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Direct numerical simulation of a turbulent
boundary layer over a bump with strong pressure
gradients
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The turbulent boundary layer over a Gaussian-shaped bump is computed by
direct numerical simulation of the incompressible Navier–Stokes equations. The
two-dimensional bump causes a series of strong pressure gradients alternating in rapid
succession. At the inflow, the momentum thickness Reynolds number is approximately
1000 and the boundary layer thickness is 1/8 of the bump height. Direct numerical
simulation results show that the strong favourable pressure gradient (FPG) causes
the boundary layer to enter a relaminarization process. The near-wall turbulence is
significantly weakened and becomes intermittent, however, relaminarization does not
complete. The streamwise velocity profiles deviate above the standard logarithmic law and
the Reynolds shear stress is reduced. The strong acceleration also suppresses the wall-shear
normalized turbulent kinetic energy production rate. At the bump peak, where the FPG
switches to an adverse gradient (APG), the near-wall turbulence is suddenly enhanced
through a partial retransition process. This results in a new highly energized internal layer
which is more resilient to the strong APG and only produces incipient flow separation
on the downstream side. In the strong FPG and APG regions, the inner and outer layers
become largely independent of each other. The near-wall region responds to the pressure
gradients and determines the skin friction. The outer layer behaves similarly to a free shear
layer subject to pressure gradients and mean streamline curvature effects. Results from a
RANS simulation of the bump are also discussed and clearly show the lack of predictive
capacity of the near-wall pressure gradient effects on the mean flow.
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1. Introduction

Turbulent boundary layers undergoing pressure gradients and separation have been the
subject of a large number of studies due to their ubiquity in science and engineering.
Indeed, a deep understanding of their complex physics is necessary for the accurate
prediction and design of many engineering systems. While still limited to low Reynolds
numbers and small domains, the continuous improvement in computational resources has
made investigation by direct numerical simulation (DNS) increasingly popular. Direct
numerical simulation has not only been of great complement to experimental work in
the study of boundary layer physics, but has also provided detailed and dense high-fidelity
data for the evaluation and improvement of all lower-fidelity turbulence models, from large
eddy simulation (LES) to Reynolds averaged Navier–Stokes (RANS) closures (Abe et al.
2012; Coleman, Rumsey & Spalart 2018; Matai & Durbin 2019; Balin, Jansen & Spalart
2020).

A significant number of DNS of boundary layers with pressure gradients and separation
have focused on the flow over a flat plate. In these studies, the boundary layer is subjected
first to an adverse pressure gradient (APG) which causes the flow to separate, followed a
favourable pressure gradient (FPG) in order to reattach the flow. Pioneering work in this
area was performed by Spalart & Watmuff (1993), although in their case the boundary
layer did not separate. This was followed by a great number of studies, including Spalart
& Coleman (1997), Na & Moin (1998), Skote & Henningson (2002), Manhart & Friedrich
(2002), Abe et al. (2012), Abe (2017), Kitsios et al. (2016), Coleman et al. (2018),
performing simulations of the same kind at increasingly higher values of the momentum
thickness Reynolds number Reθ .

Flat plate boundary layer flows provide valuable insight into smooth-body shallow
separation caused by continued APG effects, which is a well known deficiency of
turbulence models. However, they lack two important characteristics that are often present
in engineering applications, namely strong FPGs, in particular a strong FPG upstream
of the APG, and strong streamline curvature. The effects of these two phenomena on
boundary layer turbulence were initially investigated experimentally with flows over
bumps and hills (Tsuji & Morikawa 1976; Baskaran, Smits & Joubert 1987, 1991; Webster,
DeGraaff & Eaton 1996). In all cases, the breakdown of the logarithmic law with the
streamwise velocity deviating above it was observed in the strong FPG region. The
presence of internal layers was also reported in these flows, with Baskaran et al. (1991)
noting a decoupling of the inner and outer layers and the latter behaving as a free shear
layer. Curvature effects were most pronounced in the outer layer, while changes due to the
pressure gradient initially appeared in the inner region.

The experimental bump flow of Webster et al. (1996) was simulated with wall-resolved
LES by Wu & Squires (1998), Cavar & Meyer (2011) and Matai & Durbin (2019),
confirming the significant departure above the logarithmic law in the FPG region and the
presence of internal layers. Matai & Durbin (2019) expanded the study by considering
a family of bumps of increasing height. For all cases, they observed a plateau or a
rapid oscillation in the skin friction at the start of the APG. They also showed that the
non-dimensional FPG

Δp = ν

ρu3
τ

∂p
∂s

, (1.1)

exceeded the value of −0.018 identified by Patel (1965) marking the start of a
relaminarization process. Note that in (1.1), ν is the kinematic viscosity, ρ is the fluid
density, p is the mean static pressure at the wall, uτ is the friction velocity and s is
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DNS of a boundary layer with strong pressure gradients

the streamwise direction. Uzun & Malik (2018) performed wall-resolved LES of the
NASA wall-mounted hump and compared the simulation results with the experiments of
Greenblatt et al. (2006). Both numerical and experimental data showed the presence of a
plateau in the skin friction coefficient profile where the FPG was strong. It was noted that
in this region the boundary layer was undergoing a relaminarization process according to
the acceleration parameter based on the edge velocity Ue,

K = ν

U2
e

∂Ue

∂s
, (1.2)

but full relaminarization was not achieved.
Although often not the focus of the aforementioned studies on bump and hill flows, all

reported a region of strong FPG with large deviations from standard turbulent boundary
layer behaviour. Some of them even mentioned signs of relaminarization (also known
as reverse transition). Patel (1965) noted the deviation of the streamwise velocity profile
above the logarithmic law for large enough negative values of Δp. They supposed the
breakdown of the law was due to the process of reversion to laminar flow and proposed
a tentative critical value of Δp = −0.018. However, they noted that Δp did not describe
the near-wall flow completely and in a later study proposed the use of a different quantity
(Patel & Head 1968). They argued that the non-dimensional shear stress gradient

Δτ = να

ρu3
τ

, (1.3)

is more universal and identified a critical value of −0.009 for the departure above the
logarithmic law and relaminarization. Note that in (1.3), α is the gradient of the total
shear stress in the wall-normal direction, n, across the viscous sublayer such that τ =
τw + αn. Bradshaw (1969) later corrected the critical value for Δτ to −0.013 and noted
that it marks the beginning of the logarithmic law overshoot and not necessarily the start
of a relaminarization process. Narasimha & Sreenivasan (1973, 1979) also noted that the
departure from the logarithmic law occurs upstream of the reverse transitional process.
They proposed critical values of Δp = −0.025 and K = 3 × 10−6 as further indication of
the onset of relaminarization. These critical values on the pressure gradient were supported
by a DNS of sink flows (Spalart 1986).

Despite APG effects and separation receiving most of the attention in the literature, it
will become apparent throughout this paper that a complete understanding and accurate
modelling of FPG effects are critical, yet currently lacking (Uzun & Malik 2018;
Matai & Durbin 2019; Balin et al. 2020). Additionally, a relatively limited number of
studies, especially numerical ones, discuss the details of turbulence undergoing strong
acceleration, relaminarization and retransition (the process describing the return to
turbulence after relaminarization) over complex geometries. There is, in fact, considerable
uncertainty as to whether the critical values of the pressure gradient parameters
((1.1)–(1.3)) are valid beyond flat plate flows. The need for additional investigations into
strong FPG flows, therefore, certainly exists and DNS are especially well-suited for this
purpose since so much of the FPG effects are located near the wall. The work presented in
this paper addresses this need by offering a novel case of a boundary layer undergoing
strong pressure gradients and streamline curvature effects of alternating sign with the
purpose of increasing the understanding of these types of flows and provide detailed data
for the improvement of lower fidelity turbulence models.

A DNS of the turbulent boundary layer flowing over a Gaussian bump is performed.
The flow is accelerated on the upstream side by a strong FPG, and then is quickly
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decelerated on the downstream side by an APG leading to incipient separation. At
the relatively low Reynolds number chosen (Re based on the momentum thickness is
approximately 1000 at the inflow), the FPG acting over an extended length (≈20 boundary
layer thicknesses) causes the onset of relaminarization and a significant weakening of the
near-wall turbulence. The boundary layer, however, does not relaminarize completely and
stays intermittently turbulent. At the peak of the bump, the weakened near-wall turbulence
experiences a sudden enhancement in intensity due to partial retransition, which in turn
leads to an atypical skin friction response and a more resilient boundary layer. The DNS
was designed to focus on the part of the flow leading up to incipient separation rather than
downstream of it, with additional emphasis on the FPG region. The discussion of results
reflects this choice, therefore incipient separation and the redevelopment of the boundary
layer are not discussed in this paper.

The present DNS is part of a larger joint study with other research groups and two recent
conference publications on DNS of this flow already exist (Balin et al. 2020; Uzun & Malik
2020). The former presented preliminary results from this work to evaluate wall-modelled
LES in the FPG and retransition regions, while the latter takes a more holistic approach
with a greater emphasis on the incipient separation and subsequent recovery, making all
three papers highly complementary. While both groups simulate the same ReL = 1 × 106,
key differences are present between this paper and Uzun & Malik (2020). In particular, this
paper primarily focuses on the strong FPG region, discussing the flow physics involved in
relaminarization from strongly accelerated flows, and grounding it in the body of literature.
This clearly distinguishes it from the conference papers which only touched upon these
topics.

