THE JOINT DISTRIBUTION OF THE RIEMANN ZETA - FUNCTION

A. Laurinćlkas

In the paper the asymptotic distribution of $(|\zeta(s)|, \zeta(s))$, where $\zeta(s)$ is the Riemann zeta - function, in the sense of weak convergence of probability measures is considered. For this, the continuity theorems for probability measures on $\mathbb{R} \times \mathbb{C}$ are used. Some aspects of the dependence of $|\zeta(s)|$ and $\zeta(s)$ are also discussed.

1. Introduction

Throughout the paper, $\mathbb{N}, \mathbb{Z}, \mathbb{R}$ and \mathbb{C} denote the sets of positive integers, integers, real and complex numbers, respectively. Let $s=\sigma+i t$ be a complex variable, and let $\zeta(s)$, as usual, denote the Riemann zeta - function defined, for $\sigma>1$, by

$$
\zeta(s)=\sum_{m=1}^{\infty} \frac{1}{m^{s}}
$$

and by analytic continuation elsewhere. It is well known that the function $\zeta(s)$ has a limit distribution in the sense of the weak convergence of probability measures, see $[4,5,6,9,13,14]$. For more precise statements we need some notation. Denote by meas $\{A\}$ the Lebesgue measure of a measurable set $A \subseteq \mathbb{R}$, by $\mathcal{B}(S)$ the class of Borel sets of the space S, and let

$$
\nu_{T}(\ldots)=\frac{1}{T} \text { meas }\{t \in[0, T]: \ldots\}
$$

where in place of dots a condition satisfied by t is to be written. Moreover, let

$$
\gamma=\{s \in \mathbb{C}:|s|=1\}
$$

be the unit circle on \mathbb{C}, and

$$
\Omega=\prod_{p} \gamma_{p}
$$

where $\gamma_{p}=\gamma$ for all primes p. With the product topology and pointwise multiplication Ω is a compact topological Abelian group. Therefore, on $(\Omega, \mathcal{B}(\Omega))$ the probability Haar

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.
measure m_{H} exists, and this leads to a probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$. Denote by $\omega(\boldsymbol{p})$ the projection of $\omega \in \Omega$ to the coordinate space γ_{p}. Let, for $\sigma>1 / 2$,

$$
\zeta(\sigma, \omega)=\prod_{p}\left(1-\frac{\omega(p)}{p^{\sigma}}\right)^{-1}
$$

Then $\zeta(\sigma, \omega)$ is a complex-valued random element defined on the probability space ($\left.\Omega, \mathcal{B}(\Omega), m_{H}\right)$. Let P_{ξ} stand for the distribution of the random element ξ, so in the case of $\zeta(\sigma, \omega)$

$$
P_{\zeta}(A)=m_{H}(\omega \in \Omega: \zeta(\sigma, \omega) \in A), \quad A \in \mathcal{B}(\mathbb{C}) .
$$

Theorem A. Let $\sigma>1 / 2$ be fixed. Then the probability measure

$$
\nu_{T}(\zeta(\sigma+i t) \in A), \quad A \in \mathcal{B}(\mathbb{C})
$$

converges weakly to P_{ζ} as $T \rightarrow \infty$.
A direct proof of Theorem A for Dirichlet L - functions is given in [2], it also follows from a limit theorem in the space $M(D)$ of functions meromorphic on $D=\{s \in \mathbb{C}$: $\sigma>1 / 2\}$ equipped with the topology of uniform convergence on compacta, see [1] or, more generally, $[\mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}]$, since the function $h: M(D) \rightarrow \mathbb{C}$ defined by

$$
h(f)=f(\sigma), f \in M(D),
$$

is continuous.
Thedrem B. Let $\sigma>1 / 2$ be fixed. Then the probability measure

$$
\nu_{T}(|\zeta(\sigma+i t)| \in A), \quad A \in \mathcal{B}(\mathbb{R})
$$

converges weakly to $P_{|\subseteq|}$ as $T \rightarrow \infty$.
The function $h: \mathbb{C} \rightarrow \mathbb{R}$ given by $h(s)=|s|$, clearly, is continuous, therefore Theorem B is an immediate consequence of Theorem A.

Now let, for $A \in \mathcal{B}(\mathbb{R})$,

$$
L(A)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \int_{A} e^{-\left(\log ^{2} u\right) / 2} \frac{d u}{u}, & A \in(0, \infty), \\ 0, & A \in(-\infty, 0] .\end{cases}
$$

L is the lognormal probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
Theorem C. The probability measure

$$
\nu_{T}\left(\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{(2-1 \log \log T)^{-1 / 2}} \in A\right), \quad A \in \mathcal{B}(\mathbb{R})
$$

converges weakly to L as $T \rightarrow \infty$.

Theorem C in terms of distribution functions is stated in [9].
Let P be a probability measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C})$). Then its characteristic transform $w(\tau, k), \tau \in \mathbf{R}, k \in \mathbb{Z}$, is defined in $[9]$ by

$$
\begin{equation*}
w(\tau, k)=\int_{\mathbf{C} \backslash(0\}}|z|^{i \tau} e^{i k \arg z} d P \tag{1}
\end{equation*}
$$

A probability measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ is called lognormal if its characteristic transform is

$$
\exp \left\{-\frac{\tau^{2}+k^{2}}{2}\right\}, \quad \tau \in \mathbb{R}, k \in \mathbb{Z}
$$

Let $P_{n}, n \in \mathbb{N}$, and P be probability measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$. We say that P_{n} converges weakly in the sense of \mathbb{C} to P as $n \rightarrow \infty$ if P_{n} converges weakly to P as $n \rightarrow \infty$ and

$$
P_{n}(\{0\}) \underset{n \rightarrow \infty}{\longrightarrow} P(\{0\})
$$

(see [9]).
Theorem D. The probability measure

$$
\nu_{T}\left(\left(\zeta\left(\frac{1}{2}+i t\right)\right)^{\left(2^{-1} \log \log T\right)^{-1 / 2}} \in A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

converges weakly in the sense of \mathbb{C} to the lognormal probability measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ as $T \rightarrow \infty$.

A theorem, similar to Theorem D , when $\zeta((1 / 2)+1 /(\log T)+i t)$ instead of $\zeta((1 / 2)$ $+i t)$ is considered, can be found in [9]. Theorem D can be obtained by the same way. Also, Theorem D is a consequence of Selberg's result for $\zeta((1 / 2)+i t)$, see, for example, [6]. Note that, for $\zeta(s) \neq 0, a \neq 0, \zeta^{a}(s)$ is understood as $\exp \{a \log \zeta(s)\}$, where $\arg \zeta(s)$ in $\log \zeta(s)$ is defined by continuous displacement from the point $s=2$ along the straight lines connecting the points $s=2, s=2+i t$ and $s=\sigma+i t$. Since

$$
\nu_{T}(\zeta(\sigma+i t)=0)=o(1), \quad T \rightarrow \infty
$$

we set, for simplicity, $\zeta^{a}(\sigma+i t)=0$ if $\zeta(\sigma+i t)=0$.
Our aim is to consider the joint distribution of $|\zeta(s)|$ and $\zeta(s)$, and to investigate a "measure" of their asymptotic dependence.

