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POROSITY AND APPROXIMATE DERIVATIVES 

A. M. BRUCKNER, M. LACZKOVICH, G. PETRUSKA AND B. S. THOMSON 

1. Introduction. In recent years, a considerable amount of research has 
been devoted to questions involving set porosity, particularly as it relates 
to differentiation theory. We may express the type of question in which we 
are interested by using the language of path derivatives and sequential 
derivatives. A path derivative of a function/is defined by writing 

rf . . y f(y) - / ( * ) 
fE(x) = km _> G £  

' x y — x 
where at each point x a set Ex is given. A special case of the path 
derivative is the sequential derivative, defined by writing 

P{ , r fix + hn) -f(x) 
fhix) = l im^+oo 

K 
where hn is a fixed sequence of nonzero numbers converging to zero. Two 
natural questions arise in this setting: 

(a) what information about the derivatives fE o r / ' h on a set A implies 
that fis differentiable or approximately differentiable a.e. in A; and 

(b) when such derivatives exist on a set A, on which the approximate 
derivative/' also exists, what conditions will ensure that 

AP(x) = f'E(x) or / ' a p(x) = / ' „ (* ) 

a.e. in A! 
In regard to these questions, there are a number of classical and recent 

works that show what information provides such implications. For 
question (a) the most important geometric conditions on the system of 
paths E that supply information about the differentiability or approximate 
differentiability properties of the function/ have been density conditions 
( [1]? [5], [11] ), intersection conditions ( [4] ), and porosity conditions ( [3], 
[10], [12], [22] ). In particular it has emerged that in many instances a 
porosity hypothesis may replace both an intersection condition and 
a density hypothesis. Several results in Khintchine [10] and [12] use 
porosity considerations in questions involving path derivatives, and 
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Sindalovskii [23] employs similar notions, but in the special setting of 
sequential derivatives. 

These early results of Khintchine [11] and related later work of 
Sindalovskii have been called to our attention by a recent private 
communication of Woi [24]. Dr. Woi points out that the proof in 
Khintchine's article is not clear and that some applications of this result 
that appear in Sindalovskii [23] may not be correct. There are in fact errors 
in the proof of Khintchine that invalidate the argument, and the theorem 
itself is false; also a number of the results asserted in the article of 
Sindalovskii are not quite correct. One of our secondary concerns in this 
article is to present a counterexample and an alternative version for the 
false Khintchine theorem, and to give the arguments to establish the right 
version of one of Sindalovskii's statements. 

We begin by clarifying the Khintchine "theorem". We present, in 
Section 3, counterexamples to show that the hypotheses of that assertion 
do not provide any information about the approximate derivative. This 
shows that, contrary to the assertions in [11], porosity hypotheses do not 
suffice to draw such strong conclusions. In Section 4 we show that there is 
a correct theorem of this type using porosity, but one which requires an 
exceptional set of the first category rather than of measure zero. In Section 
5 we provide a necessary and sufficient condition under which the result of 
Sindalovskii will hold; this can be considered a response to question (b) in 
the setting of sequential derivatives. In Section 6 we show that these 
conditions are not met in general (contradicting the claim in [23] ). Finally 
in Section 7 we consider problem (b) in the larger setting of path 
derivatives. 

2. Notation and terminology. Our results are formulated for real 
functions defined on the unit interval [0, 1], unless stated otherwise. HA is 
a set of real numbers then \A | will denote the exterior Lebesgue measure of 
the set A, and cl^4 will denote the closure of the set A. We shall also use 
the customary notations 

A + h = {x + h\x G A) 

and 

A + B = {x + y\x G A and j e B) 

where A and B are sets of real numbers and h is a real number. 

(2.1) Let A be a measurable set and / a positive number. Then we shall 
write 

U(A\ t) = {x + T:X GE A, |r| ^ / } . 

We review next the definition of sequential derivation introduced in [16] 
and in [13], and the notion of path derivative introduced in [4]. 
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(2.2) A path leading to x is a set Ex c [0, 1] such that x e Ex and x is a 
point of accumulation of Ex. 

(2.3) A system of paths is a collection 

E = {Ex:x e [0, 1]} 

where each set Ex is a path leading to x. 

(2.4) For a function/defined on the interval [0, 1] and a system of paths 
E we define the extreme E-derivatives of / at the point x by the 
expressions 

7,, , y f(y) - fix) 
f'E(x) = hm sup ,_^ , v s £  

y — x 
and 

p , , r . f f(y) -fix) 
fE(x) = hm infy_^v e £ . 
~~ • - x y — x 

Where these are equal we say that / is E-differentiable and use the 
notation f'E for this derivative function where it exists. 

(2.5) Let h = {hfl} be a sequence of nonzero numbers converging to 
zero. Then we define the extreme h-derivatives off at an arbitrary point x 
by the expressions 

7,( , r f(x + hn) -fix) 
fh(x) = hm s u p ^ ^ 

and 

f(x + h„) -f(x) 
fh(x) = lim inf^œ 

K 
with an appropriate convention to handle the endpoints. Where these are 
equal we say that / is h-differentiable and use the notation f'h for this 
derivative function where it exists. 

Note that these sequential derivatives are precisely the path derivatives 
relative to the system of paths E for which each set Ex is given by 

Ex = {x + hn:n = 1, 2, 3 , . . . }. 

We shall need also the notion of set porosity introduced into analysis by 
numerous authors. The terminology is due to Dolzenko [7] but the basic 
computations may be found in early writings of Denjoy, Khintchine and 
others. 

(2.6) Let E be a set of real numbers, and a, b any distinct points on the 
real line. Then by X(E, a, b) we denote the length of the largest subinterval 
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of (a, b) [or of (b, a) if b < a] that is disjoint from the set E. 

(2.7) Let E be a set of real numbers, and x any point on the real line. 
Then we write 

i . X(E, x, x + h) 
p (E; x) = hm supA_^+ 

h 
and 

A(£, x9 x — h) 
p (E\ x) = hm sup^^o+  

h 
and refer to these numbers as the right and left porosity of the set E at the 
point x. 

(2.8) A set E is said to ht porous at a point JC provided either 

p+(E; x) > 0 or p~(E\ x) > 0. 

(2.9) A set E is said to be nonporous at a point x provided 

p+(E; x) = 0 and / T ( E ; JC) = 0. 

(2.10) A set £ is said to be bilaterally strongly porous at a point x 
provided 

p*(E; x) = 1 and p~(E; x) = 1. 

3. Khintchine's theorems. Let us begin by quoting an important 
theorem of Khintchine that is well-known and that is closely related to the 
statement in which we are interested. This is a celebrated result from 
his fundamental studies, [11] and [12], into the structure of measur­
able functions. It appears essentially, reproved, in [1], in [5], in [8], and 
in [6]. 

