MOULTON AFFINE HJELMSLEV PLANES

BY

CATHARINE BAKER

1. Introduction. Desarguesian affine Hjelmslev planes (D.A.H. planes) were introduced by Klingenberg in [1] and generalized by Lane and Lorimer in [2]. D.A.H. planes are coordinatized by affine Hjelmslev rings (A.H. rings) which are local rings whose radicals are equal to their sets of two-sided zero divisors and whose principal right ideals are totally ordered. In [5], ordered D.A.H. planes were defined and the induced orderings of their A.H. rings were discussed. In this note an ordered non-Desarguesian A.H. plane is constructed from an arbitrary ordered D.A.H. plane. The existence of such planes ensures that the discussion of ordered non-Desarguesian A.H. planes by J. Laxton in [3] is meaningful. The basic idea employed is essentially the same as the one used in the construction of the classical Moulton plane from the real affine plane (cf. [4]).

2. Ordered A.H. rings. An A.H. ring H with radical η is ordered if there exists a subset H^+ of H such that $a \in H$ implies exactly one of $a \in H^+$, a = 0, $-a \in H^+$ holds; $a, b \in H^+$ implies $a + b \in H^+$; $a, b \in H^+$ and $b \notin \eta$ imply $ab \in H^+$ (cf. [5], 2.2). Let $H^- = \{a \in H \mid -a \in H^+\}$. H has the following properties.

2.1. Suppose $a \in \eta$. Then -1 < a < 1 and for any b such that -a < b < a, we have $b \in \eta$ (cf. [5], 6.1).

2.2. For $b, d \in H^+$, if $b + d \in \eta$, then $b, d \in \eta$.

Proof. Since $-(b+d) < b, d < b+d, b, d \in \eta$ by 2.1.

2.3. If $m \in H^+ \setminus \eta$ and $p \in H^- \cup \eta$, then $m - p \in H^+ \setminus \eta$.

Proof. If $p \in H^-$, then since $m, -p \in H^+$, $m - p \notin \eta$ by 2.2. Let $p \in H^+ \cap \eta$. Since $m \notin \eta$ and $p \in \eta$, $m - p \notin \eta$. Suppose $m - p \in H^-$. Then $m, p - m \in H^+$ and $p \in \eta$ imply $m \in \eta$ by 2.2 which is a contradiction.

2.4. The incidence structure with parallelism, \mathcal{H} , constructed over an ordered A.H. ring H in the usual manner is an ordered D.A.H. plane (cf. [5], Chapter 3). Thus, $H \times H$ is the set of points of \mathcal{H} and the lines of \mathcal{H} are of the form $[m, n]_1$ where $m \in \eta$, $n \in H$ and $[m, n]_2$ where $m, n \in H$. Here, $[m, n]_1 = \{(ym + n, y) \mid y \in H\}$ and $[m, n]_2 = \{(x, xm + n) \mid x \in H\}$.

Received by the editors February 9, 1977 and in revised form, August 18, 1977.

3. A Moulton A.H. plane. We shall consider a new incidence structure with parallelism, $\mathscr{H}' = \langle \mathbb{P}, \mathbb{L}, I, \| \rangle$, where

$$\begin{split} \mathbb{P} &= H \times H; \\ \mathbb{L} &= \{ [m, n]_1 \mid m \in \eta, n \in H \} \cup \{ [m, n]_2 \mid m \in H^- \cup \eta, n \in H \} \cup \\ &\{ [m, n]_3 \mid m \in H^+ \setminus \eta, n \in H \}. \end{split}$$

where $[m, n]_1$ and $[m, n]_2$ are defined as in \mathcal{X} and

$$[m, n]_3 = \{(x, xm+n) \mid x + nm^{-1} \in H^+ \cup \{0\}\} \cup \{(x, xmk+nk) \mid x + nm^{-1} \in H^-\},\$$

for a fixed element of $H^+ \setminus \eta$ such as $k - 1 \notin \eta$;

I is set inclusion;

 $[m, n]_i || [p, q]_i$ if and only if i = j and m = p.

