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Uniformly Continuous Functionals and
M-Weakly Amenable Groups
Brian Forrest and Tianxuan Miao

Abstract. Let G be a locally compact group. Let AM(G) (A0(G))denote the closure of A(G), the Fourier
algebra of G in the space of bounded (completely bounded) multipliers of A(G). We call a locally
compact group M-weakly amenable if AM(G) has a bounded approximate identity. We will show that
when G is M-weakly amenable, the algebras AM(G) and A0(G) have properties that are characteristic
of the Fourier algebra of an amenable group. Along the way we show that the sets of topologically
invariant means associated with these algebras have the same cardinality as those of the Fourier algebra.

1 Introduction

For an abelian locally compact group G the Fourier transform yields an isometric
isomorphism of the commutative function algebra A(G), the so-called Fourier alge-
bra of G, and the convolution algebra L1(Ĝ), where Ĝ is the dual group of G. In [5]
Pierre Eymard introduced the Fourier algebra A(G) for nonabelian locally compact
groups. Shortly after the publication of [5], H. Leptin showed that the amenable
locally compact groups can be characterized in terms of the Banach algebra A(G)
[15]. In particular, he showed that the group G is amenable if and only if A(G) has a
bounded approximate identity. The boundedness of the approximate identity is im-
portant. Indeed, the free group on two generators F2 is certainly not amenable, but
nonetheless A(F2) does have an approximate identity. While this approximate iden-
tity is necessarily unbounded in the usual norm, it is bounded if we replace the usual
norm on A(G) by the norm obtained by viewing elements of A(G) as multiplication
operators on itself. In fact, a similar statement holds if we consider the completely
bounded norm of such multiplication operators.

If we replace the Fourier algebra of F2 by its closure AM(F2) in the multiplier al-
gebra of A(F2), then by making use of the existence of this approximate identity it
can be shown that the new algebra AM(F2) has automatically continuous derivations
into any Banach AM(F2)-bimodule. For the Fourier algebra this property charac-
terizes amenability of the group G. This was the first piece of evidence that for the
class of locally compact groups for which A(G) admits an approximate identity that is
bounded in the (completely bounded) multiplier norm, the algebra AM(G) (A0(G))
behaves much like the Fourier algebra of an amenable group. As further evidence to
support this thesis we note that Ruan [17] showed that the Fourier algebra A(G) is
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operator amenable if and only if the group G is amenable. More recently, the first
author together with V. Runde and N. Spronk showed that the quantized Banach al-
gebra A0(F2) obtained by closing A(G) in its completely bounded multiplier algebra
is operator amenable [8].

In this paper, we will give further evidence that whenever the Fourier algebra A(G)
admits an approximate identity that is bounded in the (completely bounded) multi-
plier norm, then (A0(G)) AM(G) has properties that for the Fourier algebra are char-
acteristic of the class of amenable groups. Along the way, we will give special attention
to the nature of the uniformly continuous functionals on A(G) and on AM(G) and
A0(G). In particular, we will show that the set of topologically invariant means on
the duals of all three of theses algebras have the same cardinality.

2 Preliminaries and Notation

Let G be a locally compact group. We let A(G) and B(G) denote the Fourier and
Fourier–Stieltjes algebras of G, which are Banach algebras of continuous functions
on G and were introduced in [5]. A multiplier of A(G) is a (necessarily bounded and
continuous) function v : G → C such that vA(G) ⊆ A(G). For each multiplier v of
A(G), the linear operator Mv on A(G) defined by Mv(u) = vu for each u ∈ A(G) is
bounded via the Closed Graph Theorem. The multiplier algebra of A(G) is the closed
subalgebra

M(A(G)) := {Mv : v is a multiplier of A(G)}

of B(A(G)), where B(A(G)) denotes the algebra of all bounded linear operators from
A(G) to A(G). Throughout this paper we will generally use v in place of the operator
Mv, and we will write ‖v‖M to represent the norm of Mv in B(A(G)).

Let G be a locally compact group and let V N(G) denote its group von Neumann
algebra. The duality A(G) = V N(G)∗ equips A(G) with a natural operator space
structure. With this operator space structures we can define the cb-multiplier algebra
of A(G) to be

Mcb(A(G)) := CB(A(G)) ∩M(A(G)),

where CB(A(G)) denotes the algebra of all completely bounded linear maps from
A(G) into itself. We let ‖v‖cb denote the cb-norm of the operator Mv. It is well
known that Mcb(A(G)) is a closed subalgebra of CB(A(G)) and is thus a (quantized)
Banach algebra with respect to the norm ‖ · ‖cb.

