-(p k-m)+q-q k=0\right.$ since $p-m, p k-m \in H^{+} \backslash \eta$ by 2.3] by 6.4.
8.4. Let $P_{i}=\left(a_{i}, b_{i}\right) I\left[m, n_{i}\right]_{3}, i \in\{1,2\}$ and $P_{1}, P_{2} I[p, q]_{1}\left[[p, q]_{2}\right]$. Then $b_{1}<b_{2}\left[a_{2}<a_{1}\right]$ if and only if $n_{1}<n_{2}$.

Proof. Assume $n_{1}<n_{2}$. If $n_{1}, n_{2} \geq-q m$ or $n_{1}, n_{2} \leq-q m \quad\left[b_{1}, b_{2} \geq 0\right.$ or $\left.b_{1}, b_{2} \leq 0\right]$, then the result follows from 8.1. If $n_{1}<-q m<n_{2}$, then by 6.4, $b_{2}-b_{1}=\left(q m+n_{2}\right)(1-p m)^{-1}-\left(q m k+n_{1} k\right)(1-p m k)^{-1}>0$ since $1-p m, \quad 1-$ $p m k \in H^{+} \backslash \eta$. [First, suppose $b_{1}<0<b_{2}$. Then $-a_{2} p<q<-a_{1} p$ which implies $0<n_{2}-n_{1}<\left(a_{2}-a_{1}\right)(p-m)$ if $k>1$ and $0<n_{2}-n_{1}<\left(a_{2}-a_{1}\right)\left(p k^{-1}-m\right)$ if $k<$ 1. Since $p-m, p k^{-1}-m \in H^{-} \backslash \eta, a_{2}<a_{1}$. Now suppose $b_{2}<0<b_{1}$. Then $-a_{1} p<$ $q<-a_{2} p$; hence $0<n_{2}-n_{1}<\left(a_{2}-a_{1}\right)\left(p k^{-1}-m\right)$ if $k>1$ and $0<n_{2}-n_{1}<$ $\left(a_{2}-a_{1}\right)(p-m)$ if $k<1$. Thus, $a_{2}<a_{1}$.]
8.5. Let $P_{i}=\left(a_{i}, b_{i}\right) I\left[m, n_{i}\right]_{3}, i \in\{1,2\}$ and $P_{1}, P_{2} I[p, q]_{3}$ where $m-p \notin \eta$. Then $n_{1}<n_{2}$ if and only if $a_{1}<a_{2}$ when $p-m \in H^{+}$and $a_{2}<a_{1}$ when $p-m \in$ H^{-}.

Proof. Assume $n_{1}<n_{2}$. If $n_{1}, n_{2} \geq q p^{-1} m$ or $n_{1}, n_{2} \leq q p^{-1} m$, the result follows by 8.1. Therefore, let $n_{1}<q p^{-1} m<n_{2}$. Then by 6.4, $a_{1}-a_{2}=$ $\left(n_{1}-q\right)(p-m)^{-1}-\left(n_{2}-q\right)(p-m)^{-1}=\left(n_{1}-n_{2}\right)(p-m)^{-1}$. Thus, $a_{1}>a_{2}$ if $p-m \in H^{-}$and $a_{1}<a_{2}$ if $p-m \in H^{+}$.
8.6. It is now clear that non-degenerate parallel projections preserve ρ^{\prime}. Therefore, \mathscr{H}^{\prime} is a non-Desarguesian A.H. plane with ordering ρ^{\prime}.
9. An example. Let $H=\mathbb{R} \times \mathbb{R}$. If $a \in H$, we may write $a=\left(A_{1}, A_{2}\right)$, where $A_{1}, A_{2} \in \mathbb{R}$. Define two binary operations, addition and multiplication on H by $\left(A_{1}, A_{2}\right)+\left(B_{1}, B_{2}\right)=\left(A_{1}+B_{1}, A_{2}+B_{2}\right) \quad$ and $\quad\left(A_{1}, B_{2}\right) \cdot\left(B_{1}, B_{2}\right)=$ $\left(A_{1} B_{1}, A_{1} B_{2}+A_{2} B_{1}\right)$, for any $A_{1}, A_{2}, B_{1}, B_{2} \in \mathbb{R}$. Then H is an A.H. ring with unit $(1,0)$ and unique maximal ideal $\eta=\{(0, A) \mid A \in \mathbb{R}\}$. If we define $H^{+}=$ $\left\{\left(A_{1}, A_{2}\right) \in H \mid A_{1}>0\right\} \cup\left\{\left(0, A_{2}\right) \mid A_{2}>0\right\}$ then H becomes an ordered A.H. ring. The incidence structure \mathscr{H} constructed in the usual manner over H is an ordered D.A.H. plane. The incidence structures \mathscr{H}^{\prime}, constructed as in 3 are ordered non-Desarguesian A.H. planes. If k is taken to be $(2,0)$, then \mathscr{H}^{\prime} is the ordered non-Desarguesian A.H. plane whose associated ordinary affine plane is the classical Moulton plane.

References

1. Klingenberg, W.: Desarguessche Ebenen mit Nachbarelementen. Abh. Math. Sem. Univ. Hamburg 20 (1955), 97-111.
2. Lane, N. D. and Lorimer, J. W.: Desarguesian affine Hjelmslev planes. J. reine angew. Math. 278/279 (1975), 336-352.
3. Laxton, J. A. A.: Ordered non-Desarguesian Affine Hjelmslev Planes. M.Sc. thesis, McMaster University, Hamilton (1976).
4. Moulton, F. R.: A simple non-Desarguesian plane geometry. Trans. Amer. Math. Soc. 3 (1902), 192-195.
5. Thomas, L. A.: Ordered Desarguesian affine Hjelmslev-planes. M.Sc. thesis, McMaster University, Hamilton (1975).

DEPT. OF MATHEMATICS
McMaster University
Hamilton, Ontario