We define a neighbour relation, \sim , on \mathbb{P} by:

$$(a, b) \sim (c, d)$$
 if and only if $a-c, b-d \in \eta$

and a neighbour relation, \sim , on \mathbb{L} by:

 $[m, n]_i \sim [p, q]_j$ if and only if i = j and $m - p, n - q \in \eta$.

We shall prove (in sections 6 and 7) that \mathcal{H}' is a non-Desarguesian A.H. plane.

4. The ordinary affine plane associated with \mathscr{H}' . Let $\phi: H \to H^* = H/\eta(a \rightsquigarrow a^*)$ be the usual quotient map. The map $\Phi = (\Phi_P, \Phi_L): \mathscr{H} \to \mathscr{A} = \mathscr{H}/\sim$, induced by ϕ , is given by $\Phi_P(a, b) = (a^*, b^*)$ and $\Phi_L([m, n]_i) = [m^*, n^*]_i$. Here, $\mathscr{A} = \langle \overline{\mathbb{P}}, \overline{\mathbb{L}}, \overline{I}, \| \rangle$ is the ordered ordinary Desarguesian affine plane which is coordinatized by the ordered division ring H^* (cf. [5], Chapter 5). Clearly, $H^{*+} = H^+/(H^+ \cap \eta)$ and $H^{*-} = H^-/(H^- \cap \eta)$.

Now consider the incidence structure $\mathscr{A}' = \langle \overline{\mathbb{P}}, \overline{\mathbb{L}}, \overline{I}, [] \rangle$, where

$$\overline{L}' = \{ [0, n^*]_1 \mid n^* \in H^* \} \cup \{ [0, n^*]_2 \mid n^* \in H^* \} \\ \cup \{ [m^*, n^*]_2 \mid m^* \in H^{*-}, n \in H^* \} \cup \{ [m^*, n^*]_3 \mid m^* \in H^{*+}, n \in H^* \}$$

with

$$[0, n^*]_1 = \{(n^*, y^*) \mid y^* \in H^*\},\$$

$$[m^*, n^*]_2 = \{(x^*, x^*m^* + n^*) \mid x^* \in H^*,\$$

$$[m^*, n^*]_3 = \{(x^*, x^*m^* + n^*) \mid x^* + n^*m^{*-1} \in H^{*+} \cup \{0\}\}\$$

$$\cup \{(x^*, x^*m^*k^* + n^*k^* \mid x^* + n^*m^{*-1} \in H^{*-}\}.$$

 \mathscr{A}' is constructed from \mathscr{A} in the same manner as the classical Moulton plane is constructed from the real affine plane; hence \mathscr{A}' is a non-Desarguesian affine plane. (Since $k - 1 \notin \eta$, $k^* \neq 1$.) In addition, \mathscr{A}' is the image of \mathscr{H}' under the map $\Phi' = (\Phi'_P, \Phi'_L)$ induced by ϕ . Clearly, Φ' preserves incidence and is onto. Φ' also satisfies the following properties.

[June

4.1. $(a, b) \sim (c, d)$ if and only if $\Phi'_{P}(a, b) = \Phi'_{P}(c, d)$.

Proof. $(a, b) \sim (c, d)$ if and only if $(a^*, b^*) = (c^*, d^*)$.

4.2. $[m, n]_i \sim [p, q]_j$ if and only if $\Phi'_L([m, n]_i) = \Phi'_L([p, q]_j)$.

Proof. $[m, n]_i \sim [p, q]_j$ if and only if i = j, $m^* = p^*$ and $n^* = q^*$; i.e., $\Phi'_{L}([m, n]_i) = \Phi'_{L}([p, q]_j)$.

5. Properties of \mathcal{H}' .

 $(f+m(1-k^{-1}))+mk^{-1}\in H^+\setminus \eta.$

5.1. Any pair of points (a, b) and (c, d), incident with a line $[m, n]_2$, where $m \in H^+ \setminus \eta$, of \mathcal{H} , are incident with a line $[p, q]_3$ in \mathcal{H}' .

Proof. If $b, d \in H^+ \cup \{0\}$, then $(a, b), (c, d) I[m, n]_3$ in \mathcal{H}' . If $b, d \in H^- \cup \{0\}$, then $(a, b), (c, d) I[mk^{-1}, nk^{-1}]_3$ in \mathcal{H}' . We now consider the case where $b, -d \in H^+$.