Let $\mathbf{X}=\mathbb{R} \times \mathbb{C}$. In Section 2 we shall consider the weak convergence of probability measures on $\left(\mathbf{X}, \mathcal{B}(\mathbf{X})\right.$). For points of \mathbf{X}, we use the notation $\left(x, r e^{i \varphi}\right)$. Let P be a probability measure on ($\mathbf{X}, \mathcal{B}(\mathbf{X})$), and

$$
P_{\mathbf{R}}(A)=P(A \times \mathbb{C}), \quad A \in \mathcal{B}(\mathbb{R})
$$

The functions

$$
\begin{equation*}
w(\tau)=\int_{\mathbf{R}} e^{i \tau x} d P_{\mathbf{R}}, \quad \tau \in \mathbb{R} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
w\left(\tau_{1}, \tau_{2}, k\right)=\int_{\mathbf{X}} e^{i\left(\tau_{1} x+k \varphi\right) r^{i \tau_{2}}} d P, \quad \tau_{1}, \tau_{2} \in \mathbb{R}, k \in \mathbb{Z} \tag{3}
\end{equation*}
$$

where the integrand is zero if $r=0$, are called the characteristic transforms of the measure P.

Now we define the weak convergence of probability measures in the sense of the space X . Let $P_{n}, n \in \mathbb{N}$, and P be probability measures on ($\mathbf{X}, \mathcal{B}(\mathbf{X})$). We say that P_{n} converges weakly in the sense of X to P as $n \rightarrow \infty$ if P_{n} converges weakly to P, and additionally

$$
P_{n}(\mathbb{R} \times\{0\}) \underset{n \rightarrow \infty}{\longrightarrow} P(\mathbb{R} \times\{0\})
$$

Theorem 1. Let $\sigma>1 / 2$ be fixed. Then, as $T \rightarrow \infty$, the probability measure

$$
\nu_{T}((\log |\zeta(\sigma+i t)|, \zeta(\sigma+i t)) \in A), \quad A \in \mathcal{B}(\mathbb{X})
$$

converges weakly in the sense of \mathbb{X} to the measure P on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ defined by its characteristic transforms

$$
\begin{aligned}
w(\tau) & =\int_{\Omega}|\zeta(\sigma, \omega)|^{i \tau} d m_{H}, \quad \tau \in \mathbb{R} \\
w\left(\tau_{1}, \tau_{2}, k\right) & =\int_{\Omega}|\zeta(\sigma, \omega)|^{i \tau_{1}+i \tau_{2}} \exp \{i k \arg \zeta(\sigma, \omega)\} d m_{H}, \quad \tau_{1}, \tau_{2} \in \mathbb{R}, \quad k \in \mathbb{Z}
\end{aligned}
$$

THEOREM 2. As $T \rightarrow \infty$, the probability measure

$$
\nu_{T}\left(\left(\frac{\log |\zeta((1 / 2)+i t)|}{\sqrt{2^{-1} \log \log T}},\left(\zeta\left(\frac{1}{2}+i t\right)\right)^{\left(2^{-1} \log \log T\right)^{-1 / 2}}\right) \in A\right), \quad A \in \mathcal{B}(\mathbf{X})
$$

converges weakly in the sense of \mathbb{X} to the measure P on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ defined by its characteristic transforms

$$
\begin{aligned}
w(\tau) & =e^{-\left(\tau^{2} / 2\right)}, \quad \tau \in \mathbb{R} \\
w\left(\tau_{1}, \tau_{2}, k\right) & =\exp \left\{-\frac{\left(\tau_{1}+\tau_{2}\right)^{2}+k^{2}}{2}\right\}, \tau_{1}, \tau_{2} \in \mathbb{R}, \quad k \in \mathbb{Z}
\end{aligned}
$$

Next we shall discuss the asymptotic dependence of functions. Suppose that ξ_{1} and ξ_{2} are a real and a complex-valued random variables with distributions $P_{\xi_{1}}$ and $P_{\xi_{2}}$,
respectively, defined on some probability space $(\widehat{\Omega}, \mathcal{B}(\widehat{\Omega}), \mathbb{P})$. By the definition, ξ_{1} and ξ_{2} are independent if, for all $A_{1} \in \mathcal{B}(\mathbb{R})$ and $A_{2} \in \mathcal{B}(\mathbb{C})$,

$$
\begin{equation*}
\mathbb{P}\left(\xi_{1} \in A_{1}, \xi_{2} \in A_{2}\right)=P_{\xi_{1}}\left(A_{1}\right) P_{\xi_{2}}\left(A_{2}\right) \tag{4}
\end{equation*}
$$

Since the spaces \mathbb{R} and \mathbb{C} are separable, $\left(\xi_{1}, \xi_{2}\right)$ is a \mathbf{X} - valued random variable. Moreover, $\mathcal{B}(\mathbf{X})=\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{C})$. Therefore, if ξ_{1} and ξ_{2} are independent, then by (4)

$$
\begin{equation*}
\mathbb{P}\left(\left(\xi_{1}, \xi_{2}\right) \in A\right)=P_{\xi_{1}}\left(A_{1}\right) P_{\xi_{2}}\left(A_{2}\right) \tag{5}
\end{equation*}
$$

where

$$
A=A_{1} \times A_{2}, A_{1} \in \mathcal{B}(\mathbb{R}), A_{2} \in \mathcal{B}(\mathbb{C})
$$

Denote by $P_{\xi_{1}, \xi_{2}}$ the distribution of the two-dimensional vector (ξ_{1}, ξ_{2}). Then, in view of (5), the characteristic transforms of the measure $P_{\xi_{1}, \xi_{2}}$ are

$$
\begin{aligned}
w(\tau) & =\int_{\mathbb{R}} e^{i \tau x} d P_{\xi_{1}} \\
w\left(\tau_{1}, \tau_{2}, k\right) & =\int_{\mathbf{X}} e^{i\left(\tau_{1} x+k \varphi\right)} r^{i \tau_{2}} d P_{\xi_{1}, \xi_{2}}=\int_{\mathbf{R}} e^{i \tau_{1} x} d P_{\xi_{1}} \int_{\mathbb{C}} r^{i \tau_{2}} e^{i k \varphi} d P_{\xi_{2}}=w\left(\tau_{1}\right) w\left(\tau_{2}, k\right) .
\end{aligned}
$$

On the other hand, if, for all $\tau_{1}, \tau_{2} \in \mathbb{R}, k \in \mathbb{Z}$,

$$
w\left(\tau_{1}, \tau_{2}, k\right)=w\left(\tau_{1}\right) w\left(\tau_{2}, k\right)
$$

then by Theorem 5, see Section 2,

$$
P_{\xi_{1}, \xi_{2}}(A)=P_{\xi_{1}}\left(A_{1}\right) P_{\xi_{2}}\left(A_{2}\right)
$$

$A=A_{1} \times A_{2}, A_{1} \in \mathcal{B}(\mathbb{R}), A_{2} \in \mathcal{B}(\mathbb{C})$. This shows that ξ_{1} and ξ_{2} are independent. Hence it follows that the quantity

$$
W\left(\xi_{1}, \xi_{2}\right) \stackrel{\text { def }}{=} \sup _{\substack{\tau_{1}, \tau_{i} \in \mathbb{R} \\ k \in \mathbb{Z}}}\left|w\left(\tau_{1}, \tau_{2}, k\right)-w\left(\tau_{1}\right) w\left(\tau_{2}, k\right)\right|
$$

is a certain "measure" of the dependence between ξ_{1} and ξ_{2}. As we just have seen, the random variables ξ_{1} and ξ_{2} are independent if and only if $W\left(\xi_{1}, \xi_{2}\right)=0$. Clearly, $0 \leqslant W\left(\xi_{1}, \xi_{2}\right) \leqslant 2$.