(3.1) THEOREM. (Khintchine) Let f be a measurable function. Then at 
every point x, with the possible exception of a set of x of measure zero, one of 
the four conditions below must hold: 

(i) 5^ = \ y: > 0 \ has density 1 at x\ 
l y — x J 

(ii) Tx = \y: < 0 J has density 1 at JC; 
v y — x J 

(iii) Ux \y:f(y) = f(x) \ has density 1 at x; 

(iv) both sets Sx and Tx have upper density 1 at x and Ux has measure 

Moreover fhas a finite approximate derivative at almost every point that is 
°f tyPe (0> (ii) or (iii). 
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In the language of Khintchine a function is "asymptotiquement 
déterminée" (A.D.) at a point x if it is of type (i), (ii) or (iii) at x. Thus 
at almost every point x a measurable function is A.D. or else it is 
oscillatory in the sense (iv). A consequence of this is the remarkable fact 
that for a measurable function / there must be at almost every point x 
either a finite approximate derivative/' (x), or else +00 and —00 are 
essential derived numbers through sets of upper density 1 on both sides at 
x. This is easily obtained from the theorem by applying it to each of the 
functions fn(x) = f(x) + nx for integers n. We express this as a corollary 
to the theorem. This was first obtained by Denjoy in 1916, stated for 
continuous functions, but easily extended to arbitrary measurable 
functions by means of Lusin's theorem. 

(3.2) COROLLARY. Let f be a measurable function. Then at almost every 
point x either f has a finite approximate derivative or else for each integer n 
both sets 

[ f(y)-f(x) ^ \ , / f(y)-f(x) ^ \ 
\y: > n \ and \y\ < — n t 
\ y — x J \ y — x J 

have upper density 1 on both sides at x. 
A further corollary is just a restatement of the theorem in the language 

of path derivatives. This appears, in nearly the same language, in 
[15, Theorem 10.1, p. 295]. 

(3.3) COROLLARY. Let f be a measurable function and let 

E = {Ex:x e R} 

be a system of paths such that each set Ex has lower interior density positive 
on one side at least at x. Then if either 

/ E O ) > - 0 0 or fE(x) < +00 

at every point x of a set X then necessarily f is approximately differentiable 
almost everywhere in X. 

A very similar assertion to Theorem (3.1), but for continuous functions, 
appears in [11] and is quoted in [12, p. 227]. We present this statement as 
(*) below. Note that it is only in the statement of fourth condition (iv) that 
the conclusion differs; here the conclusion reads that a continuous 
function is, at almost every point x, either A.D. or else oscillatory in a 
strong porosity sense. 

(*) Let / b e a continuous function. Then at every point x, with the 
possible exception of a set of x of measure zero, either 

f(y)-f(x) ^ A (i) Sx = \ y: > 0 J has density 1 at x, or 
v y — x 
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(ii) Tx = \ y:^-^ ^ - ^ < 0 } has density 1 at JC, or 
l y — x J 

(iii) Ux = {y'-f(y) = f(x) } has density 1 at x, or finally 

(iv) both sets 

V y — x ) 

l y — x ) 

have porosity 1 on both sides at x and Ux has measure zero. 

If true, this would be a remarkable result, allowing for example a 
considerable weakening of the hypotheses in (3.3) above. It is likely that 
Khintchine was aware that the statement was false. In [12, p. 227] he uses 
this result to obtain a proof of a theorem on Borel derivatives; but then in 
a postscript, [12, pp. 276-279], he claims that the proof is incomplete and 
provides a completely different proof that does not depend on (*). Indeed, 
since (*) is little mentioned in the literature (it does not, for example, 
appear in [15], although the main theorem of Khintchine above does), it 
may have been thought by some analysts of the time to have been false. 

We demonstrate that (*) is false by proving the following theorem. 

(3.4) THEOREM. There exists a continuous function f defined on the 
interval [0, 1], and a set P c [0, 1] of positive measure such that f does not 
have an approximate derivative at any point of P and, for each x e P, the 
associated sets 

{y-f(y)>f(x)} and {y:f(y)<f(x)} 

are nonporous at x. 

Proof. Let Q c [0, 1] be a nowhere dense perfect set of positive 
measure. Let {I^'.k = 1, 2, . . . } be an enumeration of those intervals 
( (/' — \)/n, i/n), for positive integers /' and n, which have nonempty 
intersections with Q. We can select, inductively, a sequence {Jk'.k = 1, 
2, . . . } of distinct intervals contiguous to Qy such that Jk c Ik for every 
k. 

Let g be a continuous function on [0, 1] that is nowhere approximately 
differentiable in [0, 1]. (For the existence of such functions see, for 
example, [9].) If Ik is the interval ( (/' — l)/«, i/n) then we put 

mk = min{g(x):x G \- - — , - + — > 
v L n yn n \nJ / 

and 
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Mk = max{ g(x):x e 
y n n Y n * J 

For every k = 1, 2 , . . . we define a function/on /^ by requiring that fis 
continuous on cl Jh agrees with g at the endpoints of Jk and 

min{/(x):.x Œ Jk} = mk - - , 
AC 

and 

max{/(x):* e Jk) = Mk + - . 
k 

We define 

oo 

f(x) = g(x) for x e [0, 1] \ U / , . 
k = 1 

Since M^ — mk —> 0 as & —» oo , / i s continuous on [0, 1]. 
Let P denote the set of density points of g . Obviously / has no 

approximate derivative at any point of P. It remains to show that the two 
associated sets are nonporous at each point of P. It is sufficient to prove 
that, for a fixed x e P, the set 

Y= {y.f(y)>f(x)} 
is nonporous on the right at x. If this is not the case, then there must exist 
a positive number e and a sequence of intervals 

{LJ = {(am,bj) c [ 0 , 1] 

converging to x on the right, with 

(1) bm ~ am> e(bm - x), 

and 

(2) /( .y) ^f(x) for each ^ G L W . 

For every m = 1, 2, . . . we can choose positive integers «m and im such 
that 

(3) < nm < 
bm ~ am bm ~~ am 

and 

(4) a < %m ~ 1 < ljn- < b 
um ^ ^ umm 

Then, by (1), (3), and (4) we have 
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(5) - > - p^= 

This implies that 

L ~ 1 1 

— x 

(6) < x for ra sufficiently large. 

Since x is a density point of Q7 (5) requires that, for sufficiently 
large m, 

lm ~ X ln H Q ± 0. 

Thus there is an integer ra0 so that for m = m0 there is a km such that 

^ ft™ ' nj 
m m 

Taking (6) into consideration, we conclude that 

Km 

Since Jk <z Ik a Lnv this contradicts (2) and the proof is complete. 

As a consequence of this theorem we may conclude that the existence of 
a path derivative, even for a nonporous system, need not imply the 
existence of the approximate derivative. This shows that porosity 
conditions may not substitute for intersection conditions ( [4] ), or for 
density conditions ( [1], [5], [12] ) in theorems of this type. 