First, we show that there exists an $f \in H$ such that (a-c)fk = d(k-1); i.e., such that $(a-c)f = d(k-1)k^{-1} = d(1-k^{-1})$. If no such f exists, then there exists $g \in \eta$ such that $(a-c) = d(1-k^{-1})g$. Since (a, b), $(c, d) I [m, n]_2$ in \mathcal{H} , we have $b-d = (a-c)m = d(1-k^{-1})gm$. Hence, $b = d((1-k^{-1})gm+1)$; however, $g \in \eta$ implies $d((1-k^{-1})gm+1) \in H^-$; a contradiction since $b \in H^+$.

Take p = m + f and q = n - af. We shall show (a, b), (c, d) I $[p, q]_3$ in \mathcal{H}' . Since ap + q = am + af + n - af = b and cpk + qk = cmk + cfk + nk - afk = (cm + n)k - (a - c)fk = d, $[p, q]_3$ is the required line provided that $p \in H^+ \setminus \eta$. We now have two possibilities.

Suppose k > 1. Since $(a-c)f = d(1-k^{-1})$, where $a-c \in H^+$, $d \in H^-$, $1-k^{-1} \in H^+ \setminus \eta$, then $f \notin H^+ \setminus \eta$. Since $(a-c)f = d(1-k^{-1}) = (cm+b-am)$ $(1-k^{-1})$, we have $b(1-k^{-1}) = (a-c)(f+m(1-k^{-1}))$ with $1-k^{-1} \in H^+ \setminus \eta$ and $b, a-c \in H^+$; hence $f+m(1-k^{-1}) \notin H^- \setminus \eta$. Therefore, $p = a^{-1} = b^{-1} + b^{-1} + b^{-1} + b^{-1} = b^{-1} + b^{$

Suppose k < 1. As $(a-c)f = d(1-k^{-1})$, where $a-c \in H^+$, $d \in H^-$, $(1-k^{-1}) \in H^- \setminus \eta$, we have $f \notin H^- \setminus \eta$. Then $p = m + f \in H^+ \setminus \eta$.

5.2. If two points (a, b) and (c, d) are incident with some line $[p, q]_3$ of \mathcal{H}' , then there exists a line $[m, n]_2$ of \mathcal{H} , with $m \in H^+ \setminus \eta$, through both points.

Proof. If $b, d \in H^+ \cup \{0\}$, take $[m, n]_2 = [p, q]_2$; if $b, d \in H^- \cup \{0\}$, take $[m, n]_2 = [pk, qk]_2$. If $b, -d \in H^+$, by the argument used in 5.1 there exists $f \in H^- \cup \eta$ such that $(a-c)f = d(1-k^{-1})$. By 2.3 $p-f \in H^+ \setminus \eta$. Therefore, take $[m, n]_2 = [p-f, q+af]_2$.

5.3. All lines of \mathcal{H}' joining two given distinct points are of the same kind.

Proof. From the properties of \mathcal{H} , it is clear that two distinct points cannot be incident with a line of the first kind and a line of the second kind in \mathcal{H}' . If the two distinct point are incident with a line of the third kind of \mathcal{H}' , then there exists a line $[m, n]_2$ in \mathcal{H} with $m \in H^+ \setminus \eta$, joining these points. These two points

1978]

could not be incident with a line of the first kind in \mathcal{H} or in \mathcal{H}' . By 2.3 $m-p \in H^+ \setminus \eta$, if $p \in H^- \cup \eta$, which implies the two points cannot be incident with any $[p, q]_2$, where $p \in H^- \cup \eta$, in \mathcal{H} and thus, cannot be incident with any line of the second kind in \mathcal{H}' .

5.4. Two points of \mathcal{H}' are neighbours if and only if there exist more than one line of \mathcal{H}' through them.

