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Abstract

Local linear approximations have been the main component in the construction of a
class of effective numerical integrators and inference methods for diffusion processes.
In this note, two local linear approximations of jump diffusion processes are introduced
as a generalization of the usual ones. Their rate of uniform strong convergence is also
studied.
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1. Introduction

In the last ten years, the jump diffusion processes defined through stochastic differential
equations (SDEs) have become an important mathematical tool for describing the dynamics of
several phenomena, e.g. the dynamics of asset prices in the market and the firing of neurons.
Since exact representation of the trajectories of these processes is only possible in a few cases,
approximate representations are required. Different types of such approximation have already
been proposed in [5], [6], and [7], and are essentially based on Itô–Taylor expansions of the
jump diffusion process. The good convergence properties of the approximations based on these
expansions and their numerical instability in many cases of nonlinear SDE [1], [8], [9] are well
known.

Our main objective in this paper is to investigate another kind of approximation of the jump
diffusion processes, namely local linear approximations. In the framework of ‘pure’ diffusion
processes, this kind of approximation has been recently proposed as a stable alternative to the
above-mentioned conventional approximations based on Itô–Taylor expansions [1], [3], [9],
[12] and they have been the key in the derivation of effective inference methods for SDEs [10],
[13], [14], [15]. Therefore, the present study is well motivated.

Specifically, in this note the local linear approximations for diffusion processes are extended
to the more general case of jump diffusion processes, and their rate of uniform strong conver-
gence is studied.
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2. Local linear approximations

Let (�, F , P) be the underlying complete probability space we consider, and let {Ft , t ≥ t0}
be an increasing, right-continuous family of complete σ -subalgebras of F . Consider a
d-dimensional jump diffusion process x defined by the following SDE:

dx(t) = f (t, x(t)) dt +
m∑

i=1

gi (t) dwi(t) +
p∑

i=1

hi (t, x(t)) dqi(t) for t ≥ t0, (1)

x(t0) = x0.

Here f , gi , and hi are differentiable functions, w = (w1, . . . , wm) is an m-dimensional Ft -
adapted standard Wiener process, and each qi(t) could be either an Ft -adapted Poisson counting
process ni(t) with intensity µi , or an Ft -adapted compensated Poisson process ni(t) − µit .
It is assumed that wi(t) and qj (t) are all independent, with zero probability of there being
simultaneous jumps. Linear growth restriction, uniform Lipschitz, and smoothness conditions
are assumed of the functions f , gi , and hi in order to ensure the existence of a unique strong
solution to (1).

Consider the time discretization (τ )δ = {τn, n = 0, 1, . . .}, with maximum step size δ ∈
(0, 1), defined as a sequence of F -stopping times that satisfy

t0 = τ0 < · · · < τn < · · · < ∞ and sup
n

(τn+1 − τn) ≤ δ

with probability 1, where τn is Fτn -measurable for each n ∈ N. In addition, let us write

nt = max{n = 0, 1, . . . : τn ≤ t} < ∞
for all t ∈ R.

In the next subsection, the basic definitions of the local linear approximations of diffusion
processes are briefly presented.

2.1. Local linear approximations of diffusion processes

Let us consider the d-dimensional diffusion process z defined by the SDE

dz(t) = f (t, z(t)) dt + G(t) dw(t) for t ≥ a, (2)

z(a) = z0,

where f is a differentiable function and G(t) = [g1(t), . . . , gi (t)] is a d × m matrix. Here gi

and w are defined as before.

Definition 1. ([3].) For a given time discretization (τ )δ , the order-γ local linear discretization
(γ = 1, 1.5) of the diffusion process z is defined by the recurrent relation

yτn+1 = yτn + Fγ (τn, yτn; τn+1 − τn) + ξ(τn, yτn; τn+1 − τn), (3)

where yτ0 is a given initial point and Fγ and ξ are vector functions defined as

ξ(t, y; h) =
∫ t+h

t

exp(J (t, y)(t + h − s))G(s) dw(s), (4)

Fγ (t, y; h) =
∫ h

0
exp(J (t, y)s)φγ (h − s; t, y) ds. (5)
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Here J (t, y) is the Jacobian matrix of f evaluated at (t, y) ∈ R × R
d , and

φγ (s; t, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (t, y) +
(

∂f (t, y)

∂t
+ 1

2

d∑
k,l=1

[G(t)G�(t)]k,l ∂
2f (t, y)

∂yk∂yl

)
s, γ = 1.5,

f (t, y) + ∂f (t, y)

∂t
s, γ = 1.