It is known that in general,

A(G) ⊆ B(G) ⊆ Mcb(A(G)) ⊆ M(A(G))

and that for v ∈ A(G)

‖v‖A(G) = ‖v‖B(G) ≥ ‖v‖cb ≥ ‖v‖M .

In the case where G is an amenable group, we have

B(G) = Mcb(A(G)) = M(A(G))
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and that

‖v‖B(G) = ‖v‖cb = ‖v‖M

for any v ∈ B(G).
In [7], the first author introduced the algebra

A0(G)
def
= A(G)−‖ · ‖cb(G) ⊆ Mcb(A(G))

which was denoted in that paper by AM0 (G). The free group on two generators F2

is such that A(F2) has an approximate identity that, while unbounded in ‖ · ‖A(G), is
bounded in ‖ · ‖M0(G) [3]. Groups for which A(G) has an approximate identity that is
bounded in ‖ · ‖A0(G) have been extensively studied and are now widely referred to as
being weakly amenable (see [2, 3, 10]).

In this paper, we will be interested in multipliers that may or may not be com-
pletely bounded but can nonetheless be approximated by elements of A(G). This
leads us naturally to the following additional definition.

Definition 2.1 Given a locally compact group G let

AM(G)
def
= A(G)−‖ · ‖M ⊆ M(A(G)).

We say that the locally compact group G is multiplier-weakly amenable, or
M-weakly amenable, if there is an approximate identity {uα}α∈I in A(G) that is
bounded in the norm ‖ · ‖M .

As we have seen, if G is amenable, then A(G) = A0(G) = AM(G) with equality
holding for the various norms. Moreover, Losert has shown that G is amenable if
and only if A(G) = AM(G). In fact, Losert showed that G is amenable whenever the
‖ · ‖B(G) and the ‖ · ‖M norms are equivalent on A(G) ([16]). We will now use this to
show that for nonamenable groups, AM(G) must also contain elements that are not
even in the Fourier–Stieltjes algebra of G.

Proposition 2.2 AM(G) ⊆ B(G) if and only if G is amenable.

Proof If G is amenable, this follows immediately from Losert’s result above.
Conversely, let AM(G) ⊆ B(G). Then AM(G) is closed in B(G) in the ‖ · ‖B(G)-

norm topology. In fact, let un ∈ AM(G) and b ∈ B(G) be such that ‖un−b‖B(G) → 0.
Then it is clear that ‖un − b‖M → 0 and hence that b ∈ AM(G).

Since ‖ · ‖B(G) ≥ ‖ · ‖M on B(G), the Open Mapping Theorem shows that ‖ · ‖B(G)

and ‖ · ‖M are equivalent on AM(G) and hence on A(G). It follows that G is amenable.

We will make frequent use of the following rather straightforward proposition.
The first part of the proposition is [6, Proposition 1]. The proof of the second asser-
tion follows exactly as in [6, Proposition 1].
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Proposition 2.3

(i) G is weakly amenable if and only if A0(G) has a bounded approximate identity.
(ii) G is M-weakly amenable if and only if AM(G) has a bounded approximate identity.

Finally, let A be A(G), A0(G) or AM(G). Then X = A∗ is Banach-A module via
the action

〈v · T,w〉 = 〈T, vw〉

for each v,w ∈ A and T ∈ X.
We will follow standard convention and call the space

span{v · T | v ∈ A,T ∈ X}

the uniformly continuous functionals on A. We will write

UCB(Ĝ) = span{v · T | v ∈ A(G),T ∈ V N(G)},

UCB0(Ĝ) = span{v · T | v ∈ A0(G),T ∈ A0(G)∗},

UCBM(Ĝ) = span{v · T | v ∈ AM(G),T ∈ AM(G)∗}.

3 Topologically Invariant Means and Uniformly Continuous
Functionals

We will begin this section by showing that the duals of A(G), A0(G), and AM(G)
admit the same number of topologically invariant means.

Definition 3.1 Let X = V N(G), AM(G)∗ or A0(G)∗ . Then m ∈ X∗ is called a
Topologically Invariant Mean (TIM) on X if

(i) ‖m‖ = 〈m, I〉 = 1, where I = Le is the identity operator in X;
(ii) 〈m, v · T〉 = 〈m,T〉 for T ∈ X, v ∈ X∗ with v(e) = 1.

Note that property (ii) in Definition 3.1 is equivalent to

〈m, v · T〉 = v(e)〈m,T〉

for T ∈ X, v ∈ X∗.