Proof. (\Rightarrow) Any distinct neighbour points (a, b) and (c, d) are incident wit , a least two distinct lines $[m, n]_i$, $[p, q]_i$ in \mathcal{H} . Either they are incident with the same two lines in \mathcal{H}' (if these lines exist in \mathcal{H}') or they are incident with $[m, n]_3$, $[p, q]_3$ if $b, d \in H^+ \cup \{0\}$, with $[mk^{-1}, nk^{-1}]_3$, $[pk^{-1}, qk^{-1}]_3$ if $b, d \in H^- \cup \{0\}$ or with $[m+f, n-af]_3$, $[p+f, q-af]_3$ if $b, -d \in H^+$, where $(a-c)f = d(1-k^{-1})$ (by 5.1).

 (\Leftarrow) Now assume there exist more than one line of \mathscr{H}' through the distinct points (a, b) and (c, d). By 5.3, these lines are of the same kind. If they also exist in \mathscr{H} , then $(a, b) \sim (c, d)$.

If (a, b) and (c, d) are incident with two lines of the third kind in \mathscr{H}' , say $[m, n]_3$ and $[p, q]_3$, then (a, b), (c, d) I $[m, n]_2$, $[p, q]_2$ in \mathscr{H} , if $b, d \in H^+ \cup \{0\}$; (a, b), (c, d) I $[mk, nk]_2$, $[pk, qk]_2$, in \mathscr{H} , if $b, d \in H^- \cup \{0\}$; (a, b), (c, d) I $[m-f, n+af]_2$, $[p-f, q+af]_2$ in \mathscr{H} , where $(a-c)f = d(1-k^{-1})$ (by 5.1), if $b, -d \in H^+$. Hence, (a, b) and (c, d) are neighbours in \mathscr{H} and thus also in \mathscr{H}' .

5.5. Two lines of \mathcal{H}' are neighbours if and only if for any points incident with either line, there exists a neighbour point incident with the other.

Proof. Consider two neighbour lines $[m, n]_i$, $[p, q]_j$. If these lines are of the first or second kind, the result is clear. Suppose they are of the third kind. Take any (a, b) I $[m, n]_3$. Then b = am + n if $a + nm^{-1} \in H^+ \cup \{0\}$ [b = amk + nk if $a + nm^{-1} \in H^-$. We have two possibilities: either $a + qp^{-1} \in H^+ \cup \{0\}$ or $a + qp^{-1} \in H^-$. First suppose $a + qp^{-1} \in H^+ \cup \{0\}$. Then (a, ap + q) I $[p, q]_3$ and $am + n - ap - q = a(m - p) + n - q \in \eta$ [and $amk + nk - ap - q = (am + n)(k - 1) + a(m - p) + (n - q) \in \eta$, since $am + n \in \eta$ by 2.2]. Thus the point (a, ap + q) is the required neighbour point if $a + qp^{-1} \in H^+ \cup \{0\}$. A similar argument would prove (a, apk + qk) to be the required neighbour point if $a + qp^{-1} \in H^-$.

Now consider two lines $[m, n]_i$, $[p, q]_j$ such that for any point incident with either line, there exists a neighbour point incident with the other line. Take any (a, b), (c, d) $I[m, n]_i$ such that $(a, b) \not\sim (c, d)$. Then there exist (a', b'), (c', d') $I[p, q]_j$ such that $(a', b') \sim (a, b)$ and $(c', d') \sim (c, d)$. Hence,

$$\Phi'_{\mathbb{L}}([m, n]_i) = \Phi'_{\mathbb{P}}((a, b))\Phi'_{\mathbb{P}}((c, d)) = \Phi'_{\mathbb{L}}([p, q]_i).$$

By 4.2, $[m, n]_i \sim [p, q]_j$.

138

5.6. If two lines $[m, n]_i$ and $[p, q]_j$ of \mathcal{H}' do not intersect, then i = j and $m - p \in \eta$.

Proof. If $[m, n]_i$ and $[p, q]_j$ also appear in \mathcal{H} , then i = j and $m - p \in \eta$ by [2], 2.14.