This paper is organized as follows. Section 2 describes in detail the flow problem chosen
and the numerical approach taken to obtain a solution with DNS. Section 3 presents and
discusses the results obtained from the DNS. Finally, § 4 offers some concluding remarks.

2. Numerical set-up

2.1. Problem definition
The flow computed in this study is the turbulent boundary layer over the prismatic
extrusion of a two-dimensional (2-D) Gaussian-shaped bump. The surface is defined by
the following equation which depends on the height parameter h and the length parameter
x0, and is shown by the black curve on the lower surface of the domain in figure 1:

y(x) = h exp (−(x/x0)
2). (2.1)

Note that the x coordinate is aligned with the free stream flow far upstream of the bump, the
y coordinate is vertical and normal to the free stream and the z coordinate is aligned with
the spanwise direction. Moreover, (2.1) defines the entire lower surface of the domain,
meaning that there is no flat-plate region on either side of the bump and the curvature
is everywhere continuous. It is important to mention that the geometry selected for this
DNS is exactly the centreline of a three-dimensional (3-D) bump developed at The Boeing
Company (Slotnick 2019) and studied experimentally at the University of Washington
(Williams et al. 2020). Detailed comparisons between the experimental results and the
DNS, however, are deferred to future work due the current availability of the wind tunnel
data.

To maintain similarities between the two geometries, the 2-D Gaussian bump height
and length parameters were matched at h/L = 0.085 and x0/L = 0.195, where L =
0.9144 m is the length of the square cross-section of the wind tunnel used for the 3-D
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Figure 1. The solid black curves outline the full domain of the bump flow, while the green curves show the
boundary layer thickness on both no-slip walls predicted by preliminary RANS. The black dotted lines mark
the modified inflow and top boundaries for the DNS.

bump experiments. The flow studied has a Reynolds number of ReL = 1.0 × 106,
corresponding to Reh = 85 000 when measured against the bump height. The free
stream velocity is U∞ = 16.40 m s−1, which at standard sea level conditions results in
a small enough Mach number (M∞ = 0.045) to treat this flow as incompressible. At
the location of the inlet to the DNS, shown by the dotted vertical line in figure 1, the
momentum thickness Reynolds number is Reθ = 1050 and the boundary layer thickness
is approximately 1/8 of the bump height. Due to the boundary layer being thinner than
the bump height, the flow is more characteristic of a hill rather than other bumps present
in the literature (Webster et al. 1996; Greenblatt et al. 2006), however, the term ‘bump’ is
retained.

Other boundary conditions defining the entire flow domain in figure 1 are as follows.
Two solid no-slip walls are present; the bump on the lower surface defined entirely by
(2.1) and a flat top surface located at y/L = 0.5. The origin of the top and bottom boundary
layers is at x/L = −1, coinciding with the leading edges of the two no-slip walls (Slotnick
2019; Williams et al. 2020). Finally, the top and bottom surfaces are extended upstream
of this location and symmetry boundary conditions are prescribed there. This allows a
uniform velocity in the x direction equal to U∞ to be imposed at the inflow (x/L ≈ −1.3)
and the boundary layer origin to be modelled correctly.

2.2. Solution approach
While figure 1 describes the entire flow domain of the 2-D Gaussian bump, only a fraction
of it could be included in the DNS. The inflow was moved downstream to x/L = −0.6
as shown by the dotted line in figure 1. Moreover, the top wall was slanted according
to a profile fitted to the displacement thickness of the boundary layer computed with a
preliminary 2-D RANS simulation of the entire flow domain (see figure 1). This was
done to reproduce the constriction effects of the boundary layer growing on the top
wall while keeping the cost of the simulation manageable. The preliminary RANS was
carried out using the Spalart–Allmaras (SA) one-equation model (Spalart & Allmaras
1994) augmented with the rotation and streamline curvature (SARC) correction (Spalart
& Shur 1997; Shur et al. 2000) on the full domain. Additionally, a low-Reynolds-number
modification proposed in Coleman et al. (2018) was applied to correct the underprediction
of the skin friction coefficient by the SA model at low Reθ . The spanwise width of the DNS
domain was set to 4.7δ995in , where δ995in is the inflow 99.5 % boundary layer thickness, and
periodicity was enforced.

Due to the growth of the boundary layer over the bump, as shown in figure 1, it
was necessary to determine whether a periodic boundary condition over the spanwise
width could introduce some confinement effects in the region focused upon for this study

918 A14-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

31
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.312


R. Balin and K.E. Jansen

(defined as the portion of the flow leading up to incipient separation (−0.60 ≤ x/L ≤
0.19), with particular emphasis on the FPG and the bump peak (−0.29 ≤ x/L ≤ 0.10),
where the boundary layer growth relative to the inflow is only moderate). Confinement
effects were studied by performing two wall-modelled LES (known as WMLES) of the
same flow described here, with the only difference between them being that the period was
increased by a factor of two for one of the simulations. The details of the wall-modelled
LES with the DNS domain are discussed in Balin et al. (2020), wherein it was shown that
the outer layer Reynolds stresses and boundary layer thickness in the region of the flow
focused upon are captured accurately. Since the spanwise period affects the largest scales,
which are well captured in both simulations, this exercise is representative of possible
confinement effects experienced by the DNS. No significant differences were observed in
the flow and turbulent quantities (skin friction, pressure gradient, velocity and Reynolds
stresses) between the narrow and wide domain simulations. Consequently, the solution in
the region of focus of this DNS is considered to be free of any confinement effects from
the spanwise period chosen.

The boundary conditions enforced in the DNS were as follows. The bump surface
was treated as a no-slip wall. The top surface was modelled as an inviscid wall offset
by the RANS predicted displacement thickness described above with zero transpiration
(zero velocity component normal to the surface) and zero traction. At the outflow, weak
enforcement of zero pressure was applied along with zero traction. Effects from this
boundary condition on the interior domain are contained within a streamwise distance
of one local boundary layer thickness and thus did not affect the upstream solution. At
the inflow, the synthetic turbulence generator (STG) of Shur et al. (2014) was selected
to introduce unsteady flow into the domain, which has been shown to produce realistic
turbulence a short distance downstream of the inlet for both wall-modelled LES (Shur
et al. 2014) and DNS (Spalart et al. 2017; Wright et al. 2020). The mean Reynolds stress
and velocity profiles required by the STG method were extracted from an additional 2-D
RANS simulation at the inflow location of x/L = −0.6 for which the top surface was
modified according to the dotted line in figure 1 and modelled as a slip wall. This was
done intentionally to extract profiles along the entire height of the inflow plane consistent
with the DNS domain and boundary conditions.

The computational grid used for the DNS of the bump was structured with a total of
554 million points. It possesses the following spacing: Δs+ ≤ 15, Δz+ < 8, Δn+

1 = 0.1
and Δn+

max < 10, where (s, n, z) is the bump aligned coordinate system (s and n are
tangent and normal to the bump surface, respectively). Moreover, the ()+ superscript
signifies scaling by wall units using the mean friction velocity uτ and viscous length
scale lν = ν/uτ obtained from the DNS. Note that the streamwise spacing Δs+ ≤ 15
was achieved everywhere by using the local value of the friction velocity computed by
preliminary RANS in the design of the grid. Additionally, the growth and decay across
adjacent elements was limited to 1 % in the streamwise direction, resulting in a smooth
variation of Δs. Close to the separation region predicted by RANS, where uτ becomes
ill-defined, a maximum spacing of Δs/L = 4.0 × 10−4 (20 plus units based on the inflow
uτ ) was enforced to maintain adequate spacing. The wall spacing Δn+

1 = 0.1 was set in a
similar manner, with a growth factor limited to 5 %.

The DNS was initialized from an instantaneous solution of a wall-modelled LES
computed on the same domain with the same boundary conditions (Balin et al. 2020).
Integration of the flow was carried out for one full domain flow-through time before
accumulation of statistics. Past the transient phase, time- and span-averaged statistics
were accumulated for a total time T long enough to satisfy T > 100teddy everywhere in
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DNS of a boundary layer with strong pressure gradients

the region of this bump flow the paper focuses on. Note that the eddy-turnover time
is defined based on the local edge velocity Ũe and boundary layer thickness δ̃995 as
teddy = Ũe/δ̃995 (see (3.2)–(3.5)). The non-dimensional time step size was Δt+ = 0.11
based on the maximum average friction velocity of the DNS, which ensured a maximum
Courant–Friedrichs–Lewy (known as CFL) number below one at each time step.

All simulations presented in this work were performed with a stabilized finite element
method (Whiting & Jansen 1999) using trilinear hexahedral elements and second-order
accurate, fully implicit time integration (Jansen, Whiting & Hulbert 2000). The accuracy
of DNS with this method has been shown for a channel flow in Trofimova, Tejada-Martinez
& Jansen (2009), in which trilinear hexahedral elements were also used. Stabilization
and time integration parameters (which affect numerical dissipation) chosen for this DNS
follow the work of Trofimova et al. (2009). It is worth pointing out that a DNS of a zero
pressure gradient (ZPG) flat plate boundary layer was performed as the initial step in
this study. The details and results of this preliminary DNS are described in Wright et al.
(2020), wherein numerical and experimental validation data was accurately reproduced
through the use of the same STG inflow method and very similar grid resolution to those
described above for the Gaussian bump.

