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Ekedahl–Oort Strata for Good Reductions
of Shimura Varieties of Hodge Type

Chao Zhang

Abstract. For a Shimura variety ofHodge type with hyperspecial level structure at a prime p, Vasiu
and Kisin constructed a smooth integral model (namely the integral canonical model) uniquely
determined by a certain extension property. We deûne and study the Ekedahl–Oort stratiûcations
on the special ûbers of those integral canonical models when p > 2. _is generalizes Ekedahl–
Oort stratiûcations deûned and studied by Oort on moduli spaces of principally polarized abelian
varieties and those deûned and studied byMoonen,Wedhorn, andViehmann on good reductions of
Shimura varieties of PEL type. We show that the Ekedahl–Oort strata are parameterized by certain
elements w in the Weyl group of the reductive group in the Shimura datum. We prove that the
stratum corresponding to w is smooth of dimension l(w) (i.e., the length of w) if it is non-empty.
We also determine the closure of each stratum.

1 Introduction

Ekedahl–Oort strata were ûrst deûned and studied by Ekedahl and Oort for Siegel
modular varieties in late 1990’s in [19]. Let g , n be integers such that g > 0 and
n > 2, and let Ag ,n be the moduli scheme of principally polarized abelian schemes
over Fp-schemes with a symplectic level n structure. _en Ag ,n is smooth over Fp .
Let A be the universal abelian scheme over Ag ,n . For a ûeld k of characteristic p > 0,
a k-point s of Ag ,n gives a principally polarized abelian variety (As ,ψ) over k. _e
polarization ψ∶As → A∨

s induces an isomorphism As[p] ≃ A∨
s [p] that will still be

denoted by ψ.
Let C be the set of isomorphism classes of self-dual BT-1s of height 2g over Fp . For

a class c ∈ C, we ûx a self dual BT-1 (Hc ,ψc) in this class. Let A c
g ,n be the set of points

s in Ag ,n ⊗ Fp such that there exists an algebraically closed ûeld k and embeddings
of k(s) and Fp , such that the pairs (As[p],ψ)⊗ k and (Hc ,ψc)⊗ k are isomorphic.
_e subset A c

g ,n is called an Ekedahl–Oort stratum.
Oort proved in [19] that C is of cardinality 2g , and each A c

g ,n is non-empty and
locally closed in Ag ,n ⊗ Fp . Moreover, he proved that each stratum is quasi-aõne,
and gave a dimension formula. Ekedahl and van der Geer then computed the cycle
classes of Ekedahl–Oort strata in [3].
By studyingEkedahl–Oort stratiûcation,Oort re-proved a theorem by Faltings and

Chai that Ag ,n is geometrically irreducible. However, his proof does not make use of
characteristic zero arguments and the irreducibility of themoduli space of character-
istic zero is actually a corollary of this theorem.

Received by the editors April 15, 2015; revisedMay 17, 2017.
Published electronically December 19, 2017.
AMS subject classiûcation: 14G35, 11G18.
Keywords: Shimura variety, F-zip.

https://doi.org/10.4153/CJM-2017-020-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-020-5


452 C. Zhang

_e theory of Ekedahl–Oort strata has been generalized by works ofMoonen [15,
16],Wedhorn [26],Moonen–Wedhorn [17] andViehmann–Wedhorn [24] to Shimura
varieties of PEL type, andworks ofVasiu [23] to Shimura varieties ofHodge type. We
remark that these papers use diòerent methods: [15, 16] use canonical ûltrations on
Dieudonné modules attached to BT-1s, [26] uses moduli of BT-ns, [17] and [24] use
F-zips, while [23] uses truncated F-crystals.

Pink,Wedhorn, and Ziegler developed systematically technical tools to study Eke-
dahl–Oort strata for Shimura varieties in [20,21]. Results in [20]were already used in
[24] to obtain very explicit results on Ekedahl–Oort strata for PEL Shimura varieties
(e.g., see [24,_eorem 7.1] for a combinatorial description for closure of a stratum).

In this paper, we establish and study Ekedahl–Oort strata for Shimura varieties of
Hodge type using [21]. _e advantage of this method is that we could work schemat-
ically and get explicit statements. Now we explain themain results of this paper.

Let (G , X) be a Shimura datum of Hodge type with good reduction at p > 2. We
will always assume here and in the main body of the paper that p > 2 unless other-
wisementioned. Let G be the reduction of G. Let ShK(G , X) be the Shimura variety
with K small enough and hyperspecial at p. Let S be the integral canonical model
constructed by Vasiu andKisin, and let S0 be its special ûber. _emain results of this
paper are as follows.

(a) Fixing a symplectic embedding, we construct a G-zip of type µ over S0. See
Deûnition 2.2.1 for the deûnition, and_eorem 3.4.1 for this result. _isG-zip induces
amorphism ζ ∶S0 → G-Zipµ

κ , where G-Zipµ
κ is the stack of G-zips of type µ (see [21]

or our §2.2).
(b) (_eorem 4.1.2) _emorphism ζ is smooth.
(c) Inverse images of Fp-points of G-Zipµ

κ are Ekedahl–Oort strata, so they are
locally closed in S0 ⊗ Fp . Moreover, all the possible strata are given by a certain
subset of theWeyl group of G.

(d) (Proposition 4.1.4) _ere is a dimension formula for each stratum assuming
that it is non-empty. _ere is also a description of Zariski closure of a stratum. _ere
is a unique stratum that is open dense in S0⊗Fp . _is stratum is called the ordinary
stratum. _ere is at most one zero dimensional stratum in S0 ⊗ Fp , which is called
the superspecial stratum.

We remark that our results are compatible with main results in Vasiu’s [23]. For
example, his Basic _eorem D(d) in 12.2 asserts that the number of strata is at most
[WG ∶WP], which is the same as our Proposition 4.1.4. We also remark that Vasiu’s
method works when p = 2, but our method, based on Kisin’s [7], has restrictions
when p = 2. In fact, Kisin assumes [7, 2.3.4] in his construction of integral models
and integral automorphic sections, and as a result, we have to impose that condition
to follow his constructions.

_ere are recent preprints closely related to this paper. D. Wortmann proves in
[29] that the µ-ordinary locus coincides with the ordinary Ekedahl–Oort stratum,
and hence open dense. _is is a generalization of the fact that the ordinary Newton
stratum coincides with the ordinary Ekedahl–Oort stratum on Siegel modular vari-
eties. _e author proves in [30] that Ekedahl–Oort stratiûcations are independent of
choices of symplectic embeddings. _ere are also works of Koskivirta–Wedhorn [9]
andGoldring–Koskivirta [4] onHasse invariants on Shimura varieties ofHodge type.
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2 F-zips and G-zips

2.1 F-zips

In this section, we will follow [17, 21] to introduce F-zips. Let S be a scheme, and
let M be a locally free OS-module of ûnite rank. By a descending (resp. ascending)
ûltration C● (resp. D●) on M, we always mean a separating and exhaustive ûltration
such that C i+1(M) is a locally direct summand of C i(M) (resp. D i(M) is a locally
direct summand of D i+1(M)).

Let LF(S) be the category of locally free OS-modules of ûnite rank, and let
FilLF●(S) be the category of locally free OS-modules of ûnite rank with descend-
ing ûltration. For two objects (M ,C●(M)) and (N ,C●(N)) in FilLF●(S), a mor-
phism f ∶ (M ,C●(M)) → (N ,C●(N)) is a homomorphism of OS-modules such
that f (C i(M)) ⊆ C i(N). We also denote by FilLF●(S) the category of locally free
OS-modules of ûnite rank with ascending ûltration. For two objects (M ,C●) and
(M′ ,C′●) in FilLF●(S), their tensor product is deûned to be (M ⊗ M′ , T●) with
T i = ∑ j C j ⊗ C′i− j . Similarly for FilLF●(S). For an object (M ,C●) in FilLF●(S),
one deûnes its dual to be

(M ,C●)∨ = (∨M ∶= M∨ , ∨C i ∶= (M/C1−i)∨) ;

and for an object (M ,D●) in FilLF●(S), one deûnes its dual to be

(M ,D●)∨ = (∨M ∶= M∨ , ∨D i ∶= (M/D−1−i)∨) .

It is clear from the convention that (M ,C●)∨ = (∨M , ∨C●) = (M∨ , ∨C●), and similar
with D●.

If S is over Fp , we will denote by σ ∶ S → S the morphism that is the identity on
the topological space and p-th power on the sheaf of functions. For an S-scheme T ,
we will write T(p) for the pull back of T via σ . For a quasi-coherent OS-module M,
M(p) means the pull back of M via σ . For a σ-linear map φ∶M → M, we will denote
its linearization by φlin∶M(p) → M.

Deûnition 2.1.1 Let S be an Fp-scheme. By an F-zip over S, wemean a tuple M =
(M , C● , D● , φ●) such that
(i) M is an object in LF(S), i.e., M is a locally free sheaf of ûnite rank on S;
(ii) (M ,C●) is an object in FilLF●(S), i.e., C● is a descending ûltration on M;
(iii) (M ,D●) is an object in FilLF●(S), i.e., D● is an ascending ûltration on M;
(iv) φ i ∶C i/C i+1 → D i/D i−1 is a σ-linear map whose linearization

φlin
i ∶ (C i/C i+1)(p) Ð→ D i/D i−1

is an isomorphism.
By amorphism of F-zips

M = (M ,C● ,D● , φ●)Ð→ M′ = (M′ ,C′● ,D′● , φ′●),
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wemean amorphism of OS-modules f ∶M → N , such that for all i ∈ Z, f (C i) ⊆ C′i ,
f (D i) ⊆ D′i , and f induces a commutative diagram

C i/C i+1 φ iÐÐÐÐ→ D i/D i−1

f
×××Ö

×××Ö
f

C′i/C′i+1 φ′iÐÐÐÐ→ D′i/D′i−1 .

Remark 2.1.2 Let S be a locallyNoetherianFp-scheme, and X be an abelian scheme
or a K3 surface over S; then Hi

dR(X/S) has a natural F-zip structure. See [27, 1.6, 1.7,
and 1.11] for more details and examples.

Example 2.1.3 ([21, Example 6.6]) _e Tate F-zips of weight d is

1(d) ∶= (OS ,C● ,D● , φ●),

where

C i =
⎧⎪⎪⎨⎪⎪⎩

OS for i ≤ d ,
0 for i > d,

D i =
⎧⎪⎪⎨⎪⎪⎩

0 for i < d ,
OS for i ≥ d ,

and φd is the Frobenius.

One can talk about tensor products and duals in the category of F-zips.

Deûnition 2.1.4 ([21, Deûnition 6.4]) Let M, N be two F-zips over S; then their
tensor product is the F-zip M ⊗ N , consisting of the tensor product M ⊗ N with
induced ûltrations C● and D● on M ⊗ N , and induced σ-linear maps

griC(M ⊗ N)

≅
��

grDi (M ⊗ N)

⊕ j gr
j
C(M)⊗ gri− j

C (N)
⊕ j φ j⊗φ i− j // ⊕ j grDj (M)⊗ grDi− j(N),

≅

OO

whose linearization are isomorphisms.

Deûnition 2.1.5 ([21, Deûnition 6.5]) _e dual of an F-zip M is the F-zip M∨ con-
sisting of the dual sheaf of OS-modules M∨ with the dual descending ûltration of C●
and dual ascending ûltration of D●, and σ-linear maps whose linearization are iso-
morphisms

(griC(M∨)) (p) = ((gr−i
C M)∨) (p)

((φlin
−i ))

−1∨
//(grD−i M)∨ ≅ grDi (M∨) .