Now we shall apply the last theory to the asymptotic distribution of two functions. Suppose that $f_{1}(t)$ and $f_{2}(t)$ are defined on \mathbb{R} with values in \mathbb{R} and \mathbb{C}, respectively, and that the probability measures

$$
\begin{array}{ll}
\nu_{T}\left(f_{1}(t) \in A\right), & A \in \mathcal{B}(\mathbb{R}), \\
\nu_{T}\left(f_{2}(t) \in A\right), & A \in \mathcal{B}(\mathbb{C}),
\end{array}
$$

and

$$
\nu_{T}\left(\left(f_{1}(t), f_{2}(t)\right) \in A\right), \quad A \in \mathcal{B}(\mathbf{X})
$$

converges weakly to $P_{f_{1}}$, converges weakly in the sense of \mathbb{C} to $P_{f_{2}}$ and converges weakly in the sense of X to $P_{f_{1}, f_{2}}$, respectively, as $T \rightarrow \infty$. Denote by $w_{f_{1}}(\tau), w_{f_{2}}(\tau, k)$ and ($\left.w_{f_{1}}\left(\tau_{1}\right), w_{f_{1}, f_{2}}\left(\tau_{1}, \tau_{2}, k\right)\right)$ the characteristic function and characteristic transforms of the measures $P_{f_{1}}, P_{f_{2}}$ and $P_{f_{1}, f_{2}}$, respectively, and define

$$
W\left(f_{1}(t), f_{2}(t)\right) \stackrel{\text { def }}{=} \sup _{\substack{\tau_{1}, \tau_{2} \in \mathbf{R} \\ k \in \mathbb{Z}}}\left|w_{f_{1}, f_{2}}\left(\tau_{1}, \tau_{2}, k\right)-w_{f_{1}}\left(\tau_{1}\right) w_{f_{2}}\left(\tau_{2}, k\right)\right|
$$

Then by the above remarks the quantity $W\left(f_{1}(t), f_{2}(t)\right)$ is the "measure" of the asymptotic dependence of the functions $f_{1}(t)$ and $f_{2}(t)$.

Let $f(t), t \in \mathbb{R}$, be a complex-valued function. Then, clearly $|f(t)|$ and $f(t)$ are "strongly" asymptotically dependent. In the case of the Riemann zeta - function we have the following results.

Theorem 3. We have

$$
W\left(\frac{\log |\zeta((1 / 2)+i t)|}{\sqrt{2^{-1} \log \log T}},\left(\zeta\left(\frac{1}{2}+i t\right)\right)^{\left(2^{-1} \log \log T\right)^{-1 / 2}}\right)=1 .
$$

In the case $\sigma>1 / 2$, the situation is more complicated, and the estimation of

$$
W(\log |\zeta(\sigma+i t)|, \zeta(\sigma+i t))
$$

remains an open problem.
Theorem 4. Let $\sigma>1 / 2$. Then, for $\tau \in \mathbb{R}, \tau \neq 0$,

$$
W(\log |\zeta(\sigma+i t)|, \zeta(\sigma+i t)) \geqslant 1-\left.\left.\left|\int_{\Omega}\right| \zeta(\sigma, \omega)\right|^{i \tau} d m_{H}\right|^{2}
$$

It is an interesting problem of the dependence on σ of estimates for

$$
W(\log |\zeta(\sigma+i t)|, \zeta(\sigma+i t))
$$

2. Probabilistic background

In this section we consider probability measures and their weak convergence on $((\mathbf{X}, \mathcal{B}(\mathbf{X}))$ where $\mathbb{X}=\mathbb{R} \times \mathbb{C}$.

Clearly, the study of probability measures on ($\mathbf{X}, \mathcal{B}(\mathbf{X})$) can be reduced to that of probability measures on ($\mathbb{R}^{3}, \mathcal{B}\left(\mathbb{R}^{3}\right)$). However, in our case it is convenient to use the trigonometric form $r e^{i \varphi}$ of complex numbers. For probability measures P on ($\mathbb{C}, \mathcal{B}(\mathbb{C})$) this was done in [8], see also [9], by using the characteristic transforms (1). A similar
method of investigations can be also applied for probability measures on ($\mathbf{X}, \mathcal{B}(\mathbf{X})$). We define the characteristic transforms $\left(w(t), w\left(\tau_{1}, \tau_{2}, k\right)\right)$ of the probability measure P on ($\mathbf{X}, \mathcal{B}(\mathbf{X})$) by formulae (2) and (3).

The aim of this section is to obtain, by using the characteristic transforms, the uniqueness and continuity theorems for probability measures on ($\mathbf{X}, \mathcal{B}(\mathbf{X})$).

Theorem 5. A probability measure P on $(\mathbf{X}, \mathcal{B}(\mathbf{X}))$ is uniquely determined by its characteristic transforms $\left(w(\tau), w\left(\tau_{1}, \tau_{2}, k\right)\right)$.

Theorem 6. Let P_{n} be a probability measure on (X, $\mathcal{B}(\mathbf{X})$), and let $\left(w_{n}(\tau)\right.$, $\left.w_{n}\left(\tau_{1}, \tau_{2}, k\right)\right)$ be its characteristic transforms, $n \in \mathbb{N}$. Suppose that

$$
\lim _{n \rightarrow \infty} w_{n}(\tau)=w(\tau), \quad \tau \in \mathbb{R}
$$

and

$$
\lim _{n \rightarrow \infty} w_{n}\left(\tau_{1}, \tau_{2}, k\right)=w\left(\tau_{1}, \tau_{2}, k\right), \quad \tau_{1}, \tau_{2} \in \mathbb{R}, k \in \mathbb{Z}
$$

where the functions $w(\tau), w\left(0, \tau_{2}, 0\right)$ and $w\left(\tau_{1}, 0,0\right)$ are continuous at the points $\tau=0, \tau_{2}=0$ and $\tau_{1}=0$, respectively. Then on $(\mathbf{X}, \mathcal{B}(\mathbf{X}))$ there exists a probability measure P such that P_{n} converges weakly in the sense of X to P as $n \rightarrow \infty$. In this case, $\left(w(\tau), w\left(\tau_{1}, \tau_{2}, k\right)\right)$ are the characteristic transforms of the measure P.