3. Results and discussion

3.1. Full bump flow
Time- and span-averaged pressure and skin friction coefficient profiles on the surface
of the entire Gaussian bump obtained from the DNS are presented in figure 2. The
coefficients are defined in the following, where pref is the reference wall pressure at
location x/L = −0.60 and τw is the wall shear stress rotated to the curvilinear coordinates
(s, n, z):

Cp = p − pref
1
2ρ∞U2∞

Cf = τw
1
2ρ∞U2∞

. (3.1a,b)

In this figure, the solution from the preliminary 2-D RANS simulation with the
SARC–low-Re closure used to obtain the inflow profiles is also shown for comparison.
Additionally, results without the curvature correction (SA–low-Re) are included and
discussed later in this section. Finally, Cp data over the centreline of the 3-D bump
from the experiments of Williams et al. (2020) are compared with the results from a
RANS simulation of the same 3-D geometry. Given that the boundary conditions of
the 3-D simulation are the same as described in § 2.1 for the 2-D Gaussian bump (i.e.
figure 1 accurately depicts the centreline of the 3-D bump), this comparison provides high
confidence in the numerical set-up and the relevance of the boundary layer physics studied
herein.

Very good agreement between the DNS and SARC–low-Re RANS is obtained for the
pressure coefficient, indicating the successful choice of the DNS subdomain and boundary
conditions. The Cp profile also outlines the series of pressure gradients experienced by the
boundary layer. In this subsection, discussion is confined to overall flow but, in doing so,
three regions classified by pressure gradient will be identified for more detailed discussion
in subsequent sections. At the inflow to the DNS (x/L = −0.60), a small but adverse
pressure gradient is present. As the flow approaches the bump, the APG strengthens but
remains mild (discussed in § 3.2), until x/L = −0.29 where it switches to a strong FPG
accelerating the flow over the upstream side of the bump (discussed in § 3.3). At the bump
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Figure 2. Pressure coefficient (a) and skin friction coefficient (b) on the surface of the 2-D Gaussian bump
computed with DNS and 2-D RANS. Pressure data extracted at the centreline from the experiments of Williams
et al. (2020) at ReL = 1.37 × 106 and from RANS simulation of the same 3-D geometry at ReL = 1.0 × 106

are also shown for context.

peak, a rapid change from strong FPG to strong APG occurs, with the latter persisting
until approximately x/L = 0.40 (early part discussed in § 3.4). Finally, a mild FPG helps
the boundary layer recover (not discussed in this paper).

Significant differences are observed among four simulations for the skin friction
coefficient predictions in figure 2 (experimental data not available for Cf ). Fair agreement
is only obtained in the initial mild APG and soon after the start of the strong FPG the
curves deviate with RANS largely overpredicting Cf over the bump. The DNS solution
exhibits a much smaller peak and a local minimum–maximum immediately downstream
of the switch from FPG to APG. This feature of the wall shear stress is also present
in the DNS of Uzun & Malik (2020) and is similar to the ones documented for other
bump flows with strong FPG (Narasimha & Sreenivasan 1979; Warnack & Fernholz 1998;
Matai & Durbin 2019). Of interest is also the streamwise position of the skin friction
maximum, which in both cases is located upstream of the bump peak, but occurs farther
upstream in the DNS. The size of the separation region is overestimated by RANS as DNS
predicts only incipient separation with the mean Cf approaching zero (Cf < 1 × 10−4 over
0.19 < x/L < 0.27) but only becoming negative over a short distance. Instantaneously,
however, the flow at the wall does reverse direction and small confined separation bubbles
are present.

Contours of the instantaneous vorticity magnitude on the surface of the bump in figure 3
elucidate some of the features of the DNS skin friction coefficient profile. In the APG
region upstream of the bump, the footprint of typical near-wall structures (regions of high
and low streamwise velocity) is seen as streamwise elongated streaks of high and low
vorticity. As the boundary layer progresses through the strong FPG, the acceleration of
the flow causes the wall vorticity to rise and the streaks to grow significantly both in
width and length. This is a counter-intuitive behaviour and points to the breakdown of
the standard relation for the streak spacing (λz ∼ 100ν/uτ ). Obliquely aligned ‘puffs’ of
high turbulent intensity are also visible in this region of the flow, resembling the structures
observed in very low-Reynolds-number channel flow by Tsukahara, Seki & Kawamura
(2005). Although the Reynolds number Reτ = uτ δ/ν is an order of magnitude larger for
the bump, similarities can be drawn between the intermittent state of the turbulence in the
channel and the near-wall layer of the strong FPG, as discussed in § 3.3. Towards the end
of the FPG, around x/L = −0.03, the wall vorticity drops and the streaks become weaker.
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Figure 3. Contours of instantaneous vorticity magnitude on the surface of the Gaussian bump (labelled by
normalized streamwise position, wrapped near x/L = −0.19).

Quiet regions of low vorticity also form. This behaviour explains the steep drop in Cf
between the maximum value of the curve and the bump peak. Starting slightly upstream
of x/L = 0.00 and continuing into the APG until approximately x/L = 0.05, spots of
large vorticity are found intermittent with the quiet regions, which visually resemble those
characteristic of laminar-to-turbulent transition. Note that x/L = 0.05 is the location of the
small local maximum in the skin friction profile. These spots then appear to culminate in a
region of intense turbulent activity (0.06 ≤ x/L ≤ 0.10) with many small-scale and fairly
isotropic structures of large vorticity. Continuing farther downstream, the intensity of the
small-scale structures decreases as the skin friction also drops. Note that, due to the strong
APG which brings the flow to incipient separation, the canonical streaks do not reappear
on the downstream side of the bump.

Due to the strong pressure gradients and geometry of the bump, the free stream
(irrotational) flow is distorted and highly non-uniform (∂ ūs/∂n /= 0). As a result, the
classical definitions of the boundary layer thickness δ995 and integral quantities such
as the displacement and momentum thicknesses, δ∗ and θ , respectively, are no longer
applicable. To resolve this issue, the definitions based on the generalized velocity (or
‘pseudo-velocity’), Ũ, of Spalart & Watmuff (1993) were used instead. These are repeated
in (3.2)–(3.4) from Coleman et al. (2018) for convenience, where ω̄z is the mean spanwise
vorticity – note that the bump-aligned curvilinear coordinate system (s, n, z) is used for
the definitions instead of the free stream aligned Cartesian system (x, y, z) –

Ũ(s, n) ≡ −
∫ n

0
ω̄z(s, n′) dn′, (3.2)

δ̃∗(s) ≡ −1

Ũe(s)

∫ ∞

0
nω̄z(s, n) dn, (3.3)

θ̃ (s) ≡ −2

(Ũe(s))2

∫ ∞

0
nŨ(s, n)ω̄z(s, n) dn − δ̃∗(s). (3.4)

The edge velocity in the context of Ũ is defined as

Ũe(s) ≡ Ũ(s, n → ∞), (3.5)

from which the 99.5 % boundary layer thickness, δ̃995, is computed as the height above
the wall where Ũ = 0.995Ũe. This approach has been used successfully in other studies
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Figure 4. Variation of different boundary layer thickness measures (a) and shape factor H and momentum
thickness Reynolds number Reθ̃ (b) over the bump.

of pressure gradient flows (Coleman et al. 2018; Uzun & Malik 2020). For this flow,
integration to n = 1.6δ̃995 resulted in converged profiles for δ̃∗, θ̃ , Ũe and δ̃995.

Figure 4 shows the variation of the boundary layer integral quantities defined above
over the bump surface. In panel (a), the three measures of the boundary layer thickness
are presented. The 99.5 % boundary layer thickness generally follows the trends set by the
pressure gradients, with a slight delay in its response. In the initial mild APG, δ̃995 grows
until a local maximum at x/L = −0.25, which is downstream of the start of the FPG at
x/L = −0.29. It then shrinks as it progresses through the rest of the FPG reaching a local
minimum just upstream of the bump peak. The strong APG on the downstream side of the
bump causes δ̃995 to grow rapidly once again. The displacement thickness follows similar
trends, however, it responds more quickly to changes in pressure gradient, as seen by the
presence of a local maximum at x/L = −0.29 where the pressure gradient changes sign.
The third measure of thickness, θ̃ , also behaves similarly to the other two. In this case, the
first local maximum is located slightly downstream of the start of the FPG at x/L = −0.27,
suggesting a slower response to the pressure gradient relative to δ̃∗, but faster than δ̃995.

Figure 4(b) shows the profiles of the shape factor H = δ̃∗/θ̃ and Reθ̃ = U∞θ̃/ν over the
bump. Soon after the inflow, H settles at a value of 1.44, which is typical for turbulent
boundary layers under weak APG. The initial APG causes the shape factor to rise slightly
and form a local maximum at x/L = −0.35, which is well upstream of the change in sign
of the pressure gradient. Farther downstream, H drops during the initial part of the strong
FPG, resulting in a local minimum at x/L = −0.11, which is also well upstream of the
end of the acceleration. During the remainder of the FPG, H grows gradually and forms a
plateau just downstream of the bump peak coinciding with the oscillation in Cf observed
in figure 2.