If i=1 and j=3, then in \mathcal{H} , $[m, n]_1 \wedge [p, q]_2 = ((qm+n)(1-pm)^{-1}, (np+q)(1-mp)^{-1})$ and $[m, n]_1 \wedge [pk, qk]_2 = ((qkm+n)(1-pkm)^{-1}, (npk+qk)(1-mpk)^{-1})$ (cf. [2], 2.14), Since $m \in \eta$, 1-mp, $1-mpk \in H^+ \setminus \eta$; therefore, $(np+q)(1-mp)^{-1}$ and $(npk+qk)(1-mpk)^{-1}$ are both in $H^+ \cup \{0\}$ [in H^-] if np+q lies in $H^+ \cup \{0\}$ [in H^-]. Hence, $((qm+n)(1-pm)^{-1}, (np+q)(1-mp)^{-1}) = [m, n]_1 \wedge [p, q]_3$, if $np+q \in H^+ \cup \{0\}$ and $((qkm+n)(1-pkm)^{-1}, (npk+qk)(1-mpk)^{-1}) = [m, n]_1 \wedge [p, q]_3$ if $np+q \in H^-$. Thus $[m, n]_1 \wedge [p, q]_3 \neq \emptyset$.

If i = 2 and j = 3, then $m \in H^- \cup \eta$ and $p \in H^+ \setminus \eta$, so p - m, $pk - m \in H^+ \setminus \eta$, by 2.3. By [2], 2.15, in \mathscr{H} $[p, q]_2 \wedge [m, n]_2 = ((n - q)(p - m)^{-1}, (n - q)(p - m)^{-1}p + q)$ and $[pk, qk]_2 \wedge [m, n]_2 = ((n - qk)(pk - m)^{-1}, (n - qk)(pk - m)^{-1}pk + qk)$. However, both $(n - q)(p - m)^{-1}p + q$ and $(n - qk)(pk - m)^{-1}pk + qk$ lie in $H^+ \cup \{0\}$ [in H^-] if and only if $n \ge qp^{-1}m[n < qp^{-1}m]$. Therefore, in \mathscr{H}' , $[m, n]_2 \wedge [p, q]_3 = ((n - qk)(pk - m)^{-1}, (n - qk)(pk - m)^{-1}pk + qk)$, if $n \ge qp^{-1}m$ and $[m, n]_2 \wedge [p, q]_3 = ((n - qk)(pk - m)^{-1}, (n - qk)(pk - m)^{-1}pk + qk)$, if $n < qp^{-1}m$. Thus, $[m, n]_2 \wedge [p, q]_3 \ne \emptyset$.

Let i = j = 3. We may assume, without loss of generality, that $p - m \in H^+ \cup \{0\}$. If $m - p \notin \eta$, then in \mathcal{H} , $[p, q]_2 \land [m, n]_2 = ((n - q)(p - m)^{-1}, (n - q)(p - m)^{-1}p + q)$ and $[pk, qk]_2 \land [mk, nk]_2 = ((n - q)(p - m)^{-1}, (n - q)(p - m)^{-1}pk + qk)$, by [2], 2.15. In addition, $(n - q)(p - m)^{-1}p + q$ and $(n - q)(p - m)^{-1}pk + qk$ both lie in $H^+ \cup \{0\}$ [in H^-] if and only if $n \ge qp^{-1}m$ [if and only if $n < qp^{-1}m$]. Therefore, in \mathcal{H}' , $[m, n]_3 \land [p, q]_3 = ((n - q)(p - m)^{-1}, (n - q)(p - m)^{-1}pk + qk)$ if $n \ge qp^{-1}m$ and $[m, n]_3 \land [p, q]_3 = ((n - q)(p - m)^{-1}, (n - q)(p - m)^{-1}pk + qk)$ if $n < qp^{-1}m$. Thus, $[m, n]_3 \land [p, q]_3 \neq \emptyset$ if $m - p \notin n$.

6. In this section, we verify that \mathcal{H}' is an A.H. plane; i.e., we show that \mathcal{H}' satisfies the following conditions 6.1-6.4 (cf. [2], 2.2)

6.1. Any pair of points of \mathcal{H}' is joined by a line of \mathcal{H}' , by the properties of \mathcal{H} and by 5.1.

6.2. Two lines of \mathcal{H}' which have a point in common meet exactly once if and only if they are not neighbours.

Proof. (\Leftarrow) Consider any pair of lines $[m, n]_i$, $[p, q]_j$ of \mathcal{H}' which meet in two distinct points (a, b) and (c, d). By 5.3, i = j; $i, j \in \{1, 2, 3\}$. If i = 1 or 2, then $[m, n]_i \sim [p, q]_i$, by the properties of \mathcal{H} . Let i = 3. Then by 5.2, (a, b), (c, d) are incident with lines of the second kind in \mathcal{H} .