Theorem 7. Let P_{n} and $\left(w_{n}(\tau), w_{n}\left(\tau_{1}, \tau_{2}, k\right)\right)$ be the same as in Theorem 6. Suppose that P_{n} converges weakly in the sense of X to some probability measure P on $(\mathbf{X}, \mathcal{B}(\mathbf{X}))$ as $n \rightarrow \infty$. Then

$$
\lim _{n \rightarrow \infty} w_{n}(\tau)=w(\tau), \quad \tau \in \mathbb{R}
$$

and

$$
\lim _{n \rightarrow \infty} w_{n}\left(\tau_{1}, \tau_{2}, k\right)=w\left(\tau_{1}, \tau_{2}, k\right), \quad \tau_{1}, \tau_{2} \in \mathbb{R}, k \in \mathbb{Z}
$$

Where $\left(w(\tau), w\left(\tau_{1}, \tau_{2}, k\right)\right)$ are the characteristic transforms of the measure P.
To prove Theorems 5-7 we use the following auxiliary space. Let, as above, γ be the unit circle on $\mathbb{C}, \mathbb{T}=\mathbb{R} \times \gamma$ and $\mathbb{Y}=\mathbb{R} \times \mathbb{T}$. We denote the points of the space \mathbb{Y} by (x, y, α) where $x, y \in \mathbb{R}$ and $\alpha \in \gamma$. Define the Fourier transform

$$
f\left(\tau_{1}, \tau_{2}, k\right), \tau_{1}, \tau_{2} \in \mathbb{R}, k \in \mathbb{Z}
$$

of the probability measure P on $(\mathbb{Y}, \mathcal{B}(\mathrm{Y}))$ by

$$
f\left(\tau_{1}, \tau_{2}, k\right)=\int_{\mathbf{Y}} e^{i\left(\tau_{1} x+\tau_{2} y\right)} \alpha^{k} d \mathbf{P}
$$

Lemma 8. The probability measure P is uniquely determined by its Fourier transform $f\left(\tau_{1}, \tau_{2}, k\right)$.

Proof: First of all we notice that the space \mathbf{Y} is locally compact. Therefore, the lemma and the next lemmas follow from general theorems for probability measures on locally compact groups, see, for example, [7]. However, we prefer to give, for fulness, a simple direct proof.

Let $f_{j}\left(\tau_{1}, \tau_{2}, k\right)$ be the Fourier transform of the probability measure P_{j} on $(\mathbf{Y}, \mathcal{B}(\mathbb{Y}))$, $j=1,2$. We have to prove that

$$
f_{1}\left(\tau_{1}, \tau_{2}, k\right)=f_{2}\left(\tau_{1}, \tau_{2}, k\right), \quad \tau_{1}, \tau_{2} \in \mathbb{R}, k \in \mathbb{Z}
$$

implies the equality

$$
P_{1}(A)=P_{2}(A)
$$

for all $A \in \mathcal{B}(\mathbb{Y})$. It suffices to prove the later equality for the sets

$$
A=(a, b] \times(c, d] \times l
$$

where l is an arc of the circle γ, and

$$
-\infty<a<b<\infty,-\infty<c<d<\infty
$$

Define a function $\psi: \mathbb{R} \rightarrow[0,1]$ by

$$
\psi(u)=\left\{\begin{array}{lll}
1 & \text { if } & u \leqslant 0 \\
1-u & \text { if } & 0 \leqslant u \leqslant 1 \\
0 & \text { if } & u \geqslant 1
\end{array}\right.
$$

and let $\psi_{n}(u)=\psi(n u)$. Moreover, we put

$$
\begin{aligned}
& g_{1, n}(x)=\psi_{n}(\rho(x,(a, b])) \\
& g_{2, n}(y)=\psi_{n}(\rho(y,(c, d])), \\
& g_{3, n}(\alpha)=\psi_{n}\left(\rho_{1}(\alpha, l)\right)
\end{aligned}
$$

where ρ and ρ_{1} are the distance on \mathbb{R} and γ, respectively. Let I_{B} denote the indicator function of a set B. Then, obviously,

$$
\begin{aligned}
& g_{1, n}(x) \rightarrow I_{(a, b) \mid}(x), \\
& g_{2, n}(y) \rightarrow I_{(c, \alpha)}(y), \\
& g_{3, n}(\alpha) \rightarrow I_{l}(\alpha),
\end{aligned}
$$

as $n \rightarrow \infty$. Hence we have

$$
P_{j}(A)=\lim _{n \rightarrow \infty} \int_{\mathbf{Y}} g_{1, n}(x) g_{2, n}(y) g_{3, n}(\alpha) d P_{j}, \quad j=1,2
$$

and it suffices to prove that, for $n \in \mathbb{N}$,

$$
\begin{equation*}
\int_{\mathbf{Y}} g_{1, n}(x) g_{2, n}(y) g_{3, n}(\alpha) d P_{1}=\int_{\mathbf{Y}} g_{1, n}(x) g_{2, n}(y) g_{3, n}(\alpha) d P_{2} \tag{6}
\end{equation*}
$$

We fix $n \in \mathbb{N}$. Let $0<\varepsilon<1$, and let $K_{1}>0$ and $K_{2}>0$ be such that the functions $g_{1, n}(x)$ and $g_{2, n}(y)$ are zeros in the exterior of $\left[-K_{1}, K_{1}\right]$ and $\left[-K_{2}, K_{2}\right]$, respectively, and

$$
\begin{equation*}
P_{j}\left(\mathbb{Y} \backslash A_{K_{1}, K_{2}}\right)<\varepsilon, \quad j=1,2 \tag{7}
\end{equation*}
$$

where

$$
A_{K_{1}, K_{2}}=\left\{(x, y, \alpha) \in \mathbf{Y}:|x| \leqslant K_{1},|y| \leqslant K_{2}\right\} .
$$

Since $g_{j, n}\left(-K_{j}\right)=g_{j, n}\left(K_{j}\right)$, the function $g_{j, n}(x)$ by the Weierstrass theorem can be approximated uniformly on $\left[-K_{j}, K_{j}\right]$ by a finite trigonometric sum

$$
\sum_{m_{j}} a_{j, m_{j}} e^{\left(i m_{j} \pi x\right) /\left(K_{j}\right)}
$$

with period $2 K_{j}, j=1,2$. Similarly, the function $g_{3, n}(\alpha)$ can be approximated by a linear combination of circle functions

$$
\sum_{m_{3}} b_{m_{3}} \alpha^{m_{3}}
$$

Therefore, the product $g_{1, n}(x) g_{2, n}(y) g_{3, n}(\alpha)$ can be approximated uniformly on

$$
\left[-K_{1}, K_{1}\right] \times\left[-K_{2}, K_{2}\right]
$$

by a finite sum

$$
g(x, y, \alpha)=\sum_{m_{1}, m_{2}, m_{3}} a_{1, m_{1}} a_{2, m_{2}} b_{3} e^{\left(i m_{1} \pi x\right) /\left(K_{1}\right)} e^{\left(i m_{2} \pi y\right) /\left(K_{2}\right)} \alpha^{m_{3}}
$$

We choose the latter sum to satisfy

$$
\begin{equation*}
\left|g_{1, n}(x) g_{2, n}(y) g_{3, n}(\alpha)-g(x, y, \alpha)\right|<\varepsilon \tag{8}
\end{equation*}
$$

for all $(x, y, \alpha) \in A_{K_{1}, K_{2}}$.
Since

$$
\left|g_{1, n}(x) g_{2, n}(y) g_{3, n}(\alpha)\right| \leqslant 1
$$

by (8)

$$
|g(x, y, \alpha)|<1+\varepsilon
$$

for all $(x, y, \alpha) \in A_{K_{1}, K_{2}}$. Therefore, by periodicity,

$$
\begin{equation*}
\left|g_{1, n}(x) g_{2, n}(y) g_{3, n}(\alpha)-g(x, y, \alpha)\right|<2+\varepsilon \tag{9}
\end{equation*}
$$

for $(x, y, \alpha) \in Y \backslash A_{K_{1}, K_{2}}$. Then, in view of (7)-(9),

$$
\begin{aligned}
& \int_{\mathbf{Y}}\left|g_{1, n}(x) g_{2, n}(y) g_{3, n}(\alpha)-g(x, y, \alpha)\right| d P_{j} \\
& \quad=\left(\int_{A_{K_{1}, K_{2}}}+\int_{Y \backslash A_{K_{1}, K_{2}}}\right)\left|g_{1, n}(x) g_{2, n}(y) g_{3, n}(\alpha)-g(x, y, \alpha)\right| d P_{j}<\varepsilon+(2+\varepsilon) \varepsilon<4 \varepsilon .
\end{aligned}
$$