In addition to strong pressure gradients, streamline curvature effects are present in this
flow. Figure 5 shows the variation of the non-dimensional surface curvature parameters
κ̂ = κδ̃995 and κ+ = κν/uτ . Additionally, the curvature of a mean flow streamline κ̂sl =
κslδ̃995 located in the outer region of the boundary layer (0.3 ≤ n/δ̃995 ≤ 0.8) is included
as a measure of these effects farther from the wall. The similarities between κ̂ and κ̂sl
indicate that, in the region of focus of this paper, the outer layer flow is experiencing very
similar curvature as the bump surface. As discussed in Baskaran et al. (1991), Narasimha
& Sreenivasan (1979), Schwarz & Plesniak (1996), So & Mellor (1973, 1975), due to the
significant values of κ̂ but negligible ones of κ+, streamline curvature effects are mainly
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Figure 5. Variation of the non-dimensional surface and streamline curvature of the Gaussian bump. Negative
values of κ̂ and κ+ indicate convex curvature and vice versa.

observed in the outer region of the boundary layer. By contrast, near the wall, direct
effects from this disturbance can be considered small, leaving pressure gradient forces
to dominate. The interplay between curvature and pressure gradient effects is discussed
in the following sections for each portion of the bump flow. Finally, the impact of the
Spalart–Shur curvature correction (Spalart & Shur 1997; Shur et al. 2000) can be seen in
figure 2 by comparing the two sets of RANS results. Only a relatively small improvement
in Cf is observed with the correction in the region of the flow under strong FPG and
convex curvature, suggesting that this term is consistent with our assertion that the pressure
gradient forces dominate over the curvature near the wall.

The final wall and integral quantities extracted from the DNS are various
non-dimensional pressure gradient parameters as shown in figure 6. These quantities will
be discussed more thoroughly in the subsections that follow, however, since they help to
characterize the pressure gradients experienced by the flow, they are defined and plotted
in this subsection. The acceleration parameter K defined in (1.2) is shown in figure 6(a).
After a mild APG (K > −1 × 10−6) extending from the inflow until x/L = −0.29, the
strong FPG is visible over the upstream side of the bump. The non-dimensional pressure
gradient

Λ = −∂p
∂s

δ̃995

τw
, (3.6)

introduced by Narasimha & Sreenivasan (1973) and the Clauser pressure gradient
parameter

β = ∂p
∂s

δ̃∗

τw
, (3.7)

are also shown in figure 6(a). Although previous literature has not identified β as being
particularly illuminating in the context of relaminarization (Narasimha & Sreenivasan
1979), it is of broad interest in characterizing the strength of the pressure gradients over the
bump and is therefore included in the results. Other measures of the pressure gradient and
their effects on the near-wall flow are shown in figure 6(b). These are Δp and Δτ defined
in (1.1) and (1.3), respectively. Note that due to the non-dimensionalization by the friction
velocity uτ , these two quantities become ill-defined in the vicinity of incipient separation
at x/L = 0.19.
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Figure 6. Pressure gradient parameters K, Λ and β (a) and pressure gradient Δp and shear stress gradient Δτ

non-dimensionalized by inner units (b) over the bump.
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Figure 7. Profiles of the streamwise velocity in the initial mild APG region. Panel (b) zooms into the
logarithmic region of panel (a). The ZPG profiles are taken from the DNS of Jimenez et al. (2010) at
Reθ = 1551.

With the overall flow field described in terms of the above wall and integral quantities,
the following subsections combine this information with profiles of additional mean flow
and turbulence quantities, as well as instantaneous contour plots, to analyse and discuss
the three pressure gradient regions that are the focus of this paper.

3.2. Mild APG
The initial disturbance experienced by the boundary layer is due to a mild APG (a
maximum value of K = −0.5 × 10−6 as shown in figure 6) extending from the inflow to
the start of the FPG at x/L = −0.29. Concave streamline curvature is also present, starting
from a negligible amount and gradually increasing throughout this region (see figure 5).
Figures 7 and 8 show the development of the streamwise velocity, turbulent kinetic energy
(TKE) and Reynolds shear stress in this first section of the bump flow. Note that the TKE

is defined as k = 1
2 (u′2

s + u′2
n + u′2

z ). Additionally, the streamwise location of peak strength
of the mild APG is at x/L = −0.38 where curvature effects are still growing.
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Figure 8. Profiles of the TKE (a) and Reynolds shear stress (b) in the initial mild APG region. The ZPG
profiles are taken from the DNS of Jimenez et al. (2010) at Reθ = 1551.

In the initial part of this region (x/L ≤ −0.38), the APG effects dominate on the
velocity, as seen by an increase in the wake region and a slight deviation from the standard
logarithmic law. In the remaining portion, however, concave curvature effects dominate in
the outer layer by reducing the wake (So & Mellor 1975), while the logarithmic region is
shifted farther below the standard law. It is interesting to point out from the zoomed-in
view in figure 7(b) that at x/L = −0.45 the logarithmic region is in great agreement
with the ZPG profile of Jimenez et al. (2010), whereas the slight shift at x/L = −0.38
is accurately predicted by the scaling law of Skote & Henningson (2002)

u+
s = 1

κ

(
ln (n+) − 2 ln

(√
1 + γ n+ + 1

2

)
+ 2(

√
1 + γ n+ − 1)

)
+ B, (3.8)

where κ = 0.41, B = 4.5, γ = (up/uτ )
3 and up = ((ν/ρ)∂p/∂s)1/3. Note that, while the

accumulated action of the APG is more visible at x/L = −0.29 due to the significant shift
below the standard logarithmic law (Skote & Henningson 2002), the scaling in (3.8) would
not suggest any correction in the slope at this location due to the pressure gradient being
zero. Both the non-dimensional TKE and Reynolds shear stress increase throughout this
region of the flow, particularly in the outer layer at n/δ̃995 ≈ 0.3, which is consistent with
APG and concave curvature effects (So & Mellor 1975; Kitsios et al. 2016).

Figures 7 and 8 show that while the initial pressure gradient is only mild, its effects
combined with the concave curvature cause significant changes to the boundary layer
structure. Consequently, the boundary layer entering the strong FPG farther downstream
is not the canonical ZPG flat plate boundary layer. This feature distinguishes this bump
flow from many of the experimental studies performed on strong FPG effects and
relaminarization which employed a monotonic acceleration from a ZPG state.

3.3. Strong FPG
This section focuses on the FPG region of the Gaussian bump (−0.29 ≤ x/L ≤ 0.00) and
describes the effects of this force on the mean flow and turbulence. The interplay between
the FPG and streamline curvature is also discussed, which, as shown in figure 5, is both
concave and convex over this section of the flow. However, before presenting the results
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of this study and to ground the observations that follow in the available body of literature,
it is helpful to review the effects of strong FPG on turbulent boundary layers more deeply
than the background provided in the introduction.

When a strong FPG is applied and removed, a turbulent boundary layer undergoes three
successive stages that significantly change its fundamental characteristics (Sreenivasan
1982). Soon after the start of the acceleration, the boundary layer exhibits significant
departures from the standard laws while remaining in a fully turbulent state. Following
the terminology of Sreenivasan (1982), a boundary layer in this first stage is said to be
laminarescent. It can be considered a precursor to relaminarization, however, it does not
guarantee the onset of the process. Some of the key signs of laminarescence are a deviation
of the streamwise velocity from the standard logarithmic law (first below and then above
Patel & Head (1968)), significant growth of the viscous sublayer in local wall units, a
reduction in the 99.5 % boundary layer thickness, and a reduction in the rate of wall-layer
bursting.

Experiencing further sustained acceleration, the boundary layer enters a relaminarization
process. This is the second stage, and lasts until the process is complete resulting in a
quasi-laminar boundary layer. It is important to highlight that this is a gradual process, thus
the onset does not imply that a quasi-laminar state is achieved. During relaminarization,
the previously fully turbulent boundary layer develops a viscous dominated inner layer
stabilized by the acceleration, while the turbulence in the outer layer is distorted
(Sreenivasan 1982). Moreover, the skin friction is observed to drop while the flow still
accelerates, the shape factor increases, and the relative (non-dimensionalized by local uτ )
Reynolds stresses and TKE production drop significantly.

The final stage occurs when the FPG is relaxed. The acceleration can no longer stabilize
the near-wall flow, and soon after the onset of instability a retransition process originating
near the wall returns the boundary layer towards a fully turbulent state. This process is
rapid and shares some similarities to laminar-to-turbulent transition, such as the formation
and growth of turbulent spots (Blackwelder & Kovasznay 1972). Other notable features of
this process are a sudden rise in skin friction, a significant enhancement of the turbulent
intensities, and a local maximum of the shape factor.

Since relaminarization is a process that brings about significant changes to the boundary
layer, it is of great interest to identify the onset and completion points. The latter can be
easily defined as the location where the effects of the Reynolds stresses on the mean flow
dynamics are negligible. Fluctuations are still present as a remnant from the upstream
flow, but do not contribute to the development of the mean velocity. The near-wall
bursting process has also ceased, therefore eliminating production of TKE (Narasimha
& Sreenivasan 1979; Sreenivasan 1982). The onset point, however, is more complicated
to define and identify, yet it is extremely relevant for turbulence models designed to
predict this phenomenon. The remainder of this section discusses the laminarescent
and relaminarization stages of the boundary layer over the Gaussian bump and draws
comparisons with the non-dimensional parameters and methods proposed in the literature.