For the Tate F-zips introduced in Example 2.1.3, we have natural isomorphisms
1(d) ⊗ 1(d′) ≅ 1(d + d′) and 1(d)∨ ≅ 1(−d). _e d-th Tate twist of an F-zip M is
deûned as M(d) ∶= M ⊗ 1(d), and there is a natural isomorphism M(0) ≅ M.
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Deûnition 2.1.6 Amorphism between two objects in LF(S) is said to be admissible
if the image of themorphism is a locally direct summand. Amorphism f ∶ (M ,C●)→
(M′ ,C′●) in FilLF●(S) (resp. f ∶ (M ,D●) → (M′ ,D′●) in FilLF●(S)) is called admis-
sible if for all i, f (C i) (resp. f (D i)) is equal to f (M) ∩ C′i (resp. f (M) ∩ D′i) and
is a locally direct summand of M′. A morphism between two F-zips M → M′ in
F-Zip(S) is called admissible if it is admissible with respect to the two ûltrations.

With admissiblemorphisms, tensor products, and duals deûned as above, the cat-
egories LF(S), FilLF●(S), FilLF●(S) become OS-linear exact rigid tensor categories
(see [21, 4.A, 4.C, 4.D]). _e admissible morphisms, tensor products, duals, and the
Tate object 1(0) make F-Zip(S) an Fp-linear exact rigid tensor category (see [21, 6]).
_e natural forgetful functors

F-Zip(S)→ LF(S), F-Zip(S)→ FilLF●(S), F-Zip(S)→ FilLF●(S)
are exact functors.

Remark 2.1.7 For a morphism in LF(S), FilLF●(S), FilLF●(S), or F-Zip(S), the
property of being admissible is local for the fpqc topology (see [21, Lemmas 4.2 and
6.8]).

2.2 G-zips

We will introduce G-zips following [21, Section 3]. Note that the authors of [21] work
with reductive groups over a general ûnite ûeld Fq containing Fp , and q-Frobenius.
But we do not need the most general version of G-zips, as our reductive groups are
connected and deûned over Fp .

Let G be a connected reductive group over Fp , let k be a ûnite extension of Fp ,
and let χ∶Gm ,k → Gk be a cocharacter over k. Let P+ (resp. P−) be the parabolic sub-
group of Gk such that its Lie algebra is the sum of spaces with non-negative weights
(resp. non-positiveweights) in Lie(Gk) underAd○ χ. LetU+ (resp.U−) be the unipo-
tent radical of P+ (resp. P−), and let L be the common Levi subgroup of P+ and P−.
Note that L is also the centralizer of χ.

Deûnition 2.2.1 Let S be a scheme over k. A G-zip of type χ over S is a tuple I =
(I, I+ , I− , ι) consisting of a right Gk-torsor I over S, a right P+-torsor I+ ⊆ I (i.e., the
inclusion I+ ⊆ I is such that it is compatible for the P+-action on I+ and theGκ-action
on I), a right P(p)− -torsor I− ⊆ I (similarly as for I+ ⊆ I), and an isomorphism of
L(p)-torsors ι∶ I(p)+ /U(p)+ → I−/U(p)− .
A morphism (I, I+ , I− , ι) → (I′ , I′+ , I′− , ι′) of G-zips of type χ over S consists of

equivariant morphisms I → I′ and I± → I′± that are compatible with inclusions and
the isomorphisms ι and ι′.

Here by a torsor over S of an fpqc group scheme G/S, we mean an fpqc scheme
X/S with a G-action ρ∶X ×S G → X such that the morphism X × G → X ×S X,
(x , g)→ (x , x ⋅ g) is an isomorphism.

_e category of G-zips of type χ over S will be denoted by G-Zipχk(S). With the
evidentnotation of pull back, theG-Zipχk(S) form a ûbered category over the category
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of schemes over k, denoted by G-Zipχk . Noting that morphisms in G-Zipχk(S) are
isomorphisms, G-Zipχk is a category ûbered in groupoids.

_eorem 2.2.2 _e ûbered category G-Zipχk is a smooth algebraic stack of dimension
0 over k.

Proof _is is [21, Corollary 3.12].

2.2.1 Some Technical Constructions about G-zips

We needmore information about the structure ofG-Zipχk . First,we need to introduce
some standard G-zips as in [21].

Construction 2.2.3 ([21, Construction 3.4] ) Let S/k be a scheme. For a section
g ∈ G(S), one associates a G-zip of type χ over S as follows. Let Ig = S ×k Gk and
Ig ,+ = S ×k P+ ⊆ Ig be the trivial torsors. _en I(p)g ≅ S ×k Gk = Ig canonically, and
we deûne Ig ,− ⊆ Ig as the image of S ×k P(p)− ⊆ S ×k Gk under le� multiplication by g.
_en le� multiplication by g induces an isomorphism of L(p)-torsors

ιg ∶ I(p)g ,+/U(p)+ = S×k P(p)+ /U(p)+ ≅ S×k P(p)− /U(p)−
∼Ð→ g(S×k P(p)− )/U(p)− = Ig ,−/U(p)− .

We thus obtain a G-zip of type χ over S, denoted by I g .

Lemma 2.2.4 Any G-zip of type χ over S is étale locally of the form I g .

Proof _is is [21, Lemma 3.5].

Now we will explain how to write G-Zipχk in terms of a quotient of an algebraic
variety by the action of a linear algebraic group following [21, Section 3].
Denote by Frobp ∶ L → L(p) the relative Frobenius of L, and by EG , χ the ûber prod-

uct
EG , χ

��

// P(p)−

��
P+ // L

Frobp // L(p) .
_en we have

(2.1) EG , χ(S) = {(p+ ∶= lu+ , p− ∶= l(p)u−) ∶ l ∈ L(S), u+ ∈ U+(S), u− ∈ U(p)− (S)} .

It acts on Gk from the le�-hand side as follows. For (p+ , p−) ∈ EG , χ(S) and g ∈
Gk(S), (p+ , p−) ⋅ g ∶= p+g p−1

− .
To relateG-Zipχk to the quotient stack [EG , χ/Gk], we need the following construc-

tions in [21]. First, for any two sections g , g′ ∈ Gk(S), there is a natural bijection
between the set

TranspEG , χ(S)(g , g
′) ∶= {(p+ , p−) ∈ EG , χ(S) ∣ p+g p−1

− = g′}

and the set of morphisms of G-zips I g → I g′ (see [21, Lemma 3.10]). So we deûne a
category X ûbered in groupoids over the category of k-schemes as follows. For any
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scheme S/k, letX(S) be the small category whose underlying set is G(S), and for any
two elements g , g′ ∈ G(S), the set ofmorphisms is the set TranspEG , χ(S)(g , g

′).

_eorem 2.2.5 _ere is a fully faithful morphism X → G-Zipχk given by sending
g ∈ X(S) = G(S) to I g . It induces an isomorphism [EG , χ/Gk]→ G-Zipχk .

Proof _is is [21, Proposition 3.11].

3 Integral Canonical Models and G-zips

3.1 Construction of Integral Canonical Models

Integral canonical models are constructed by Vasiu in [22] and Kisin in [7]. We will
ûrst follow [13] to introduce Shimura varieties, and then follow [7] to introduce inte-
gral canonical models.

Deûnition 3.1.1 Let G be a connected reductive group over Q. We will write S for
the Deligne torus ResC/R(Gm ,C). Let h∶S → GR be a homomorphism of algebraic
groups and let X be the G(R)-conjugacy class of h. _en the pair (G , X) is called a
Shimura datum if the following conditions are satisûed:
(i) Ad ○h induces aHodge structure of type (−1, 1) + (0, 0) + (1,−1) on Lie(GR);
(ii) the conjugation action of h(i) on Gad

R gives a Cartan involution.
(iii) Gad has no simple factor over Q onto which h has trivial projection.

Let (G , X) be a Shimura datum, and K be a compact open subgroup of G(A f )
that is small enough. _e complex manifold ShK(G , X)C = G(Q)/(X × G(A f )/K)
has a unique structure of a complex quasi-projective variety by results of Baily–
Borel. _e Shimura datum (G , X) gives the G(R)-orbit X of the real manifold
HomR(S,GR)(R). For x ∈ X with corresponding homomorphism hx ∶S → GR, we
have a cocharacter

ϖx ∶Gm ,C
id×0 // Gm ,C ×Gm ,C

≅ // SC
hx ,C // GC .

_e G(C)-orbit of ϖx in HomC(Gm ,C ,GC) depends only on X and is deûned over
a ûnite extension E/Q, called the re�ex ûeld of (G , X). By results of Deligne,Milne,
Borovoi, Shih, and others, ShK(G , X)C has a canonical model ShK(G , X) over E. We
refer the reader to [13, Chapter 12] and [14, Chapter 2, 2.17] for more details.

Let p ≥ 3 be a prime, and let GZp be a reductive group over Zp whose generic ûber
is GQp . Let K = KpK p with Kp = GZp(Zp), and K p be an open compact subgroup of
G(Ap

f ) that is small enough. Let v be a prime of OE over (p); then v is unramiûed
over p. We write OE ,(v) for the localization of OE at v. Assume that the Shimura
datum (G , X) is ofHodge type, i.e., there is an embedding of Shimura data (G , X)↪
(GSp(V ,ψ), X′). _en by [7, Lemmas 2.3.1 and 2.3.2], for the chosenGZp , there exists
a latticeVZ ⊆ V , such thatψ restricts to a pairingVZ×VZ → Z andGZ(p) , the closure of
G in GL(VZ(p)) with GZp = GZ(p) ×Z(p) Zp , is reductive. Moreover, by [7, Proposition
1.3.2], there is a tensor s ∈ V⊗

Z(p) deûning GZ(p) ⊆ GL(VZ(p)), i.e., for any Z(p)-algebra
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R, we have
GZ(p)(R) = { g ∈ GL(VZ(p))(R) ∣ g(s ⊗ 1) = s ⊗ 1} .

Here VZ(p) ∶= VZ ⊗ Z(p), and V⊗
Z(p) is a ûnite free Z(p)-module that is obtained from

VZ(p) by using the operations of taking duals, tensor products, symmetric powers,
exterior powers, and direct sums ûnitely many times.

LetK′
p ⊆ GSp(VQp ,ψ) be the stabilizerofVZp ∶= VZ⊗Zp . _en by [7,Lemma 2.1.2],

we can choose K′ = K′
pK′p such that K′p contains K p and K′ leavesVẐ stable,making

the ûnitemorphism

ShK(G , X)Ð→ ShK′(GSp(V ,ψ), X′)E

a closed embedding.
Let d = ∣V∨

Z /VZ∣, and g = dim(V)/2. _en ShK′(GSp(V ,ψ), X′) is closed in
the generic ûber of Ag ,d ,K′ ⊗ OE ,(v), where Ag ,d ,K′ is the ûne moduli scheme of
g-dimensional abelian schemes over Z(p)-schemes equipped with a degree d polar-
ization and a level K′-structure (see [18,_eorem 7.9]). Let SK(G ,K)− be the Zariski
closure of ShK(G , X) in Ag ,d ,K′ ⊗OE ,(v) with the reduced induced scheme structure,
and let SK(G , X) be the normalization ofSK(G ,K)−. LetA be the universal abelian
scheme on Ag ,d ,K′ . _en

V = H1
dR(A∣ShK(G ,X)/ShK(G , X)) (resp. V○ = H1

dR(A∣SK(G ,X)/SK(G , X)))

is a vector bundle on ShK(G , X) (resp. SK(G , X)). By the construction of [7, Section
2.2], the tensor s ∈ V⊗

Z(p) gives a section sdR of V⊗, which is horizontal with respect to
the Gauss–Manin connection.