From this it follows that

$$
\begin{align*}
&\left|\int_{Y} g_{1, n}(x) g_{2, n}(y) g_{3, n}(\alpha) d P_{1}-\int_{Y} g_{1, n}(x) g_{2, n}(y) g_{3, n}(\alpha) d P_{2}\right| \tag{10}\\
&<\left|\int_{\mathbf{Y}} g(x, y, \alpha) d P_{1}-\int_{\mathbf{Y}} g(x, y, \alpha) d P_{2}\right|+8 \varepsilon
\end{align*}
$$

By the hypothesis of the lemma

$$
\int_{Y} g(x, y, \alpha) d P_{1}=\int_{\mathbf{Y}} g(x, y, \alpha) d P_{2} .
$$

Since ε is an arbitrary positive number, this shows that (6) is a simple consequence of (10).

Proof of Theorem 5: At first we note that one function $w\left(\tau_{1}, \tau_{2}, k\right)$ can not determine uniquely the measure P. For example, if P_{j} has the unit mass at the point $\left(x_{j}, 0\right), j=1,2, x_{1} \neq x_{2}$, then $w_{1}\left(\tau_{1}, \tau_{2}, k\right)=w_{2}\left(\tau_{1}, \tau_{2}, k\right)=0$ thought $P_{1} \neq P_{2}$. In other words, if $r=0$, the function $w\left(\tau_{1}, \tau_{2}, k\right)$ does not separate measures on the component \mathbb{R} of the space X.

Let $X_{0}=\mathbb{R} \times(\mathbb{C} \backslash\{0\})$. Then the function $h: X_{0} \rightarrow Y$ given by

$$
h\left(x, r e^{i \varphi}\right)=\left(x, \log r, e^{i \varphi}\right)
$$

is continuous. Therefore,

$$
\begin{equation*}
w\left(\tau_{1}, \tau_{2}, k\right)=\int_{\mathbf{Y}} e^{i\left(\tau_{1} x+\tau_{2} y\right)} \alpha^{k} d P h^{-1}, \quad \tau_{1}, \tau_{2} \in \mathbb{R}, k \in \mathbb{Z} \tag{11}
\end{equation*}
$$

where $P h^{-1}$ is given by $P h^{-1}(A)=P\left(h^{-1} A\right), A \in \mathcal{B}(\mathbb{Y})$.
Let $\beta=w(0,0,0)=P\left(\mathbb{X}_{0}\right)$. Suppose that $\beta \neq 0$, and define on $(\mathbb{Y}, \mathcal{B}(\mathbb{Y}))$ the probability measure \widehat{P} by the formula

$$
\begin{equation*}
\widehat{P}(A)=\frac{P\left(h^{-1} A\right)}{\beta}=\frac{P h^{-1}(A)}{\beta}, \quad A \in(\mathcal{B})(\mathbb{Y}) \tag{12}
\end{equation*}
$$

Substituting this in (11), we obtain that

$$
\begin{equation*}
w\left(\tau_{1}, \tau_{2}, k\right)=\beta \int_{\mathbf{Y}} e^{i\left(\tau_{1} x+\tau_{2} y\right)} \alpha^{k} d \widehat{P}, \quad \tau_{1}, \tau_{2} \in \mathbf{R}, k \in \mathbb{Z} \tag{13}
\end{equation*}
$$

Let

$$
\widehat{f}\left(\tau_{1}, \tau_{2}, k\right)=\int_{\mathbf{Y}} e^{i\left(\tau_{1} x+\tau_{2} y\right)} \alpha^{k} d \widehat{P}, \quad \tau_{1}, \tau_{2} \in \mathbb{R}, k \in \mathbb{Z}
$$

denote the Fourier transform of the measure \widehat{P}. Then by (13)

$$
\begin{equation*}
\widehat{f}\left(\tau_{1}, \tau_{2}, k\right)=\frac{w\left(\tau_{1}, \tau_{2}, k\right)}{\beta}, \quad \tau_{1}, \tau_{2} \in \mathbb{R}, k \in \mathbb{Z} \tag{14}
\end{equation*}
$$

By Lemma 8, the measure \widehat{P} is uniquely determined by its Fourier transform $\widehat{f}\left(\tau_{1}, \tau_{2}, k\right)$, therefore, in view of (14), also by $w\left(\tau_{1}, \tau_{2}, k\right)$. Consequently, the measure $P(A)$ is uniquely determined by $w\left(\tau_{1}, \tau_{2}, k\right)$ for $A \in \mathcal{B}(\mathbb{X}), A \in \mathbb{X}_{0}$. In particular, $P(A \times(\mathbb{C} \backslash\{0\}))$ is uniquely determined for all $A \in \mathcal{B}(\mathbb{R})$. Since $P(A \times \mathbb{C})$ is uniquely determined by $w(\tau)$, we derive from this that $P(A \times\{0\}), A \in \mathcal{B}(\mathbb{R})$, is also uniquely determined by $w(\tau)$ and $w\left(\tau_{1}, \tau_{2}, k\right)$. This shows that $P(A)$ is uniquely determined by its characteristic transforms also for $A \in \mathcal{B}(\mathbb{X}), A \cap(\mathbb{R} \times\{0\}) \neq \emptyset$. Thus, in the case $\beta \neq 0$ the theorem is proved. \square

Now let $\beta=0$, that is, $P\left(\mathbb{X}_{0}\right)=w(0,0,0)=0$. Consequently, $P(A)=0, A$ $\in \mathcal{B}(\mathbb{X}), A \in \mathbb{X}_{0}$, is uniquely determined. In this case, for every

$$
A \in \mathcal{B}(\mathbb{X}), A=A_{1} \times A_{2}, A_{1} \in \mathcal{B}(\mathbb{R}), A_{2} \in \mathcal{B}(\mathbb{C}), 0 \in A_{2}
$$

we have

$$
P(A)=P\left(A_{1} \times A_{2}\right)=P\left(A_{1} \times\left(A_{2} \backslash\{0\}\right)\right)+P\left(A_{1} \times\{0\}\right)=P\left(A_{1} \times\{0\}\right)
$$

However,

$$
P\left(A_{1} \times\{0\}\right)=P\left(A_{1} \times \mathbb{C}\right)-P\left(A_{1} \times(\mathbb{C} \backslash\{0\})=P\left(A_{1} \times \mathbb{C}\right)=P_{\mathbf{R}}\left(A_{1}\right)\right.
$$

and is uniquely determined by $w(\tau)$. The theorem is proved.
We begin the proof of Theorem 6 with a statement on the weak convergence of probability measures on ($\mathbb{Y}, \mathcal{B}(\mathbb{Y})$).

