A NOTE ON INHOMOGENEOUS DIOPHANTINE APPROXIMATION IN BETA-DYNAMICAL SYSTEM

YUEHUA GE and FAN LÜ ${ }^{\boxtimes}$

(Received 28 May 2014; accepted 12 July 2014; first published online 12 September 2014)

Abstract

We study the distribution of the orbits of real numbers under the beta-transformation T_{β} for any $\beta>1$. More precisely, for any real number $\beta>1$ and a positive function $\varphi: \mathbb{N} \rightarrow \mathbb{R}^{+}$, we determine the Lebesgue measure and the Hausdorff dimension of the following set: $$
E\left(T_{\beta}, \varphi\right)=\left\{(x, y) \in[0,1] \times[0,1]:\left|T_{\beta}^{n} x-y\right|<\varphi(n) \text { for infinitely many } n \in \mathbb{N}\right\}
$$

2010 Mathematics subject classification: primary 11K55; secondary 28A80. Keywords and phrases: beta-dynamical system, beta-expansion, inhomogeneous Diophantine approximation, Lebesgue measure, Hausdorff dimension.

1. Introduction

In 1957, Rényi [13] introduced the beta-expansions of real numbers as a generalisation of the familiar integer base expansions. Since then, the study of the beta-expansion has attracted considerable interest. The corresponding beta-dynamical system has recently received much attention. One of the most important problems of the beta-dynamical system is to study the distribution of the orbits.

Let $\beta>1$ be a real number and $T_{\beta}:[0,1] \rightarrow[0,1]$ the transformation defined by

$$
T_{\beta}(x)=\beta x(\bmod 1) \quad \text { for any } x \in[0,1] .
$$

This map generates the beta-dynamical system ($[0,1], T_{\beta}$). Since T_{β} is ergodic for the well-known Parry measure v_{β} on $[0,1]$ (see Section 2), equivalent to the Lebesgue measure \mathcal{L}, Birkhoff's ergodic theorem yields that for \mathcal{L}-almost all $x \in[0,1]$, the orbit is normally distributed in $[0,1]$ with respect to v_{β}. Therefore, for any $x_{0} \in[0,1]$ and \mathcal{L}-almost all $x \in[0,1]$,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left|T_{\beta}^{n} x-x_{0}\right|=0 \tag{1.1}
\end{equation*}
$$

It is a natural question to ask about the speed of convergence in (1.1). This leads to the study of the Diophantine properties of the orbits in the beta-dynamical system

[^0]in analogy with the classical theory of Diophantine approximation. This study contributes to a better understanding of the distribution of the orbits in the betadynamical system.

In 1967, Philipp [12] proved that for any $\beta>1$, the transformation T_{β} is not only strongly mixing, but also the dynamical Borel-Cantelli lemma holds. More precisely, given a sequence of balls $\left\{B\left(x_{0}, r_{n}\right)\right\}_{n \geq 1}$ with centre $x_{0} \in[0,1]$ and shrinking radius $\left\{r_{n}\right\}_{n \geq 1}$, let

$$
D\left(T_{\beta},\left\{r_{n}\right\}_{n \geq 1}, x_{0}\right)=\left\{x \in[0,1]:\left|T_{\beta}^{n} x-x_{0}\right|<r_{n} \text { for infinitely many } n \in \mathbb{N}\right\}
$$

Philipp proved that

$$
\mathcal{L}\left(D\left(T_{\beta},\left\{r_{n}\right\}_{n \geq 1}, x_{0}\right)\right)= \begin{cases}0 & \text { if } \sum_{n=1}^{+\infty} r_{n}<+\infty, \\ 1 & \text { if } \sum_{n=1}^{+\infty} r_{n}=+\infty .\end{cases}
$$

This is a typical example of the shrinking target problem [6] related to the Diophantine properties of the orbits in a dynamical system.