Conclusive evidence of the initiation of the relaminarization process taking place in
the near-wall region of the boundary layer over the Gaussian bump is provided by the
instantaneous contours of vorticity in figure 9. The figure shows instantaneous vortical
structures at a few locations of constant n/δ̃995. Note that because δ̃995 varies with
downstream position, these surfaces track the local boundary layer height, not distance to
wall. The vorticity magnitude is normalized by the local (same streamwise location) time-
and spanwise-averaged wall vorticity magnitude ω̄w in order to remove the increase of
vorticity due to flow acceleration and highlight the fluctuations relative to their local mean
wall value. Moreover, solid black lines across the width are placed to define important
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Figure 9. Instantaneous vorticity magnitude normalized by the local time- and spanwise-averaged wall
vorticity at different locations within the boundary layer in the FPG region of the bump. From top to bottom,
the heights above the wall of the slices are n/δ̃995 = 0.01, 0.05, 0.1, 0.4. The black vertical lines mark the
streamwise location of key events of the flow.

landmarks within the FPG region. These are: the start of the FPG at x/L = −0.29; the
location where the streamwise velocity departs above the logarithmic law at x/L = −0.22
(discussed in more detail later); the peak strength of the FPG at x/L = −0.11; and the
bump peak and end of the FPG at x/L = 0.00. Note that the same figures were also
analysed at different time steps in order to confirm that the following features are always
present and not just at the time instant shown here.

Very close to the wall, the typical streamwise streaks of high and low vorticity are visible
at the beginning of the FPG region. These remain fairly unchanged until around x/L =
−0.22, downstream of which the streaks appear to stretch in the streamwise direction
and reduce in relative intensity. As the location of peak FPG strength is approached, the
character of the fluctuations is significantly altered. The streaks become very elongated in
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the streamwise direction while also thickening in the spanwise direction, and their relative
intensity is significantly reduced. Similar observations were reported in the experiments
of Volino (2020). These changes continue past the peak FPG until the peak of the bump,
where quiet flow with weak fluctuations surround a few regions with smaller and more
intense scales.

Slightly farther from the wall, at n/δ̃995 = 0.05 and 0.1, similar trends can be observed.
Fully turbulent flow is present at the start of the FPG and is maintained until slightly
downstream of x/L = −0.22, after which the turbulent scales weaken relative to the wall
vorticity, stretch significantly in the streamwise direction, and quiet regions of low vorticity
appear. At this height above the wall, the streaks of high vorticity fluctuations turn into
very thin and long ridges, while the quiet areas form ‘valleys’ that are much wider but
equally as long as the newly formed ridges. These are clear signs that the near-wall region
of the boundary layer is no longer fully turbulent, and instead becomes intermittent and
approaches a quasi-laminar state. A relaminarization process is therefore taking place
in this flow. The contours also show how this truly is a gradual process since no clear
demarcation can be identified for the start of intermittency. However, although it cannot
be confidently discerned from the contours in figure 9, it will be shown later in this section
that the process does not complete and a quasi-laminar state is not achieved by the end of
the FPG region, thus making this only a partial relaminarization.

In the outer layer, at n/δ̃995 = 0.4, the turbulence is also very much affected by the
strong FPG. As the flow is being accelerated, the normalized vorticity fluctuations weaken
with the smaller scales decaying entirely while the larger scales remain fairly constant in
size and shape. This disappearance of the rich small scales is consistent with the decrease
in Reθ̃ and the stabilizing effects of the FPG and convex curvature. Additional insight
would be gained from the energy spectra of the velocity fluctuations, however, this exercise
is left as future work.

As was noted earlier, both concave and convex streamline curvature effects are acting
during the FPG, with the change from the former to the latter being located at x/L =
−0.14. The vorticity contours in figure 9 clearly show that changes to both the near-wall
and outer layer turbulence structures are taking place where the destabilizing concave
curvature is acting, well before the stabilizing convex curvature takes effect. In fact, some
of the larger ‘valleys’ of quiet and low relative vorticity flow appear upstream of the change
in sign of the surface curvature at around x/L = −0.15. Moreover, intermittency is limited
to the near-wall region, where curvature effects measured by κ+ are small (see figure 5).
The pressure gradient effects are therefore deemed the dominant force responsible for the
onset of relaminarization over the Gaussian bump, rather than the combination of pressure
and curvature effects.

Further evidence of a relaminarization process taking place due to the strong FPG
is found in the skin friction profile shown in figure 2. First, the maximum Cf is
located significantly upstream of the bump peak at x/L = −0.055 where the flow is
still experiencing a fairly strong acceleration (K = 1.7 × 10−6 from figure 6). Second,
the sudden rise in skin friction at the start of the APG forming the local minimum and
maximum in quick succession, along with the appearance of high-intensity turbulent spots
at the bump peak as seen in figures 3 and 9, indicate the presence of partial retransition.
The details of this process are discussed in § 3.4, however, it implies that the upstream
boundary layer does not remain fully turbulent and is significantly weakened by the
FPG. Both of these behaviours are key characteristics of relaminarizing boundary layers
(Narasimha & Sreenivasan 1973; Sreenivasan 1982; Warnack & Fernholz 1998) and are
in contrast to what is expected of a fully turbulent flow under the same pressure gradient,
which resembles more closely the RANS prediction in figure 2.
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Having established the presence of a partial relaminarization process over the upstream
side of the bump, as urged by Sreenivasan (1982), it is important to discuss the various
pressure gradient parameters used to determine the onset of relaminarization by previous
experiments discussed in the literature. Figure 6 presents a number of these for the region
of the flow this paper focuses on. In this region, K (defined in (1.2)) approaches, but
does not cross, the limit of K = 3.0 × 10−6 used to mark the start of a relaminarization
process in previous studies (Narasimha & Sreenivasan 1979; Sreenivasan 1982; Spalart
1986). The maximum value is in fact 2.58 × 10−6 at x/L = −0.13, which is still below
the range 2.75 × 10−6 ≤ K ≤ 3.00 × 10−6 identified with DNS of a series of sink flows
(Spalart 1986). Therefore, the acceleration parameter is not an accurate predictor of
the onset of relaminarization for this flow, especially considering that figure 9 shows
large intermittent regions appearing in the near-wall region around x/L = −0.15 where
K = 2.51 × 10−6. This result is, however, consistent with criticisms about the unsuitability
of K for predicting near-wall physics discussed in previous studies (Patel & Head 1968;
Sreenivasan 1982).

The non-dimensional pressure gradient, Λ (defined in (3.6)), introduced by Narasimha
& Sreenivasan (1973) is also shown in figure 6(a). Values above 50 have been proposed
as a sign of the completion of the process and the achievement of a quasi-laminar state
(Narasimha & Sreenivasan 1973, 1979; Sreenivasan 1982). Furthermore, based on the data
presented in these studies, values of Λ between 10 and 25 can be correlated to the departure
from fully turbulent flow and thus the onset of relaminarization. The maximum value
obtained by the FPG is around 19, indicating that Λ can be a useful indicator of the start
of the process for this flow as well as supporting the statement that a quasi-laminar state
or completion of the relaminarization process is not achieved.

From figure 6(b), similar to the profile for the acceleration parameter K, the boundary
layer over the bump does not reach the generally accepted critical value of Δp = −0.025
identified to mark the onset of relaminarization (Narasimha & Sreenivasan 1979; Spalart
1986). The minimum value is Δp = −0.022 at x/L = −0.11, whereas Δp = −0.021 at
x/L = −0.15. These lower magnitudes are supported by the work of Narayanan & Ramjee
(1969), who reported −0.020 as the critical number. It is also worth mentioning that the
initial study by Patel (1965) even suggested −0.018, although this was only a tentative
value and was later updated to −0.024 (Patel & Head 1968). With regards to the shear
stress gradient parameter Δτ in figure 6(b), the critical value of interest is −0.013, which
has been used to mark the start of the deviation above the logarithmic law (Patel & Head
1968; Bradshaw 1969). This phenomenon is discussed in detail later in this section. The
boundary layer over the bump reaches Δτ = −0.013 relatively soon after the start of the
FPG at x/L = −0.22.

Finally, integral quantities, such as the shape factor H and similar ratios (Cal & Castillo
2008), have also been investigated for strongly accelerated flows in connection to the
onset of relaminarization (Blackwelder & Kovasznay 1972; Narasimha & Sreenivasan
1973; Warnack & Fernholz 1998). However, for the boundary layer over the Gaussian
bump, these parameters were not insightful in describing the start or even the presence of
this process. This result is not surprising given the discussion regarding the uncertainties
associated with using H for this purpose in Sreenivasan (1982).