Lemma 9. Let P_{n} be a probability measure on $(\mathbb{Y}, \mathcal{B}(\mathbb{Y}))$, and let $f_{n}\left(\tau_{1}, \tau_{2}, k\right)$ be its Fourier transform, $n \in \mathbb{N}$. Suppose that

$$
\lim _{n \rightarrow \infty} f_{n}\left(\tau_{1}, \tau_{2}, k\right)=f\left(\tau_{1}, \tau_{2}, k\right), \quad \tau_{1}, \tau_{2}, \in \mathbb{R}, k \in \mathbb{Z}
$$

and that the functions $f\left(0, \tau_{2}, 0\right)$ and $f\left(\tau_{1}, 0,0\right)$ are continuous at the points $\tau_{2}=0$ and $\tau_{1}=0$, respectively. Then on $(\mathbb{Y}, \mathcal{B}(\mathbb{Y}))$ there exists a probability measure P such that
P_{n} converges weakly to P as $\rightarrow \infty$. In this case, $f\left(\tau_{1}, \tau_{2}, k\right)$ is the Fourier transform of the measure P.

Proof: Let

$$
P_{\mathrm{R}, n}(A)=P_{n}(A \times \mathbb{T}), \quad A \in \mathcal{B}(\mathbb{R})
$$

and

$$
P_{\mathbb{T}, n}(A)=P_{n}(\mathbb{R} \times A), \quad A \in \mathcal{B}(\mathbb{T})
$$

Its is well known that the sequence $\left\{P_{n}\right\}$ is tight (for definition, see [3]) if every sequence of marginal distributions $\left\{P_{\mathbb{R}, n}\right\}$ and $\left\{P_{\mathbf{T}, n}\right\}$ is tight. We shall prove the tightness of the sequence $\left\{P_{\mathbb{T}, n}\right\}$. Clearly,

$$
f_{n}\left(\tau_{2}, k\right) \stackrel{\text { def }}{=} f_{n}\left(0, \tau_{2}, k\right), \tau_{2} \in \mathbb{R}, k \in \mathbb{Z}
$$

is the Fourier transform of the measure $P_{\mathrm{T}, n}$ (for definition, see [9]). By the hypothesis of the lemma.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{n}\left(\tau_{2}, k\right)=f\left(0, \tau_{2}, k\right) \stackrel{\text { def }}{=} f\left(\tau_{2}, k\right), \quad \tau_{2} \in \mathbb{R}, k \in \mathbb{Z} \tag{15}
\end{equation*}
$$

By the Fubini theorem, for $u>0$,

$$
\begin{align*}
\frac{1}{u} \int_{-u}^{u}\left(1-f_{n}\left(\tau_{2}, 0\right)\right) d \tau_{2} & =\int_{\mathbb{T}}\left(\frac{1}{u} \int_{-u}^{u}\left(1-e^{i \tau_{2} y}\right) d \tau_{2}\right) d P_{\mathbf{T}, n} \\
& =2 \int_{\mathbf{T}}\left(1-\frac{\sin u y}{u y}\right) d P_{\mathbf{T}, n} \leqslant \int_{(y, \alpha) \in,|y| \geqslant \frac{2}{u}}\left(1-\frac{1}{u y}\right) d P_{\mathbf{T}, n} \\
& \geqslant P_{\mathbb{T}, n}\left((y, \alpha) \in \mathbb{T}:|y| \geqslant \frac{2}{u}\right) \tag{16}
\end{align*}
$$

Since $f\left(\tau_{2}, 0\right)$ is continuous at $\tau_{2}=0$, for every $\varepsilon>0$ there exists $u>0$ such that

$$
\frac{1}{u} \int_{-u}^{u}\left|1-f\left(\tau_{2}, 0\right)\right| d \tau_{2}<\varepsilon
$$

Therefore, by (15) and the Lebesgue theorem on bounded convergence there exists $n_{0} \in \mathbb{N}$ such that

$$
\frac{1}{u} \int_{-u}^{u}\left|1-f_{n}\left(\tau_{2}, 0\right)\right| d \tau_{2}<2 \varepsilon
$$

for $n \geqslant n_{0}$. From this and (16) we find that, for $n \geqslant n_{0}$,

$$
P_{\mathbf{T}, n}\left((y, \alpha) \in \mathbb{T}:|y| \geqslant \frac{2}{u}\right)<2 \varepsilon .
$$

Clearly, taking u smaller if this is necessary, we can demonstrate that the later inequality should remain true also for $n<n_{0}$. This shows that there exists a compact subset $K \subset \mathbb{T}$ such that

$$
P_{\mathbf{T}, n}(K)>1-2 \varepsilon
$$

for all $n \in \mathbb{N}$, that is, the sequence $\left\{P_{\mathrm{T}, n}\right\}$ is tight.
Similarly we obtain that the sequence $\left\{P_{\mathrm{R}, n}\right\}$ is also tight. Therefore, the sequence of probability measures $\left\{P_{n}\right\}$ is tight. Hence, by the Prokhorov theorem, see, for example, [2], it is relatively compact, and we have that every subsequence $\left\{P_{n_{1}}\right\} \subset\left\{P_{n}\right\}$ contains a subsequence $\left\{P_{n_{2}}\right\}$ weakly convergent to some probability measure P on $(\mathbb{Y}, \mathcal{B}(\mathbb{Y})$) as $n_{2} \rightarrow \infty$. Moreover, $f\left(\tau_{1}, \tau_{2}, k\right)$ is the Fourier transform of the measure P. By Lemma 8 the measure P is the same for all weakly convergent subsequences. Thus, the lemma is a consequence of [3, Theorem 2.3].

Proof of Theorem 6: Let $\beta_{n}=w_{n}(0,0,0)$. By the hypothesis of the theorem

$$
\lim _{n \rightarrow \infty} \beta_{n}=w(0,0,0) \stackrel{\text { def }}{=} \beta
$$

If $\beta \neq 0$, there exists $n_{0} \in \mathbb{N}$ such that $\beta_{n} \neq 0$ for $n \geqslant n_{0}$. For $n \geqslant n_{0}$, define the measure \widehat{P}_{n} on $(\mathbb{Y}, \mathcal{B}(\mathbb{Y}))$ by formula (12), and let $\widehat{f}_{n}\left(\tau_{1}, \tau_{2}, k\right)$ be its Fourier transform. Then the hypothesis of the theorem and a formula of the type (14)

$$
\widehat{f}_{n}\left(\tau_{1}, \tau_{2}, k\right)=\frac{w_{n}\left(\tau_{1}, \tau_{2}, k\right)}{\beta_{n}}
$$

imply the existence of the limit

$$
\lim _{n \rightarrow \infty} \widehat{f}_{n}\left(\tau_{1}, \tau_{2}, k\right)=\widehat{f}\left(\tau_{1}, \tau_{2}, k\right), \quad \tau_{1}, \tau_{2} \in \mathbb{R}, k \in \mathbb{Z}
$$

where the functions $\widehat{f}\left(\tau_{1}, 0,0\right)$ and $\widehat{f}\left(0, \tau_{2}, 0\right)$ are continuous at $\tau_{1}=0$ and $\tau_{2}=0$, respectively. Therefore, by Lemma 9 on ($\mathbb{Y}, \mathcal{B}(\mathbb{Y})$) there exists a probability measure \widehat{P} such that \widehat{P}_{n} converges weakly to \widehat{P} as $n \rightarrow \infty$, and $\widehat{f}\left(\tau_{1}, \tau_{2}, k\right)$ is the Fourier transform of \widehat{P}.