In the case that $\sum_{n=1}^{+\infty} r_{n}<+\infty$, the set $D\left(T_{\beta},\left\{r_{n}\right\}_{n \geq 1}, x_{0}\right)$ consists of points whose orbits have good approximation properties near the point x_{0} and has null measure. Inspired by the Jarník-Besicovitch theorem [1, 7], Shen and Wang [17] studied the Hausdorff dimension of the set $D\left(T_{\beta},\left\{r_{n}\right\}_{n \geq 1}, x_{0}\right)$ when $\sum_{n=1}^{+\infty} r_{n}<+\infty$, and found that its size is related to the sequence $\left\{r_{n}\right\}_{n \geq 1}$ in the sense that

$$
\operatorname{dim}_{H} D\left(T_{\beta},\left\{r_{n}\right\}_{n \geq 1}, x_{0}\right)=\frac{1}{1+\alpha} \quad \text { with } \alpha=\liminf _{n \rightarrow \infty} \frac{\log _{\beta} r_{n}^{-1}}{n}
$$

Notice that in the above results about $D\left(T_{\beta},\left\{r_{n}\right\}_{n \geq 1}, x_{0}\right)$, the point x_{0} is always assumed to be fixed. One can then ask, what will happen if the point x_{0} is not fixed? In particular, what can one say about the metric properties of the set

$$
\left\{(x, y) \in[0,1] \times[0,1]:\left|T_{\beta}^{n} x-y\right|<r_{n} \text { for infinitely many } n \in \mathbb{N}\right\}
$$

in the sense of measure and in the sense of dimension? Let $\beta>1$ be any real number and let $\varphi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a positive function. In this note, we determine the Lebesgue measure and the Hausdorff dimension of the set

$$
E\left(T_{\beta}, \varphi\right)=\left\{(x, y) \in[0,1] \times[0,1]:\left|T_{\beta}^{n} x-y\right|<\varphi(n) \text { for infinitely many } n \in \mathbb{N}\right\}
$$

The main results are the following theorems.
Theorem 1.1. Let $\varphi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a positive function. For any $\beta>1$,

$$
\mathcal{L}^{2}\left(E\left(T_{\beta}, \varphi\right)\right)= \begin{cases}0 & \text { if } \sum_{n=1}^{+\infty} \varphi(n)<+\infty \\ 1 & \text { if } \sum_{n=1}^{+\infty} \varphi(n)=+\infty\end{cases}
$$

where \mathcal{L}^{2} denotes the two-dimensional Lebesgue measure.

Theorem 1.2. Let $\varphi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a positive function with $\sum_{n=1}^{+\infty} \varphi(n)<+\infty$. For any $\beta>1$,

$$
\operatorname{dim}_{H} E\left(T_{\beta}, \varphi\right)=1+\frac{1}{1+\alpha}, \quad \text { where } \alpha=\liminf _{n \rightarrow \infty} \frac{\log _{\beta} \varphi(n)^{-1}}{n}
$$

We would like to make a remark about our motivation. Besides the JarníkBesicovitch theorem, many classical results of metric Diophantine approximation can find their traces in the beta-dynamical system. For any $x_{0} \in[0,1]$ and $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$a nonincreasing positive function, let

$$
F\left(\psi, x_{0}\right)=\left\{x \in[0,1]:\left\|n x-x_{0}\right\|<\psi(n) \text { for infinitely many } n \in \mathbb{N}\right\}
$$

where $\|x\|$ denotes the distance of the real number x to the closest integer. By appealing to Schmidt's very general form of the Khintchine-Groshev theorem (see [15] and [16]), the Lebesgue measure of $F\left(\psi, x_{0}\right)$ can be determined by

$$
\mathcal{L}\left(F\left(\psi, x_{0}\right)\right)= \begin{cases}0 & \text { if } \sum_{n=1}^{+\infty} \psi(n)<+\infty \\ 1 & \text { if } \sum_{n=1}^{+\infty} \psi(n)=+\infty\end{cases}
$$

In the case $\sum_{n=1}^{+\infty} \psi(n)<+\infty$, Levesley [8] proved a general inhomogeneous JarníkBesicovitch theorem, namely

$$
\operatorname{dim}_{H} F\left(\psi, x_{0}\right)=\frac{2}{1+\gamma} \quad \text { with } \gamma=\liminf _{n \rightarrow \infty} \frac{\log \psi(n)^{-1}}{\log n}
$$