If $b, d \in H^+ \cup \{0\}$ [$b, d \in H^- \cup \{0\}$; $b, -d \in H^+$], then (a, b), (c, d) I [m, n]₂,

1978]

 $[p, q]_2$ in $\mathcal{H}[(a, b), (c, d) I [mk, nk]_2, [pk, qk]_2$ in $\mathcal{H}; (a, b), (c, d) I [m-f, n+af]_2, [p-f, q+af]_2$ in \mathcal{H} where $(a-c)f = d(1-k^{-1})$]. Thus, $m-p, n-q \in \eta$.

(⇒) Any pair of neighbour lines of the first or second kind in \mathcal{H}' which have a point in common, meet more than once by the property 6.2 applied to \mathcal{H} . Consider two neighbour lines $[m, n]_3$ and $[p, q]_3$ and some (a, b) incident with both of them. Clearly, both $a + qp^{-1} \in H^+ \cup \{0\}$ and $a + nm^{-1} \in H^+ \cup \{0\}$ if and only if $b \in H^+ \cup \{0\}$. If $b \in H^+ \cup \{0\}$ [if $b \in H^-$], then (a, b) = (a, am + n) =(a, ap + q) [(a, b) = (a, amk + nk) = (a, apk + qk)]. Since $m - p \in \eta$, there exists $c \in H^+ \cap \eta [c \in H^- \cap \eta]$ such that c(m-p) = 0. Then (a+c, (a+c)m+n)[(a+c, (a+c)mk+nk)] is also incident with both $[m, n]_3$ and $[p, q]_3$.

6.3. For each flag ((a, b), $[m, n]_i$) $\in \mathbb{P} \times \mathbb{L}$, there exists a unique line $L((a, b), [m, n]_i)$ such that (a, b) IL ((a, b), $[m, n]_i$) and $L((a, b), [m, n]_i) || [m, n]_i$.

Proof. The result is clear if i=1 or 2. If i=3, the required line is $[m, b-am]_3$ if $b \in H^+ \cup \{0\}$ or $[m, bk^{-1}-am]_3$, if $b \in H^-$. The uniqueness of such a line is readily verified.

6.4. There exist an ordinary affine plane \mathcal{A}' and an epimorphism $\Phi' = (\Phi'_{\mathsf{P}}, \Phi'_{\mathsf{L}}): \mathcal{H}' \to \mathcal{A}'$ with the following properties.

- 1. $(a, b) \sim (c, d)$ in \mathcal{H}' if and only if $\Phi'_{\mathsf{P}}(a, b) = \Phi'_{\mathsf{P}}(c, d)$.
- 2. $[m, n]_i \sim [p, q]_i$ in \mathcal{H}' if and only if $\Phi'_{L}([m, n]_i) = \Phi'_{L}([p, q]_i)$.
- 3. If $[m, n]_i \wedge [p, q]_j = \emptyset$, then $\Phi'_{\mathsf{L}}([m, n]_i) \| \Phi'_{\mathsf{L}}([p, q]_j)$.

Proof. The ordinary affine plane \mathcal{A}' and the epimorphism Φ' defined in 4 satisfy these conditions by 4.1, 4.2 and 5.6.

Therefore, \mathcal{H}' is an A.H. plane.

7. Since \mathcal{A}' is not Desarguesian, \mathcal{H}' cannot be Desarguesian.

8. An ordering of \mathcal{H}' . First we give an ordering of \mathcal{H} . We define a ternary relation ρ on the points of \mathcal{H} by $(P_1, P_2, P_3) \in \rho$ $(P_i = (a_i, b_i), i = 1, 2, 3)$ if $P_1, P_2, P_3 I[m, n]_1$ and $b_1 < b_2 < b_3$ or $b_1 > b_2 > b_3$ or if $P_1, P_2, P_3 I[m, n]_2$ and $a_1 < a_2 < a_3$ or $a_1 > a_2 > a_3$. It is easily verified that ρ satisfies the order axioms 01–07 given in [5]; in fact, ρ is equivalent to the ordering of \mathcal{H} induced by the ordering of H in [5]. In particular, we have the following result.