(3.5) COROLLARY. There exists a continuous function f defined on the 
interval [0, 1], a set P c [0, 1] of positive measure, and a system of paths 
E = {Ex'.x ^ P}, each set Ex is nonporous at x (x G P), SO that the 
derivative fE(x) exists and vanishes at every point x G P, and yet f does not 
have an approximate derivative at any point of P. 

Proof We let P a n d / b e as in the proof of the theorem. Then we set 

EX = {y.f(y) = / ( * ) } , 

and it is easy to verify that the assertion of the lemma is now valid. 

We have seen that certain information about the nonporous derivatives 
or derivatives may give no information about the existence of an 
approximate derivative. Let us now show that even when the approxi­
mate derivative exists, there need be little connection between it and these 
derivatives. We can arrange for the path derivative fE to exist, to be Baire 
1, and to differ from the approximate derivative on a set of positive 
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measure, even for a system of paths that is nonporous on both sides. Again 
we see that a porosity condition may not substitute for either an in­
tersection condition or a density condition. 

(3.6) THEOREM. Let P be a nowhere dense perfect subset of the interval 
[0, 1] and which has positive measure. Then there exists a continuous function 
f on [0, 1] and a nonporous system of paths E = {Ex:x e [0, 1] } such that f 
is E-differentiate everywhere in [0, 1], the derivative fE is in the first class of 
Baire, f is continuously differentiable on [0, \]\P, f is approximately 
differentiable a.e. in P and yet 

\{x e P:/ 'ap(x) * / ' E ( x ) } | > 0 . 

Proof Let Ih I2, /3, . . . be the sequence of intervals contiguous to P in 
[0, 1]. Let us write 

€„ = min[|/, |:l ^ i ^ n], 

Po = [0, 1], 

Pn = [0, l ] \ . u /,, 

and 

||PJ| = length of largest component interval of Pn. 

Since P is nowhere dense it is clear that \\Pn\\ —* 0, so that we may define 
an increasing sequence of integers {nk\k = 0, 1, 2 , . . . } in such a way 
that 

k k 

We now define our function/on the interval [0, 1] so that each of the 
following is true: 

( i ) / i s continuous on [0, 1], 
(ii) / vanishes on P, 

( h i ) / i s continuously differentiable in each 7Z, 
(iv)/vanishes on all of /• except a middle portion that is of length | / IV, 

and 
(v) if nk < i ë nk + x and [ai9 bt] denotes that middle portion of / 

then 

/<«,) - / ( * , ) - 0 , 

/(., + i^a) . „,„,JI, 

/ (« + ^ ) - H I V , » -

https://doi.org/10.4153/CJM-1986-058-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-058-7


1158 BRUCKNER, LACZKOVICH, PETRUSKA AND THOMSON 

(We wish, in example (7.7), to use this same construction but with a 
nearly trivial modification. Let us note here that, for the purposes of that 
example, the function / will be required to be linear on each of the 
intervals 

ai9 at + + 
2(6, - at) 

and 

- > b i 

Of course then we shall not require that/satisfy (hi) above.) 
Choose a perfect subset Q c P such that P has density 1 at each point 

of Q and such that Q has positive measure. We construct a system of paths 
E = {Ex\x e [0, 1] } in the following manner. We define 

Er {f.Rt) 0} 

x} 

(x 

(x e Q), 

= P\QI 

and 

[0, 1] (x G [0, 1]\P). 

All of the conditions of the theorem are now easy to verify with the 
exception of the fact that each path Ex is nonporous on both sides at x. 
Let us compute the porosity p+(Ex, x) for each x; similar arguments may 
be applied to obtain the left porosity. 

For points x in [0, 1) \P it is trivially true that p+(Ex, x) = 0. For points 
x G P\Q it is also immediate thatp^(Ex, x) = 0 since the points at which 
fis nonzero form only a tiny fraction of the complementary intervals {If}. 
Finally then let us consider a point x G Q. 

For such a point x we may compute that 

(7) p (Ex9 x) = lim sup 
y—*x ,y < 

MEx,x,y) 
y - x 

since any such point x is a point of nonporosity of P. So let us estimate the 
size of \(EX, x,y) for x, y in P and x in Q. If {a, b)is the largest subinterval 
of (x, y) that is disjoint from the set Ex then, because fis continuous, 
ei ther/( /) > t — x everywhere on (a, Z>), or f(t) < t — x everywhere on 
(a, b). 

Consider the former situation. For this to be the case {a, b) must be a 
subinterval of some interval /,; but then 

\(Ex9x9y) < \(P,x9y) 
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and, since x is a point of nonporosity of P, this is arbitrarily small for y 
sufficiently close to x. Alternatively let us consider the latter situation. For 
that we may choose an integer k in such a way that x and y belong to the 
same component of Pn , but do not belong to the same component of 
Pn ; this means that 

(8) enk^y - x^ \\P„kJ 

since there is some interval Ii c (JC, y) with nk_] < i ^ nk. Now the 
interval (a, b) in this case can contain no interval Ii on which the function 
has values as high as \\Pn _ ||, and so any interval 1{ c (a, b) must have an 
index i > nk + x. Thus a and b belong to the same component of Pn and 
this gives 

(9) b-a^ HP^JI. 

Consequently by (7), (8), and (9), 

\(Ex,x,y) ^ b - a 

y — x y — x 

mk (k + l ) 2 ' 

Obviously, if y —> x then k —> oo and hence/? (i^., x) = 0 for any x G 2-
This completes the proof. 

(3.7) Remark. Note that in the construction one may arrange to take 
the set Q to be nonmeasurable rather than closed, so that the de­
rivative function f'E is then nonmeasurable. From this we see that a 
path derivative of a continuous function need not belong to any Borel 
class, nor be measurable, even under the hypothesis that the system E is 
nonporous. 

4. A category analogue of Khintchine's theorem. In order to complete 
the considerations of the preceding section let us state and prove a 
category analogue of Theorem (3.1). The above results concern the 
structure of a function with the exception of a set of measure zero; a 
similar structure theorem is available but with the exception of a set of the 
first category. Note that this assertion is analogous to the statement of 
Khintchine's theorem and closely related to the false assertion (*). 

(4.1) THEOREM. Let f be a continuous function. Then at every point x, with 
the exception only of a set of x of the first category, either 

r, c / f(y) -fix) > A \ (0 sx = i y-y = * or ^ o \ 
\ y — x J 

is a neighborhood of x, or 
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(u) Tx = i y-y = x or = ° f 
l y — x J 

is a neighborhood of x, or 

(iii) both sets Sx and Tx have porosity 1 on both sides at x. 
Moreover f has a finite derivative at almost every point that is of type (i), 

or (ii). 

Proof Let X denote the set of points x at which (i), (ii), or (iii) fail. If 
this set is not first category then there must be numbers 0 < p < 1, S > 0, 
a, b (0 < b — a < S) and a set Xx c X with Xx dense in the interval {a, b) 
and 

\(SX, x,x + t)<pt for 0 < / < S and x e Xx 

(or the same assertion for Tx or for left rather than right; we argue just for 
this particular situation). 