On the basis of this discretization, various local linearization schemes for the numerical
integration of SDEs have been proposed [1], [2], [4], [8], that differ in how the integrals (4)
and (5) are computed.

Definition 2. ([3].) For a given time discretization (τ )δ , the stochastic process

yδ
γ = {yδ

γ (t), t ∈ [a, b]}
is called the order-γ local linear approximation (γ = 1, 1.5) of the diffusion process z if

yδ
γ (t) = yτnt

+ Fγ (τnt , yτnt
; t − τnt ) + ξ(τnt , yτnt

; t − τnt ), (6)

where yτnt
is the order-γ local linear discretization (3).

It is obvious that the local linear approximation (6) is a continuous-time stochastic process
that coincides with the local linear discretization (3) on the time discretization (τ )δ . In [3],
some properties of such an approximation were studied, including its convergence rate to the
underlying diffusion process.

2.2. Local linear approximations of jump diffusion processes

Consider the sequence of jump times {σ }µi = {σi,n, n = 0, 1, 2, . . .}, associated to qi(t),
which is defined as an increasing sequence of random variables such that σi,n+1 − σi,n is
exponentially distributed with parameter µi for all n and i. Without loss of generality, it is
assumed that {σ }µi ⊂ (τ )δ for all i = 1, . . . , p. In addition, let us assume that only the first r

Poisson processes qi are compensated, and let (τ )δ ⊂ [t0, T ], with T < ∞.
It is well known [11] that the solution to (1) is given by

x(t) = x(t−) +
p∑

i=1

hi (t, x(t−))�ni
t , (7)

where �ni
t is the increment of the process ni at the time instant t and x(t−) denotes the solution

to (2) with

f (t, z(t)) = f (t, z(t)) −
r∑

j=1

hj (t, z(t))µ
j t (8)

and initial condition z(σi,n) = x(σi,n), for all times t between two consecutive jump times σi,n

and σj,m.
This leads to the following two definitions.

Definition 3. For a given time discretization (τ )δ , the order-γ local linear discretization (γ =
1, 1.5) of the jump diffusion process x is defined by the recurrent relation

yτn+1 = yτn+1− +
p∑

i=1

hi (τn+1, yτn+1−)�ni
τn+1

, (9)

where yτn+1− denotes the local linear discretization of diffusion process z at time τn+1.
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Definition 4. For a given time discretization (τ )δ , the stochastic process

yδ
γ = {yδ

γ (t), t ∈ [t0, T ]}
is called the order-γ local linear approximation (γ = 1, 1.5) of the jump diffusion process x if

yδ
γ (t) = yδ

γ (t−) +
p∑

i=1

hi (t, y
δ
γ (t−))�ni

t , (10)

where yδ
γ (t−) denotes the local linear approximation of diffusion process z at time t .

3. Convergence of the local linear approximations

In order to study the rate of convergence of the above local linear approximations, other
definitions (from [7]) are needed.

Let M be the set of all the multi-indices α = (j1, . . . , jl(α)) with ji ∈ {0, 1, . . . , m} and
i = 1, . . . , l(α). By l(α) we denote the length of the multi-index α and by n(α) the number
of its zero components. The multi-indices in M obtained by deleting the first and the last
components of α are denoted by −α and α−, respectively. The multi-index of zero length is
denoted by v.