Denote by ∂A the boundary of a set A. The function $h: \mathbf{X}_{\mathbf{0}} \rightarrow \mathbf{Y}$ defined in the proof of Theorem 5 is homeomorphic. Therefore, for $A \in B(Y)$,

$$
\begin{equation*}
\partial\left(h^{-1} A\right)=h^{-1}(\partial A) \tag{17}
\end{equation*}
$$

Since \widehat{P}_{n} converges weakly to \widehat{P} and $\beta_{n} \rightarrow \beta$, we have from the definition of \widehat{P} that on $(\mathbf{X}, \mathcal{B}(\mathbf{X}))$ there exists a probability measure P such that $\widehat{P}_{n}(A) \rightarrow P(A), n \rightarrow \infty$, for the sets $A=h^{-1} B$, where $B \in \mathcal{B}(\mathrm{Y})$ and $P\left(h^{-1} \partial B\right)=0$. However, then in view of (17) $P\left(\partial h^{-1} B\right)=P(\partial A)=0$. Thus, we have that

$$
\begin{equation*}
P_{n}(A) \rightarrow P(A), \quad n \rightarrow \infty, \tag{18}
\end{equation*}
$$

for all continuity sets A of the measure P which do not contain the points ($x, 0$). In particular case,

$$
\begin{equation*}
P_{n}(A \times(\mathbb{C} \backslash\{0\})) \rightarrow P(A \times(\mathbb{C} \backslash\{0\})), \quad n \rightarrow \infty \tag{19}
\end{equation*}
$$

for all continuity sets A of $P(A \times \mathbb{C})=P_{\mathbf{R}}(A)$. Moreover, since $w_{n}(\tau) \rightarrow w(\tau), n \rightarrow \infty$, and $w(\tau)$ is continuous at $\tau=0$, it follows that

$$
P_{n}(A \times \mathbb{C}) \rightarrow P(A \times \mathbb{C}), \quad n \rightarrow \infty
$$

for all continuity sets A of $P_{\mathbb{R}}$. This together with (19) implies the relation

$$
\begin{equation*}
P_{n}(A \times\{0\}) \rightarrow P(A \times\{0\}), \quad n \rightarrow \infty \tag{20}
\end{equation*}
$$

for all continuity sets A of $P_{\mathbf{R}}$. Suppose that $B \supset\{0\}$ is a continuity set of the measure $P_{\mathbb{C}}, P_{\mathbb{C}}(B)=P(\mathbb{R} \times B)$. Then in view of (18)-(20), for every continuity set A of $P_{\mathbb{R}}$,

$$
\begin{aligned}
P_{n}(A \times B) & =P_{n}\left(A \times\left((\mathbb{C} \backslash\{0\}) \backslash B^{c}\right) \cup\{0\}\right) \\
& =P_{n}(A \times(\mathbb{C} \backslash\{0\}))-P_{n}\left(A \times B^{c}\right)+P_{n}(A \times\{0\}) \rightarrow P(A \times B), n \rightarrow \infty
\end{aligned}
$$

Therefore, we have that P_{n} converges weakly to P as $n \rightarrow \infty$.
Since $\beta_{n} \rightarrow \beta$, we find similarly that $P_{n}(\mathbb{R} \times\{0\}) \rightarrow P(\mathbb{R} \times\{0\}), n \rightarrow \infty$, and the theorem in the case $\beta \neq 0$ is proved.

Now suppose that $\beta=0$. Then $P_{n}(\mathbb{R} \times(\mathbb{C} \backslash\{0\})) \rightarrow 0$ as $n \rightarrow \infty$. Hence $P_{n}(A)$ $\rightarrow 0, n \rightarrow \infty$, for all $A \in \mathbb{R} \times(\mathbb{C} \backslash\{0\})$. Since $w_{n}(\tau) \rightarrow w(\tau), n \rightarrow \infty$, we have that $P_{n}(A \times \mathbb{C}) \rightarrow P(A \times \mathbb{C}), n \rightarrow \infty$, for all continuity sets A of P_{R}. Hence and from relation

$$
P_{n}(A \times(\mathbb{C} \backslash\{0\})) \rightarrow 0, \quad n \rightarrow \infty
$$

we obtain that $P_{n}(A \times\{0\}) \rightarrow P(A \times \mathbb{C})=P(A \times\{0\})$. Since $P_{n}(\mathbb{R} \times\{0\}) \rightarrow 1, n \rightarrow \infty$, it follows that P_{n} converges weakly in the sense of \mathbf{X} as $n \rightarrow \infty$ to the measure P the mass of which is concentrated on $\mathbb{R} \times\{0\}$.

Clearly, $\left(w(\tau), w\left(\tau_{1}, \tau_{2}, k\right)\right)$ are the characteristic transforms of P.
Lemma 10. Let $\left\{P_{n}\right\}$ and $\left\{f_{n}\left(\tau_{1}, \tau_{2}, k\right)\right\}$ be the same as in Lemma 9. Suppose that P_{n} converges weakly to some probability measure P on $(\mathbb{Y}, \mathcal{B}(\mathbb{Y}))$ as $n \rightarrow \infty$. Then

$$
\lim _{n \rightarrow \infty} f_{n}\left(\tau_{1}, \tau_{2}, k\right)=f\left(\tau_{1}, \tau_{2}, k\right), \quad \tau_{1}, \tau_{2} \in \mathbb{R}, k \in \mathbb{Z}
$$

where $f\left(\tau_{1}, \tau_{2}, k\right)$ is the Fourier transform of the measure P.
Proof: The lemma is an immediate consequence of the definition of the Fourier transforms and weak convergence of probability measures.

Proof of Theorem 7: The weak convergence of P_{n} to P implies that of $P_{\mathrm{R}, n}$ to $P_{R}, n \rightarrow \infty$. Therefore, we have that

$$
\lim _{n \rightarrow \infty} w_{n}(\tau)=w(\tau), \quad \tau \in \mathbb{R} .
$$

We have that

$$
\beta \stackrel{\operatorname{def}}{=} w(0,0,0)=\int_{\mathbf{x}_{0}} d P=P(\mathbb{R} \times(\mathbb{C} \backslash\{0\})) .
$$

Since $P_{n}(\mathbb{R} \times\{0\}) \rightarrow P(\mathbb{R} \times\{0\}), n \rightarrow \infty$, hence we obtain that

$$
\beta_{n} \stackrel{\operatorname{def}}{=} w_{n}(0,0,0) \rightarrow \beta, n \rightarrow \infty .
$$

If $\beta \neq 0$, then we obtain that \widehat{P}_{n} converges weakly to \widehat{P} as $n \rightarrow \infty$. Now by Lemma 10 it follows that

$$
\lim _{n \rightarrow \infty} \widehat{f}_{n}\left(\tau_{1}, \tau_{2}, k\right)=\widehat{f}\left(\tau_{1}, \tau_{2}, k\right), \quad \tau_{1}, \tau_{2}, \in \mathbb{R}, k \in \mathbb{Z}
$$

Therefore, from a formula of type (14) we find that

$$
\lim _{n \rightarrow \infty} w_{n}\left(\tau_{1}, \tau_{2}, k\right)=w\left(\tau_{1}, \tau_{2}, k\right), \quad \tau_{1}, \tau_{2} \in \mathbb{R}, k \in \mathbb{Z}
$$

If $\beta=0$, then the limit measure P is concentrated on $\mathbb{R} \times\{0\}$, and its characteristic transform $w\left(\tau_{1}, \tau_{2}, k\right) \equiv 0$. Then, by the definition of the characteristic transforms

$$
\lim _{n \rightarrow \infty} w_{n}\left(\tau_{1}, \tau_{2}, k\right) \equiv 0 .
$$

The theorem is proved.