Since/is not increasing on (a, b), there are points a < ax < bx < b with 

f(b\) <f(a\) and a point 

c = sup{/ E [flj, bx)\f{t) ^f(ax)}. 

Since Xx is dense in (a, b)9 we may select a sequence of points xn e Xx so 
that xn —» c. Using the above porosity estimate there are, consequently, 
points yn e Sx such that 

f(yn) =f(xn) and è, - p(bx - xw) < ^ < /?i-

Since / is continuous, this will give a point y, 

bx - p(bx -c)Zky^bx 

at whichf(y) >f(c) ^f(ax), contradicting the definition of c. From this 
contradiction we obtain the fact that the set X is first category as required. 
Finally it is easy to show that a function that satisfies (i) or (ii) everywhere 
on a set Y is VBG* on Y and from that fact the final assertion of the 
theorem follows. 

In contrast to the situation in the preceding section, the estimates on the 
path dérivâtes for a system that satisfies a weak porosity condition, can be 
used to give information on the ordinary dérivâtes of a function outside of 
the exceptional set of the first category. For completeness let us give first 
the measure-theoretic version, which may be considered merely an 
alternative version of the Theorem (3.1) of the preceding section. The 
category analogue then follows. 

(4.2) THEOREM. Let f be a measurable function and let 

E = {Ex:x e R} 
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be a system of paths such that each set Ex has lower interior density positive 
on one side at least at x. Then if 

£E(*) > s 

at every point x of a set X, then there is a denumerable partition 

oo 

X = N U U X: 
i=\ l 

of the set X such that N has measure zero and the function fs(x) = f(x) — sx 
is increasing on each set Xn. 

Proof. The proof follows routine arguments and we shall omit it. Note 
that essentially this theorem is just an alternative version of the 
Denjoy-Khintchine theorem referred to earlier. 

(4.3) THEOREM. Let f be a continuous function and let 

E = {Ex:x e R} 

be a system of paths such that each set Ex has porosity less than 1 on one side 
at least at x. Then if 

£E(*) > s 

at every point x of a set X, then there is a denumerable partition 

oo 

X = N U U X 
i = i l 

of the set X such that N is first category in R and the function f(x) = 
f(x) — sx is increasing on each set Xn. 

Proof. The assertion is an easy consequence of Theorem (4.1). Note that 
the conclusion of the theorem really is meant to assert that, since the 
function/is continuous,/^ is increasing on any interval within which some 
set Xn is dense. 

This theorem allows us to give a statement analogous to (3.3) of the 
preceding section. A continuous function that has a finite path derivate on 
an interval relative to a system of paths satisfying a weak porosity 
condition, is differentiable on a substantial set. This feature of derivatives 
has been proved earlier in [3]. 

(4.4) THEOREM. Let f be a continuous function and let 

E = {Ex:x e R} 

be a system of paths such that each set Ex has porosity less than 1 on one side 
at least at x. Then if either 

£E(X) > ~°° or
 £E(X) < +°° 
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at every point x of an interval [a, b] then necessarily fis differentiab le almost 
everywhere on an open dense set in [a, b]. 

Proof This is a consequence of Theorem (4.3). 

5. Sindalovskii's theorems. In the article [23] Sindalovskii states the 
following two results, that appear as [23, Theorem 1, p. 945] and 
[23, Lemma 3, pp. 953-958] respectively. Note that the property (D) of the 
first assertion is, for decreasing sequences, equivalent to the assertion that 
the range of the sequence is not strongly porous on the right at 0. 

(**) Let h = {hn} be a sequence of positive numbers converging to 
zero and for which the following property (labelled as property D) holds 

(D) l iminf^ + o o ^±l>0 . 
K 

Then i f / i s a continuous function on the interval [0, 1] and 

-oo<fh(x)^fh(x)< +oo 

at every point x of a set A then necessarily 

/vu) =/„(*> 
at almost every point of A. 

(***) Let h = {hfl} be an arbitrary sequence of positive numbers 
converging to zero. If / is a measurable function on the interval 
[0,1], which has a finite approximate derivative everywhere on a set A, and 
which has 

fax) < + c» 
at every point x of the set A, then necessarily 

AP(*) =Â(*) 
at almost every point of A. 

The validity of both of these results is in question. An error appears in 
the proof of (***); (**) would then follow as an application of (***) and 
(*). Since neither of these statements is true, (**) remains unproved; we do 
not know whether the statement itself is true. In this section we present an 
analysis of the statement (***) that will show exactly what condition is 
needed in order that it becomes valid. This analysis arises directly from a 
study of the arguments used by Sindalovskii. The property that we require 
is a rather technical property of a sequence that appears in the arguments 
given for [23, Lemma 3]. 

https://doi.org/10.4153/CJM-1986-058-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-058-7


APPROXIMATE DERIVATIVES 1163 

(5.1) Definition. A decreasing sequence h = {hn} of positive real 
numbers converging to zero will be said to satisfy the property (S) if the 
following is true. Whenever P, Ph P2, P3, P 4 , . . . are closed sets in 
the interval [0, 1] such that 

(a) every point x e P belongs to infinitely many of the sets Pz; 
(b) \P\ > 0; 
(c) P n [P, + ht] = 0 for each index /', 

then necessarily for every positive number C there are indices / and j with 
/ < j , ht > Chj and 

[Pi + */] H [P + hj] * 0. 

The arguments that Sindalovskii uses in attempting to establish (***) 
may be divided into two parts. He first shows that for any sequence h that 
has the property (S) the assertion (***) is valid. This is true and we shall 
reproduce this in the proof of Theorem (5.4) below. Indeed we shall show 
that this property (S) is both necessary and sufficient in order that this 
conclusion be valid. He then argues that every sequence must have 
this property (S). This is not correct; in fact in the next section, Theorem 
(6.1), we shall show that there exist sequences, even "arbitrarily slow" 
sequences, that fail to have the property (S). 

Let us begin by stating and proving a simple lemma that we shall 
require in the proof of (5.4) and several later results. 

(5.2) LEMMA. Let A be a measurable set and let {hn} be a sequence of 
numbers converging to zero. Then for almost every x e A there are infinitely 
many indices n for which 

x 4- hn e A. 

Proof. We can suppose that A is bounded. Let c > 0. Then there is a 
finite sequence of closed intervals { [ai9 bt] } so that 

^ A u 
i = \ 

< e. 

Let us write 

An = { i Gv4:x + //W G y l } . 

We show that \Ar\ —> \A\ and the result evidently follows. If x e A and 
0 < hn < t but x + hn is not in A then either x + hn is in an interval 
[bi9 bi + t] or else x or x + hn is in the above small set difference. For 
sufficiently small / the set of such points has small measure and this 
supplies the proof. 