Here we collect some of themain results in [7].

_eorem 3.1.2
(i) _e schemeSK(G , X) is smooth over OE ,(v), and

SKp(G , X) ∶= lim←Ð
K p

SKpK p(G , X)

is an inverse system with ûnite étale transition maps, whose generic ûber is
G(Ap

f )-equivariantly isomorphic to ShKp(G , X) ∶= lim←ÐK p ShKpK p(G , X).
(ii) _e schemeSKp(G , X) satisûes the a certain extension property.

Namely, for any regular and formally smooth OE ,(v)-scheme X, anymorphism
X ⊗ E →SKp(G , X) extends uniquely to amorphism X →SKp(G , X).

(iii) _e section sdR extends to a section of V○⊗, which will still be denoted by sdR. For
any closed point x ∈ SK(G , X)⊗ Fp and any li�ing x̃ ∈ SK(G , X)(W(k(x))),
we have
(a) the scheme IsomW(k(x))((V∨

Zp
⊗W(k(x)), s ⊗ 1), (V○x̃ , sdR, x̃)) is a trivial

right GZp ⊗W(k(x))-torsor;
(b) for any t ∈ IsomW(k(x))((V∨

Zp
⊗W(k(x)), s ⊗ 1), (V○x̃ , sdR, x̃))(W(k(x))),

GZp ⊗W(k(x)) acts faithfully on V○x̃ via g(v) ∶= tg t−1(v), for all v ∈ V○x̃ .
_e Hodge ûltration on V○x̃ is induced by a cocharacter of GZp ⊗W(k(x)).
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Proof (i) and (ii) are [7, _eorem 2.3.8(1) and (2)]. _e ûrst sentence of (iii) is [7,
Corollary 2.3.9].

_e proof of (iii)(a) is hidden inside [7]. We write F for q. f .(W(k(x))) and x̃F
for the F-point ofSK(G , X) given by the composition

Spec(F)↪ Spec(W(k(x))) x̃Ð→SK(G , X).

LetA be the universal abelian scheme as before. _en there is an isomorphismV∨
Zp
→

H1
ét(Ax̃F ,Zp) taking s to sét, x̃F . Here the right-hand side is the p-adic étale cohomol-

ogy of the abelian varietyAx̃F over F.
_en by [7, Corollary 1.4.3 (3)], there is an isomorphism

H1
ét(Ax̃F ,Zp)⊗Zp W(k(x))Ð→ D(Ax[p∞])(W(k(x)))

taking sét, x̃F ⊗ 1 to a Frobenius-invariant tensor s0. Here we write D(−) for the Dieu-
donné functor as in [7]. We remark that this is just an isomorphism, which is highly
non-canonical. But by the construction in [7, Corollary 2.3.9], s0 gives sdR, x̃ by the
canonical identiûcation

D(Ax[p∞])(W(k(x))) ≅ H1
dR(Ax̃/W(k(x))) .

_is proves (iii)(a).
For (iii)(b), see the proof of [7, Corollary 1.4.3 (4)]. Note that Kisin actually proves

the Hodge ûltration on H1
dR(Ax̃) is a GZp -ûltration, but in his statement, he only

states it for the special ûber.

3.2 Construction of the G-zip at a Point

In this and the following subsections, we show how to get a G-zips over S0 using
V○, where G is the special ûber of GZp considered in the previous subsection. We use
‘G-zip’ in the title here (and also that of 3.2.6, 3.3), as we want to keep the notations
in titles simple and coherent.

We will ûrst say something about cocharacters inducing the Hodge ûltrations, as
they are crucial data in the deûnition of G-zips, and will also be used in 2.4 to get the
torsor I over S0.

3.2.1 Basics about Cocharacters

Proposition 3.2.1 Let G be a reductive group over a scheme S andHom(Gm ,G) be
the fpqc-sheaf of cocharacters denoted by Z. _en we have the following:
(i) Z is represented by a smooth and separated scheme over S;
(ii) the fpqc-quotient of Z by the adjoint action of G is represented by a disjoint union

of connected ûnite étale S-schemes;
(iii) assume that G has amaximal torus T over S. Let X∗(T) be the scheme of cochar-

acters, and let W be theWeyl group scheme with respect to T . _en
(a) T ⊆ G induces an isomorphism of fpqc-sheaves W/X∗(T) ≅ G/Z;
(b) if S = SpecR with R a henselian local ring with residue ûeld k such that Gk is

quasi-split, then thenaturalmap X∗(T)(R)→ (W/X∗(T))(R) is surjective.
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Proof _e ûrst statement follows from [2, Corollary 4.2, Chapter XI]. For (ii), one
canworkwith open aõnes of S. But by [2, Corollary 3.20, ChapterXIV],maximal tori
exist Zariski locally. We can assume that S is aõne such that there exists a maximal
torus T ⊆ G. Note that X∗(T) is étale and locally ûnite over S, and that W is a ûnite
étale group scheme (see [2, 3.1, Chapter XXII ]).

Maximal tori are fpqc locally G-conjugate, so the inclusion T ⊆ G induces an
isomorphism of fpqc-sheaves W/X∗(T) ≅ G/Z . To prove (ii), it suõces to prove
that W/X∗(T) is represented by an étale and locally ûnite scheme over S. To see that
W/X∗(T) is representable, note that W × X∗(T) and X∗(T)× X∗(T) are both étale
over S, so themorphism

α∶W × X∗(T)Ð→ X∗(T) × X∗(T), (w , ν)z→ (ν,w ⋅ ν)

is also étale, and hence has open image. But it is also closed, since there is a ûnite étale
cover S′ of S, such that W and X∗(T) become constant, and the image of α is just
copies of S′, which is closed in (X∗(T) × X∗(T))S′ . Let R be the image of α, then its
projections to X∗(T) induced by projections of X∗(T)×X∗(T) to its factors are both
ûnite. So by [8, Chapter 1, Propositions 5.14 and 5.16 b)],W/X∗(T) is represented by
an étale separated scheme over S.

To see that the quotient is locally ûnite, one still works over S′. For an S′-point of
X∗(T)S′ , its orbit under W(S′) is just copies of S′. Let X′ ⊆ X∗(T)S′ be an open and
closed subscheme such that it contains precisely one copy of S′ in each W(S′)-orbit.
_en X′ ≅ (W/X∗(T))S′ , and henceW/X∗(T) is locally ûnite.

To ûnish the proof of the proposition, we only need to prove (iii)(b). If R = k is
a ûeld, then the statement follows from [10, Lemma 1.1.3]. We remark that although
it is stated for ûelds containing Q there, its proof works for general ûelds. But for a
henselian local ring R, noting that both X∗(T) andW/X∗(T) are étale, we have

X∗(T)(R) = X∗(T)(k) and (W/X∗(T))(R) = (W/X∗(T))(k),

and hence (iii)(b).

3.2.2 A Cocharacter Defined Over W(κ)

Now we come back to notations introduced a�er Deûnition 3.1.1. Let κ = OE/v, and
Z = Hom(Gm ,GZ(p)). Let T ⊆ GZ(p) be amaximal torus, andWT be theWeyl group
scheme, then by the above proposition,GZ(p)/Z ≅WT/X∗(T) is a union of connected
ûnite étale Z(p)-schemes. As explained at the beginning of Section 3.1, the Shimura
datum gives a GC-orbit [ϖx] of ZC which is deûned over E, and hence a connected
component C ≅ SpecOE ,(p) of GZ(p)/Z. Noting that GZ(p) ⊗ Fp is quasi-split, by
(iii)(b) of the previous proposition, the κ-point of C induced by OE ,(p) → OE/v = κ
comes from a κ-point of X∗(T), which li�s to aW(κ)-point of X∗(T). _e cochar-
acter corresponding to this point is such that for any embedding W(κ) → C, its
image in ZC lies in [ϖx]. As by our construction, its image in GW(κ)/ZW(κ) lies in
CW(κ) = OE ,v .
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3.2.3 An Easy Lemma

To get started, we need one preparation, namely the next lemma. It is probably well
known, but we still give a proof. It will be used in Section 3.2.5. We need to ûx
some notation to state and prove it. Let k be a ûnite ûeld of characteristic p, A be
an abelian scheme over W(k), σ be the ring automorphism W(k) → W(k) which
li�s the p-Frobenius isomorphism on k. Denote by M themodule H1

dR(A/W(k)) ≅
H1
cris(Ak/W(k)) (see [6, 3.4.b], and this isomorphism is functorial in A). _en the

absolute Frobenius on Ak induces a σ-linear map φ∶M → M (see [6, 2.5.3, 3.4.2])
whose linearization will be denoted by φlin. Let M ⊇ M1 be the Hodge ûltration.
We know that M1 is a direct summand of M, and its reduction modulo p gives the
kernel of Frobenius φ̄ on H1

dR(A⊗ k/k). _is implies that φ(M1) ⊆ pM, and hence
φ/p∶M1 → M is well deûned.

Lemma 3.2.2 For any splitting M = M0 ⊕M1, the linear map

α ∶ M(σ) ∶= M ⊗W(k),σ W(k) = M0(σ) ⊕M1(σ)
φlin ∣M0(σ)+( φ

p )
lin ∣M1(σ) // M

is an isomorphism.

Proof Let F (resp. V ) be the Frobenius (resp. Verschiebung) on Mk . _en
(φ/p)lin∣M1(σ)

k
is induced by V lin,−1∶ Im(V lin) → Mk/Ker(V lin). So αk is an isomor-

phism as Ker(F) = Im(V) and Ker(V) = Im(F), but then α is an isomorphism by
Nakayama’s lemma.

Notations 3.2.3 Now we will ûx some notation that will be used later. Notation as
in Section 3.2.2, we will write W for W(κ) for simplicity. By the discussions there,
the orbit [ϖx] gives a cocharacter Gm → GZp ⊗W which is unique up to GZp(W)-
conjugacy. Its inverse will be denoted by µ. _e (contragredient) representation on
V∨
Z(p) ⊗W induced by µ has weights 0 and 1. Since we are interested in reductions of

integral canonical models, we will work either over W or over κ. So we will simply
writeS for SK(G , X)⊗OE ,(v) W , andS0 for the special ûber ofS . We will writeA
for the pull back to S of the universal abelian scheme on Ag ,d ,K′ . Wewill still denote
byV○ (resp. sdR) the pullback toS ofV○ (resp. sdR) onSK(G ,K) as in_eorem 3.1.2,
and V○ (resp. sdR) for the pull back to S0 of V○ (resp. sdR) on S .

3.2.4 Basic Properties of sdR , x̃ and φ

Nowwewill discuss some basic properties of sdR , x̃ related to the Frobenius onV○x̃ and
the ûltration on V○x̃

⊗ induced by theHodge ûltration. We will keep the notation as in
_eorem 3.1.2(iii)(b). In particular, there is an element

t ∈ IsomW(k(x))((V∨
Zp ⊗W(k(x)), s ⊗ 1), (V○x̃ , sdR, x̃))(W(k(x))).

