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A FAMILY OF BALANCED TERNARY DESIGNS

WITH BLOCK SIZE FOUR

DIANE DONOVAN

This paper shows the existence of an infinite family of cyclic

balanced ternary designs where the block size is 4 , the

index 2 and each block contains precisely one repeated element.

A balanced ternary design (BTD) is a collection of B multisets,

called blocks, of size K , chosen from a set of V elements where any

element may occur 0, 1 or 2 times in any one block. Furthermore each
y

of the (_) pairs of distinct elements must occur a constant number of

times, A , (the index). Balanced ternary designs first arose in a paper by

Tocher in 1952 [6]. In addition to the above restrictions each element must

occur a constant number of times throughout the design. It follows that

(1) VR = BK .

Let p denote the number of blocks in which an element occurs I times

(4=1

(2)

a n d

(3)

or 2) . Then

R = p1 + 2p2

A ( 7 - 1 ) - * « - ! > - 2p2 .
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Moreover p. and p_ are constant and the parameters of a BTD can be

written (V,B; p^p^ i? ; K,A) .

Since 1952 a number of papers have been written on the existence of
BTDs. In particular Saha and Dey [4], Saha [3], Billington [7] and
Chandak [2] have produced papers on the existence of cyclic BTDs. Cyclic
BTDs arise from a set of i n i t i a l blocks which when developed modulo 7
yield a l l blocks of the design. These in i t i a l blocks may be derived from
a family of supplementary difference sets . (For a definition, see Wallis,
Street and Wallis [7] , page 280.)

In this paper we prove the existence of an infinite family of cyclic
BTDs with parameters K = 4 , A = 2 and B = Fp_ . In general, when

K = 4 and A = 2 i t i s not possible to have blocks of the form xxyy ,
-nil

thus B S Vp~ • By taking equation (1) and subs t i tu t ing R = -zj- in to

equat ion (3) , for A = 2 and K = 4 we obtain

27 - 2 = 12 | - 2 p 2 ,

but Tp: > p 2 implies 7 > 5p2 + 1 . Therefore when considering the case

B = 7p2 and fixing p we prove the existence of a BTD with K = 4 ,

A = 2 and minimal 7 , t h a t i s 7 = 5p2 + 1 .

The proof of t h i s r e s u l t uses a concept of pa i r ing (see for example

Stanton and Goulden [5 ] . ) We take 3p2 dots which represent the numbers

p + 1 to 7 - (p2+l) . We draw an edge from the poin t , say y , to the

p o i n t y - os and wri te down the t r i p l e {x,y-x,y} . From t h i s we obtain

the i n i t i a l block [0 ,0 , x,y~] which gives r i s e to the differences ± x , ± y

(each twice) and ±(y-x) . The following example i l l u s t r a t e s t h i s method.

Consider a BTD with parameters (46,394; 18,9,34; 4,2) . In Figure 1 the

27 dots represent the numbers 10 to 36 :

https://doi.org/10.1017/S0004972700003889 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003889


Ternary designs 323
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Figure 1.

From Figure 1 we can write down the nine triples and their corresponding

initial blocks.

TRIPLES

1,19,20

2,30,32

4,17,21

6,28,34

8,23,31

INITIAL BLOCKS

[0,0,1,20]

[0,0,2,32]

[0,0,4,21]

[0,0,6,34]

[0,0,8,31]

TRIPLES

9,27,

3,30,

5,17

7,28,

36

33

22

35

INITIAL

[0,0,9

[0,0,3

[0,0,5

[0,0,7

BLOCKS

,36]

,33]

,22]

,35]

It is easily checked that each of the numbers 1 to 45 occurs twice

as a difference arising from the nine initial blocks, and so these blocks

when taken modulo 46 generate a BTD with the above parameters.

We now state our main result.

THEOREM. There exists an infinite family of cyclic BTDs with

parameters (5p2+l,p2 (5p2+l),- 2p2,p2,4p2; 4,2) .

Proof. We consider four separate cases.