We need the following property of approximate derivatives. It may be 
obtained as an application of a well known theorem of Whitney [25], or a 
theorem of O'Malley [14], or from the proof of Theorem (10.8), Chapter 
VII in [15]. 
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(5.3) L e t / b e a measurable function that has an approximate derivative 
everywhere on a measurable set A of positive measure. Then there is a 
measurable subset Ax of A, with \AX\ > 0, and such that 

hm ^ = J (x) 
1 y — x 

for every point x in Av 

(5.4) THEOREM. For every decreasing sequence h = {hn} of positive 
numbers converging to zero the following three assertions are equivalent. 

(i) Iff is a continuous function on the interval [0, 1] such that everywhere 
on a measurable set A the approximate derivative f^Ax) exists and 

fh(x) < +oo then 

fzpW = Â ( * ) a - e - on A. 

(ii) If f is a measurable function on the interval [0, 1] such that every­
where on a measurable set A the approximate derivative f {x) exists and 

fh(x) < +oo then 

ApCO =Â(*)a-e- on A. 
(iii) The sequence h has property (S). 

Proof. Let us begin by proving that (iii) implies (ii). Suppose that the 
sequence h has the property (S) and let / b e a measurable function on 
the interval [0, 1] such that 

(10) / ' a p(x) *fh(x)< +oo 

everywhere on a measurable set Ax of positive measure. From this we will 
obtain a contradiction, thus proving the implication. By (5.3) there must 
be a measurable subset A2 of Ax that also has positive measure and for 
which 

Vm f(y) -/M p 
hm ^ = / (x) 

• z y — x F 

at every point x in A2. For almost every x e A2 one has, by (5.2), 

x + hn Œ A2 

for infinitely many indices n and thus 

ApC*) ~ AC*) a-e- o n A2-
Hence there are real numbers p, q and r, with p < q < r and a further 
measurable subset A3 of A2, that again has positive measure, and for 
which 

(11) f'^x)<p<q<Ux)<r 
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at every point x of A3. 
From this in turn, using (11), there must be a further measurable subset 

A4 of A3, again with positive measure, and an integer TV so that 

(12) fix + hn)-f(x) <r {oTX Œ^ and n ^ Nu 

K 
Yet again, from the inequality (11) above, there must be a measurable 
subset A5 of v44, again with positive measure so that 

(13) < p for every x, y e A5. 
y - x 

By Lusin's theorem, we can find a closed set of positive measure P c A5 

such tha t / (x -f ht) is continuous on P for every i = 1 , 2 , . . . . We obtain 
our contradiction by applying the property (S) to this set P and the 
sequence of sets {Pf.i = N9 N + 1,. . . } defined by writing 

Note that each set Pt is a closed subset of the interval [0, 1]. Now we verify 
conditions (a), (b), and (c) of definition (5.1). Condition (b) holds by the 
choice of P and (a) readily follows from the fact that 

f'h(x) > q (x G P). 

Finally condition (c) holds since if x is any point in both of the sets P and 
Pi -f- ht for some / ^ N then x = y -f ht for some y e p., which will 
require, because of (13), that 

^Ay + hj-fjy) f(y)-f(x) ^ 
q < = < p 

hl y - x 
which is certainly impossible. 

Accordingly, since the sequence h has the property (S), then, by 
definition, for every positive number C there are indices /' and j with 
N ^ / < y, ht > Chj and 

(14) [p. + ht] n [p + hj] ^ 0. 

We will show that this cannot happen for C ^ (r — p)/(q — p). 
Choose a pointy in the intersection (14) above, and set x = y — ht. This 

gives x G P-, and 7 — A- e P and therefore from the estimates (12) and 
(13) above, and from the definition of the sets P/5 we must have 

f(y) - fM 
fl: = q, 

f(y) -f(y-hj) 
— < r, 
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and 
f(y-hj) -f(x) 

<p-
h, - hj 

Putting these inequalities together in the obvious way, we obtain 

qh^fiy) -f(x) 

= [f(y) -f(y-'hj)] 

+ lf(y -hj) -f(x)] 

< hr + p{hi - hj) < r—7r-hi + pht = ht 

c 
so that 

r — p 

c <—-. 
q - p 

As this is a contradiction we obtain the proof of the required 
implication. 

The implication (ii) —> (i) is trivial. Thus it remains to establish the 
implication (i) —» (iii), and the theorem is proved. For this let us suppose 
that h is a decreasing sequence for which the property (S) fails; we shall 
construct a continuous function / for which (i) fails, and this gives our 
result. 

There must be closed subsets P, Pl9 P2, . . . of the interval [0, 1] for which 
the assertions (a), (b), and (c) of definition (5.1) each hold for this 
sequence h and yet there is a number C > 1 such that whenever 

/' < / and h- > Ch, 
J l J 

then 

(15) [^ + h^ n [P + hj] = 0. 

We may suppose that each set Pt c P9 and, to simplify the arithmetic, that 
hn < C _ 1 for all n. 

Define the sets 

Qk = U[Pi + hi\C~k~x ^ ^ < C~k] (k = 1, 2, . . . ), 

Ak = U[P + hi'.C~k~~l ^ ^ < C~k] (k = 1, 2 , . . . ). 

Note that each set Qk is closed, that (because of (c) ) 

Qk n P = 0 for all indices k, 

and that (because of (15) ), 

Qkx
 n Qk2

 = 0 f o r a11 indues A:,, k2 with |A:, - k2\ > 1. 

r 
+ P 
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Also, every x not in P belongs to finitely many Ak. 
Let us define functions \pl and \p2 at every point x of the closed set 

Q = P U .U (P + ht) 

as follows: 

and 

* i ( * ) 

c -k. 
Qk\Q, k-\ 

{o ; x G e \ y Qk 

H*) 
> X 

C" 
c + i. * £ ^ , * e ^ \ u ^-, 

>>A 

We may verify that 0 ^ \px = ^2 everywhere on Q, that ^ is upper 
semi-continuous on Q, and that \p2 is lower semi-continuous there. The 
first part of this presents no difficulties, using (15). 

To see that \p2 is lower semi-continuous on Q9 let x e Q be arbitrary. If 

and 
0, there is nothing to prove. If \p2(x) > 0 then x <£ P, x <E A A ( A ) 

Ux} = c-*w+l. 
It is obvious that the set 

oo 

P U U A1 

is closed and does not contain x. Hence x is a local minimum of \p2 and, a 
fortiori, \p2 is lower semi-continuous at x. 