Denote by Aγ the hierarchical set defined as

Aγ = {α ∈ M : l(α) + n(α) ≤ 2γ or l(α) = n(α) = γ + 1
2 },

and by B(Aγ ) = {α ∈ M \ Aγ : − α ∈ Aγ } the remainder set of Aγ , for γ = 1, 1.5. Denote
by Hα the set of adapted right-continuous processes h = {h(t), t ≥ t0} with left limits, on
(�, F , P), such that {Iα−[h(·)]ρ,t , t ≥ t0} ∈ H(jl(α)), where Iα−[h]ρ,t denotes the multiple
Itô integral of h corresponding to the multi-index α−, evaluated at the times ρ and t . Here,
H(j) = H(1) for j = {2, . . . , m}, and H(1), H(0), and Hv are the sets of processes h such
that, respectively,

∫ t

0 |h(s, 
)|2 ds < ∞,
∫ t

0 |h(s, 
)| ds < ∞, and |h(t, 
)| < ∞ hold with
probability 1 (with 
 ∈ �).

Furthermore, let

L0 = ∂

∂t
+

d∑
k=1

f
k ∂

∂xk
+ 1

2

d∑
k,l=1

m∑
j=1

Gk,jGl,j ∂2

∂xk∂xl

be the diffusion operator for the SDE (2), let

Lj =
d∑

k=1

Gk,j ∂

∂xk
for j = 1, . . . , m,

and let the vector Gj be the j th column of G. Denote by C1,2 the space of functions from
R × R

d to R
d that are once and twice continuously differentiable in their first and second

arguments, respectively.
The following lemma presents a known result on the boundedness and convergence rate of

the local linear approximation (6) for SDEs. It shall be useful to demonstrate an analogous
result for the local linear approximation (10) in the case of SDEs with jumps.

https://doi.org/10.1239/jap/1143936252 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1143936252


Local linear approximations of jump diffusion processes 189

Lemma 1. ([3, Lemma 8].) Suppose that the Itô coefficient functions λα , defined for each
multi-index α = (j1, . . . , jl) by

λα =
{

Lj1 · · · Ljl−1f , jl = 0,

Lj1 · · · Ljl−1Gjl , jl �= 0,

satisfy |λα(t, u)−λα(t, v)| ≤ K1|u−v| for all α ∈ Aγ , t ∈ [a, b], and u, v ∈ R
d ; λ−α ∈ C1,2

and λα ∈ Hα for all α ∈ Aγ ∪B(Aγ ); and |λα(t, u)| ≤ K1(1+|u|) for all α ∈ Aγ ∪B(Aγ ),
t ∈ [a, b], and u ∈ R

d . In addition, suppose that the inequality |φγ (ζ ; s, u)| ≤ K2 holds for
all ζ ∈ [0, 1], s ∈ [a, b], and u ∈ R

d . Then the order-γ local linear approximation (6) of the
solution to (2) satisfies

E

(
sup

a≤t≤b

|yδ
γ (t)|2

∣∣∣∣ Fa

)
≤ K3(1 + |yδ

γ (a)|2) (11)

and

E

(
sup

a≤t≤b

|z(t) − yδ
γ (t)|2

∣∣∣∣ Fa

)
≤ K4|z0 − yδ

γ (a)|2 + (K5(1 + |z0|2) + K3(1 + |yδ
γ (a)|2))δ2γ ,

(12)
for b < ∞ and γ = 1, 1.5. Here K1, K2, K3, K4, and K5 are positive constants.

The next lemma gives an upper bound for the second moment of the local linear approxi-
mation of the jump diffusion process. A key step in the proof is the successive application of
(11) in each time interval between two consecutive jumps.

Lemma 2. Let f be defined as in (8), and assume that the functions f and Gjl satisfy the
conditions of Lemma 1 for t ∈ [t0, T ]. In addition, suppose that the inequality

|hi (t, u)| ≤ K6(1 + |u|) (13)

holds for t ∈ [t0, T ] and u ∈ R
d . Then the order-γ local linear approximation (10) of the

solution to (1) satisfies

E

(
sup

t0≤s≤T

|yδ
γ (s)|2

∣∣∣∣ Ft0

)
≤ D(1 + |yδ

γ (t0)|2),

where D is a positive constant.