8.1. In \mathcal{H} , if $P_i = (a_i, b_i) I[m, n_i]_1$ [[m, n_i]_2; [m, n_i]_2], $i \in \{1, 2\}$ and $P_1, P_2 I[p, q]_2$ [[p, q]_1; [p, q]_2 where $p - m \notin \eta$], then $a_1 < a_2 [b_1 < b_2; a_1 < a_2]$ when $p - m \in H^+$ and $a_2 < a_1$ when $p - m \in H^-$] if and only if $n_1 < n_2$.

Proof. Assume $n_1 < n_2$. By [2], 2.14 [2.14; 2.15], $a_2 - a_1 = (n_2 - n_1)$ $(1-pm)^{-1} > 0$ since $1-pm \in H^+ \setminus \eta[b_2 - b_1 = (n_2 - n_1)(1-pm)^{-1} > 0$ since $1-pm \in H^+ \setminus \eta; a_2 - a_1 = (n_2 - n_1)(p-m)^{-1}$ which is greater than zero if $p-m \in H^+$ and less than zero if $p-m \in H^-$].

140

[June

Conversely, if $a_1 < a_2[b_1 < b_2; a_1 < a_2 \text{ with } p - m \in H^+ \text{ or } a_2 < a_1 \text{ with } p - m \in H^-]$, then $n_1 \ge n_2$ otherwise we obtain a contradiction.

8.2. In a similar manner, we may define a relation ρ' on \mathcal{H}' by putting ρ' equal to ρ on the points of lines of the first or second kind and for $P_i = (a_i, b_i) I[m, n]_3$ $(i \in \{1, 2, 3\})$, $(P_1, P_2, P_3) \in \rho'$ if and only if $a_1 < a_2 < a_3$ or $a_1 > a_2 > a_3$. The relation ρ' clearly satisfies axioms 01-06 (cf. [5]), so it remains to verify 07. Since ρ is an ordering of \mathcal{H} , any non-degenerate parallel projection which does not involve lines of the third kind will preserve the ordering ρ' . We verify that the parallel projections involving lines of the third kind preserve order in the following sequence of lemmas. We shall prove the lemmas in one direction; the converses then follow as in 8.1.

8.3. Let $P_i = (a_i, b_i) I[m, n_i]_1$ [[m, n_i]_2], $i \in \{1, 2\}$ and $P_1, P_2 I[p, q]_3$. Then $a_1 < a_2$ if and only if $n_1 < n_2$.

Proof. Assume $a_1 < a_2$. If $a_1, a_2 \ge -qp^{-1}$ or $a_1, a_2 \le -qp^{-1}$, then the result follows from 8.1. Therefore, let $a_1 < -qp^{-1} < a_2$. Then $n_2 - n_1 = a_2(1-pm) - qm - a_1(1-pkm) + qkm > -qp^{-1}((1-pm) - (1-pkm)) - qm + qkm = 0$ since 1-pm, $1-pkm \in H^+ \setminus \eta$ $[n_2 - n_1 = a_2(p-m) + q + a_1(pk-m) - qk > -qp((p-m) - (pk-m) + q - qk = 0$ since p-m, $pk - m \in H^+ \setminus \eta$ by 2.3] by 6.4.

8.4. Let $P_i = (a_i, b_i) I[m, n_i]_3$, $i \in \{1, 2\}$ and $P_1, P_2 I[p, q]_1$ [[p, q]_2]. Then $b_1 < b_2[a_2 < a_1]$ if and only if $n_1 < n_2$.