Because of these properties of \px and ^2 there must exist a continuous 
function / defined on the entire interval [0, 1] and such that ^ = / = \p2 

on the set Q. We check that the function/has the following properties: 

(16) f(x) = 0 if x e i>, 

since *p2(x) = \p\(x) = 0 for such points; 

(17) f{x) ^ C -k-\ if X G & , 

since such a point x may belong possibly to one of the sets Qk _ x or Q 
-k-\. 

k+\ 
but to no other set Qi and consequently \pi(x) ^ C ; and finally 

(18) 0 ^ / ( J C ) ^ C_ / c + 1 i f j c e ^ 
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since for any point x we have k(x) ê k and hence 

Let x be an arbitrary point of the set P. If i and k are indices for 
which 

C~k'x ^ ht < C~k 

then from the observations (16) and (18) we must have invariably 

(19) o ^ /(* + *.->-/(*> = H* + *«•) ^ £^1 * c\ 
h, ^ ^ 

On the other hand if such a point x also belongs to the set Pt so that x + ht 

is in Qk then, by (16) and (17), we have 

( 2 0 ) fix + hj) -f(x) _ f(x + hj) ^ C - * - 1 ^ c ^ , 

h h h 

But for each point JC in P, x G Pl for infinitely many indices /, so that the 

inequalities (19) and (20) together show that 

C ^ hm supMoo ^ C . 
hi 

Expressing this in the language of the h-derivatives, we have shown that 

But we have supposed that P has positive measure, and /vanishes on P so 
that a.e. on P the approximate derivative f'âp(x) = 0 and this gives 

0 = / a p( jc) < AC*) < + ° ° a-e- o n p -

Thus (i) of the theorem does indeed fail, and the proof is complete. 

This theorem gives precisely the condition on a sequence h (albeit a 
technical condition) for which the assertion (***) of Sindalovskii is valid. 
We point out now some situations in which this property (S) may be 
verified. Later, in Section 6, we shall prove that not all sequences have this 
property. It should be remarked that Sindalovskii, in the proof of 
[23, Lemma 3], uses the hypothesis of this next lemma but incorrectly 
assumes that every sequence has this property. 

(5.5) LEMMA. Let h = {hn} be a decreasing sequence of positive numbers 
converging to zero. If hn/hk —> +oo as k — w —» +oo then h has the 
property (S). 

Proof. Suppose that P, Ph P2, . . . satisfy (a), (b), and (c) of (5.1) and let 
C > 0 be given. Then by our assumption, there is a K > 0 such that 

^ K implies ht > Ch 
T 
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Condition (a) implies 

oo 

2 1̂ - n P\ = oo. 
z = l 

Since the set 
oo 

.u [ (P, nP) + h,] 

is bounded, this implies that there is a point x which belongs to more 
than K of the sets (JPt Pi P) + /z,. Thus there are indices i and j with 
/ < j , j ^ i + K and 

[(i> n P) + /*z] n [(i> n i>) + hj] * 6. 

This proves the assertion. 

(5.6) COROLLARY. Let h = {hn} be a sequence of positive numbers such 
that 

lim sup h^±l < ! 
A* 

then h /zas //z£ property (S). 

Proof. It is an elementary exercise to show that a sequence that has the 
stated property satisfies the hypotheses of the lemma. Note that, for 
decreasing sequences, this condition requires the range of the sequence to 
be porous on the right at 0. 

As an application of the preceding results, we may state a corrected, but 
weak, version of Sindalovskii's assertion (**). 

(5.7) COROLLARY. Let h = {hn} be a sequence of positive numbers such 
that 

h 
lim sup -J1±1 < 1. 

K 
Then if f is a measurable function on the interval [0, 1] such that 

everywhere on a set A, and f is approximately differentiable a.e. on A, then 
a.e. on the set A, 

/ '„(*) = / ' h ( * ) = / ' a p ( * ) . 

The hypothesis that fis approximately differ entiable is unfortunate, but 
we do not know at present whether it may be replaced by giving further 
restrictions on the sequence h. There remain a number of problems we 
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leave unanswered in connection with these investigations. These are posed 
here as problems. See also [13] for several related problems, that appear 
still to be unanswered. 

(5.8) Problem. Let h be a sequence of positive numbers such that 

0 < lim inf ^ ^ lim sup ^ ± 1 < 1. 
K K 

Then if / i s a continuous function on the interval [0, 1] such that/ ' , , exists 
on a set P, must it be the case t h a t / i s approximately differentiable a.e. 
on P? 

(5.9) Problem. Let h be a sequence of positive numbers such that 

0 < lim inf ^ â lim sup ^ < 1. 
K K 

Then if / i s a continuous function on the interval [0, 1] such that 

-°o<A(*)=A(*)< +°° 
everywhere on a set P, must it be the case t h a t / h = / ' h a.e. on PI 

6. Existence of sequences without property (S). To complete the 
concerns of the preceding section we now show that the property (S) of 
Definition (5.1), that is critical to the veracity of statement (***), is not 
enjoyed by all sequences h, even those for which some condition is 
imposed regarding the distribution of the values. 

(6.1) THEOREM. For every decreasing sequence of positive numbers 
{au} converging to zero there is a sequence h = {hn} of positive num­
bers converging to zero that does not have the property (S) and such that for 
every index k there is at least one index i for which 

hi G («*>«*-1)-

Proof. We shall construct a sequence of numbers h = {/?„}, a closed set 
P of positive measure in the interval [0, 1], and a sequence of closed 
subsets P b P2, P3, P 4 , . . . of P in such a way that (a), (b), and (c) of (5.1) 
are satisfied, so that for every index k there is an index / for which 

hi G («*> «*-i)> 

and with the property that whenever there are indices /' and j with 
/' < / and 

[P, + ht] n [P + hj] * 0, 

then for some /c, 

hi9hj G [ahak_x). 
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If ak_]/ak is bounded (which can be achieved by adding new elements 
to the sequence {otk}) then such a construction supplies the sequence 
whose existence is asserted in the statement of the theorem. The proof will 
be given after we have established four lemmas. Throughout we assume 
that the sequence {an} is as given in the statement of the theorem with, for 
convenience, a0 = 1. 

(6.2) LEMMA. Let C be a compact set of real numbers with \C\ < a. Then 
there is a positive number 8 so that 

|cl U(C; t) | < a 

for every 0 < t < 8. 

Proof Since C is compact and has measure smaller than a there is a 
finite covering of C by open interals Ih I2, . . . , IN with total length less 
than a. There is then a positive number 8 so that if \t\ < 8 then the set 
U{C\ t) also remains covered by these intervals. From this the statement 
evidently follows. 

(6.3) LEMMA. For any numbers a, /?, and e with a < /? and e > 0, there 
are closed intervals I]9 I2,...9IN in [0, 1] and real numbers /zh h2, 
/z3, . . . , hN from (a, /?) such that 

.U /, = [0, 1], 

and 

N 
U 

i = \ 
(/, + ht) U kUQ (/, + A, - ak) < €. 

Proof Let us choose an integer M larger than l/(/? — a). The closure of 
the set 

B = \J- - ak:j = 0, 1, 2, . . . , M - 1 and k = 0, 1, 2, . . . I 

is of measure zero and so there must be, by (6.2), a positive number 8 so 
that 

|cl U(B; 8) | < €. 