The above discussion highlights that, while contours of instantaneous vorticity clearly
show the presence of a partial relaminarization process due to the strong FPG, most of
the guidelines offered by previous studies based on various pressure gradient parameters
and integral quantities were not reliable indicators of the onset of relaminarization for
this bump flow. The disagreement with previous studies is likely caused by the added
complexities of this flow. The literature mainly focused on equilibrium sink flows or
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Figure 10. Mean streamwise velocity profiles in the FPG region normalized by wall units. The ZPG profiles
are taken from the DNS of Jimenez et al. (2010) at Reθ = 1551.

boundary layers over flat plates that were monotonically accelerated from a zero pressure
gradient by variation of the top boundary condition. The boundary layer over the Gaussian
bump is deeply different; it experiences an APG upstream of the acceleration which, while
being mild, affects the velocity and stress profiles in a significant manner, there is a
high degree of non-equilibrium in the sense of non-constant Clauser pressure gradient
parameter, streamline curvature effects are present throughout the entire flow, and the
Reynolds number is lower than what most experimental studies were able to achieve.
Furthermore, given the results discussed above, a definite marker or critical value for the
onset of relaminarization was not found. Only an approximate location of x/L = −0.15
was offered based on the contours in figure 9. This is not a surprising conclusion, and
in fact agrees with the interpretation in Sreenivasan (1982) and Warnack & Fernholz
(1998). By extension, this study provides further evidence that critical parameters of any
specific quantity should only be used as guidelines to suggest that relaminarization might
be occurring, but further analysis of the state of the turbulence is needed for a more definite
statement to be made. Moreover, a turbulence model based on the K and Δp parameters is
likely to not be universal.

Figure 10(a) shows the non-dimensional streamwise velocity profile at a number of
locations on the upstream side of the bump. At the start of the FPG (x/L = −0.29), the
velocity shows a logarithmic region shifted slightly below the standard values (κ = 0.41
and B = 5.0) consistent with the mild APG effects discussed in the previous section. Soon
after that, at x/L = −0.22, the wake is significantly reduced and the profile lacks a linear
region that would result from a logarithmic relationship. Therefore, there is a breakdown
of the logarithmic law with the velocity remaining for the most part below the law. As the
flow progresses through the FPG, the effects become increasingly stronger. The velocity
continues to rise above the logarithmic law until the peak of the bump, with a thickening
of the viscous sublayer and a continuous reduction of the wake in the outer layer. Note
that convex curvature effects are also present downstream of x/L = −0.14, however, the
continued reduction of the wake downstream of this location indicate that the pressure
gradient is dominating over curvature on the velocity. This result is consistent with the
experimental study of Schwarz & Plesniak (1996).

Additionally, figure 10(b) shows the velocity profiles at three locations in the proximity
of x/L = −0.22 where the boundary layer achieves the critical parameter Δτ = −0.013
(see figure 6). The profiles cross the standard logarithmic law right at the critical value,
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providing striking agreement with Bradshaw (1969) and the notion of Patel & Head
(1968) that the non-dimensional shear stress gradient is a suitable quantity to measure
the departure above the logarithmic law. Following the description in Sreenivasan (1982),
this behaviour is a clear indicator of the laminarescent boundary layer that precedes
relaminarization. Regardless of the nomenclature used, when considered along with
the non-dimensional vorticity contours in figure 9, the velocity profiles provide further
evidence that: (1) strong FPG cause the breakdown of the standard logarithmic law and a
departure above it while the flow is still fully turbulent; (2) the breakdown of these standard
laws comes with a change in the fundamental character of the turbulence (significant
changes in the vortical structures in figure 9 can be seen to gradually occur across the
x/L = −0.22 line at all values of n/δ̃995); and (3) these changes to the velocity occur
at much smaller values of the non-dimensional pressure gradients relative to the critical
ones (K = 1.4 × 10−6 where Δp = Δτ = −0.013), and farther upstream than evidence of
intermittency in the near-wall turbulence, and thus these alone should not be considered a
sign of the onset of relaminarization.

Reynolds stress and TKE profiles in the FPG region are shown in figure 11 normalized
by the free stream velocity U∞. The streamwise fluctuations develop a large inner peak
and an outer knee point, which progressively increases and decreases, respectively, as the
turbulence advects through the pressure gradient. Not surprisingly, the TKE follows very
similar trends. Note that the increase of the streamwise Reynolds stress near the wall is
consistent with the instantaneous contours of vorticity in figure 9 and the acceleration of
the flow. The wall-normal fluctuations u′2

n show an increase in intensity in the initial part
of the FPG which is followed by a significant reduction. The spanwise Reynolds stress
behaves similarly, with only a slight change at x/L = −0.22, followed by a decrease farther
downstream. The shear stress −u′

su′
n exhibits interesting features. At x/L = −0.22, the

outer layer shows an increase in the stress, however, near the wall, the profile shows a
sudden ‘break’ (more visible in figure 12b as a sudden change in the slope at n/δ̃995 = 0.03
and −u′

su′
n/uτ = 0.7), indicating a change in the near-wall turbulence. Downstream of this

location, the profiles develop a bimodal shape, with an inner peak which appears to be
relatively fixed in magnitude and distance from the wall (n/δ̃995 = 0.04), and an outer
peak which continuously decreases and moves farther from the wall.

The appearance of knee points and multiple peaks in the Reynolds stress profiles is
indicative of an internal layer being present in the flow. This is a common feature of
boundary layers over bumps and hills. Previous studies identified the cause of these
internal layers to be due to a sudden change in the wall boundary conditions and thus
shear stress, including changes in pressure gradients (Tsuji & Morikawa 1976) and surface
curvature discontinuities (Baskaran et al. 1987; Webster et al. 1996; Wu & Squires 1998).
Since the Gaussian shape of the bump ensures continuity of the curvature, the internal
layer observed here is caused by the change in pressure gradient from adverse to favourable
at x/L = −0.29. Moreover, in the presence of internal layers, the inner and outer layers
become almost independent of each other, with the latter behaving similarly to a free
shear layer. Similar behaviour in the presence of internal layers was also reported by
Baskaran et al. (1987); by Antonia & Luxton (1971, 1972) due to sudden changes in surface
roughness; and by Abe (2020) due to sudden imposition of a surface spanwise velocity. The
internal layer has a fairly constant Reynolds shear stress throughout the FPG as suggested
by the small variation in the magnitude of the inner peak in figure 11(d). This feature was
noted for other strongly accelerated flows (Narasimha & Sreenivasan 1979). Additionally,
the internal layer shows a rapidly evolving anisotropy of the normal stresses in favour of
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Figure 11. Mean Reynolds stresses and TKE in the FPG region of the Gaussian bump normalized by U∞.

the streamwise direction and at the expense of the wall-normal direction predominantly.
This behaviour is consistent with the instantaneous contours of vorticity in figure 9.

Moreover, a closer look along the initial part of the FPG (−0.29 ≤ x/L ≤ −0.22)
reveals that the ‘break’ in the shear stress profile near the wall appears as soon as
the pressure gradient changes sign. Similarly, the near-wall peak of the TKE starts to
grow immediately downstream of x/L = −0.29. Since the curvature changes direction
approximately halfway along the FPG, these two inner layer effects appear to be strongly
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Figure 12. Mean TKE (a), Reynolds shear stress (b) and total shear stress (c) in the FPG region of the Gaussian
bump normalized by wall units. The ZPG profiles are taken from the DNS of Jimenez et al. (2010) at Reθ =
1551.

related to the pressure gradient rather than the curvature. In the outer layer, the behaviour
of the Reynolds stresses is slightly more complex during this initial phase, with the inactive
components (streamwise and spanwise) behaving differently than the active (shear and
wall-normal) ones. The former remain fairly unchanged, while the latter follow the trends
observed in the streamwise velocity in figure 10. The effects of the significant concave
curvature dominate over the FPG at x/L = −0.22, increasing these two components of
the stress. Farther downstream, as the concavity is reduced and the strength of the FPG
increases, pressure gradient effects dominate and all components of the stress tensor
decrease significantly. This response to the FPG in the outer region of the boundary layer
is in great agreement with the recent experiments of Volino (2020).

This analysis, particularly of the shear stress, strongly suggests the independence of
the inner and outer layers. The former is dominated by FPG effects, while the latter
responds to a combination of streamline curvature and pressure gradient. It is the inner
layer physics, however, that are mostly responsible for the skin friction coefficient over
the bump. Consequently, a turbulence model that hopes to be predictive of a flow of this
kind must be able to capture these near-wall effects. Note that the Gaussian bump flow
considered here is not an isolated test case of these effects, and similar examples exist in
the literature (Wu & Squires 1998; Uzun & Malik 2018; Matai & Durbin 2019).
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Further interesting observations arise from the TKE and Reynolds shear stress profiles
normalized by wall units in figure 12. This non-dimensionalization is useful to show
changes in these quantities relative to the local wall shear rather than a comparison of their
absolute magnitudes. Additionally, note that τsn represents the total shear stress, which is
the sum of the Reynolds and viscous stresses. As the turbulence advects through the FPG,
the wall-shear normalized TKE is significantly reduced everywhere across the boundary
layer, including at the peak. This trend of the near-wall TKE is in contrast to the one
shown in figure 11, and indicates that while the streamwise fluctuations are strengthening
near the wall as the flow is being accelerated, they are not increasing fast enough relative to
the increase in wall shear stress. Moreover, the drop in TKE in the outer layer is magnified
with this non-dimensionalization. These trends are in full agreement with the vorticity
contours in figure 9 given the similar non-dimensionalization used. The Reynolds shear
stress exhibits similar trends to the TKE showing significant reduction due to the FPG. In
this non-dimensional form, the inner peak is not constant and instead continues to diminish
reaching values as low as 35 % of the wall shear stress (a density of one was used in the
simulation resulting in u2

τ = τw).
The non-dimensional total shear stress in figure 12 clearly shows the significant drop in

turbulent stress relative to the viscous stress both in the inner and outer layers. Considering
both the Reynolds and total shear stress profiles in the figure, at x/L = −0.05 the viscous
stress dominates over the turbulent one until approximately n+ = 50, clearly pointing to
a thickening of the viscous sublayer measured in wall units. This in turn leads to a very
steep wall-normal gradient at a distance between 10 ≤ n+ ≤ 60, which directly impacts
the streamwise momentum equation and thus the streamwise velocity as seen in figure 10.
In other words, it is the steep gradient in the total shear stress that is responsible for
the deviation above the logarithmic law. Once this gradient reaches a certain magnitude,
measured in part by Δτ , the breakdown of the logarithmic law is to be expected. Note that
while the relative size of the Reynolds shear stress is significantly reduced by the FPG, it
is not negligible and thus the relaminarization process does not reach completion and the
flow is still turbulent, albeit only intermittently in the near-wall region. The outer layer, by
contrast, remains fully turbulent with the fluctuations decaying in intensity.