_e element t will be ûxed once and for all in our discussion. Also, we will introduce
some new notation as follows. Let

µ′∶Gm ,W(k(x)) Ð→ GZp ⊗W(k(x))
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be a cocharacter such that µ′t ∶= tµ′t−1 induces the Hodge ûltration on V○x̃ . (_e
existence of µ′ follows from _eorem 3.1.2(iii)(b).) Note that µ′ induces aW(k(x))-
point of C introduced a�er the proof of Proposition 3.2.1, as the Hodge ûltration on
V○x̃ ⊗ C is always induced by a cocharacter conjugate to µC (via the contragredient
representation). In particular, µ′ is GZp(W(k(x)))-conjugate to µW(k(x)). We will
write φ for the Frobenius on V○x̃ and V

○
x̃ = (V○x̃)0 ⊕ (V○x̃)1 for the splitting induced by

µ′t , with (V○x̃)i the sub-module of weight i. _e ûltration on V○x̃ induces a ûltration
on V○x̃

⊗ by the constructions at the beginning of Section 2.1. _ere is a Frobenius that
is deûned, not on V○x̃

⊗, but on (V○x̃[ 1
p ])

⊗, as follows. It is the tensor product of φ on
V○x̃[ 1

p ] and

∨φ∶ (V○x̃[1/p]))∨ Ð→ (V○x̃[1/p])∨ , f z→ σ( f ○ φ−1) ∀ f ∈ V○x̃∨ ,

on (V○x̃[1/p]))∨. _e induced Frobenius on (V○x̃[1/p])⊗ will still be denoted by φ.
It is known that sdR , x̃ ∈ V○x̃⊗ actually lies in Fil0 V○x̃

⊗ ⊆ V○x̃
⊗, the submodule of non-

negative weights, and that sdR , x̃ is φ-invariant ([7, 1.3.3], and we view sdR , x̃ as an ele-
ment in (V○x̃[1/p])⊗ when considering the φ-action).

We have the following better description.

Proposition 3.2.4 _e Frobenius φ takes integral value on Fil0 V○x̃⊗. Let (V○x̃⊗)0 be
the submodule of V○x̃⊗ such that µ′t(Gm) acts trivially, then sdR , x̃ ∈ (V○x̃⊗)0.

Proof We use notation from Section 3.2.4. To see the ûrst statement, note that we
have

Fil0(V○x̃⊗) = ⊕i≥0(V○x̃⊗)i ,

where (V○x̃⊗)i is the submodule whose elements are of weight i with respect to the
cocharacter µ′t . And elements in (V○x̃⊗)i are images of sums of elements from

((V○x̃)0)
⊗a ⊗ ((V○x̃)1)⊗b ⊗ ((V○x̃∨)−1)⊗c ⊗ ((V○x̃∨)0)

⊗d

such that b − c = i. _e σ-linear map φ induces well deûned σ-linear maps

φ∣(V○
x̃)0 ∶ (V

○
x̃)0 Ð→ V○x̃ and ∨φ∣(V○

x̃
∨)0 ∶ ((V○x̃∨)0 Ð→ V○x̃

∨ .

But

(φ∣(V○
x̃)1)

⊗b ⊗ (∨φ∣(V○
x̃
∨)−1)⊗c ∶ ((V○x̃)1)⊗b ⊗ ((V○x̃∨)−1)⊗c Ð→ (V○x̃)⊗b ⊗ (V○x̃∨)⊗c

is also deûned as

(φ∣(V○
x̃)1)

⊗b ⊗ (∨φ∣(V○
x̃
∨)−1)⊗c = pb−c ⋅ ( φ

p
∣(V○

x̃)1)
⊗b
⊗ (p ⋅ ∨φ∣(V○

x̃
∨)−1)⊗c ,

while φ/p∣(V○
x̃)1 and p ⋅ ∨φ∣(V○

x̃
∨)−1 are well deûned. So φ is deûned on Fil0(V○x̃⊗).

To see that sdR , x̃ ∈ (V○x̃⊗)0, one only needs to use the fact that s ∈ V⊗
Zp

is GZp -inva-
riant, and hence sdR , x̃ is also GZp -invariant via t. In particular, it is of weight 0 with
respect to the cocharacter µ′t .
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3.2.5 Constructing Some Torsors Over W(k(x))

Nowwewill show that using the Frobenius φ and the splitting induced by µ′t (see Sec-
tion 3.2.4 for the deûnition of µ′ and µ′t),we can get an element gt ofGZp(W(k(x))).

Construction 3.2.5 Let σ ∶W(k(x)) → W(k(x)) be as in Section 3.2.3, and let ξ
be theW(k(x))-linear isomorphism

V∨
Zp ⊗W(k(x))Ð→ (V∨

Zp ⊗W(k(x))) (σ)

given by v ⊗w ↦ v ⊗ 1⊗w and t(σ) be the pull back of

t ∈ IsomW(k(x))((V∨
Zp ⊗W(k(x)), s ⊗ 1), (V○x̃ , sdR, x̃))(W(k(x)))

via σ . Let ξt = t(σ) ○ ξ, and g be theW(k(x))-linear map

V○x̃
(σ) = (V○x̃)0(σ) ⊕ (V○x̃)1(σ)

φlin ∣(V○x̃ )0(σ)
+( φ

p )
lin ∣(V○x̃ )1(σ) // V○x̃ .

We deûne gt to be the composition t−1 ○ g ○ ξt , and (V○x̃)0 (resp. (V○x̃)1) to be the sub
W(k(x))-module of V○x̃ generated by φ((V○x̃)0) (resp. φ

p ((V
○
x̃)1)).

We have the following proposition.

Proposition 3.2.6
(i) _e linear map gt is an element of GZp(W(k(x))).
(ii) _e splitting

V∨
Zp ⊗W( k(x)) = t−1((V○x̃)0) ⊕ t−1((V○x̃)1)

is induced by the cocharacter ν = gtµ′(σ)g−1
t of GZp ⊗W(k(x)), i.e., t−1((V○x̃)i)

is of weight i with respect to ν.

Proof By Lemma 3.2.2, gt ∈ GL(V∨
Zp

)(W(k(x))). So, to prove (i), it suõces to
check that the inducedmap

gt ∶V⊗
Zp
⊗W( k(x)) Ð→ V⊗

Zp
⊗W(k(x))

maps s ⊗ 1 to itself. Now we compute gt(s ⊗ 1). First, ξ(s ⊗ 1) = s ⊗ 1 ⊗ 1 and
t(σ)(s ⊗ 1 ⊗ 1) = sdR , x̃ ⊗ 1. We decompose V○x̃

⊗ = ⊕i(V○x̃⊗)i via the weights of the
cocharacter µ′t introduced before. _en (V○x̃⊗)(σ) = ⊕i((V○x̃⊗)i)(σ).

Note that sdR , x̃ ∈ (V○x̃⊗)0 by Proposition 3.2.4, so

g⊗ =∑
i

p−i(φlin)⊗∣(V○
x̃
⊗)i ∶⊕

i
((V○x̃⊗)i) (σ) → V○x̃

⊗

maps sdR , x̃ ⊗ 1 to sdR , x̃ , as it is φ-invariant. And hence,

gt(s ⊗ 1) = t−1 ○ g ○ ξt(s ⊗ 1) = s ⊗ 1,

as t−1 takes sdR , x̃ to s ⊗ 1. _is proves (i).
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For (ii), we look at the commutative diagram

V∨
Zp
⊗W(k(x)) t(σ)○ξ //

g t

))

(V○x̃)(σ) (⊕iV
○
x̃)i(σ)

Σ i p−iφlin ∣(V○x̃ )i(σ)
��

V∨
Zp
⊗W(k(x)) V○x̃ .

t−1
oo

It shows directly that

ν(m)(v) = gtσ( µ′(m)) g−1
t (v), ∀ m ∈ Gm(W(k(x))), ∀ v ∈ V∨

Zp ⊗W( k(x)) .

Corollary 3.2.7 Let µ∶Gm ,W → GZp⊗W be the cocharacter as in Notations 3.2.3. Let
C● be the descending ûltration on V∨

Zp
⊗W such that C i is the sub-module of elements

of weights ≥ i with respect to µ, and let D● be the ascending ûltration on V∨
Zp
⊗W such

that D i is the sub-module of elements of weights ≤ i with respect to µ(σ).
Let P+ (resp. P−) be the stabilizer in GZp ⊗W of C● (resp. D●), and let Ix̃ be

IsomW(k(x))((V∨
Zp ⊗W(k(x)), s ⊗ 1), (V○x̃ , sdR, x̃)) .

(i) _e closed subscheme

Ix̃ ,+ ∶= IsomW(k(x))((V∨
Zp ⊗W(k(x)), s ⊗ 1,C●), (V○x̃ , sdR, x̃ ,V○x̃ ⊇ (V○x̃)1)) ⊆ Ix̃

is a trivial P+-torsor.
(ii) _e closed subscheme

Ix̃ ,− ∶= IsomW(k(x))((V∨
Zp ⊗W(k(x)), s ⊗ 1,D●), (V○x̃ , sdR, x̃ , (V○x̃)0 ⊆ V○x̃)) ⊆ Ix̃

is a trivial P(σ)− -torsor.

Proof To prove (i), take a g1 ∈ GZp(W(k(x))) such that g1( µ⊗W(k(x))) g−1
1 = µ′,

then we have Ix̃ ,+ = t ⋅ g1(P+ ⊗W(k(x))) .
For (ii), by Proposition 3.2.6, Ix̃ ,− = t ⋅ gt g(σ)1 (P− ⊗W(k(x))) (σ).

3.2.6 The G-zip Attached to a Filtered F-crystal

Notation as above, let L be the centralizer of µ. Let µ, G, P+, P−, and let L be the
reduction modulo p of µ, GZp , P+, P−, and L, respectively. For simplicity, we still
write ξ, C●, and D● for their reductions. _emap ξ induces isomorphisms

ϕ0∶ (V∨
Zp ⊗ κ)(p)/((V∨

Zp ⊗ κ)1) (p)
pr2→ ((V∨

Zp ⊗ κ)0) (p) ξ−1

Ð→ (V∨
Zp ⊗ κ)0 ,

ϕ1∶ ((V∨
Zp ⊗ κ)1) (p) ξ−1

Ð→ (V∨
Zp ⊗ κ)1 ≃ (V∨

Zp ⊗ κ)/(V∨
Zp ⊗ κ)0 ,

and hence induces σ-linear maps φ′0 , φ′1 a�er pre-composing the natural map V∨
Zp
⊗

κ → (V∨
Zp
⊗ κ)(p). _e tuple (V∨

Zp
⊗ κ,C● ,D● , φ′●) is an F-zip. _e G-zip associated

with (G , µ) is isomorphic to I id (here we use notations as at the end of Section 2.2).
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To get a G-zip from V○x̃ , one needs to “compare” the above F-zip and the one com-
ing from V○x̃ . Let φ0∶V○x/(V○x)1 → (V○x)0 be the reduction mod p of φ∣(V○

x̃)0 , and

φ1∶ (V○x)1 Ð→ (V○x)1 ≅ V○x/(V○x)0

be the reduction mod p of φ
p ∣(V○

x̃)1 . Let Ix ,+, Ix ,− and let Ix be the reduction mod p of
Ix̃ ,+, Ix̃ ,−, and Ix̃ , respectively. For simplicity,we stillwrite t, g1, gt for their reductions.
By the proof of Corollary 3.2.7, Ix ,+ and Ix ,− are P+ ,k(x)-torsor and P−

(p)
,k(x)-torsor,

respectively. For any k(x)-algebra R, an element β ∈ Ix ,+(R) is an isomorphism

β∶ (V∨
Zp ⊗ k(x), s ⊗ 1,C●(V∨

Zp ⊗ k(x))) ⊗ R Ð→ (V○x , sdR ,x ,C●(V○x)) ⊗ R.

