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INFINITELY PERIODIC KNOTS 

ERICA FLAP AN 

One aspect of the study of 3-manifolds is to determine what finite group 
actions a given manifold has. Some important questions that one can ask 
about these actions on a given manifold are: What periods could they 
have? and, what sets of points may be fixed by the action? In the case of 
periodic transformations of homology spheres, Smith [18] classified the 
types of fixed point sets which could occur. For homology 3-spheres the 
fixed point set will be 0, S°, Sl, or S2. Fox [4] looked at periodic 
transformations of the three sphere which leave a knot invariant and, 
using Smith's classification of fixed point sets, determined that there were 
eight types of transformations according to how the fixed point set met the 
knot. For convenience we shall say a knot is (#, b)-periodic if there is a 
periodic transformation of S leaving the knot invariant with fixed point 
set homeomorphic to a and with the fixed point set meeting the knot 
in a set homeomorphic to b. As Fox points out the possibilities for b are 
only 0, S°, and S]. And by the recent proof of the Smith conjecture [21] we 
can rule out S] if the knot is non-trivial. 

Fox asked which knots could have infinitely many periods of each type; 
in other words, which knots are infinitely (a, Z?)-periodic for each possible 
pair (a, b). Seifert [16] has shown that any knot that could be drawn on the 
surface of a torus is infinitely 0-periodic (here we write 0-periodic instead 
of (0, 0)-periodic). Hartley [8] conjectured that torus knots are the only 
infinitely 0-periodic knots. On the other hand, Murasugi [14] showed that 
any infinitely (S\ 0)-periodic knot must have trivial Alexander poly­
nomial. 

If a knot is infinitely periodic then it must either have an infinite 
number of orientation reversing periodic diffeomorphisms or an in­
finite number of orientation preserving periodic diffeomorphisms. Sup­
pose {gt} is an infinite collection of periodic diffeomorphisms of 
(S , K) with distinct orders {pt}. Now {gz} is an infinite collection of 
periodic diffeomorphisms which preserve the orientation of both S and 
K; and order (g?) = pt or p;/2, so an infinite subcollection of {gj} have 
distinct orders. Now by Smith theory a periodic diffeomorphism of S is 
orientation preserving if and only if it has a fixed point set which is empty 
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or is homeomorphic to S . So for each orientation reversing periodic 
diffeomorphism gz, fix(gz) ^ 0. Hence fix(gj) ^ 0 and since gj is 
orientation preserving 

flx(g2) ~ S \ 

Thus if a certain knot has infinitely many orientation reversing periodic 
diffeomorphisms, then it is infinitely (S\ 0)-periodic or infinitely 
(S\ ^ -per iodic . Now suppose g is a periodic diffeomorphism of (S3, K) 
with 

fix(g) n K * 0. 

Then g\K is orientation reversing, and g \K is the identity. But by the 
Smith conjecture [21] now g2 itself is the identity. Now since gf\K is 
orientation preserving, h"\K will be orientation preserving. Thus by taking 
{/z,} Q {g;} as our infinite collection of periodic diffeomorphisms, we 
assure that no power of any of the ht fixes any point on K and both hi and 
ht\K are orientation preserving. 

We prove Hartley's conjecture that only torus knots are infinitely 
periodic, and further that no non-trivial knots are infinitely (S , 0)-pe-
riodic. Thus no non-trivial knots have infinitely many diffeomorphisms of 
distinct order with non-empty fixed point set, and no non-trivial knots 
have infinitely many distinct order orientation reversing diffeomorphisms. 
Our basic strategy will be to split the knot complement along characteris­
tic tori and to show that if a knot is infinitely periodic then all its 
characteristic simple and Seifert fibered components are also infinitely 
periodic. Then we prove that all the components are in fact Seifert fibered 
and we go through the remaining possibilities one at a time. 

Definition 1. A knot K in S3 has a free-symmetry h of order q, if h is a 
fixed point free diffeomorphism of S3 leaving K invariant, and hq is the 
identity. 

Definition 2. A knot K in S3 has a cyclic-symmetry h of order q if h is a 
diffeomorphism of S leaving K invariant and 

fix(/0 = SX and fix(/z) n K = 0, 

and hq is the identity. 

Definition 3. h is said to be a symmetry of K if h is a free-symmetry or a 
cyclic-symmetry and h\K is orientation preserving. 

We have shown in the introduction that if K is infinitely periodic then K 
has an infinite number of symmetries of distinct order. 