Proof. Let NT = ∑p
i=1 ni(T ) be the total number of jumps up to time T , and let

{t}NT
= {tj , j = 0, . . . , NT }

be a sequence of times such that {t}NT
⊂ (τ )δ , tj ∈ {τ0 ∪ {σ }µ1 ∪ · · · ∪ {σ }µp }, and tj < tj+1,

for all j = 0, . . . , NT − 1. Furthermore, let

Zs = {ni(tj ) : tj ≤ s, tj ∈ {t}NT
, i = 1, . . . , p}

for s ≥ t0, and define

ej = E

(
sup

t0≤s≤tj

|yδ
γ (s)|2

∣∣∣∣ Ft0 , Ztj

)
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with tj ∈ {t}NT
; here, E(· | Ft0 , Ztj ) denotes the conditional expectation with respect to Ft0

and Ztj . Then
ej+1 ≤ ej + �ej+1,

where �ej+1 = E(suptj <s≤tj+1
|yδ

γ (s)|2 | Ft0 , Ztj+1). From (10) and (13) we find that

�ej+1 ≤ 2 E

(
sup

tj <s≤tj+1

|yδ
γ (s−)|2

∣∣∣∣ Ft0 , Ztj+1

)

+ 2p

p∑
i=1

E

(
sup

tj <s≤tj+1

|hi (s, y
δ
γ (s−))�ni

s |2
∣∣∣∣ Ft0 , Ztj+1

)

≤ 2(1 + 2pK2
6 ) E

(
sup

tj ≤s≤tj+1

|yδ
γ (s−)|2

∣∣∣∣ Ft0 , Ztj+1

)
+ 4pK2

6 .

By definition, for all s ∈ [tj , tj+1], yδ
γ (s−) is the local linear approximation of the solution to

an SDE (with no jumps). Therefore, by using Lemma 1 in this time interval, we find that

E

(
sup

tj ≤s≤tj+1

|yδ
γ (s−)|2

∣∣∣∣ Ft0 , Ztj+1

)
= E

(
E

(
sup

tj ≤s≤tj+1

|yδ
γ (s−)|2

∣∣∣∣ Ftj

) ∣∣∣∣ Ft0 , Ztj+1

)

≤ K3(1 + E(|yδ
γ (tj )|2 | Ft0 , Ztj+1))

≤ K3

(
1 + E

(
sup

t0≤s≤tj

|yδ
γ (tj )|2

∣∣∣∣ Ft0 , Ztj

))
.

Thus,
�ej+1 ≤ C1ej + C2,

where C1 = 2(1 + 2pK2
6 )K3 and C2 = C1 + 4pK2

6 , and it follows that

ej+1 ≤ (1 + C1)ej + C2, (14)

which implies that

ej+1 ≤ (1 + C1)
j+1e0 + C2

C1
((1 + C1)

j − 1)

≤ (1 + C1)
j+1

(
e0 + C2

C1

)

≤ C2

C1
(1 + C1)

j+1(1 + e0).

By using the above inequality and taking j = NT , we find that

E

(
sup

t0≤s≤T

|yδ
γ (s)|2

∣∣∣∣ Ft0 , ZtNT

)
≤ C2

C1
(1 + C1)

1+NT (1 + |yδ
γ (t0)|2). (15)

Finally, by taking into account the fact that

E(κNT ) = E(eNT log(κ)) = exp

(
(κ − 1)(T − t0)

p∑
i=1

µi

)
(16)
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for all constant κ > 1, we obtain

E

(
sup

t0≤s≤T

|yδ
γ (s)|2

∣∣∣∣ Ft0

)
= E

(
E

(
sup

t0≤s≤T

|yδ
γ (s)|2

∣∣∣∣ Ft0 , ZtNT

) ∣∣∣∣ Ft0

)

≤ C2

C1
(1 + C1) exp

(
C1(T − t0)

p∑
i=1

µi

)
(1 + |yδ

γ (t0)|2),

which completes the proof.

The following theorem states the convergence rate of the local linear approximation of the
jump diffusion process. A key step in the proof is the successive application of (12) in each
time interval between two consecutive jumps.