3. Proof of Theorems 1-4

Theorems 1 and 2 are simple consequences of Theorems A-D and Theorem 6.
Proof of Theorem 1: The characteristic transforms of the measure of the theorem are

$$
\left(\frac{1}{T} \int_{0}^{T}|\zeta(\sigma+i t)|^{i \tau} d \tau, \frac{1}{T} \int_{0}^{T}|\zeta(\sigma+i t)|^{i\left(\tau_{1}+\tau_{2}\right)} \exp \{i k \arg \zeta(\sigma+i t)\} d t\right)
$$

By Theorems A and B these characteristic transforms converge to

$$
\left(\int_{\Omega}|\zeta(\sigma, \omega)|^{i \tau} d m_{H}, \int_{\Omega}|\zeta(\sigma, \omega)|^{i\left(\tau_{1}+\pi_{2}\right)} \exp \{i k \arg \zeta(\sigma, \omega)\} d m_{H}\right)
$$

as $T \rightarrow \infty$. Therefore, it remains to apply Theorem 6 .

Proof of Theorem 2: The characteristic transforms of the measure of the theorem are

$$
\begin{align*}
& \left(\frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{(i \tau) /\left(\sqrt{2^{-1} \log \log T}\right)} d t\right. \tag{21}\\
& \left.\quad \frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{\left(i\left(\tau_{1}+\tau_{2}\right)\right) /\left(\sqrt{\left.2^{-1} \log \log T\right)}\right.} \exp \left\{i k \frac{\arg \zeta((1 / 2)+i t)}{\sqrt{2^{-1} \log \log T}}\right\} d t\right)
\end{align*}
$$

Since the characteristic function of the measure L is $e^{\left(-\tau^{2}\right) / 2}$, and the characteristic transforms of the lognormal probability measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ is $e^{\left(-\tau^{2}\right) / 2-\left(k^{2}\right) / 2}$, by Theorems C and D we obtain that the characteristic transforms (21) converge to

$$
\left(e^{-\left(\tau^{2}\right) / 2}, e^{-\left(\left(\tau_{1}+\tau_{2}\right)^{2} / 2\right)-\left(k^{2} / 2\right)}\right)
$$

as $T \rightarrow \infty$. Hence, by Theorem 6, the theorem follows.
Proof of Theorem 3: By Theorems 2, and C, D

$$
\begin{aligned}
W\left(\log \left|\zeta\left(\frac{1}{2}+i t\right)\right| / \sqrt{2^{-1} \log \log T},\right. & \left.\left(\zeta\left(\frac{1}{2}+i t\right)\right)^{\left(2^{-1} \log \log T\right)^{-1 / 2}}\right) \\
& =\sup _{\substack{\tau_{1}, \tau_{2} \in \mathbb{R} \\
k \in \mathbb{R}}}\left|e^{-\left(\left(\tau_{1}+\tau_{2}\right)^{2}\right) / 2-\left(k^{2} / 2\right)}-e^{-\tau_{1}^{2} / 2} e^{-\left(\tau_{2}^{2}+k^{2}\right) / 2}\right|
\end{aligned}
$$

Let

$$
f\left(\tau_{1}, \tau_{2}\right)=e^{-\left(\tau_{1}+\tau_{2}\right)^{2} / 2}-e^{-\tau_{1}^{2} / 2} e^{-\tau_{2}^{2} / 2}
$$

Obviously, $\left|f\left(\tau_{1}, \tau_{2}\right)\right| \leqslant 1$ (as $\tau_{1}=-\tau_{2}$ and $\tau_{2} \rightarrow \infty, f\left(\tau_{1}, \tau_{2}\right) \rightarrow 1$).
Proof of Theorem 4: Theorem 1 and Theorems A and B imply

$$
\begin{aligned}
& W(\log |\zeta(\sigma+i t)|, \zeta(\sigma+i t)) \\
&=\left.\sup _{\substack{\tau_{1}, \tau_{2} \in \mathbb{R} \\
k \in \mathbf{R}}}\left|\int_{\Omega}\right| \zeta(\sigma, \omega)\right|^{i \tau_{1}+i \tau_{2}} \exp \{i k \arg \zeta(\sigma, \omega)\} d m_{H} \\
& \quad-\int_{\Omega}|\zeta(\sigma, \omega)|^{i \tau_{1}} d m_{H} \int_{\Omega}|\zeta(\sigma, \omega)|^{i \tau_{2}} \exp \{i k \arg \zeta(\sigma, \omega)\} d m_{H} \mid .
\end{aligned}
$$

Taking $\tau_{1}=-\tau_{2} \neq 0$ and $k=0$, we find that the expression inside modulo is

$$
1-\left.\left.\left|\int_{\Omega}\right| \zeta(\sigma, \omega)\right|^{i \tau_{1}} d m_{H}\right|^{2}
$$

This proves the theorem.

References

[1] B. Bagchi, The statistical behavior and universality properties of the Riemann zeta-function and other allied Dirichlet series, (Ph.D. Thesis) (Indian Statistical Institute, Calcutta, 1981).
[2] I. Belov, 'A limit theorem for the Dirichlet L-functions on the complex plane', Chebyshevskij Sb. 4 (2003), 122-133.
[3] P. Billingsley, Convergence of probability measures (J. Wiley and Sons, New York, 1962).
[4] H. Bohr and B. Jessen, 'Über die Wertverteilung der Riemannschen Zeta funktion', Erste Mitteilung, Acta Math. 541 (930), 1-35.
[5] H. Bohr and B. Jessen, 'Über die Wertverteilung der Riemannschen Zeta funktion', Zweite Mitteilung, Acta Math. 58 (1932), 1-55.
[6] D. Joyner, Distribution Theorems of L-functions, Pitman Res. Notes in Math. Ser. 142 (Longman Sci. \& Tech., Harlow, 1986).
[7] H. Heyer, Probability nmeasures on locally compact groups (Springer-Verlag, Berlin, 1977).
[8] A. Laurincikas, 'Distribution of values of complex-valued functions', (in Russian), Litovsk. Mat. Sb. 15 (1975), 123-134.
[9] A. Laurinčikas, Limit theorems for the Riemann zeta-function (Kluwer Academic Publishers, Dordrecht, 1996).
[10] A. Laurinčikas, 'Limit theorems for the Matsumoto zeta-function', J. Theor. Nombres Bordeaux 8 (1996), 143-158.
[11] A. Laurincikas, 'On limit distribution of the Matsumoto zeta-function', Lithuanian Math. J. 36 (1996), 371-387.
[12] A. Laurincikas, 'On limit distribution of the Matsumoto zeta-function', Acta Arith. 79 (1997), 31-39.
[13] K. Matsumoto, 'Value - distribution of zeta-functions', in Analytic Number Theory, (K. Nagasaka and E. Fouvry, Editors), Lecture Notes in Math. 1437, 1990, pp. 178-187.
[14] K. Matsumoto, 'Probabilistic value - distribution theory of zeta-functions', Sūgaku Expositions 17 (2004), 51-71.

[^1]
[^0]: Received 4th October, 2005
 Partially supported by Lithuanian Foundation of Studies and Science.

[^1]: Department of Mathematics and Informatics
 Vilnius University
 Naugarduko, 24
 03225 Vilnius
 Lithuania
 e-mail: antanas.laurincikas@maf.vu.lt