The following three lemmas are immediate from the work of Freedman, 
Haas and Scott [5] and Meeks and Scott [13]. 
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LEMMA 1. [5]. Let M be a Riemannian, Haken 3-manifold whose boundary 
is empty or has non-negative mean curvature. Let ^ be any collection of 
essential surfaces in M, no two of which are parallel. Then 6^is isotopic to a 
collection 3~of least area surfaces. 

LEMMA 2. [5]. Let Sx and S2 be least area surfaces in a Riemannian, 
Haken 3-manifold M. If Sx and S2 can be homotoped to be disjoint then 
S{ H S2 = & or Sx = S2. 

LEMMA 3. [13]. Let M be a Haken 3-manifold with a Z -action g. Then 
there exists a characteristic family of tori in M invariant under g. 

Remarks. 1) We use "characteristic" in the sense of Jaco and Shalen. 
Thus, if we remove the characteristic family from M we are left with 
Seifert fibered and simple components. Also if f.M —» M is a 
diffeomorphism then/(7") is ambiant isotopic to T. 

2) We shall want to apply Lemmas 1 and 2 to a manifold M with a 
periodic diffeomorphism h by finding a Riemannian metric for M which 
makes h an isometry and makes 3M have non-negative mean curvature. 
We do this as it is done in [12, p. 56]. 

-i 

LEMMA 4. Let k be a knot, and let Q be its exterior in S . Further, let 
^7~= {Tj} be a characteristic family of tori in Q. Ifk is infinitely periodic 
then k has infinitely many symmetries leaving each Tt invariant. 

Proof. For each symmetry Ga of (S , k) we can define ga'.Q —> Q to be a 
periodic diffeomorphism. LetSf = {St} be the characteristic family given 
by Lemma 3. Let / a be an isotopy of Q taking ZT to Sf. Thus 

fa(Tt) = St for each /. 

Now 

/ ; ' o ? „ o / « ( ^ ) ^ 

Let ha = f~ o ga ofa, then the order of ha is the same as the order of ga. 
Let the order of ha be a. Since k is infinitely periodic, the a get arbitrarily 
large. Let m be the number of permutations there are of the elements of ^T 
Let ha be a periodic diffeomorphism of Q leaving 3~ invariant and such 
that a > m. Then for some Na with 0<Na^m+\,ha

a performs 
the identity permutation on 3~. Define 

Ha = / # . 

Then the order of Ha is at least a/Na. 
Now since the ha have arbitrarily large orders a, but the Na are bounded 

by m + 1, the Ha must have arbitrarily large orders. Since ha and ha\k are 
orientation preserving, so are Ha and Ha\k. Hence 

fix(Jfa) n k = 0 
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since by the Smith conjecture îix(Ha) ¥= k. Thus {Ha} is an infinite 
collection of periodic diffeomorphisms of g, and 

Ha(Tj) = Tt for each /. 

Remark. Lemma 4 essentially says that if a knot is infinitely periodic 
then all its characteristic simple and Seifert fibered components are also 
infinitely periodic. 

Definition 4. A 3-manifold is simple if it contains no essential torus, and 
a knot is simple if its exterior is simple. 

LEMMA 5. A simple non-torus knot is not infinitely periodic. 

Proof If K is not a torus knot then K is not Seifert fibered. So by [1] the 
center of n^S — K) is trivial. Now by [6, Theorem] no symmetry 
of (S3, K) is pairwise isotopic to the identity. So every symmetry of 
(S3, K) induces an outer automorphism of ITX(S3 — K) of the same order. 
But by Johannson's finiteness Theorem [11, page 213] Out(7r1(S'3 — K) ) is 
finite. Hence (S3, K) is not infinitely periodic. 

Remark. The only Seifert fibered spaces in a knot exterior are a torus 
knot complement, a cable space, or a composing space, as shown by Jaco 
and Shalen [10, Lemma VI.3.4]. 

Definition 5. A cable space is a manifold obtained from a solid torus 
S X D by removing an open regular neighborhood in S X D of a simple 
closed curve C which lies in a torus S X J where / is a simple closed 
curve in D and where C is non-contractible in S X D. 

Definition 6. A composing space is a 3-manifold homeomorphic to 
W X S where W is a disk with n open cells removed, for n ^ 2. 

Definition 7. Let K2 Q W Q S3 be a knot which intersects every 
meridianal disk of a standardly embedded solid torus W in the 3-sphere. 
Let Kx be another knot with a regular neig hborhood F in S3. Let h: W^> V 
be a homeomorphism preserving preferred longitude and meridian, and let 
k = h(K2). Then we say Kx is a companion of /: and AT2 is apresatellite. 