Theorem 1. Let f be defined as in (8), and suppose that the functions f and Gjl satisfy the
conditions of Lemma 1 for t ∈ [t0, T ]. In addition, suppose that the inequality

|hi (t, u) − hi (t, v)| ≤ K6|u − v| (17)

holds for t ∈ [t0, T ] and u, v ∈ R
d . Then the order-γ local linear approximation (10) of the

solution to (1) satisfies

E

(
sup

t0≤t≤T

|x(t) − yδ
γ (t)|2

∣∣∣∣ Ft0

)

≤ D4|x0 − yδ
γ (t0)|2 + (D5(1 + |x0|2) + D3(1 + |yδ

γ (t0)|2))δ2γ

for T < ∞ and γ = 1, 1.5. Here D3, D4, and D5 are positive constants.

Proof. As in the proof of Lemma 2, let NT = ∑p
i=1 ni(T ) be the total number of jumps up

to time T , and let {t}NT
= {tj , j = 0, . . . , NT } be a sequence of times such that {t}NT

⊂ (τ )δ ,
tj ∈ {τ0 ∪ {σ }µ1 ∪ · · · ∪ {σ }µp }, and tj < tj+1, for all j = 0, . . . , NT − 1. Furthermore, let

Zs = {ni(tj ) : tj ≤ s, tj ∈ {t}NT
, i = 1, . . . , p}

for s ≥ t0, and define

ej = E

(
sup

t0≤t≤tj

|x(t) − yδ
γ (t)|2

∣∣∣∣ Ft0 , Ztj

)
,

with tj ∈ {t}NT
. In this case, we have ej+1 ≤ ej + �ej+1, where

�ej+1 = E

(
sup

tj <t≤tj+1

|x(t) − yδ
γ (t)|2

∣∣∣∣ Ft0 , Ztj+1

)
.

By using (7), (10), and (17) we find that

�ej+1 ≤ 2 E

(
sup

tj <t≤tj+1

|x(t−) − yδ
γ (t−)|2

∣∣∣∣ Ft0 , Ztj+1

)

+ 2p

p∑
i=1

E

(
sup

tj <t≤tj+1

|hi (t, x(t−))�ni
t − hi (t, y

δ
γ (t−))�ni

t |2
∣∣∣∣ Ft0 , Ztj+1

)

≤ D1 E

(
sup

tj <t≤tj+1

|x(t−) − yδ
γ (t−)|2

∣∣∣∣ Ft0 , Ztj+1

)
,
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where D1 = 2(1 + pK2
6 ). By definition, for all t ∈ [tj , tj+1], yδ

γ (t−) is the local linear
approximation of the solution to an SDE (with no jumps). Therefore, by using Lemma 1 in this
time interval, we find that

R := E

(
sup

tj <t≤tj+1

|x(t−) − yδ
γ (t−)|2

∣∣∣∣ Ft0 , Ztj+1

)

≤ E

(
E

(
sup

tj ≤t≤tj+1

|x(t−) − yδ
γ (t−)|2

∣∣∣∣ Ftj

) ∣∣∣∣ Ft0 , Ztj+1

)

≤ K4 E(|x(tj ) − yδ
γ (tj )|2 | Ft0 , Ztj+1)

+
(

K5

(
1 + E

(
|x(tj )|2

∣∣∣∣ Ft0 , Ztj+1

))
+ K3

(
1 + E

(
|yδ

γ (tj )|2
∣∣∣∣ Ft0 , Ztj+1

)))
δ2γ .

From inequalities (14) and (15) it follows that

E(|yδ
γ (tj )|2 | Ft0 , Ztj+1) ≤ E

(
sup

t0≤t≤tj

|yδ
γ (t)|2

∣∣∣∣ Ft0 , Ztj

)

≤ E

(
sup

t0≤t≤T

|yδ
γ (t)|2

∣∣∣∣ Ft0 , ZtNT

)

≤ C2

C1
(1 + C1)

1+NT (1 + |yδ
γ (t0)|2). (18)

The inequality

E(|x(tj )|2 | Ft0 , Ztj+1) ≤ E

(
sup

t0≤t≤T

|x(t)|2
∣∣∣∣ Ft0 , ZtNT

)