Case 1: Let p2 = 0 (mod 4) , so say p2 = 4m and V = 20m + 1 for

any positive integer m . Consider the pairing diagram in Figure 2; from

it we can write down 4m sets of triples and from these Am initial blocks.
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TRIPLES

1,107/7+1,10/77+2

4m,10m+l,14m+l

41,14m-2 JU-1,14m+2l+l

4JU-1,14/77-2J.+1, 14/77+21+2

41+2,8m-2l-3,8m+2H-l

4SL+3,8m-2i-3,8m-2l

INITIAL BLOCKS

[0,0,1,107/7+2]

[0,0,4/77,14777+1]

[O,O,4il,14777+2Jl+l] for l<H<m-l

[O,O,4JM-l,14//H-2Jl+2] for l<£<m-l

[0,0,4)1+2,8777+2)1-1] for 0<l<m-l

[0,0,4)1+3,8/77+2JI] for 0<l<m-l

I t can e a s i l y be checked t ha t the numbers 1 to 20m occur twice as

d i f fe rences a r i s i n g from the above i n i t i a l blocks and so these blocks
2

generate a cycl ic BTD with parameters (20/77+1,80777 +4m; 8m,4ff?,16m; 4,2) .

Similar pa i r i ng diagrams, which have been omitted for b rev i ty , y ie ld

the i n i t i a l blocks s t a ted in cases 2, 3 and 4.

Case 2: Let p_ = 1 (mod 4) so t h a t p_ = 4m + 1 and V = 20m + 6

for any non-negative in teger m . The i n i t i a l blocks

[0,0,4m+l,16m+4] ; [0,0,l,8m+4] ;

[0 ,0 ,41 ,8m+2£+3] , for l<l<m-l;

[0,0,4X.+l,8/77+2£+4] , for l<fc<m-l,-

[0,0,41+2,14/77+2)1+4] , for 0<i<m-l;

[0,0,4^+3,14/77+2)1+5: , for 0<Z<m-l;

[0,0,4/77,14m+3] ;

generate a cyc l ic BTD with parameters

2
(20//7+6, 80m +44/77+6; 9/7+2 ,4m+l, 16/77+4; 4,2) for a l l non-negative in tegers

777 .

Case 3 : L e t p = 2 (mod 4) so t h a t p . = 4m + 2 and V = 20/77 + 11

f o r any n o n - n e g a t i v e i n t e g e r m . I f m = 0 the i n i t i a l b l o c k s [ 0 , 0 , 1 , 7 ]

and [ 0 , 0 , 2 , 8 ] g e n e r a t e a c y c l i c BTD w i t h p a r a m e t e r s (11 ,22 ; 4 , 2 , 8 ; 4,2) .

I f m = 1 the i n i t i a l b l o c k s [ 0 , 0 , 1 , 1 7 ] , [ 0 , 0 , 2 , 2 0 ] , [ 0 , 0 , 3 , 2 1 ] ,

[ 0 , 0 , 4 , 2 3 ] , [ 0 , 0 , 5 , 2 4 ] and [ 0 , 0 , 6 , 2 2 ] g e n e r a t e a c y c l i c BTD wi th

p a r a m e t e r s (31 ,186 ; 1 2 , 6 , 2 4 ; 4 ,2) . I f m > 2 t he i n i t i a l b l o c k s
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4m+1 •

1
to

8 m - 5
8 m - 4
8 m - 3
8 m - 2
8 m - 1
8m
8m +1

10m

10m + 3

12m+3
12m+4»
12m+5
12m + 6
12m+ 7

3
I

« i

3
I

3
I
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[0,0,4m+2,14m+8] ; [0,0,1,10m+7] ;

[0,0,4£,14m+2S.+7] , for l<

[0,0,4JU-l,14m+2Jl+8] , for

[0,0,4Jl+2,8m+2£+5] , for 0<l<m-2 ;

[0,0,4£+3,8m+2S.+6] , for 0<l<m-2 ;

[0,0,4m-2,14m+6] ; [0,0,4m-l,14m+7] ;

generate a cyc l ic BTD with parameters

(20771+11,80m +8477H-22; 8m+4,4m+2,16m+8; 4,2) for m > 2 .

Case 4: Let p . s 3 (mod 4) and so p_ = 4m + 3 and V = 20m + 16

for any non-negative in teger m . The i n i t i a l blocks

[0,0,4m+2,14m+12] ; [0,0,l,10m+7] ;

[0,0,4£.,14m+2JM-U] , for

[0,0,4«.+l,14m+2i+12] , for l<

C0,0,4Z+2,8m+2)l+6] , for 0<£<m-l ;

[0,0,4Jl+3,8m+2Jl+7] , for 0<2<m-l ;

[0,0,4m+3f14nH-ll] ;

generate a cycl ic BTD with parameters

(20m+16,80???2+124m+48; 8m+6,4m+3,16m+12; 4,2) .

This completes the proof. Q
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