Definition 8. A caZ?/e fc«6tf is a knot with presatellite a torus knot. 

Remark. A cable knot with companion a torus knot is one in which both 
Kx and K2 are torus knots. 

LEMMA 6. If there is a non-torus knot k which is infinitely periodic then 
either: 

1. There is a cable knot with companion a torus knot which is infinitely 
periodic. 

2. There is a composing space with incompressible boundary components 
r0 , . . . , Tn,for n = 2, in the complement Q of a knot k with dQ = T0; and 
k has infinitely many symmetries h such that h(Tt) = Ttfor each i. 
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Proof. Suppose k has infinitely many periods. Let Q be the complement 
of an open tubular neighborhood of k in S3. Let {Tf} be a characteristic 
set of tori for Q. By Lemma 4 Q has infinitely many periods leaving each 
Tt and hence each component Xt of Q — U Tt invariant. Since Q is a knot 
complement every torus Tt separates. Let Xx be a component of Q — U 7} 
with only one boundary component. Since {7}} is characteristic each Â  is 
either simple or Seifert fibered. By [10, Lemma VI.3.4] the only Seifert 
fibered spaces in a knot exterior are a torus knot complement, a cable 
space, or a composing space. A cable space and a composing space each 
have more than one boundary component. So either Xx is a torus knot 
complement or Xx is simple. Now dXx is essential in Q and so by [15, 
Proposition 3.10], S3 — Xx = Vx, a solid torus with core Kx, which is a 
companion of k. Suppose h is any period of Q with order greater than 2. 
Then h takes a meridianal disk of V} to a meridianal disk. So we can define 

A l A A 

a periodic diffeomorphism /* of Kx by /z|Xj = /z|Xj and h is defined in 
Vx by extending /z radially. Now the order of h must be equal to the order 
of h since Xx cannot be the fixed point set of any periodic diffeomorphism 
of S . So the order of h is greater than 2. Thus 

fix(A) n Kx = 0 
A 

and so h is actually a symmetry of Kx. 
Suppose Xx is not a torus knot complement. Then Kx is a simple knot 

other than a torus knot. But every symmetry h ol k induces a symmetry h 
of AT] of the same order. Hence we contradict Lemma 5. So Xx is a torus 
knot complement. Let 9 ^ = Tx, and let X2 be another component of 
Q — UTt with Tx in its boundary. If no such X2 exists then k would be a 
torus knot. Now let the components of Q — Int X2 be a collection {i£-} 
and y, where dQ Q 3Tand Rx = Xx and dR- Q dX2. Eachy" separates Q so 
we can let 87^ = 7} and let # = Q - Y. Then S3 - R = V a solid torus 
with core Kx by [15, Proposition 3.10]. 

By [3, Theorem 1] there is a homeomorphism of X2 in S3 such that 

S3 - Int(X2) = \JJWJ U V 

where each W- and V is a solid torus and dW: = T-. Let /* be any 
symmetry of k leaving each Xx and Tt invariant. Then h is orientation 
preserving and h takes a longitude of R: to a longitude of R: for 
homological reasons in Rj. Also /z takes a meridianal disk of S3 — Rj to a 
meridianal disk of S — R:. Thus h takes any (/?, q) curve on 7\ to a 
±(/?, g) curve on T. So we can define a symmetry h of (S , K) where AT is the 
core of V. Let A |X2

 = h\X2 then extend A radially to each W- and F . Now 
h(K) = K, and the order of h is equal to the order of h. 

Now X2 was also either Seifert fibered or simple. Suppose X2 is not 
Seifert fibered. Then X2 is simple and contains no essential annulus. So 
S3 — Int V is simple and contains no essential annulus. Thus AT is a 
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simple non-torus knot. By Lemma 5, K has at most finitely many 
symmetries. But every symmetry of k induces a symmetry of K of the same 
order. This contradicts k having infinitely many symmetries. Hence X2 is 
Seifert fibered. So X2 is either a cable space or a composing space, since 
fàÀy ^ 2. If X2 is a cable space then R = Xj U X2, and S3 - R = F is a 
neighborhood of AT, which is a cable knot with companion a torus knot. 
There are infinitely many symmetries of k taking a meridian of V to a 
meridian of V. So for each of these symmetries h we obtain a symmetry /* 
of AT. If X2 is a composing space then X2 has incompressible boundary 
components TQ, . . . , Tn\ and T0 separates S3 into a solid torus and the 
complement Q, of a knot iT. As when X2 is a cable space we can obtain 
infinitely many symmetries h of K, and h(Tt) = Ti for each /. 