Definition 3.2 Let A be a Banach algebra. An element T ∈ A is weakly almost
periodic if

{u · T | ‖u‖A ≤ 1}

is relatively weakly compact. We denote the closed subspace of all weakly almost
periodic functionals by WAP(A).

In what follows, we will restrict our attention to AM(G). Analogous statements
can be obtained for A0(G) by making the obvious modifications.
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Consider the inclusion map and its adjoints:

i : A(G)→ AM(G), i∗ : AM(G)∗ → V N(G), i∗∗ : V N(G)∗ → AM(G)∗∗.

Since i has dense range, i∗ is injective, and as such is invertible with inverse i∗−1 on
Range(i∗). Moreover, i∗ is simply the restriction map. It will also be useful to view
all of the above maps as embeddings. With this in mind we observe that when G is
nonamenable, AM(G)∗ can be viewed as a proper subset of V N(G) and V N(G)∗ as a
proper subset of AM(G)∗∗.

The following proposition will prove useful.

Proposition 3.3 Let AM(G) ·V N(G) = {u · T : u ∈ AM(G),T ∈ V N(G)}.
(i) AM(G) ·V N(G) ⊆ UCB(Ĝ).
(ii) i∗(UCBM(Ĝ)) ⊆ UCB(Ĝ).
(iii) If G is M-weakly amenable, then AM(G) ·V N(G) = UCB(Ĝ).
(iv) u · T ∈ i∗(AM(G)∗) for each u ∈ A(G),T ∈ V N(G).
(v) i∗(v · T) = v · i∗(T) for each v ∈ AM(G),T ∈ AM(G)∗.

Proof (i) To establish this we need only show that for any sequence {vn} ⊂ A(G)
and v ∈ AM(G) with ‖vn − v‖M → 0 and any T ∈ V N(G), we have

‖vn · T − v · T‖V N(G) → 0.

However, this follows immediately, since for any u ∈ A(G)

|〈vn · T − v · T, u〉| = |〈(vn − v) · T, u〉| = |〈T, (vn − v)u〉|

≤ ‖T‖V N(G)‖vn − v‖M‖u‖A(G).

(ii) This follows immediately from (i), since i∗(v · T) ∈ AM(G) · V N(G) for any
v ∈ AM(G) and T ∈ AM(G)∗.

(iii) Since AM(G) has a bounded approximate identity, it follows from Cohen’s Fac-
torization Theorem and from (i) that AM(G) · V N(G) is a closed subspace of
UCB(Ĝ) (see also [9, p. 373]). However, since A(G) ·V N(G) ⊆ AM(G) ·V N(G),
it is also clear that AM(G) ·V N(G) is dense in UCB(Ĝ). So (iii) is true.

(iv) Let u ∈ A(G),T ∈ V N(G). Then we can define a linear functional on AM(G)
by ϕu,T(v) = 〈T, uv〉 for each v ∈ AM(G). It is also clear that ϕu,T has norm
at most ‖u‖A(G)‖T‖V N(G). Moreover, this linear functional agrees with u · T on
A(G) and as such u · T = i∗(ϕu,T).

(v) Let v ∈ AM(G),T ∈ AM(G)∗. Then for each u ∈ A(G), we have〈
i∗(v · T), u

〉
= 〈v · T, i(u)〉 =

〈
T, vi(u)

〉
=
〈

T, i(vu)
〉

= 〈i∗(T), vu〉 = 〈v · i∗(T), u〉.

Theorem 3.4 For any locally compact group, i∗∗(TIM(A(G)) ⊆ TIM(AM(G)).
Moreover, i∗∗ : TIM(A(G))→ TIM(AM(G)) is a bijection.
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Proof We will first show that i∗∗(TIM(A(G))) ⊆ TIM(AM(G)).
Let m ∈ TIM(A(G)). Let v ∈ AM(G) and T ∈ AM(G)∗. Then there exists {un} ⊂

A(G) such that ‖un−v‖M → 0. Since ‖un−v‖∞ ≤ ‖un−v‖M , it follows that un(e)→
v(e). We also see as in the proof of the previous proposition (i) that un · T → v · T in
the ‖ · ‖M-norm for each T ∈ AM(G)∗. It follows that〈

i∗∗(m), v · T
〉

= lim
n→∞

〈
i∗∗(m), un · T

〉
= lim

n→∞

〈
m, i∗(un · T)

〉
= lim

n→∞

〈
m, un · i∗(T)

〉
= lim

n→∞
un(e)〈m, i∗(T)〉

= lim
n→∞

v(e)
〈

m, i∗(T)
〉

= v(e)〈i∗∗(m),T〉.