It induces an isomorphism

⊕ griC ((V∨
Zp ⊗ k(x)) (p) ⊗ R) ∼Ð→ ⊕ griC(V

○
x
(p) ⊗ R)

which will still be denoted by β(p). But then β(p) is an element in (I(p)x ,+/U(p)+ )(R),
and any element of (I(p)x ,+/U(p)+ )(R) is of this form (by [2, XXVI Corollary 2.2], as U+
is unipotent).

Let ι∶ I(p)x ,+/U(p)+ → Ix ,−/U(p)− be themorphism taking β(p) to

⊕ grDi ((V∨
Zp
⊗ k(x))⊗ R)

(ϕ−1
0 ⊕ϕ−1

1 )⊗1
��

⊕ grDi (V○x ⊗ R)

⊕ griC((V∨
Zp
⊗ k(x))(p) ⊗ R)

β(p) // ⊕ griC(V○x (p) ⊗ R).

φlin
● ⊗1

OO

We claim that ι is an isomorphism of L(p)-torsors. First note that

ϕ−1
0 ⊕ ϕ−1

1 ∶ ⊕ grDi (V∨
Zp ⊗ k(x)) → ⊕ griC ((V∨

Zp ⊗ k(x))(p))

and φlin
● ∶ ⊕ griC(V○x (p))→ ⊕ grDi (V○x) are isomorphisms, and so are their base changes

to R. _is implies that ι is an isomorphism. We only need to show that ι is L(p)-equi-
variant. But this follows from the fact that ϕ−1

0 ⊕ ϕ−1
1 is L(p)-equivariant. So the tuple

(Ix , Ix ,+ , Ix ,− , ι) is a G-zip of type µ over k(x).

Remark 3.2.8 One can describe (Ix , Ix ,+ , Ix ,− , ι) explicitly. We have β = tg1p for
some q ∈ P+k(x)(R) and

ι(β(p)) = φlin
● ○ t(p)g(p)1 q(p) ○ (ϕ−1

0 ⊕ ϕ−1
1 ) = tgt g(p)1 q(p) .

Using notations and constructions in the discussion a�er _eorem 2.2.2, we have

(Ix , Ix ,+ , Ix ,− , ι) ≅ Iq−1 g−1
1 g t g

(p)
1 q(p) ≅ I g−1

1 g t g
(p)
1

.

If we replace t by tg1, then (Ix , Ix ,+ , Ix ,− , ι) ≅ I g t .
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3.3 Construction of the G-zip over a Complete Local Ring

We want to globalize the above point-wise results to S0. But to do so, we need ûrst
to work at completions of stalks at closed points. And to study the G-zip structure
at the complete local rings, we need Faltings’s deformation theory. For simplicity, we
assume that t is such that tµt−1 induces theHodge ûltration.

3.3.1 Faltings’s Deformation Theory and Complete Local Rings of the Integral
Model

Now we will describe Faltings’s deformation theory for p-divisible groups following
[14, 4.5] and its relation with Shimura varieties following [7, 1.5, 2.3].

Let k be a perfect ûeld of characteristic p, andW(k) be the ring ofWitt vectors. Let
H be a p-divisible group over W(k) with special ûber H0. _e formal deformation
functor for H0 is represented by a ring R of formal power series over W(k). More
precisely, let (M0 ,M1

0 , φ0) be the ûltered Dieudonnémodule associated with H, and
L be a Levi subgroup of P = stab(M0 ⊇ M1

0). Let U be the opposite unipotent of
P; then R is isomorphic to the completion at the identity section of U . Let u be the
universal element inU(R), and let σ ∶R → R be the homomorphism that is the Frobe-
nius on W(k) and p-th power on variables; then the ûltered Dieudonné module of
the universal p-divisible group over R is the tuple (M ,M1 , φ,∇),whereM = M0⊗R,
M1 = M1

0 ⊗ R, φ = u ⋅ (φ0 ⊗ σ), and ∇ is an integrable connection, which we do not
want to specify, but just refer the reader to [14, Chapter 4].

More generally, let G ⊆ GL(M) be a reductive group deûned by a tensor s ∈
Fil0(M⊗) ⊆ M⊗, which is φ0-invariant. Assume that the ûltration M0 ⊇ M1

0 is in-
duced by a cocharacter µ ofG. Let RG be the completion along the identity section of
the opposite unipotent of the parabolic subgroup PG = stabG(M0 ⊇ M1

0) ofG, and uG
be the universal element in UG(RG) which is also the pull back to RG of u. _en RG
parametrizes deformations of H such that the horizontal continuation of s remains a
Tate tensor (see [14, Proposition 4.9]).
For any closed point x ∈ S0, let ÔS0 ,x and ÔS ,x be the completions of OS0 ,x

and OS ,x with respect to the maximal ideals deûning x respectively. Clearly,
ÔS ,x/pÔS ,x = ÔS0 ,x . Let x̃ be aW(k(x))-point ofS li�ing x, and µ′ be a cochar-
acter ofGZp⊗W(k(x)) as in the proof of Proposition 3.2.6,which induces theHodge
ûltration on V○x̃ via t as introduced in _eorem 3.1.2(iii)(b). Let RG be as above and
σ ∶RG → RG be the morphism which is Frobenius on W(k(x)) and p-th power on
variables. We will simply write u for uG . _en by the proof of [7, Proposition 2.3.5],
the p-divisible group A[p∞]∣Ô

S ,x
gives a formal deformation of A[p∞]∣ x , and in-

duces an isomorphism RG → ÔS ,x . Moreover, if we take the Frobenius on ÔS ,x
to be the one on RG , then the Dieudonné module of A[p∞]∣Ô

S ,x
is of the form

(V○x̃ ⊗ ÔS ,x , (V○x̃)1 ⊗ ÔS ,x , φ,∇), where φ is the composition

V○x̃ ⊗ ÔS ,x
φ⊗σÐ→ V○x̃ ⊗ ÔS ,x

u tÐ→ V○x̃ ⊗ ÔS ,x ,

with ut = tut−1, and ∇ is given by restricting the connection on the universal de-
formation to the closed sub formal scheme Spf(ÔS ,x) (see [14, 4.5]). Note that by
[7, 1.5.4, proof of Corollary 2.3.9], sdR , x̃ ⊗ 1 = sdR ⊗ 1 in V○⊗ ⊗ ÔS ,x .
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Lemma 3.3.1
(i) _e scheme

I ∶= IsomSpec(Ô
S ,x)((V

∨
Zp ⊗W , s)⊗W ÔS ,x , (V○ , sdR)⊗ ÔS ,x)

is a trivial GZp -torsor over ÔS ,x .
(ii) _e closed subscheme I+ ⊆ I deûned by

I+ = IsomSpec(Ô
S ,x)((V

∨
Zp ⊗W ,C● , s)⊗W ÔS ,x , (V○ ,V○ ⊇ (V○)1 , sdR)⊗ ÔS ,x)

is a trivial P+-torsor over ÔS ,x .

Proof (i) follows from (V○ , sdR) ⊗ ÔS ,x ≅ (V○x̃ , sdR , x̃) ⊗ ÔS ,x and _eorem
3.1.2(iii)(a). And (ii) follows from

(V○ ,V○ ⊇ (V○)1 , sdR) ⊗ ÔS ,x ≅ (V○x̃ ,V○x̃ ⊇ (V○x̃)1 , sdR , x̃) ⊗ ÔS ,x

and Corollary 3.2.7(i).

Let t be as in Section 3.3.1, and ĝt be the composition of

ξ ∶ V∨
Zp ⊗ ÔS ,x Ð→ (V∨

Zp ⊗ ÔS ,x)(σ); v ⊗ s z→ v ⊗ 1⊗ s,

(t ⊗ 1)(σ)∶ (V∨
Zp ⊗W(k(x))⊗ ÔS ,x)(σ) Ð→ (V○x̃ ⊗ ÔS ,x)(σ) ,

with ĝ,

(V○x̃ ⊗ ÔS ,x)(σ) =

(((V○x̃)0 ⊕ (V○x̃)1)
Ô

S ,x
)(σ)

u t○(((φ∣(V○x̃ )0
+ φ

p ∣(V○x̃ )1
)⊗σ)lin)

// V○x̃ ⊗ ÔS ,x

and (t ⊗ 1)−1. We have the following lemma.

Lemma 3.3.2 _e ÔS ,x -linear map ĝt is an element of GZp(ÔS ,x). Let V̂○0
(resp. V̂○1) be themodule ĝ(((V○x̃)0⊗ÔS ,x)(σ)) (resp. ĝ(((V○x̃)1⊗ÔS ,x)(σ)) ), then
the scheme I− given by

IsomSpec(Ô
S ,x)((V

∨
Zp⊗W ,D● , s)⊗W ÔS ,x , (V○⊗ÔS ,x , V̂○0 ⊆ V○⊗ÔS ,x , sdR⊗1))

is a trivial P(σ)− -torsor over ÔS ,x .
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Proof To prove the ûrst statement, we need to show that ĝ⊗t (s⊗ 1) = s⊗ 1. We have
the following commutative diagram

V∨
Zp
⊗ ÔS ,x

(t⊗1)(σ)○ξ //

g t⊗1

))ĝ t

##

(V○x̃ ⊗W(k(x)) ÔS ,x)(σ) ((⊕i(V○x̃)i)⊗ ÔS ,x)
(σ)

Σ i(p−iφ⊗σ)lin

��
V∨
Zp
⊗ ÔS ,x

u

��

V○x̃ ⊗ ÔS ,x
t−1⊗1oo

u t

��
V∨
Zp
⊗ ÔS ,x V○x̃ ⊗ ÔS ,x .

t−1⊗1oo

We know from Proposition 3.2.6 that g⊗t (s ⊗ 1) = s ⊗ 1. But u⊗(s ⊗ 1) = s ⊗ 1 by
deûnition. So ĝ⊗t (s ⊗ 1) = s ⊗ 1.

To prove the second statement, we use the samemethod as in the proof of Corol-
lary 3.2.7. Let let Ix̃ ,+, Ix̃ ,− be as in Corollary 3.2.7 (but with t replaced by tg1). _en
by the proof of Lemma 3.3.1, we have

I+ = ( t ⋅ (P+ ⊗W(k(x)))) × Spec(ÔS ,x) = Ix̃ ,+ × Spec(ÔS ,x).

By the proof of Proposition 3.2.6(ii) and the commutative diagram above, the splitting

V∨
Zp ⊗ ÔS ,x = (t ⊗ 1)−1(V̂○0)⊕ (t ⊗ 1)−1(V̂○1)

is induced by the cocharacter u(ν ⊗ 1)u−1. So I− = t ⋅ u(t−1Ix̃ ,− × Spec(ÔS ,x)), and
hence it is a trivial P(σ)− -torsor over Spec(ÔS ,x).