It is also of interest to discuss changes to the correlation coefficient, which is defined as

Cτ = −u′
su′

n√
u′2

s

√
u′2

n

, (3.9)

and is plotted in figure 13 for the same streamwise locations along the FPG. At x/L =
−0.29, the coefficient has the canonical value of 0.5 in the outer layer, and slightly lower
near the wall. Farther downstream, in the region −0.29 < x/L ≤ −0.14, Cτ increases
everywhere within the boundary layer. Given the significant strength of the FPG in this
region, this change is attributed to the concave curvature of the mean streamlines (κ̂ in
figure 5 is a maximum at x/L = −0.24). Only downstream of x/L = −0.14, where the
curvature changes to convex, Cτ decreases rapidly as the boundary layer approaches the
bump peak. These results are in agreement with Narasimha & Sreenivasan (1979), Spalart
(1986) and So & Mellor (1973), and support previous observations that the strong FPG
does not change the correlation between these two turbulent fluctuations, even though the
Reynolds stresses are significantly reduced and the turbulence character is significantly
altered during relaminarization.

Finally, useful quantities for the analysis of the boundary layer and for evaluating and
improving turbulence models are the production rates for the TKE and the Reynolds shear
stress. These quantities are shown in figure 14 for a number of stations along the FPG and
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Figure 13. Correlation coefficient Cτ in the FPG region of the Gaussian bump.
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Figure 14. Production rate of the TKE (a) and Reynolds shear stress (b) in the FPG region of the Gaussian
bump non-dimensionalized by wall units. The vertical lines mark the boundary layer thickness δ̃995 for each
streamwise location.

are defined, respectively, as

Pk = −u′
iu

′
j
∂ ūi

∂xj
Psn = −

(
u′

su
′
k
∂ ūn

∂xk
+ u′

nu′
k
∂ ūs

∂xk

)
. (3.10a,b)

Note that Einstein notation is used to represent the double contraction and the indices i, j
and k take the three dimensions of the curvilinear coordinate system (s, n, z). Additionally,
the profiles are non-dimensionalized by wall units, which allows a comparison of the
production rates relative to the increase in wall shear due to the acceleration.

Immediately following the start of the FPG, a significant reduction in the magnitude
of the inner layer peaks is observed. Given the destabilizing concave curvature of the
streamlines upstream of x/L = −0.14, these changes are for the most part attributed to
the strong pressure gradient. The peaks are also seen to move farther from the wall in
n+ units, indicating once again the thickening of the viscous sublayer. It is interesting to
note that the peak non-dimensional TKE production for a ZPG flat plate boundary layer
has a value of 0.25 (Jimenez et al. 2010), thus suggesting a reduction by a factor of 2.5
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due to the strong acceleration and convex curvature. Farther from the wall (n+ � 100),
both production rates in figure 14 decay rapidly and become negligible by x/L = −0.11,
while still remaining positive in sign unlike the flow by Abe et al. (2012); Abe (2017)
where negative production of TKE was found in the presence of convex curvature. Note
that this decay is due to both the Reynolds stresses and the mean velocity gradient ∂ ūs/∂n
diminishing significantly in the outer layer. Once again, since convex curvature is present
only downstream of x/L = −0.14, this reduction is mainly attributed to the strong FPG,
although curvature effects are contributing past this location. The strong acceleration,
therefore, effectively turns off production in the outer layer, suggesting once again how this
region behaves as a free shear layer with only a small dependence on the wall. Figure 14
therefore reveals once again the effects of a relaminarization process through a weakening
of the near-wall turbulent production relative to the rising wall shear and acceleration. The
profiles, however, do not become negligible in magnitude, giving further evidence of the
fact that the relaminarization process does not complete and the flow over the bump is still
partially turbulent.

3.4. Bump peak and strong APG
As shown by the skin friction coefficient in figure 2 and the contours of instantaneous
vorticity in figures 3 and 9, in the vicinity of the bump peak where the FPG is relaxed and
pressure gradient changes from favourable to adverse there is a sudden enhancement of the
near-wall vorticity which leads to a rise in the wall shear. This feature is of course related to
the significant weakening of the near-wall turbulence caused by the strong upstream FPG
and the partial relaminarization. It is, in fact, a partial retransition to fully turbulent flow,
where the word ‘partial’ is used since the upstream flow did not reach the quasi-laminar
state associated with the completion of the relaminarization process. In this section, the
details of the flow and turbulence as they move through this segment of the bump are
discussed.

Figure 15 shows slices of instantaneous vorticity magnitude normalized by the local
time- and spanwise-averaged vorticity at the wall over the bump peak. The slices are taken
at different heights within the boundary layer, in this case measured in wall units with n+.
Note that streamwise changes in mean uτ are accounted for, thus the slice is at the same
height above the wall in local wall units but not in physical units since uτ is not constant.
Moreover, black lines across the domain are used to mark the location of key events of the
boundary layer flow. These are the peak strength of the FPG at x/L = −0.11, the bump
peak and change in sign of the pressure gradient at x/L = 0.00, the small local maximum
in Cf at x/L = 0.05, and approximately halfway between the bump peak and incipient
separation at x/L = 0.19.

Starting with the slice closest to the wall at n+ = 5, turbulent spots, which may be
identified as clumps of small-scale turbulent structures of high intensity, are seen to form
as early as upstream of the bump peak where the FPG is relaxed. These are intermittent
with regions of very quiet and weak vorticity fluctuations, and appear to grow in size
and intensity as they progress downstream into the strong APG. As noted by other
studies on relaminarizing boundary layers (Blackwelder & Kovasznay 1972; Narasimha
& Sreenivasan 1973; Sreenivasan 1982), these are clear signs of a retransition process
taking place near the wall. As the FPG is relaxed, the stabilizing effect of the acceleration
diminishes and instabilities are allowed to grow once again to produce a new fully
turbulent internal layer. The presence of fluctuations of different scales in the incoming
flow makes this process often very sudden and energetic, as is evident in figure 15. It
is important to note that this phenomenon is a feature of the upstream strong FPG and
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Figure 15. Instantaneous vorticity magnitude normalized by the local time- and spanwise-averaged wall
vorticity at different locations within the boundary layer in the vicinity of the bump peak. From top to bottom,
the heights above the wall of the slices are n+ = 5, 30, 100, 300. The black vertical lines mark the location of
key events of the flow.

relaminarization process, and is not due solely to the APG. Previous studies exhibited
this phenomenon even with the strong FPG relaxing into a ZPG region. Nevertheless, the
destabilizing effects of the APG certainly aid in the onset of instability and growth of the
turbulent spots, accelerating the formation of fully turbulent flow. At x/L = 0.05, just four
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Figure 16. Mean streamwise velocity profiles in the APG region normalized by wall units. The ZPG profiles
are taken from the DNS of Jimenez et al. (2010) at Reθ = 1551.

local boundary layer thicknesses downstream of the bump peak, the boundary layer at this
height above the wall is effectively fully turbulent. The scales at this location are small
and fairly isotropic in shape, but grow in size and stretch in the streamwise direction by
x/L = 0.10. The structure of the canonical boundary layer (see figure 9 at the start of the
FPG) is not recovered, however, due to both upstream history and the strong APG.

The other slices in figure 15 show the height of the turbulent spots and their growth rate
in the wall-normal direction. In their initial stages, the turbulent spots extend well past
n+ = 30 but are barely visible at n+ = 100. Signs of the new internal layer only become
visible farther downstream at this height. This indicates clearly that this phenomenon
originates near the wall and propagates away from it as the internal layer grows into the
boundary layer. The highest location above the wall, n+ = 300, shows the flow in the
outer wake of the boundary layer (see the velocity profiles in figure 16) as it flows from
the FPG into the APG. In this region, no change in the size, structure and strength of
the turbulent scales is visible from the contours of vorticity. The only change is observed
downstream of x/L = 0.10 when the internal layer finally reaches this height above the
wall. This behaviour is consistent with the notion that the inner and outer layers of this
flow are almost independent of each other, with the latter behaving similarly to a free
shear layer subject to the strong convex curvature effects that are present around the peak
of the bump. By contrast, the near-wall physics are dominated by the pressure gradient and
their associated relaminarization and retransition that are not directly ‘felt’ in the outer
layer.