When the point x_{0} is no longer assumed to be fixed, Dodson [3] studied the set

$$
\widetilde{F}(\psi)=\{(x, y) \in[0,1] \times[0,1]:\|n x-y\|<\psi(n) \text { for infinitely many } n \in \mathbb{N}\}
$$

and proved that

$$
\operatorname{dim}_{H} \widetilde{F}(\psi)=1+\frac{2}{1+\gamma} \quad \text { with } \gamma=\liminf _{n \rightarrow \infty} \frac{\log \psi(n)^{-1}}{\log n}
$$

The above discussion indicates that there is a natural correspondence between the metrical properties of the sets in metric Diophantine approximation and those for the beta-dynamical Diophantine approximation.

For more results related to the orbits in the beta-dynamical system, the reader is referred to the papers of Schmeling [14], Persson and Schmeling [11], Tan and Wang [18], Li et al. [9] and the references therein.

The rest of this paper is organised as follows: in the next section, we give some basic facts about beta-expansion and the beta-dynamical system. Theorems 1.1 and 1.2 will be proved in the last section.

2. Properties of beta-expansion and the beta-dynamical system

Let $\beta>1$ be a real number. The beta-expansion of a real number $x \in[0,1]$ in base β is an infinite sequence $\varepsilon(x, \beta)=\left(\varepsilon_{1}(x, \beta), \varepsilon_{2}(x, \beta), \ldots\right)$ of integers with $0 \leq \varepsilon_{i}(x, \beta) \leq \beta$ for all i, defined by

$$
\varepsilon_{i}(x, \beta)=\left\lfloor\beta T_{\beta}^{i-1} x\right\rfloor \quad \text { for all } i \geq 1,
$$

where $\lfloor x\rfloor$ denotes the integral part of the real number x.
For any $x \in[0,1]$ and $n \in \mathbb{N}$, by the definition of beta-expansion (see [13]),

$$
\begin{equation*}
x=\frac{\varepsilon_{1}(x, \beta)}{\beta}+\frac{\varepsilon_{2}(x, \beta)}{\beta^{2}}+\cdots+\frac{\varepsilon_{n}(x, \beta)}{\beta^{n}}+\frac{T_{\beta}^{n} x}{\beta^{n}} . \tag{2.1}
\end{equation*}
$$

Let $\Omega_{\beta}^{n}=\{0,1, \ldots,\lfloor\beta\rfloor\}^{n}$ for all $n \in \mathbb{N}$ and $\Sigma_{\beta}^{n}=\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in \Omega_{\beta}^{n}\right.$: there exists $x \in[0,1]$ such that $\varepsilon_{i}(x, \beta)=\varepsilon_{i}$ for all $\left.1 \leq i \leq n\right\}$.
Lemma 2.1 [13]. For any $\beta>1$,

$$
\beta^{n} \leq \# \Sigma_{\beta}^{n} \leq \frac{\beta^{n+1}}{\beta-1}
$$

where \# denotes the cardinality of a finite set.
For any $n \in \mathbb{N}$ and $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in \Sigma_{\beta}^{n}$, write

$$
I_{n}(\omega)=\left\{x \in[0,1]: \varepsilon_{i}(x, \beta)=\omega_{i} \text { for all } 1 \leq i \leq n\right\} ;
$$

then

$$
\begin{equation*}
[0,1]=\bigcup_{\omega \in \Sigma_{\beta}^{n}} I_{n}(\omega) \tag{2.2}
\end{equation*}
$$

For the corresponding beta-dynamical system, it is well known (see, for example, $[2,5,10,13]$) that for any real number $\beta>1$, there exists a unique probability measure v_{β}, equivalent to the Lebesgue measure \mathcal{L} on $[0,1]$, which is invariant under the betatransformation T_{β}. Moreover, the transformation T_{β} is ergodic for the measure v_{β}, which is usually called the Parry measure.