LEMMA 7. Le/ X be a cable space Nl — Int N2 where N\ and N2 are solid 
tori in S , and k is the core of N2. Let h be a symmetry of (S , k) leaving 
X invariant. Let B be an essential annulus properly embedded in X with 
dB c dN2. Then there exists a properly embedded annulus A in X with 
dA c dN2 and h(A) = A and A is properly isotopic to B in X. 

Remark. Recall, by our definition, if h is a symmetry then h and h\K are 
orientation preserving. 

Proof. Metrize X so that h is an isometry and the boundary of X has 
non-negative mean curvature. By Lemma 1, B is properly isotopic to a 
least area essential annulus A. Let lt be a longitude and mt a meridian for 
Nt. For homological reasons in Ni9 h(mt) is isotopic to ±m z on 97V,; and 
for homological reasons in S — Ni9 h(lt) is isotopic to ±/ z on 3 ^ . Now 
since h preserves orientation on k we must have h(l2) isotopic to +12. But h 
is orientation preserving, so in fact h(m2) is isotopic to +m2. Thus if a is 
any curve on dN2, h (a) is isotopic to a. In particular h(dA) is isotopic to 
dA on dN2. So we could isotope h(A) in X to an essential annulus E, with 
dE contained in the interior of one component C of 37V2 — dA. Now E 
meets A in simple closed curves in the interior of both E and A. 

Claim. We can homotop E off A. 

Proof of Claim. Isotop E so that E and A are in general position and 
meet in a minimal number of components. Suppose some component J of 
A n E bounds a disk D in A. Then by the incompressibility of E, J also 
bounds a disk Df in E. By the irreducibility of X, D U Dr bounds a ball. 
Hence we could isotop E to remove / , and thus contradict minimality. 
Similarly if / had bounded a disk in E. Thus if E O A ^ 0, then E H C 
consists of incompressible annuli. But C is homeomorphic to T X / or to 
a solid torus and in either case every incompressible annulus in C is 
parallel into 3C. Let B be a component of is n C. Then B could be pushed 
into 3C then further into C — A. Again contradicting minimality. Thus we 
can homotop E off A. 
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Hence we could properly homotop h (A) off A. Now since h is an 
isometry, h (A) is also of least area. So by Lemma 2 either h(A) = A or 
h(A) n A = 6. 

We show h(A) = A by assuming /z(/4) n 4̂ = 0 and deriving a 
contradiction. Let W be a solid torus and let <2 be the torus knot 
complement 

Q = W U (Nx - Int N2), 

where Wis sewn to 87V, longitude to meridian. Then by [15, Lemma 3.1] A 
is an essential annulus properly embedded in Q. Let f/and V be the closed 
components of Q — ^4. Then U and F are solid tori. Let g:Q —» Q be 
/z|7Vj — Int 7V2 extended radially to W. 

Case 1. Suppose there is an / < p such that gl(U) Pi £/ # 0. Then 
either 

g7(£/) ç Int (7 for some /, 

or 

U Q Int gl(U) for some /. 

If gl(U) ç Int £/ then gp\U). But this is a contradiction since gp ' is the 
identity. Similarly, we could not have 

U Q Int gl(U). 

Thus Case 1 does not occur. 

Case 2. For every i < p, 

g\U) n U = 0. 

Let IT = gz(£/) for / = 0 , . . . , / ? - 1. Then the £/z are solid tori. Let 

y = K u *y. 

Let B = dU - A, then B Q dQ. Since g(3g) = 3£ we have g(£) ç ag. 
Now let C = dV — A. Since we are assuming that g (/I) HA = 0 we must 
have g(5) ç c. In fact, 

3F n 3£/z = g '(£) for / = 1, . . . ,p - 1. 

Now since F is a solid torus, y is a solid torus. Now A = Y Pi U is 
injective in y and £/, but not surjective in U since 4̂ is essential in Q. Let j> 
generate TT\(Y) and w, generate ir^Uj). Now since g cyclically permutes the 
Uh by the Van Kampan Theorem 

*i(C) = <y, «o, • • •, « v - i l / = «o = • • • = "™-i> 
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where n ê 1 and m iï 2. Thus there is an epimorphism from TT\{Q) to 
© , Zm. But S2 = W U Nx so 

Q = cl(53 - /(TV) ) 

where / i s a reembedding of JV2, and so Q is a knot space. Hence 

HX(Q) = Z. 