≤ C∗
2

C∗
1
(1 + C∗

1 )1+NT (1 + |x(t0)|2) (19)

can be analogously derived for the jump diffusion process x by following the proof of Lemma 2,
using the fact that the well-known inequality

E

(
sup

t0≤t≤T

|z(t)|2
∣∣∣∣ Ft0

)
≤ K5(1 + |z(t0)|2),

rather than (11), holds for the solution to (2). In (19), C∗
1 = 2(1 + 2pK2

6 )K5 and C∗
2 =

C∗
1 + 4pK2

6 are positive constants. However, we also have

E(|x(tj ) − yδ
γ (tj )|2 | Ft0 , Ztj+1) ≤ E

(
sup

t0≤t≤tj

|x(tj ) − yδ
γ (tj )|2

∣∣∣∣ Ft0 , Ztj

)
. (20)

From (18), (19), and (20) it follows that

R ≤ K4ej + D2δ
2γ ,

where
D2 = 2αβNT +1(K5(1 + |x(t0)|2) + K3(1 + |yδ

γ (t0)|2)), (21)

α = max

{
C2

C1
,
C∗

2

C∗
1

}
, β = max{(1 + C1), (1 + C∗

1 )}.
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Thus,
�ej+1 ≤ D1(K4ej + D2δ

2γ )

and it follows that
ej+1 ≤ (1 + D1K4)ej + D1D2δ

2γ ,

which implies that

ej+1 ≤ (1 + D1K4)
j+1e0 + D2δ

2γ

K4
((1 + D1K4)

j − 1)

≤ (1 + D1K4)
j+1

(
e0 + D2δ

2γ

K4

)
and, therefore,

eNT +1 ≤ (1 + D1K4)
NT +1

(
e0 + D2δ

2γ

K4

)
.

By taking into account expression (21) for D2, we have

eNT +1 ≤ (1 + D1K4)
NT +1e0 + 2αρNT +1(K5(1 + |x(t0)|2) + K3(1 + |yδ

γ (t0)|2))
K4

δ2γ ,

where ρ = β(1 + D1K4). That is,

E

(
sup

t0≤t≤T

|x(t) − yδ
γ (t)|2

∣∣∣∣ Ft0 , ZtNT

)

≤ C4|x(t0) − yδ
γ (t0)|2 + (C5(1 + |x(t0)|2) + C3(1 + |yδ

γ (t0)|2))δ2γ ,

where C4 = (1 + D1K4)
NT +1, C5 = 2αρNT +1K5/K4, and C3 = 2αρNT +1K3/K4.

Finally, by using (16) we obtain

E

(
sup

t0≤t≤T

|x(t) − yδ
γ (t)|2

∣∣∣∣ Ft0

)
= E

(
E

(
sup

t0≤t≤T

|x(t) − yδ
γ (t)|2

∣∣∣∣ Ft0 , ZtNT

) ∣∣∣∣ Ft0

)

≤ D4|x(t0) − yδ
γ (t0)|2 + {D5(1 + |x(t0)|2)

+ D3(1 + |yδ
γ (t0)|2}δ2γ ,

where D4 = (1 + D1K4)eεD1K4 , D5 = 2αρeε(ρ−1)K5/K4, D3 = 2αρeε(ρ−1)K3/K4, and
ε = (T − t0)

∑p
i=1 µi are positive constants. This completes the proof.

Finally, by using the Lyapunov inequality the following result is straightforward to derive.

Corollary 1. In addition to the assumptions of Theorem 1, suppose that the initial conditions
satisfy

E(|x0|2) < ∞, E(|yδ
γ (t0)|2) < ∞, E(|x0 − yδ

γ (t0)|2) ≤ K7δ
2γ ,

where K7 is a positive constant. Then the order-γ local linear approximation (10) of the
solution to (1) satisfies

E

(
sup

t0≤t≤T

|x(t) − yδ
γ (t)|

)
= O(δγ ).

From a practical point of view, the results above state the uniform order of strong convergence
of the local linearization schemes that could be obtained by approximating the integrals (4) and
(5) involved in the definition of yτn+1 in (9), provided that these approximations have the same
order of convergence.
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