Let K be an integer larger than 1/8, let N = KM, write 

[ — , - 1 0-=l,2,3,...,tf) 

and, for / = Kj + r, (j = 0, 1, 2, . . . , M - 1; r = 1 ,2 , . . . K), write 

A,• = j S - - . 
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Then we have for each index i = 1, 2, 3, . . . N, 

K 1 
j8>A,. ^ j 8 - - = j B - — > a . 1 N M 

We must verify that the sequence of intervals {/,} has the properties 
asserted in the lemma. The first of the properties is immediate and the 
second will follow directly from the following set inclusion: 

TV 
U 

i=\ 
(I, + ht) U kUQ (/, + h, - ak) 

c cl U(B; 8) + B. 

To see this we need show only that 

(21) /,. + h, - a k c U(B; S) + B 

for every pair of indices / and k. Let i = Kj + r for 0 ^ j 7â M — 1, and 
1 ^ r â K. Then 

+ p. /,. + A,- = 
Kj ~ 1 n Kj n 
— + j8, — + j8 

i N N J 
= 2 . - 1 i.1 

This gives 

/, + h, - c \j 1 J 
\k = \— — ak — —, - «A] +£ 

and since \/N ^ l/K < 8 this proves assertion (21) above and the 
lemma. 

(6.4) LEMMA. Let Q be a bounded set such that 

d ,Uo (Q - ak) < €. 

Then there is a positive number 8 so that 

l c l L 5 > ( G ~ [a*'a*+ / ] ) ] l < € 

for 0 < / < 8. 

Proof. Let 

H, = cl u(cl Zo (Q - ak); t) 

There is a S > 0 so that |i/, | < e for 0 < t < 8 and since 

^ (Ô - [«*, «* + 0 ) c H, 
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for all / the lemma follows. 

(6.5) LEMMA. Let e > 0. Then there is a sequence of integers 0 = n0 < 
n\ < n2 < . . . , a sequence of positive numbers {8k}, a sequence of intervals 
{/,}, and a sequence of numbers {ht} such that 

(i)0 < Sk < ak_x - ak9 

(ii) ak < ht < ak + Sk (nk_x < i ^ nk) 

(iii) . U /,- = [0, 1] (k= 1 , 2 , 3 , . . . ) , 
i=nk_x + \ 

and 

(iv) the measure of the set 

U 
/ = «*_, + ! 

oo "I 
(/,. + ht) U U [ (/,. + hi) ~ [am, am + Sm] ] I 

m =/c+ 1 J 

is smaller than —^ for every k = 1 , 2 , . . . . 

Proof We define the sequences {nk } and {8* } inductively as follows. To 
begin we set n0 = 0 and 8X = (a0 ~ ocx)/2. Let us suppose that k is a 
positive integer and that an integer nk_x and a positive number 8* have 
been defined. Using Lemma (6.3) with a = ak and /? = ak + 8* we can 
find an integer «^ > w* _ x, a sequence of numbers 

Kk_x + l» \ _ , + 2 - - A , 

from the interval (ak, ak + 8k), and a sequence of closed intervals 

7 ^ _ , + 1» 7 ^ _ , + 2 - • ^Jnk 

such that statement (iii) of the present lemma is valid and such that the 
measure of the set 

/ = n u _, + 1 

is less than e/2 . 

nk \ oo ] 

Write 

e*= ,•-„£+,(/< + *•>• 
We may apply Lemma (6.4) now to find a positive number 8*+ 1 so that 

0 < ô£ + i < m i n ^ , cck - ak + x] 

and 

6 
Qk U U

0 ( Ô ^ - [ a „ , a „ + 8A + 1]) < 
2*" 
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In this way we have defined inductively each of the sequences whose 
existence is asserted in the statement of the lemma and the properties (i), 
(ii), (iii), and (iv) may be readily verified. 

Now we may return to the proof of the theorem, making appropriate use 
of the lemmas. Let the sequence {an } be as given, and let e > 0. Suppose 
that we have obtained from Lemma (6.5) the sequences {%}, {^} , {/,}, 
and {/zz} having the properties (i), (ii), (iii), and (iv) of that lemma. Note 
firstly that for every index k and any index i for which 

nk-\ < l = nk 

the requirements (i) and (ii) of the lemma provide 

K G (a*>«*-i)-

Define the following sets: 

Qk = _ U (Ii + h,) ( * = 1 , 2 , . . . ) 

and 

C = [0, \}\A. 

By (iv) of the lemma the measure of the set C exceeds 1—6 and so we may 
select a closed subset P c C whose measure also exceeds 1 — e. We define 
the sets Pi (i = 1, 2, . . . ) by setting 

P, = pn I, 

By statement (iii) of the lemma we see that every point JC e P belongs to 
infinitely many of the sets Pt. Also, since for every index / 

Pi + hi c J. + hÉ <z A and P n A = 0, 

we must have 

P Pi [Pt + ht] = 0 for each index /. 

Finally, suppose that for indices /, j , k, and m, 

nk-\ < i = nk = nm-\ <J = nm' 

Then it must be the case that 

[/> + ht] n [P + hj] = 0. 

To see this observe that hj G (am, am + Sm) so that 

Pt + ht - h: c (/. + ht) ~ [am9 am + ôm] c .4 
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from which it follows that 

P n (Pl + ht - hj) = 0, 

and hence the previous intersection is empty. 
We have, accordingly, verified each of the required features of our 

construction and so the theorem has been proved. 

7. Exact sequential and path derivatives. We have seen in the preceding 
sections that it is possible for a continuous function/to have, on a set of 
positive measure, an approximate derivative f that differs from the 
extreme sequential derivatives/'h and / ' h , and which differs from an exact 
path derivative f'E even when the system of paths E is nonporous at each 
point. 

It is not however possible for a function to have an approximate 
derivative and also to have an exact sequential derivative which differ on a 
set of positive measure. This is the content of our next theorem. 

(7.1) THEOREM. Let h be any sequence of nonzero numbers converging to 
zero and let f be a measurable function that has an approximate derivative 
everywhere on a measurable set X. Then 

/'apW = AW 
at almost every point in X at which the latter exists. 

Proof. If X has positive measure then, by (5.3), there is a subset Xx c X 
also of positive measure so that / has a derivative relative to the set Xx 

at every point of Xx. By (5.2) we know that for almost every point 
x e X\, x + hn e Xx for infinitely many indices n. Thus the 
derivatives 

A,(*)=/i,(*) 
must agree at almost every point x at which the latter derivative exists. 
From this statement the theorem evidently follows. 