So we have a contradiction. Thus Case 2 also does not occur. 
Hence h{A) — A as desired. 

Remark. The proof of Case 2 is similar to that of Lemma 7.1 of [15]. 

THEOREM 1. Let k be a cable knot with companion a torus knot K. Then 
(S , k) is not infinitely periodic. 

Proof. Let N(k) be a regular neighborhood of k and let 

Q = S3 - Int N(k). 

Let F be a regular neighborhood of K containing N(k), and let 

R = S3 - Int V. 

Since V — Int N(k) is a cable space it contains an essential annulus a with 
da c dN(k). 

Now 8# separates dN(k) into Z?t and Z?2- Without loss of generality 
a U bx bounds a solid torus W and A U è2 is parallel to dV. Let (/?,#) be 
the unoriented isotopy class of da in a U Z?2. Let 

R' = Q - Int IT. 

Then i?' is isotopic to R. So 7?' is a torus knot complement, hence contains 
an essential annulus B with 

dB c 9#' = a U 62. 

Let (r, s) be the unoriented isotopy class of dB in a U b2. 

Claim, (p, q) ^ (>, s). 

Proof of Claim. Suppose (/?, q) = (r, s). Then we could properly isotope 
B in R' so that 3£ Pi a = 0. Since a Q dR' in fact B n a = 6; and thus 5 
is actually properly embedded in Q. Now B and « are disjoint essential 
annuli in Q. So by [19, Lemma 2.b] they are parallel. But B was essential in 
R' and hence could not be parallel into dR'. Hence (/?, q) ¥= (r, s), as 
claimed. 

Now suppose g is a symmetry of (S , k). If (S , k) is infinitely periodic, 
then without loss of generality we can assume that the order of g is not 2. 
Now let g = g2. Then g|/c must be orientation preserving. Now {dV} is a 
characteristic family for g. So by Lemma 4 we can assume that g(V) = F 
for an infinite class of such symmetries g of (S , /:). Hence g(i^) = R and 
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g(Q) = Q- Let X be the cable space V - Int N(k). Then g(X) = X. Now 
by Lemma 7 there is an essential annulus A properly embedded in X with 
dA c dN(k) and g(/l) = v4 and A is properly isotopic to a in X Let / , 
realize this proper isotopy of X. We can ex tend / to an i so topy / of Q. 
Now7,(0) = A Let C = fx(B\ and let fl" = / ( # ' ) • Let Q! = Q - R". 
Then the components of Q — A are the solid torus W and the torus knot 
complement /*". Now g(Q) = Q and g(^4) = A and ^ 3É R". Hence 

g(PT) = P^r and g(R") = R". 

So C is an essential annulus in the invariant torus knot complement R". 
Now C is in some cable space inside R'\ so by Lemma 7 we can obtain an 
essential annulus D properly embedded in R" with g(D) = D and D is 
properly isotopic to C in R". 

Observe that (/?, q) remains the unoriented isotopy class of dA in 
dR", and (r, s) remains the unoriented isotopy class of dD in dR". Since 
g(dR") = 3JR", we can let h = g\dR". Let / = order(g). By assumption we 
can find symmetries g so that / is arbitrarily large, so we can take g if 
necessary to assure that h does not switch the boundary components of A 
or those of D\ and 

h(dA) = +dA and h(W) = +3Z). 

Then h is an order / diffeomorphism of a torus dR" which fixes setwise 
both a (p, q) curve a c dA and an (r, s) curve /? c dD. In fact a and ft are 
simple closed curves. 

Claim. There are only finitely many possible numbers /. 

Proof of Claim. Subdivide ft into alternating arcs yt and 5- such that: 
1) The boundaries of yt and 5Z are in a n /?. 
2) Each y/ together with an arc of a is null homotopic in dR". 
3) Each yt is maximal with respect to the above properties. 
Let TV be the minimal number of points of intersection of a (p, q) curve 

and an (r, s) curve. Then 

TV = 2 |Int Si n a|. 
i 

Observe that by property 2) above, h({yt}) = {yt} and hence 

*({«,•}) = {«/}. 

So h permutes the set Uz Int ô- Pi a. Note that since (/?, q) ¥= (r, s), N > 0. 
Thus either / divides N or there is an / < / such that 

/zz(.x) = x for some x e U Int 5Z- Pi a. 