3.3.2 Description of the G-zip over the Complete Local Ring

From now on, we only need to use mod p parts of previous result, so we simplify
notation as follows. We will write G (resp. V ) for the special ûber of GZp (resp. VZp ),
and µ, s, RG , I, I+, I−, P+, P−, U+, U−, L, t, u, and gt for their reductions mod p.
To get a G-zip structure on RG ≅ ÔS0 ,x , we only need to construct an isomorphism
ι∶ I(p)+ /U(p)+ → I−/U(p)− of L(p)-torsors over RG . _e construction is the same as in
Section 3.2.6. Let V be reduction mod p of V○ ⊗ ÔS ,x in Lemma 3.3.1, C● be the
ûltration on V given by reduction mod p of (V○ ⊇ (V○)1) ⊗ ÔS ,x there, and D● be
the ûltration on V given by reduction mod p of V̂○0 ⊆ V○ ⊗ ÔS ,x in Lemma 3.3.2.
For β ∈ I+(R) with R a RG-algebra, denote by β(p) its image of Frobenius pull back
in (I(p)+ /U(p)+ )(R), then the composition

⊕ grDi (V∨
R )
(ϕ−1

0 ⊕ϕ−1
1 )⊗1// ⊕ griC(V

∨,(p)
R )

β(p) // ⊕ griC(V
(p)
R )

φlin
● ⊗1 // ⊕ grDi (VR)

is in I−/U(p)− (R). _is gives the morphism ι∶ I(p)+ /U(p)+ → I−/U(p)− , which is
L(p)-equivariant as ϕ−1

0 ⊕ ϕ−1
1 is so. Moreover, we have (I, I+ , I− , ι) ≅ Iug t .
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3.4 Construction of the G-zip on the Reduction of the Integral Model

Let uswriteA (resp.V, sdR) for the restriction ofA (resp.V○, sdR) toS0. Notation as in
Section 3.3.2,wewill now explain how to get aG-zip onS0 usingA[p]. Let φ∶A[p]→
A[p](p) and v∶A[p](p) → A[p] the Frobenius and Verschiebung respectively; then
the sequences

A[p] φÐ→ A[p](p) vÐ→ A[p] and A[p](p) vÐ→ A[p] φÐ→ A[p](p)

are exact. A�er applying the contravariantDieudonné functor,we get exact sequences

V
vÐ→ V(p)

φÐ→ V and V(p)
φÐ→ V

vÐ→ V(p) .
Let δ∶V → V(p) the Frobenius semi-linear map x ↦ x ⊗ 1, we write C● for the de-
scending ûltration given by

C0 ∶= V ⊇ C1 ∶= Ker(φ ○ δ) ⊇ C2 ∶= 0,
andD● for the ascending ûltration given by

D−1 ∶= 0 ⊆D0 ∶= Im(φ) ⊆D1 ∶= V.
Let φ0∶C0/C1 → D0 be the natural map induced by φ ○ δ. Note that v induces an
isomorphismV/ Im(φ) ≃→ Ker(φ),whose inversewill be denoted by v−1. Let φ1∶C1 →
D1/D0 be themap v−1 ○ (δ∣C1); then the tuple (V,C● ,D● , φ●) is an F-zip over S0.

Let C● and D● be ûltrations on V∨
κ introduced at the beginning of Section 3.2.6.

_eorem 3.4.1
(i) Let I ⊆ IsomS0(V∨

κ ⊗ OS0 ,V) be the closed subscheme deûned as

I ∶= IsomS0((V∨
κ , s)⊗ OS0 , (V, sdR)) .

_en I is a Gκ-torsor over S0.
(ii) Let I+ ⊆ I be the closed subscheme

I+ ∶= IsomS0((V∨
κ , s,C●)⊗ OS0 , (V, sdR ,C●)) .

_en I+ is a P+-torsor over S0.
(iii) Let I− ⊆ I be the closed subscheme

I− ∶= IsomS0((V∨
κ , s,D●)⊗ OS0 , (V, sdR ,D●)) .

_en I− is a P(p)− -torsor over S0.
(iv) _e σ-linear maps φ0 and φ1 induce an isomorphism

ι∶ I(p)+ /U(p)+ Ð→ I−/U(p)−

of L(p)-torsors over S0.
Hence the tuple (I, I+ , I− , ι) is a G-zip over S0.

Proof By construction, G(S) acts simply transitively on I(S) for any S0-scheme S,
so if I(S) /= ∅, themorphism IS×SGS → IS×S IS , (t, g)↦ (t, t ⋅g) is an isomorphism.
To prove (i), it suõces to show that I is smooth over S0 with non-empty ûbers. _e
non-emptiness of Ix for a closed point x ∈ S0 follow from _eorem 3.1.2(iii)(a). For
smoothness, by Lemma 3.3.1(i), I →S0 is smooth a�er base-change to the complete
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local rings at stalks of closed points. And hence I →S0 is smooth at the stalk of each
closed point of S0. But this implies that it is smooth at an open neighborhood for
each closed point, and hence smooth.

(ii) follows from Corollary 3.2.7(i) and Lemma 3.3.1(ii) using the same strategy.
To prove (iii), we also use the same strategy. Take a point x ∈ S0, we consider

I− ×S0 Spec(ÔS0 ,x). We claim that

I− ×S0 Spec(ÔS0 ,x) ≅ I−∣Spec(Ô
S0 ,x

) .

To see this, using notations in Lemma 3.3.2, we only need to show that

(V, sdR ,D●)⊗ ÔS0 ,x ≅ (V○ ⊗ ÔS ,x , sdR ⊗ 1, V̂○0 ⊆ V○ ⊗ ÔS ,x)⊗ ÔS0 ,x .

But by our construction, V̂○0 ⊆ V○ ⊗ ÔS ,x is the submodule generated by φ(V̂○0),
and the composition

V̂○
0 ⊗ ÔS0 ,x ⊆ V○ ⊗ ÔS0 ,x ↠ (V○ ⊗ ÔS0 ,x)/(V̂○

1 ⊗ ÔS0 ,x)

is an isomorphism, as it has an inverse pr1. So V̂○0 ⊗ ÔS0 ,x = I(φ) in V○ ⊗ ÔS0 ,x ,
and this proves (iii).
For (iv), the same argument as before Remark 3.2.8 works. For β ∈ I+(R) with

Spec(R) an aõne scheme over S0, denote by β(p) its image of Frobenius pull back
in (I(p)+ /U(p)+ )(R), the composition

⊕ grDi (V∨
R )

(ϕ−1
0 ⊕ϕ−1

1 )⊗1// ⊕ griC(V
∨,(p)
R )

β(p) // ⊕ griC(V
(p)
R )

φlin
● ⊗1 // ⊕ grDi (VR)

is in I−/U(p)− (R). _is induces a morphism ι∶ I(p)+ /U(p)+ → I−/U(p)− , which is
L(p)-equivariant, as ϕ−1

0 ⊕ ϕ−1
1 is so.

4 Ekedahl–Oort Strata for Shimura Varieties of Hodge Type

4.1 Basic Properties of Ekedahl–Oort Strata

In this section, we will deûne Ekedahl–Oort strata for Shimura varieties of Hodge
type, and study their basic properties. Let G, V , µ, P+, P−, and L be as in Section
3.3.2, and let (I, I+ , I− , ι) be the G-zip constructed in the revious theorem.

Deûnition 4.1.1 _e G-zip (I, I+ , I− , ι) on S0 induces a morphism of smooth al-
gebraic stacks ζ ∶S0 → G-Zipµ

κ . For a point x in the topological space of G-Zipµ
κ ⊗ κ̄,

the Ekedahl–Oort stratum in S0 ⊗ κ̄ associated with x is deûned to be ζ−1(x).

Now we will state our main result.

_eorem 4.1.2 _emorphism ζ ∶S0 → G-Zipµ
κ is smooth.
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Proof By _eorem 2.2.5, Gκ → G-Zipµ
κ is an EG ,µ-torsor. Let k be κ, to prove that ζ

is smooth, it suõces to prove that in the cartesian diagram

S #
0,k

//

ζ#

��

S0,k

��
Gk // G-Zipµ

κ ⊗ k,

the morphism ζ# is smooth. Note that S #
0,k and Gk are both smooth over k, so to

show that ζ# is smooth, it suõces to show that the tangent map at each closed point
is surjective (see [5, Chapter 3,_eorem 10.4]).

Let x# ∈ S #
0,k be a closed point, its image in S0,k is denoted by x, which is also

a closed point. Let RG be as in Section 3.3.2, which is the reduction modulo p of the
universal deformation ring at x. Consider the cartesian diagram

X //

α

��

Spec(RG)

��
Gk // G-Zipµ

κ ⊗ k.

_emorphism X → Spec(RG) is a trivial EG ,µ-torsor by our construction at the very
end of Section 3.3.2: the G-zip over RG is isomorphic to Iug t (see Constructions 2.2.3
and 2.3.4). _e RG-point ugt of G gives a trivialization of the EG ,µ-torsor X over
RG . _is trivialization induces an isomorphism from Spec(RG)×k (EG ,µ)k to X that
translates α into themorphism β∶ Spec(RG) ×k (EG ,µ)k → Gk that sends, for any k-
scheme T , a point (u, l , u+ , u−) to lu+ugt(l(p)u−)−1 (see Equation (2.1) and the line
following it, and note that as k-scheme, EG ,µ = L × U+ × U(p)− , and that RG is the
complete local ring of U− at the origin).

Let k[є] = k[x]/(x2), and g ∈ G(k[є]) be a deformation of gt . By viewing gt as
an element in G(k[є]), we get a g0 ∈ Lie(Gk) = Ker(G(k[є])→ G(k)) such that g =
g0gt . By [1, Chapter IV, Proposition 14.21(iii)], the product map L×U+,k ×U−,k → Gk
is an open immersion, so there exists u ∈ Lie(U−,k) = RG(k[є]), l ∈ Lie(Lk) and u+ ∈
Lie(U+,k) such that lu+u = g0. Noting that l(p) = id, we see that β(u, l , u+ , id) = g,
which proves the theorem.

4.1.1 Dimension and Closure of a Stratum

_anks to _eorem 4.1.2, the combinatory description for the topological space of
[EG ,µ/Gκ] developed in [20] can be used to describe Ekedahl–Oort strata for reduc-
tion of a Hodge type Shimura variety, and gives dimension formula and closure for
each stratum. We will ûrst present some notations and technical results following
[20,24], and then state how to use them.

Let B ⊆ G be a Borel subgroup, and T ⊆ B be amaximal torus. Note that such a B
exists by [11,_eorem 2], and such a T exists by [2,XIV_eorem 1.1]. LetW(B, T) ∶=
NormG(T)(κ)/T(κ) be theWeyl group, and I(B, T) be the set of simple re�ections
deûned by Bκ . Let φ be the Frobenius on G given by the p-th power. It induces an
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isomorphism (W(B, T),W(B, T)) → (W(B, T),W(B, T)) of Coxeter systems still
denoted by φ.
A priori the pair (W(B, T), I(B, T)) depends on the pair (B, T). However, any

other pair (B′ , T ′) with B′ ⊆ Gκ a Borel subgroup and T ′ ⊆ B′ a maximal torus is
obtained on conjugating (Bκ , Tκ) by some g ∈ G(κ)which is unique up to right mul-
tiplication by Tκ . So conjugation by g induces isomorphisms W(B, T)→W(B′ , T ′)
and I(B, T) → I(B′ , T ′) that are independent of g. Moreover, the morphisms at-
tached to any three of such pairs are compatible, so we will simply write (W , I) for
(W(T), I(B, T)), and view it as ‘the’ Weyl group with ‘the’ set of simple re�ections.