3. Inhomogeneous Diophantine approximation

Proof of Theorem 1.1. Fix an arbitrary point $y \in[0,1]$. We consider the sequence of balls $\{B(y, \varphi(n))\}_{n \geq 1}$. Let

$$
D\left(T_{\beta},\{\varphi(n)\}_{n \geq 1}, y\right)=\left\{x \in[0,1]:\left|T_{\beta}^{n} x-y\right|<\varphi(n) \text { for infinitely many } n \in \mathbb{N}\right\} .
$$

By Philipp's result (see Section 1),

$$
\mathcal{L}\left(D\left(T_{\beta},\{\varphi(n)\}_{n \geq 1}, y\right)\right)= \begin{cases}0 & \text { if } \sum_{n=1}^{+\infty} \varphi(n)<+\infty \\ 1 & \text { if } \sum_{n=1}^{+\infty} \varphi(n)=+\infty\end{cases}
$$

Thus, if we write $E=E\left(T_{\beta}, \varphi\right)$ and $D_{y}=D\left(T_{\beta},\{\varphi(n)\}_{n \geq 1}, y\right)$ for simplicity, by using Fubini's theorem,

$$
\mathcal{L}^{2}(E)=\int_{0}^{1} \int_{0}^{1} \chi_{E}((x, y)) d x d y=\int_{0}^{1} \int_{0}^{1} \chi_{D_{y}}(x) d x d y=\int_{0}^{1} \mathcal{L}\left(D_{y}\right) d y
$$

where χ_{A} is the characteristic function of the set A. Therefore,

$$
\mathcal{L}^{2}\left(E\left(T_{\beta}, \varphi\right)\right)=\mathcal{L}^{2}(E)= \begin{cases}0 & \text { if } \sum_{n=1}^{+\infty} \varphi(n)<+\infty \\ 1 & \text { if } \sum_{n=1}^{+\infty} \varphi(n)=+\infty\end{cases}
$$

In the case $\sum_{n=1}^{+\infty} \varphi(n)<+\infty$, by the result of Shen and Wang (see Section 1), for any $y \in[0,1]$,

$$
\operatorname{dim}_{H} D\left(T_{\beta},\{\varphi(n)\}_{n \geq 1}, y\right)=\frac{1}{1+\alpha} \quad \text { with } \alpha=\liminf _{n \rightarrow \infty} \frac{\log _{\beta} \varphi(n)^{-1}}{n} .
$$

Then [4, Corollary 7.12] implies that

$$
\operatorname{dim}_{H} E\left(T_{\beta}, \varphi\right) \geq 1+\frac{1}{1+\alpha}
$$

Therefore, in order to prove Theorem 1.2, we only need to prove that

$$
\operatorname{dim}_{H} E\left(T_{\beta}, \varphi\right) \leq 1+\frac{1}{1+\alpha}
$$

Proof of Theorem 1.2. For simplicity, we write $E=E\left(T_{\beta}, \varphi\right)$. For all $n \in \mathbb{N}$, let

$$
E_{n}=\left\{(x, y) \in[0,1] \times[0,1]:\left|T_{\beta}^{n} x-y\right|<\varphi(n)\right\} ;
$$

then

$$
\begin{equation*}
E=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} E_{n} . \tag{3.1}
\end{equation*}
$$

For all $n \in \mathbb{N}$, let $J_{n}(i)=\left[i \varphi(n) / \beta^{n},((i+1) \varphi(n)) / \beta^{n}\right] \cap[0,1]$ for all $0 \leq i \leq$ $\left\lfloor\beta^{n} / \varphi(n)\right\rfloor$. Then

$$
[0,1]=\bigcup_{\left.0 \leq i \leq \backslash \beta^{n} / \varphi(n)\right\rfloor} J_{n}(i) .
$$

Thus, by (2.2),

$$
[0,1] \times[0,1]=\bigcup_{\omega \in \Sigma_{\beta}^{n}} \bigcup_{0 \leq i \leq\left\lfloor\beta^{n} / \varphi(n)\right\rfloor} I_{n}(\omega) \times J_{n}(i) .
$$