Recall that h\a and /Ï|^S preserve orientation. So, in fact, hl\ (a U ft) is the 
identity. But now gl is an orientation preserving periodic diffeomorphism 
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of S3 yet 

a U j8 ç fix(gz). 

This contradicts Smith Theory. Thus / divides N and so there can be only 
finitely many /'s. 

Thus (S3, k) has only a finite number of symmetries. 

LEMMA 8. Let X2 be a composing space with incompressible boundary 
components T0, Tx, . . . , Tn in Q, the complement of a knot k, with dQ = T0 

and n = 2. Then K has no symmetry h of order greater than 2 such that 
h(Tt) = Tjfor each i. 

Remark. The reader should recall that by our definition if h is a 
symmetry, then h and h\K are orientation preserving. 

Proof of Lemma 8. Assume there is such a symmetry h. Let g = h , and 
let lj and mi be a longitude and meridian of Tt, respectively. Further, let 
Tt separate S3 into a solid torus Wi and a knot complement Rt. Then 
g takes a surface in Rt bounded by lt to a surface in Rt bounded by 
g(lj). Since g = h2 we can in fact assure that g(/z) is isotopic to +/, on Tt. 
Now if n ^ 3 extend g radially within a solid torus J7Z- replacing Rf for 
/ = 3, . . . , n. The original knot K was a composite knot with « 
components. By replacing these R3, . . . , Rn by [/3, . . . , (/„ we have 
created a new manifold, X, which is the complement of a composite knot k 
with two components. Now g is a symmetry of W X S where W is a disk 
with two holes. Metrize X = W X Sx so that /z is an isometry and dX has 
non-negative mean curvature. Let A be an essential annulus properly 
embedded in X with both boundary components in Tx. By Lemma 1 find a 
least area surface B isotopic to A in X. Now B separates X into com­
ponents Yx and Y2 which are each homeomorphic to Sl X Sl X /, and 
Tt Q Yt. Now Yt contains no essential annulus with both boundaries in 
T0 U B, so we can homotop g(B) disjoint from B. So by Lemma 2, 

g(B) = B or g(£) n B = 0. 

We show g(B) = B. Suppose g(B) n B = &. Then 

g(Yx) Q Int Yx or ^ ç Tnt g(Yx) 

since T2 = g(J2) ç g(Yx). But if gC^) Q Int y1 and let p = order (g) 
then 

g ' T O Ç Int ^ 

and this implies that Yx Q Int Yx. By this contradiction we conclude that 
g(B) = B as desired. 

Now by [9, Theorem VI.34] B is saturated in some Seifert fibration of X. 
So by [15, Lemma 6.4] each component bt of the boundary of B is a 
meridian of the solid torus V = S3 — Q with core K. Now since p > 2, g is 
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9 

not the identity, and since g — h , then g(bt) = b{ for each component b{ 

of dB. But Z>z is a meridian of F, so g(bj) = bt implies that g fixes a point 
on k. But g|/c = h = k is orientation preserving. Thus g can only fix a 
point of /c if g\k is the identity. But this contradicts the Smith Conjecture 
[21]. So we could not have had such a symmetry h to begin with. 

THEOREM 2. No knots other than torus knots could have infinitely many 
symmetries with distinct orders. 

Proof. By Lemma 6 if there were an infinitely periodic knot other than a 
torus knot then either 

1) There is a cable knot with companion a torus knot which is infinitely 
periodic, or 

2) There is a composing space X2 with incompressible boundary 
components T0, . . . , Tn, n i^ 2; and X is in the complement g of a 
knot k with dQ = T0. Further K has a symmetry h of order at least 3 and 
h(Tt) = Tt for each /. 

However, case 1) is ruled out by Theorem 1 and Case 2 is ruled out by 
Lemma 8. Thus neither case can occur. 

THEOREM 3. The only knots with infinitely many distinct order 
free-symmetries are torus knots. No non-trivial knots have infinitely many 
distinct order cyclic-symmetries. 

Proof. Conner [2, Theorem 4.3] showed that torus knots have only 
finitely many cyclic-symmetries. Whereas, Seifert [16] proved that torus 
knots have infinitely many free-symmetries. 

Hence, as pointed out in the introduction, we have also shown that no 
non-trivial knots have infinitely many orientation reversing periodic 
diffeomorphisms, and further no non-trivial knots have infinitely many 
periodic diffeomorphisms with non-empty fixed point set. 
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