The mean streamwise velocity profiles are presented in figure 16 for a number of
locations around the bump peak and the initial part of the APG region. At x/L = 0.02,
which corresponds to the local minimum in the Cf curve, the velocity still exhibits the
effects of the upstream FPG, which are characterized by a steep velocity gradient in the
thicker (in terms of n+) viscous sublayer resembling a laminar flow profile and producing
a large deviation above the standard logarithmic law. This is consistent with the contours in
figure 15 since the flow is still heavily intermittent at this location. Farther downstream at
x/L = 0.05, the effects of the partial retransition become visible. The velocity gradient in
the standard logarithmic region is reduced along with the thickness of the viscous sublayer
due to the sudden surge in shear stress discussed later in this section. At the last station
plotted, the velocity approaches the standard logarithmic law even closer and appears to
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have two distinct regions. The first is found below n+ = 40 and resembles the canonical
turbulent boundary layer shape with a buffer layer and a semilinear section (although
with a different slope and intercept from the standard values). This is caused by a new
internal layer forming at the bump peak which has reached heights around n+ = 100 at
this streamwise location. The second region appears to be a very pronounced wake above
the underlying internal layer which maintains the shape of the upstream FPG profiles. Note
that due to the strength of the APG and the nearing of incipient separation at x/L = 0.19,
the velocity does not reach agreement with the standard logarithmic law before separation.
This result is consistent with the vorticity contours at the wall in figure 3 which show that
the standard wall streaks do not develop within the APG region.

The Reynolds stresses for the same locations are presented in figure 17. Starting with
the TKE, at the end of the FPG and at the bump peak the profiles look similar to the
ones in the upstream FPG, with a larger peak than the x/L = −0.05 location in figure 11.
This is consistent with the increase in the inner peak of this stress component due to the
acceleration of the flow. There is also a further reduction in the TKE of the outer layer due
to the continued FPG and convex curvature effects. Entering the initial part of the APG,
a significant surge in the value of the peak is observed, almost doubling at x/L = 0.05
relative to the bump peak and then decreasing again after this station. This inner peak
is also increasing in thickness with downstream location. These are clear signs of the
new internal layer produced by the partial retransition. The outer layer TKE stays almost
constant throughout the APG, providing further evidence of the independence of these
two sections of the boundary layer. As the underlying internal layer grows in thickness,
the outer layer is simply displaced farther from the wall, resulting in a significant growth
of the overall boundary layer as seen in figure 4.

The turbulent shear stress follows similar trends to the TKE, with some differences
mainly in the outer layer. The inner peak also rises in magnitude and thickens significantly
due to the new internal layer. Note that it is this sudden and significant surge in the
near-wall turbulent shear caused by the partial retransition process that produces the local
maximum in the skin friction observed in figure 2 at the start of the APG. In fact, this
feature is typically observed downstream of a relaminarization process (Narasimha &
Sreenivasan 1979; Sreenivasan 1982; Warnack & Fernholz 1998; Matai & Durbin 2019). In
the outer layer, the shear is continuously reduced, eventually changing sign at x/L = 0.10.
Since the pressure gradient effects are now destabilizing, these are clearly convex curvature
effects that are still present until x/L = 0.14. Once again, the inner part of the boundary
layer is responding to the pressure gradient, while the outer layer is responding to the mean
streamline curvature.

All three normal Reynolds stresses generally behave as expected, increasing near the
wall and staying fairly constant or slightly decreasing in the outer layer. They do react
to retransition and the APG slightly differently, however. The streamwise fluctuations
respond the quickest, with the largest peak in figure 17 actually occurring at x/L =
0.02. The wall-normal and spanwise fluctuations respond later but more drastically (the
wall-normal fluctuations increase by a factor of seven near the wall in the interval
−0.02 ≤ x/L ≤ 0.05), with the largest peak in the figure observed at the farthest
downstream location shown. Clear changes in the anisotropy are also evident near the
wall. While during the strong FPG and at the bump peak the streamwise fluctuations
were dominating significantly over the other two directions, resulting in long and stretched
streamwise-oriented structures, the normal Reynolds stresses become more balanced and
isotropic during the partial retransition, although the streamwise direction still dominates.
These trends in the span- and time-averaged profiles are consistent with the vorticity
contours in figure 15.
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Figure 17. Mean Reynolds stresses and TKE in the APG region of the Gaussian bump normalized by U∞.

Figure 18 shows the correlation coefficient Cτ in the initial part of the strong APG.
Relative to figure 13, the profiles at the end of the FPG and the bump peak show a slight
reduction in correlation near the wall, but a more substantial reduction in the outer layer
due to the convex streamline curvature. As the boundary layer moves through the APG,
the correlation gradually increases near the wall and spreads away from it. This is another
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Figure 18. Correlation coefficient Cτ in the APG region of the Gaussian bump.

indication of the second internal layer. In the outer layer, Cτ keeps decreasing through
the APG, reaching negative values by x/L = 0.1. These profiles are in agreement with
those reported in Narasimha & Sreenivasan (1979) and So & Mellor (1973), and show
the strength of the curvature effects, as well as the region wherein they are active in the
boundary layer. It is worth noting that a reduction in Cτ in the outer layer was also observed
under strong APG and only mild curvature effects (Gungor et al. 2014; Abe 2019), although
not to the same extent. Consequently, the pressure gradient is considered a contributing
factor but not the dominant driver of the correlation in the outer layer of this flow.

The peak of the bump and the APG region exhibit a partial retransition process that
develops a second internal layer with significantly increased turbulent intensity and wall
shear. This newly energized flow is more resilient to the strong APG, and thus only exhibits
incipient flow separation on the downstream side of the bump. Pressure gradient effects
are focused in the near-wall region and are the main drivers of the skin friction coefficient,
whereas the outer layer is fairly independent and shows the continued action of convex
streamline curvature. It must be stated once again that the formation of this internal layer
is directly dependent on the upstream FPG effects, and thus the two regions of the flow are
highly connected. Indeed, a turbulence model hoping to accurately predict this bump flow
must be capable of representing both of these complex physical phenomena.

4. Conclusions

Direct numerical simulation was performed of the turbulent boundary layer over a
Gaussian-shaped bump. The smooth surface causes a series of alternating pressure
gradients and mean streamline curvature effects which combine to form a multitude of
complex flow physics with significant deviation from standard turbulence behaviour. The
domain focused upon for this study is the portion of the boundary layer from the inflow to
the point of incipient separation, with particular emphasis on the strong FPG.

Due to a strong acceleration, the boundary layer exhibits the stages of a relaminarization
process. The standard logarithmic law breaks down soon after the start of the FPG and
profiles of the streamwise velocity deviate significantly above it. The non-dimensional
shear stress parameter, Δτ , is found to be predictive of the departure above the log law.
Instantaneous contours of vorticity, however, indicate that the boundary layer is still fully
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turbulent in this region of the flow, although the turbulent character and intensity are
substantially altered by the FPG.

Under continued acceleration, the near-wall region gradually ceases to be fully turbulent
and intermittent spots of quiet flow with low vorticity grow in size. This is considered to
be the onset of relaminarization, which occurs in spite of the pressure and acceleration
parameters never reaching the critical values of Δp = −0.025 and K = 3 × 10−6,
respectively, suggested in previous studies. Relaminarization, however, does not complete
and thus a quasi-laminar state is not achieved. In this region of the FPG, the Reynolds
shear stress is reduced, developing a bimodal shape and the skin friction coefficient
drops. When normalized by the local wall stress, the significant reduction of the TKE,
the Reynolds stresses and their production rates clearly describes the weakening of the
turbulence relative to the acceleration of the flow.

At the peak of the bump, as the pressure gradient changes to adverse, a partial
retransition process is observed near the wall. The weakened flow from the upstream
acceleration experiences a sudden enhancement in turbulent intensity, producing spots of
large vorticity and a surge in TKE and Reynolds shear stress. The skin friction coefficient
is also increased forming a local maximum. The newly energized boundary layer is more
resilient to the strong deceleration on the downstream side, only resulting in incipient
separation.

Two internal layers are also formed in the region of the flow focused upon, causing
the inner and outer regions of the boundary layer to be largely independent of each other
during the strong FPGs and APGs. The flow near the wall is dominated by the pressure
gradients and is responsible for the skin friction coefficient, while farther from the wall
the turbulence behaves similarly to a free shear layer subject to the continued effects of
pressure gradients and streamline curvature. Curvature effects are found to be negligible
in the near-wall region.

Reynolds averaged Navier–Stokes computations with the SA model of the same
Gaussian bump flow resulted in a significant overprediction of the skin friction coefficient
over most of the FPG and over the bump peak, as well as a much larger separation bubble
due to the inability of the linear eddy viscosity closure to predict the correct pressure
gradient effects. Similar results are observed with the shear stress stransport (SST) k–ω

model in the context of wall-modelled LES (Balin et al. 2020). Future work is therefore
focused on utilizing the DNS data for the improvement of RANS predictions of boundary
layers under strong FPGs.
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