Therefore,

$$
E_{n}=\bigcup_{\omega \in \Sigma_{\beta}^{n}} \bigcup_{0 \leq i \leq\left\lfloor\beta^{n} / \varphi(n)\right\rfloor}\left\{(x, y) \in I_{n}(\omega) \times J_{n}(i):\left|T_{\beta}^{n} x-y\right|<\varphi(n)\right\} .
$$

Given $\omega \in \Sigma_{\beta}^{n}$ and $0 \leq i \leq\left\lfloor\beta^{n} / \varphi(n)\right\rfloor$ and any $x \in I_{n}(\omega)$ and $y \in J_{n}(i)$, if $(x, y) \in E_{n}$, then

$$
\left|T_{\beta}^{n} x-\frac{i \varphi(n)}{\beta^{n}}\right| \leq\left|T_{\beta}^{n} x-y\right|+\left|y-\frac{i \varphi(n)}{\beta^{n}}\right|<\varphi(n)+\frac{\varphi(n)}{\beta^{n}}<2 \varphi(n) .
$$

Hence,

$$
\begin{align*}
E_{n} & \subset \bigcup_{\omega \in \Sigma_{\beta}^{n}} \bigcup_{0 \leq i \leq\left\lfloor\beta^{n} / \varphi(n)\right\rfloor}\left\{(x, y) \in I_{n}(\omega) \times J_{n}(i):\left|T_{\beta}^{n} x-\frac{i \varphi(n)}{\beta^{n}}\right|<2 \varphi(n)\right\} \\
& =\bigcup_{\omega \in \Sigma_{\beta}^{n}} \bigcup_{0 \leq i \leq\left\lfloor\beta^{n} \mid \varphi(n)\right\rfloor}\left(\left\{x \in I_{n}(\omega):\left|T_{\beta}^{n} x-\frac{i \varphi(n)}{\beta^{n}}\right|<2 \varphi(n)\right\} \times J_{n}(i)\right) . \tag{3.2}
\end{align*}
$$

Notice that for any $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right) \in \Sigma_{\beta}^{n}$ and $x \in I_{n}(\omega)$, by (2.1),

$$
x=\frac{\omega_{1}}{\beta}+\frac{\omega_{2}}{\beta^{2}}+\cdots+\frac{\omega_{n}}{\beta^{n}}+\frac{T_{\beta}^{n} x}{\beta^{n}} .
$$

Then

$$
\left|\left\{x \in I_{n}(\omega):\left|T_{\beta}^{n} x-\frac{i \varphi(n)}{\beta^{n}}\right|<2 \varphi(n)\right\}\right| \leq \frac{4 \varphi(n)}{\beta^{n}}
$$

where $|A|$ denotes the diameter of the set A. Thus, for any $\omega \in \Sigma_{\beta}^{n}$ and $0 \leq i \leq\left\lfloor\beta^{n} / \varphi(n)\right\rfloor$,

$$
\begin{equation*}
\left|\left\{x \in I_{n}(\omega):\left|T_{\beta}^{n} x-\frac{i \varphi(n)}{\beta^{n}}\right|<2 \varphi(n)\right\} \times J_{n}(i)\right|<\frac{5 \varphi(n)}{\beta^{n}} . \tag{3.3}
\end{equation*}
$$

By (3.1) and (3.2), it is clear that for any $N \in \mathbb{N}$, the family

$$
\left\{\left\{x \in I_{n}(\omega):\left|T_{\beta}^{n} x-\frac{i \varphi(n)}{\beta^{n}}\right|<2 \varphi(n)\right\} \times J_{n}(i): n \geq N, \omega \in \Sigma_{\beta}^{n}, 0 \leq i \leq\left\lfloor\frac{\beta^{n}}{\varphi(n)}\right\rfloor\right\}
$$

is a cover of the set E. Recall that $\alpha=\liminf _{n \rightarrow \infty}\left(\log _{\beta} \varphi(n)^{-1} / n\right)$. Thus, for any $s>1+(1 /(1+\alpha))$, by (3.1)-(3.3) and Lemma 2.1,