_e cocharacter µ∶Gm → Gκ as in Section 4.1 gives a parabolic subgroup P+, and
hence a subset J ⊆ I by taking simple roots whose inverse are roots of P+. Let WJ the
subgroup of W generated by J, and JW be the set of elements w such that w is the
element of minimal length in some coset WJw′. Note that there is a unique element
in WJw′ of minimal length, and each w ∈ W can be uniquely written as w = wJ

Jw
withwJ ∈WJ and Jw ∈ JW . In particular, JW is a system of representatives ofWJ/W .
Furthermore, if K is a second subset of I, then for eachw, there is a unique element

inWJwWK which is ofminimal length. We will denote by JWK the set of elements of
minimal length, and it is a set of representatives ofWJ/W/WK .

Letω0 be the element ofmaximal length inW , setK ∶= ω0φ(J). Herewewrite gJ for
gJg−1. Let x ∈ KWφ(J) be the element ofminimal length inWKω0Wφ(J). _en x is the
unique element ofmaximal length in KWφ(J) (see [24, 5.2]). _ere is a partial order ⪯
on JW , deûned by w′ ⪯ w if and only if there exists y ∈ WJ , yw′xφ(y−1)x−1 ≤ w (see
[24, Deûnition 5.8]). Here ≤ is the Bruhat order (see [24, A.2] for the deûnition). _e
partial order ⪯makes JW into a topological space.

Now we can state the themain result of Pink–Wedhorn–Ziegler that gives a com-
binatory description of the topological space of [EG ,µ/Gκ] (and hence G-Zipµ

κ ).

_eorem 4.1.3 For w ∈ JW , and T ′ ⊆ B′ ⊆ Gκ with T ′ (resp. B′) a maximal torus
(resp. Borel) of Gκ such that T ′ ⊆ Lκ and B′ ⊆ P(p)−,κ , let g , ẇ ∈ NormGκ(T ′) be a
representative of φ−1(x) and w respectively, and Gw ⊆ Gκ be the EG ,µ-orbit of gB′ẇB′.
_en
(i) _e orbit Gw does not depends on the choices of ẇ, T ′, B′ or g.
(ii) _e orbitGw is a locally closed smooth subvariety ofGκ . Its dimension is dim(P)+

l(w). Moreover, Gw consists of only one EG ,µ-orbit. So Gw is actually the orbit of
gẇ.

(iii) Denote by ∣ [EG ,µ/Gκ]⊗ κ∣ the topological space of [EG ,µ/Gκ]⊗ κ, and still write
JW for the topological space induced by the partial order ⪯. _en the association
w ↦ Gw induces a homeomorphism JW → ∣ [EG ,µ/Gκ]⊗ κ∣ .

Proof By [20, Lemma 12.11], (B′ , T ′ , g) is a frame of (Gκ , P+,κ , P
(p)
−,κ , φ) in the sense

of [20, Deûnition 3.6]. Here φ∶ P+,κ/U+,κ → P(p)−,κ /U
(p)
−,κ is the morphism induced by

the relative Frobenius of L. So the ûrst statement is [20, Proposition 5.8], the sec-
ond statement is [20, _eorem 1.3, Proposition 7.3, and _eorem 7.5], and the third
statement is [20,_eorem 1.4].
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_e next statement (including its proof) is a word by word adaptation of results in
[24] (to bemore precise,_eorem 6.1, Corollary 10.2, and Proposition 10.3).

Proposition 4.1.4 Let J be the type of P+; then the Ekedahl–Oort strata are given
by the ûnite set JW . For w ∈ JW , the stratum S w

0 is smooth and equi-dimensional of
dimension l(w) ifS w

0 /= ∅. Moreover, the closure ofS w
0 is the union ofS w′

0 such that
w′ ⪯ w.

Proof _e ûrst statement follows from our deûnition of Ekedahl–Oort strata and
_eorem4.1.3(iii). For the second one, note that by_eorem4.1.3(ii), eachGw is equi-
dimensional of codimension dim(U−)− l(w) inGκ , so each S w

0 is equi-dimensional
of codimension dim(U−) − l(w) in S0,κ , as ζ is smooth by _eorem 4.1.2. So the
dimension ofS w

0 is l(w), as dim(S0) = dim(U−).
_e smoothness of each stratum follows from a direct adaption of the proof of [24,

Proposition 10.3]. More precisely, let w∶ Spec(κ) → EG ,µ/Gκ be a point. _en its re-
duced gerbe (EG ,µ/Gκ)w is smooth. And hence ζ−1((EG ,µ/Gκ)w) is smooth. ButS w

0
is reduced with the same topological space as ζ−1((EG ,µ/Gκ)w), so S w

0 is smooth.
For the last statement, by _eorem 4.1.3(iii), the closure of {w} in ∣ [EG ,µ/Gκ]⊗ κ∣ is
{w′ ∣ w′ ⪯ w}. So S w

0 = ζ−1(w) by the universally-openness of ζ .

Remark 4.1.5 _ere is a uniquemaximal element in JW ; its corresponding stratum
is called the ordinary stratum. It is open and non-empty by _eorem 4.1.2 and hence
dense by Proposition 4.1.4. _ere is also a unique minimal element in JW , namely
the element 1. Its corresponding stratum is called the superspecial stratum which is
expected to be non-empty (but we cannot prove it now)1. _e non-emptiness of the
superspecial stratum implies that every stratum is non-empty, as ζ is an open map by
_eorem 4.1.2.

4.2 F-zips with Additional Structure

In this subsection, we will describe additional structure on F-zips associated with
reductions of Shimura varieties of Hodge type, and show how to generalize the the
theory in [24] to study Ekedahl–Oort strata for Shimura varieties ofHodge type.

4.2.1 Description of the additional structures

Let (G ,V , µ, s) be as at the beginning of 4.2.1, and C●, D● be the ûltrations on V∨
κ

introduced at the beginning of 3.2.6.

Deûnition 4.2.1 Let S be a scheme over κ. By an F-zip of type (G ,V , µ, s) with a
Tate class sdR over S,wemean an F-zip (V,C● ,D● , φ●) over S equippedwith a section
sdR∶OS → V⊗, such that

1_ere are currentlymany announced proofs for non-emptiness ofNewton strata (byDong Uk Lee,
Kisin-Madapusi Pera, and Chia-Fu Yu). Togetherwithworks of Kisin on the Langlands–Rapoport con-
jecture and those of Nie on fundamental elements, this implies the non-emptiness of the superspecial
stratum.
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(i) I ∶= IsomS0((V∨
κ , s)⊗OS0 , (V, sdR)) ⊆ IsomS0(V∨

κ ⊗OS0 ,V) is aGκ-torsor
over S0,

(ii) I+ ∶= IsomS0((V∨
κ , s,C●)⊗OS0 , (V, sdR ,C●)) ⊆ I is a right P+-torsor overS0,

(iii) I− ∶= IsomS0((V∨
κ , s,D●) ⊗ OS0 , (V, sdR ,D●)) ⊆ I is a right P(p)− -torsor

over S0,
(iv) sdR∶OS → V⊗ is a Tate sub F-zip of weight 0, i.e., the F-zip structure on V⊗

restricted to OS makes it a Tate F-zip of weight 0.

Remark 4.2.2 Condition (i) in the above deûnition implies that sdR∶OS ↪ V⊗ is
a locally direct summand. As there is an fpqc-cover T of S, such that I(T) /= ∅. An
element t ∈ I(T) identiûes

(k sÐ→ V⊗)T and (OS
sdRÐ→ V⊗)T ,

so (V⊗/OS)T ≅ (V⊗/k)T is free. Noting that being locally free is local for the fpqc
topology for ûnitely generatedmodules, we see that OS ↪ V⊗ is a locally direct sum-
mand. _e embedding sdR is then admissible in the sense of Deûnition 2.1.6.

Wewill simply call an ‘F-zip of type (G ,V , µ, s)with aTate class sdR’ an ‘F-zipwith
a Tate class sdR’ for short. We denoted by F-ZipsdR(S) the category whose objects are
F-zipswith a Tate class sdR over S, andwhosemorphisms are isomorphisms of F-zips
respecting Tate classes.

Construction 4.2.3 _ere is a functor Z∶G-Zipµ
κ (S)→ F-ZipsdR(S) as follows. For

(I, I+ , I− , ι) ∈ G-Zipµ
κ (S), we deûne

V = I ×G V∨
S , C1 = I+ ×P+ C1

S ,

D0 = I− ×P(p)− D0,S , and ⊕ φ i ∶ ⊕ griC(V)→ ⊕ grDi (V)
to be the σ-linear map whose linearization is themorphism

ι × (ϕ0 ⊕ ϕ1)∶ I(p)+ /U(p)+ ×L(p) (⊕ griC(V
∨
κ ))(p)S Ð→ I−/U(p)− ×L(p) (⊕ grDi (V

∨
κ ))S .

Here ϕ0 and ϕ1 are as in Section 3.2.6. _e condition that ι is L(p)-equivariant im-
plies that ι × (ϕ0 ⊕ ϕ1) is well deûned. _e same argument as in the previous remark
shows that C1 ⊆ V and D0 ⊆ V are locally direct summands. So (V,C● ,D● , φ●)
is an F-zip that satisûes the ûrst three conditions of Deûnition 4.2.1. _e section
sdR ∈ V⊗ is the image of I × {s} in V⊗ = I ×G (V⊗

S ). Let C●(V⊗) (resp. C●(V⊗
κ ))

be the ûltration induced by C● (resp. C●), then C0(V⊗) = I+ ×P+ (C0(V⊗
κ )S), and

sdR is in C0(V⊗) as s ∈ C0(V⊗
κ ) is G-invariant. Similarly, sdR ∈ D0(V⊗), and it in-

duces injections OS → C0(V⊗)/C1(V⊗) and OS → D0(V⊗)/D−1(V⊗). _e F-zip
(V,C● ,D● , φ●) induces an F-zips structure on V⊗, and in particular a σ-linear iso-
morphism Φ0∶C0(V⊗)/C1(V⊗)→D0(V⊗)/D−1(V⊗). _e linearization ofΦ0 is the
identity on OS = Im(sdR), as ϕ0 ⊕ ϕ1 is so on s. So sdR∶OS → V⊗ is a Tate sub F-zip
of weight zero.

Corollary 4.2.4 _e functor Z∶G−Zipµ
κ (S) → F−ZipsdR(S) induces an equivalence

of categories.
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Proof We onlyneed to construct a quasi-inverseG∶ F−ZipsdR(S)→ G-Zipµ
κ (S) ofZ.

Let (V,C● ,D● , φ●) be an F-zip with a Tate class sdR. By Deûnition 4.2.1, we already
have (I, I+ , I−), and hence only need to construct an isomorphism of L(p)-torsors
ι∶ I(p)+ /U(p)+ → I−/U(p)− . As in 3.2.6, for β ∈ I+(R)with Spec(R) an aõne scheme over
S, denote by β(p) its image of Frobenius pull back in (I(p)+ /U(p)+ )(R), then condition
(iv) of Deûnition 4.2.1 implies that the composition

⊕ grDi (V∨
R )

(ϕ−1
0 ⊕ϕ−1

1 )⊗1// ⊕ griC(V
∨,(p)
R )

β(p) // ⊕ griC(V
(p)
R )

φlin
● ⊗1 // ⊕ grDi (VR)

is in I−/U(p)− (R). _is induces a morphism ι∶ I(p)+ /U(p)+ → I−/U(p)− , which is
L(p)-equivariant as ϕ−1

0 ⊕ϕ−1
1 is so. One checks easily thatG is a quasi-inverse ofZ.