We see that the theorem requires for its proof only an appeal to the 
property (5.3) of approximate derivatives and to the measure-theoretic 
fact (5.2). Thus in order to obtain an extension of the theorem we may 
focus on this measure-theoretic property in order to obtain a version in a 
slightly enlarged context. The problem, if we express it for the moment in 
the context of path derivatives, is to find a condition on a system of paths 
E so that the existence everywhere on a set A on the two derivatives/'E and 
f will require that they be almost everywhere equal on A. We know, 
because of Theorem (3.6), that this is not the case in general, but that if a 
sequence h = {hn } may be selected so that 

* + K e Ex 
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at each point JC, then this is the situation. We may ask instead for the 
selection of a sequence hn(x) that depends on the point x, i.e., so that 

x + hn(x) e Ex 

and so that some appropriate smoothness condition on the functions 
x: —» hn(x) is met allowing a similar result. It is this problem that we now 
address, expressing our results in the language of the sequential 
derivatives, but permitting a generalization in which the sequence h may 
vary from point to point. 

(7.2) Definition. Let h be a nonvanishing real valued function defined on 
N X [0, 1] so that 

l i m ^ ^ h ^ , x) = 0 

for every x e [0, 1]. By the h-derivative of a funct ion/a t a point x we 
mean 

fh(x) = h m ^ 
h(«, x) 

should this limit exist. 

This definition allows a generalization of the sequential derivative and 
we may now state the conditions on the function h so that the result in 
Theorem (7.1) above remains valid. 

(7.3) THEOREM. Let h be a function such as appears in Definition (7.2) and 
which is Lipschitz in x uniformly in n, i.e., 

|h(/i, x) - h(«, y)\^C\x-y\ (JC, y e [0, 1]; n = 1, 2, . . . ). 

Let f be a measurable function that has an approximate derivative everywhere 
on a measurable set X. Then 

AP(*)=A(*) 
at almost every point in X at which the latter exists. 

Proof The proof is obtained, precisely as for the proof of Theorem (7.1), 
provided that we are able to show that for any measurable set H it must be 
the case that for almost every x e H 

x + h(n, x) G H 

for infinitely many positive integers N. 
We obtain this fact from the following three lemmas. 

(7.4) LEMMA. Let h be a real-valued function defined on the interval [a, b] 
so that \h(x)\ = 8 for every point x in that interval and 

| (h{x) - h(y) | ^ l |x - y\ (x,ye[a,b]). 
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Then for every measurable set H c [a, b], 

| {x G H\x 4 h(x) <£ H) | g 48 4 2| [a, ft]\//|. 

Proo/. Let 5 = [x 4 h(x):x G / / } and write ^ for the function defined 
on 5 that is inverse to the function 

x ^ x -\- h(x) (x G / / ) . 

Observe that ^ has the property 

(22) | ^ ) - *K0 | ë 2 |* - f| (*,*<= 5) . 

Now if JC G / / but i + /z(x) È # then 

JC 4- h(x) G ( [a, Z>]\//) U [a - 8, a] U [ft, ft 4 8], 

and hence 

{x G #:JC 4 h(x) £ H) 

c xP(B n [ ( [Û, Z>]\//) U [a - 8, a] U [ft, ft + 8] ] ) 

This set inclusion together with the estimate (22) on \p provides the 
conclusion of the lemma. 

(7.5) LEMMA. Let H be a measurable set of finite measure. For every e > 0 
there is a 8 > 0 such that if h is a real-valued function defined on the real line 
for which \\h\\ < 8 and satisfying a Lipschitz condition 

\h(x) - h{y)\ ë ^ | * - y\ (x,y R), 

then necessarily 

| {x G H:x 4 h(x) G H) | > \H\ - e. 

Proof Let us choose a finite sequence of disjoint intervals 

[a,,b,] (i=\,...,N) 

so that 

H A .u K, 6,-] < - . 
4 

We verify the statement of the lemma for 8 = e/167V. Using the preceding 
lemma we compute 

| {x G H:x 4 /z(x) £ H) | 

# \ . u k , z>z] 
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N 

+ 2 I {x e H n [ah b,\:x + h(x) <£ H n [ar bt\ } 

e 4JVe * 
= 4 + T ^ + 2 2|[a,,fc,]\//| 

4 16N / = i 

= < + 2 
2 

A K, M\// < € 

as required to prove the lemma. 

(7.6) LEMMA. Let h be a function with the properties described in the 
assertion of the theorem, and let H be a measurable set that has finite 
measure. Then as n —» oo, 

| {x <E H:x + h(«, JC) e H) | -> \H\. 

Proof. We may rescale the real line so that the function h satisfies a 
uniform Lipschitz condition with constant 1/2, i.e., so that for n = 1, 
2 , . . . 

|h(w, x) - h(n, y) \ ^ -\x - y\ (x, j e [a, b] ). 

This implies that the pointwise convergence in 

limn-^ooHn, x) = 0 

is, in fact, uniform on [«, è]. Hence we may assume that for any given 
8 > 0, 

|h<>, JC) | S S (AI = 1, 2, . . . ). 

Clearly then this lemma is an immediate consequence of the preceding 
lemma. 

Now the proof of the theorem is complete since it is obvious, in view of 
this last lemma, that for any measurable set H of positive measure it must 
be the case that, for almost every x G // , 

JC 4- h(«, x) e H 

for infinitely many positive integers n. 

Let us conclude with an example to show that the hypothesis of this 
theorem may not be removed. 

(7.7) Example. Let P be any perfect nowhere dense subset of [0, 1] of 
positive measure. We shall produce a continuous function/on [0, 1] which 
vanishes on P and a function h such as appears in Definition (7.2) and 
which has the properties 
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(i) l i m ^ ^ h ^ , x) = 0 uniformly for x e [0, 1], 
(ii) x —» h(tf, x) is continuous for each n, and 

(iii)/ 'h = 1 a.e. in P. 
This gives us, in contrast to the situation in (7.3), 

f'^xXMx) 
at almost every point of P. 

We again employ, for this purpose, the construction used in the proof 
of Theorem (3.6). Let {/„}, {Pn}> {^} , a n d / b e as in the proof of that 
theorem. Let Rk be the union of those components of Pn that have the 
same right hand endpoint as a component of Pn . Let R denote the set of 
points in P that are in infinitely many of the sets Rk; it may be checked 
that R has measure zero. This follows from the inequalities 

\Rk\x„k_,\\Pj *!*=*=! *^. 

For any index k and any point x in [0, 1] we shall define h(/c, x) as 
follows. If x is in Pn \Rk then there is a first interval Ih nk__x < i Hk nk to 
the right of x. We choose h(/c, x) to be j> — x where y is chosen as the first 
point in that interval It at which/(y) = y — x. For remaining x in [0, 1] 
we define the function by extending it so as to be linear and continuous on 
the remaining intervals. Note that this function must satisfy everywhere in 
[0, 1] the inequalities 

0 < h(/c, x) ^ \\P„k\\ + max{ \It\'Mk_x < i ^ nk}. 

It may now be readily verified that this construction has the required 
properties. At every point x in P\R the derivative/r

h(x) clearly exists and 
is 1. 
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