Proof. Assume $n_1 < n_2$. If $n_1, n_2 \ge -qm$ or $n_1, n_2 \le -qm$ $[b_1, b_2 \ge 0$ or $b_1, b_2 \le 0]$, then the result follows from 8.1. If $n_1 < -qm < n_2$, then by 6.4, $b_2 - b_1 = (qm + n_2)(1 - pm)^{-1} - (qmk + n_1k)(1 - pmk)^{-1} > 0$ since 1 - pm, $1 - pmk \in H^+ \setminus \eta$. [First, suppose $b_1 < 0 < b_2$. Then $-a_2p < q < -a_1p$ which implies $0 < n_2 - n_1 < (a_2 - a_1)(p - m)$ if k > 1 and $0 < n_2 - n_1 < (a_2 - a_1)(pk^{-1} - m)$ if k < 1. Since $p - m, pk^{-1} - m \in H^- \setminus \eta, a_2 < a_1$. Now suppose $b_2 < 0 < b_1$. Then $-a_1p < q < -a_2p$; hence $0 < n_2 - n_1 < (a_2 - a_1)(pk^{-1} - m)$ if k > 1 and $0 < n_2 - n_1 < (a_2 - a_1)(pk^{-1} - m)$ if k < 1. Thus, $a_2 < a_1$.]

8.5. Let $P_i = (a_i, b_i) I[m, n_i]_3$, $i \in \{1, 2\}$ and $P_1, P_2 I[p, q]_3$ where $m - p \notin \eta$. Then $n_1 < n_2$ if and only if $a_1 < a_2$ when $p - m \in H^+$ and $a_2 < a_1$ when $p - m \in H^-$.

Proof. Assume $n_1 < n_2$. If $n_1, n_2 \ge qp^{-1}m$ or $n_1, n_2 \le qp^{-1}m$, the result follows by 8.1. Therefore, let $n_1 < qp^{-1}m < n_2$. Then by 6.4, $a_1 - a_2 = (n_1 - q)(p - m)^{-1} - (n_2 - q)(p - m)^{-1} = (n_1 - n_2)(p - m)^{-1}$. Thus, $a_1 > a_2$ if $p - m \in H^-$ and $a_1 < a_2$ if $p - m \in H^+$.

8.6. It is now clear that non-degenerate parallel projections preserve ρ' . Therefore, \mathcal{H}' is a non-Desarguesian A.H. plane with ordering ρ' .

C. BAKER

9. An example. Let $H = \mathbb{R} \times \mathbb{R}$. If $a \in H$, we may write $a = (A_1, A_2)$, where $A_1, A_2 \in \mathbb{R}$. Define two binary operations, addition and multiplication on H by $(A_1, A_2) + (B_1, B_2) = (A_1 + B_1, A_2 + B_2)$ and $(A_1, B_2) \cdot (B_1, B_2) = (A_1 B_1, A_1 B_2 + A_2 B_1)$, for any $A_1, A_2, B_1, B_2 \in \mathbb{R}$. Then H is an A.H. ring with unit (1, 0) and unique maximal ideal $\eta = \{(0, A) \mid A \in \mathbb{R}\}$. If we define $H^+ = \{(A_1, A_2) \in H \mid A_1 > 0\} \cup \{(0, A_2) \mid A_2 > 0\}$ then H becomes an ordered A.H. ring. The incidence structure \mathcal{X} constructed in the usual manner over H is an ordered D.A.H. plane. The incidence structures \mathcal{X}' , constructed as in 3 are ordered non-Desarguesian A.H. planes. If k is taken to be (2, 0), then \mathcal{X}' is the ordered non-Desarguesian A.H. plane whose associated ordinary affine plane is the classical Moulton plane.

REFERENCES

1. Klingenberg, W.: Desarguessche Ebenen mit Nachbarelementen. Abh. Math. Sem. Univ. Hamburg 20 (1955), 97-111.

2. Lane, N. D. and Lorimer, J. W.: Desarguesian affine Hjelmslev planes. J. reine angew. Math. 278/279 (1975), 336-352.

3. Laxton, J. A. A.: Ordered non-Desarguesian Affine Hjelmslev Planes. M.Sc. thesis, McMaster University, Hamilton (1976).

4. Moulton, F. R.: A simple non-Desarguesian plane geometry. Trans. Amer. Math. Soc. 3 (1902), 192-195.

5. Thomas, L. A.: Ordered Desarguesian affine Hjelmslev-planes. M.Sc. thesis, McMaster University, Hamilton (1975).

DEPT. OF MATHEMATICS MCMASTER UNIVERSITY HAMILTON, ONTARIO

142