4.2.2 Defining Ekedahl–Oort Strata Using F-zips

In this section, we will follow the construction in [17, 24] to show that the Ekedahl–
Oort strata deûned using G-zips are the same as those deûned using F-zips with a
Tate class. _e main technical tool is still [20]. Fix the datum (G ,V , µ, s) as before,
let Zµ be the Zariski sheaûûcation of the presheaf that associates with a κ-scheme S
the set of F-zip structures (C● ,D● , φ●) on VS with Tate class s ⊗ 1.

Let Z′µ be theZariski sheaûûcation of thepresheaf that associateswith a κ-scheme S
the set of triples (P,Q ,UQ gUφ(P)), where P ⊂ GS is of type J (the type of P+ deûned
before), Q ⊂ GS is of type φ(J) and g ∈ G(S) is such that Q and gφ(P)g−1 are in
opposite position. By [17, Corollary 4.3], Z′µ is represented by a smooth κ-scheme.
By [7, Lemma 1.1.1] and the proof of Proposition 1.1.5, the construction of [17, Lemma
5.1] induces an isomorphism Zµ ≅ Z′µ . We remark that for an aõne scheme S, Zµ(S)
(resp. Z′µ(S)) is precisely the set of triples described above. We also remark that our
construction of Zµ is slightly diòerent from Xτ deûned in [17, 5.2]. We insists to ûx
the type of cocharacters inducing the ûltrations, rather than the type of the ûltrations.
_is kills the problem mentioned before [17, Corollary 6.2].

Now we will construct a morphism Zµ → [EG ,µ/Gκ]. By deûnition, to give such
a morphism is the same as to give an EG ,µ-torsor H over Zµ , equipped with an
EG ,µ-equivariant morphism H → Gκ .

_e F-zip (Vκ ,C● ,D● , ϕ●) constructed in 3.2.6 is an element of Zµ(κ). Using the
proof of [20, Lemma 12.5], the group Gκ ×Gκ acts on Zµ transitively via

(g , h) ⋅ (C● ,D● , φ●) = (gC● , hD● , hφ●g−1),
where hφ i g−1 is the composition

g(C i)/g(C i+1) g−1

Ð→ C i/C i+1 Ð→ D i/D i−1
hÐ→ h(D i)/h(D i−1).

Under the above action, the stabilizer of (Vκ ,C● ,D● , ϕ●) is EG ,µ (by the proof of
[20, Lemma 12.5]), and hence the action induces an EG ,µ-torsor Gκ ×Gκ → Zµ which
is Gκ-equivariant with respect to the diagonal action on Gκ × Gκ and the restriction
to diagonal on Zµ . _e morphism m∶Gκ × Gκ → Gκ , (g , h) ↦ g−1h is a Gκ-torsor
which is EG ,µ-equivariant. By the same reason as in [20, _eorem 12.7], we get an
isomorphism of stacks β ∶ [Gκ/Zµ] ≃ [EG ,µ/Gκ] a�er passing to quotients.
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Let I be IsomS0((Vκ , s) ⊗ OS0 , (V, sdR)) as before. _ere is a Gκ-equivariant
morphism from the Gκ-torsor I to Zµ , given by mapping t ∈ I to the pull back via
t of the F-zip structure on V. _is induces a morphism ζ′∶S0 → [Gκ/Zµ]. Our
Ekedahl–Oort strata are deûned by themorphism ζ ∶S0 → [EG ,µ/Gκ] constructed in
Section 4.1. But by what we have seen, one can identify [Gκ/Zµ] with [EG ,µ/Gκ] via
β. So it is natural to askwhether they induce the same theory of Ekedahl–Oort strata.

Proposition 4.2.5 We have an equality β ○ ζ′ = ζ.

Proof By [20, 12.6], there is a cartesian diagram

Gκ ×Gκ
m //

n
��

Gκ

��
Zµ // [EG ,µ/Gκ]

whose vertical arrows are Gκ-equivariant EG ,µ-torsors and horizontal arrows are
EG ,µ-equivariant Gκ-torsors. One only needs to check that the pull back to Gκ × Gκ
ofS # → Gκ and I → Zµ are Gκ × EG ,µ-equivariantly isomorphic over Gκ ×Gκ .

Let S̃0 be the pull back

S̃0 //

��

S #
0

��
Gκ ×Gκ

m // Gκ .

For any T/κ,

S̃0(T) = {(g1 , g2 , a, b) ∣ g i ∈ Gκ(T), (a, d) ∈ S0(T) such that g−1
1 g2 = a−1b} .

For any (g , p1 , p2) ∈ Gκ × EG ,µ(T), the action is given by

(g , p1 , p2) ⋅ (g1 , g2 , a, b) = (g g1p−1
1 , g g2p−1

2 , ap−1
1 , bp−1

2 ).

Let Ĩ be the pull back

Ĩ //

��

I

��
Gκ ×Gκ

n // Zµ .

For any T/κ,

Ĩ(T) = {(g1 , g2 , t) ∣ g i ∈ Gκ(T), t ∈ I(T) such that (g1(C●T), g2(D●,T), g2ϕ●g−1
1 )

= t−1(C●T ,D●,T , φ●)} ,

where (V,C● ,D● , φ●) is the F-zip on S0 introduced at the beginning of Section 3.4.
For any (g , p1 , p2) ∈ Gκ × EG ,µ(T), the action is given by

(g , p1 , p2) ⋅ (g1 , g2 , t) = (g g1p−1
1 , g g2p−1

2 , g ⋅ t).
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_ere is aGκ ×Gκ-morphism S̃0 → Ĩ mapping (g1 , g2 , a, b) to (g1 , g2 , ag−1
1 ). _is

is clearly an isomorphism. One also checks easily that it is Gκ ×EG ,µ-equivariant.

5 Ekedahl–Oort Strata for CSpin-varieties

We apply our main results to CSpin Shimura varieties, which are typical examples of
Shimura varieties ofHodge type but not necessarily of PEL type.

5.1 CSpin-Shimura Varieties

We explainwhatCSpin-Shimura varieties are and their integral canonical models fol-
low [12].

Let V be a n+2-dimensionalQ-vector spacewith a quadratic form Q of signature
(n, 2). We will always assume that n > 0. Let p > 2 be a prime and L ⊆ V be a
Z(p)-lattice such that Q is non-degenerate on LZ(p) (i.e., the bilinear form attached
to Q induces an isomorphism L → L∨). Let C(L) and C+(L) be the Cliòord algebra
and even Cliòord algebra respectively (see [12, 1.1]). Note that there is an embedding
L ↪ C(L) and an anti-involution ∗ on C(L) (see [12, 1.1]).

Let CSpin(L) be the stabilizer in C+(L)× of L ↪ C(L) with respect to the
conjugation action of C+(L)× on C(L). _en CSpin(L) is a reductive group over
Z(p). Consider the le� action of CSpin(L) on C(L). _ere is a perfect alternating
form ψ on C(L), such that the embedding CSpin(L) ↪ GL(C(L)) factors through
GSp(C(L),ψ) which induces an embedding of Shimura data

(CSpin(V), X) Ð→ (GSp(C(V),ψ), X′) .

We refer to [12, 1.8, 1.9, 3.4, 3.5] for details. Here X is the space of oriented negative
2-planes in VR, and X′ is the union of Siegel half-spaces attached to GSp(C(V),ψ).

_e above construction shows that (CSpin(V), X) is a Shimura datum of Hodge
type. Let Kp = CSpin(L)(Zp) andK p ⊆ CSpin(V)(Ap

f ) be a compact open subgroup
which is small enough. Let K = KpK p ; then

ShK ∶= CSpin(V)(Q)/X × (CSpin(V)(A f )/K)

has a canonical model over Q that will again be denoted by ShK . Moreover, Kisin’s
main theorem on existence of integral canonical models implies that ShK has an in-
tegral canonical model SK over Z(p).

5.2 Ekedahl–Oort Strata for CSpin-varieties

Let S0 the special ûber of SK . _e Shimura datum determines a cocharacter
µ∶Gm ,Zp → CSpin(LZp), which is unique up to conjugation. _e special ûber of
µ will still be denoted by µ. _e cocharacter µ determines a parabolic subgroup
P+ ⊆ CSpin(LFp), whose type will be denoted by J. Let W be the Weyl group of
CSpin(LFp), and let JW be as in Section 4.1.1 _e set JW is equipped with a partial
order ⪯ (see Section 4.1.1, before_eorem 4.1.3). _en Proposition 4.1.4 implies that
the structure of Ekedahl–Oort stratiûcation on S0 is described by JW together with
the partial order ⪯.
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All we need is a combinatorial description of (JW , ⪯). But everything reduces to
the computations in [28], a�er identifying theWeyl group of CSpin(LFp)with that of
SO(LFp).

5.2.1 A Description of (JW , ⪯)

Let us recall the description of (JW , ⪯) in [28]. Let m be the dimension of amaximal
torus in SO(LFp).

(a) If n is odd, then the partial order ⪯ on JW is a total order, and the length
function induces an isomorphism of totally ordered sets (JW , ⪯)→ {0, 1, 2, . . . , n}.

(b) If n is even, noting that in this case n+ 2 = 2m, thenW is generated by simple
re�ections {s i}i=1, . . . ,m , where

s i =
⎧⎪⎪⎨⎪⎪⎩

(i , i + 1)(n − i + 2, n − i + 3), for i = 1, . . . ,m − 1,
sm = (m − 1,m + 1)(m,m + 2), for i = m.

Let

w i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s1s2 ⋅ ⋅ ⋅ s i , for i ≤ m − 1,
s1s2 ⋅ ⋅ ⋅ sm , for i = m,
s1s2 ⋅ ⋅ ⋅ smsm−2 ⋅ ⋅ ⋅ s2m−i−1 , for i ≥ m + 1.

and w′
m−1 be s1s2 ⋅ ⋅ ⋅ sm−2sm . _en JW = {w i}0≤i≤n ∪ {w′

m−1}, and the partial order ⪯
is given by

w0 = id ⪯ w1 ⪯ ⋅ ⋅ ⋅ ⪯ wm−2 ⪯ wm−1 ,w′
m−1 ⪯ wm ⪯ ⋅ ⋅ ⋅ ⪯ wn .

Now we can describe structure of the Ekedahl–Oort stratiûcation on S0.

Corollary 5.2.1 Let m and n be as before.
(i) _ere are at most 2m Ekedahl–Oort strata on S0.
(ii) (a) If n is odd, then for any integer 0 ≤ i ≤ n, there is atmost one stratumS i

0 such
that dim(S i

0 ) = i. _ese are all the Ekedahl–Oort strata on S0. Moreover,
the Zariski closure ofS i

0 is the union of all theS i′
0 such that i′ ≤ i.

(b) If n is even and positive, then for any integer i such that 0 ≤ i ≤ n and i /=
n/2, there is at most one stratum S i

0 such that dim(S i
0 ) = i. _ere are at

most 2 strata of dimension n/2. _ese are all the Ekedahl–Oort strata on S0.
Moreover, the Zariski closure of the stratum S w

0 is the union ofS w
0 with all

the strata whose dimensions are smaller than dim(S w
0 ).

Proof Apply Proposition 4.1.4 together with Section 5.2.1.
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