$$
\begin{aligned}
\mathcal{H}^{s}(E) & \leq \liminf _{N \rightarrow \infty} \sum_{n \geq N} \sum_{\omega \in \sum_{\beta}^{n}} \sum_{0 \leq i \leq\left\lfloor\beta^{n} / \varphi(n)\right\rfloor}\left|\left\{x \in I_{n}(\omega):\left|T_{\beta}^{n} x-\frac{i \varphi(n)}{\beta^{n}}\right|<2 \varphi(n)\right\} \times J_{n}(i)\right|^{s} \\
& \leq \liminf _{N \rightarrow \infty} \sum_{n \geq N} \sum_{\omega \in \Sigma_{\beta}^{n}} \sum_{0 \leq i \leq\left\lfloor\beta^{n} / \varphi(n)\right\rfloor}\left(\frac{5 \varphi(n)}{\beta^{n}}\right)^{s} \\
& \leq \liminf _{N \rightarrow \infty} \sum_{n \geq N} \frac{\beta^{n+1}}{\beta-1} \cdot \frac{2 \beta^{n}}{\varphi(n)} \cdot\left(\frac{5 \varphi(n)}{\beta^{n}}\right)^{s}<+\infty .
\end{aligned}
$$

This gives that

$$
\operatorname{dim}_{H} E\left(T_{\beta}, \varphi\right)=\operatorname{dim}_{H} E \leq 1+\frac{1}{1+\alpha}
$$

References

[1] A. S. Besicovitch, 'Sets of fractional dimension (IV): on rational approximation to real numbers', J. Lond. Math. Soc. 9 (1934), 126-131.
[2] K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Carus Mathematical Monographs, 29 (The Mathematical Association of America, Washington, DC, 2002).
[3] M. M. Dodson, 'A note on metric inhomogeneous Diophantine approximation', J. Aust. Math. Soc. Ser. A 62 (1997), 175-185.
[4] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, 2nd edn (John Wiley, Chichester, 2003).
[5] A. O. Gel'fond, 'A common property of number systems', Izv. Akad. Nauk 23 (1959), 809-814 (in Russian).
[6] R. Hill and S. Velani, 'The ergodic theory of shrinking targets', Invent. Math. 119 (1995), 175-198.
[7] V. Jarník, 'Diophantische approximationen und Hasudorffsches mass', Mat. Sb. 36 (1929), 371-382.
[8] J. Levesley, 'A general inhomogeneous Jarník-Besicovitch theorem', J. Number Theory 71 (1998), 65-80.
[9] B. Li, T. Persson, B. W. Wang and J. Wu, 'Diophantine approximation of the orbit of 1 in the dynamical system of beta expansion', Math. Z. 276 (2014), 799-827.
[10] W. Parry, 'On the β-expansion of real numbers', Acta Math. Hungar. 11 (1960), 401-416.
[11] T. Persson and J. Schmeling, 'Dyadic Diophantine approximation and Katok's horseshoe approximation', Acta Arith. 132 (2008), 205-230.
[12] W. Philipp, 'Some metrical theorems in number theory', Pacific J. Math. 20 (1967), 109-127.
[13] A. Rényi, 'Representations for real numbers and their ergodic properties', Acta Math. Hungar. 8 (1957), 477-493.
[14] J. Schmeling, 'Symbolic dynamics for β-shifts and self-normal numbers', Ergod. Th. E Dynam. Syst. 17 (1997), 675-694.
[15] W. Schmidt, 'A metrical theorem in Diophantine approximation', Canad. J. Math. 12 (1960), 619-631.
[16] W. M. Schmidt, 'Metrical theorems on fractional parts of sequences', Trans. Amer. Math. Soc. 110 (1964), 493-518.
[17] L. M. Shen and B. W. Wang, 'Shrinking target problems for beta-dynamical system', Sci. China Math. 56 (2013), 91-104.
[18] B. Tan and B. W. Wang, 'Quantitive recurrence properties of beta dynamical systems', Adv. Math. 228 (2011), 2071-2097.

YUEHUA GE, Huazhong University of Science and Technology,
Wuhan 430074, PR China
e-mail: geyuehua1001@126.com
FAN LÜ, Huazhong University of Science and Technology,
Wuhan 430074, PR China
e-mail: lvfan1123@163.com

[^0]: (C) 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