This shows that i∗∗(TIM(A(G))) ⊆ TIM(AM(G)).
We next show that i∗∗ : TIM(A(G)) → TIM(AM(G)) is injective. To see this we

first note that if m1,m2 ∈ TIM(A(G)) with m1 6= m2, then there exists an T ∈
V N(G) for which 〈m1,T〉 6= 〈m2,T〉.

Next choose u0 ∈ A(G) with u0(e) = 1. Then

〈m1, u0 · T〉 = 〈m1,T〉 6= 〈m2,T〉 = 〈m2, u0 · T〉.

Since u0 · T ∈ AM(G)∗, we have〈
i∗∗(m1), u0 · T

〉
=
〈

m1, i
∗(u0 · T)

〉
=
〈

m1, u0 · T
〉

6= 〈m2, u0 · T〉

=
〈

m2, i
∗(u0 · T)

〉
=
〈

i∗∗(m2), u0 · T
〉

so that i∗∗(m1) 6= i∗∗(m2).
Finally, we show that i∗∗ : TIM(A(G))→ TIM(AM(G)) is surjective.
Let M ∈ TIM(AM(G)). First note that if u, v ∈ A(G), with u(e) = 1 = v(e) and if

T ∈ V N(G), then u · T and v · T are in AM(G)∗ and

〈M, u · T〉 =
〈

M, v · (u · T)
〉

=
〈

M, u · (v · T)
〉

= 〈M, v · T〉.

Pick a u0 ∈ A(G) with ‖u0‖A(G) = 1 and u0(e) = 1. We can define mM ∈ A(G)∗∗

by
〈mM ,T〉 = 〈M, u0 · T〉

for T ∈ V N(G).
It is clear from the observation above that if v ∈ A(G) is such that v(e) = 1, then

〈mM , v · T〉 = 〈mM ,T〉. We also have that

〈mM , I〉 = 〈M, u0 · I〉 = 〈M, u0(e)I〉 = 〈M, I〉 = 1.

That is, mM ∈ TIM(A(G)).
Finally, if T ∈ AM(G)∗, then〈

i∗∗(mM),T
〉

=
〈

mM , i
∗(T)

〉
=
〈

M, u0 · i∗(T)
〉

=
〈

M, i∗(T)
〉

= 〈M,T〉.

Therefore, i∗∗(mM) = M.
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Definition 3.5 Given a locally compact group G we let b(G) denote the smallest
cardinality of a neighbourhood basis at the identity e for G.

The next corollary follows immedately from the previous theorem and from Hu
[11].

Corollary 3.6 Let G be a nondiscrete locally comapct group. Then |TIM(AM(G))| =
22b(G)

. In particular, AM(G) admits a unique topological invariant mean if and only if G
is discrete.

Recall that a Banach algebra A is said to be Aren’s regular if the two Arens products
on A∗∗ agree. It is well known that a Banach algebra A is Arens regular if and only if
WAP(A) = A∗.

It is clear that if A = A(G), A = A0(G), or A = AM(G) and if X is a norm
closed A-submodule of A∗ that contains I = Le, then it makes sense to talk about
topologically invariant means on X. Moreover, each m ∈ TIM(A) restricts to a
topologically invariant mean on X. In particular, X = WAP(A) is such a space, as is
UCB(A).

Proposition 3.7 The restriction map R : TIM(AM(G)) → TIM(UCBM(Ĝ)) is a bi-
jection. In particular |TIM(AM(G))| = |TIM(UCBM(Ĝ))|.

Proof If M1,M2 ∈ TIM(AM(G)) with M1 6= M2, then there exists a T ∈ AM(G)∗

for which 〈M1,T〉 6= 〈M2,T〉. As in the proof of the previous theorem, we see that if
we choose u0 ∈ A(G) with u0(e) = 1, then

〈M1, u0 · T〉 = 〈M1,T〉 6= 〈M2,T〉 = 〈M2, u0 · T〉.

This shows that R(M1) 6= R(M2), and hence R is injective.
Next, let m ∈ TIM(UCBM(Ĝ)). Pick a u0 ∈ A(G) with ‖u0‖A(G) = 1 = u0(e).

Define M ∈ AM(G)∗∗ by

〈M,T〉 = 〈m, u0 · T〉, T ∈ AM(G)∗.

Since u0(e) = 1, it follows that

〈M, Le〉 = 〈m, u0 · Le〉 = 〈m, Le〉 = 1.

From this and the fact that ‖u0‖A(G) = 1, we get that ‖M‖ = 1.
Next, if v ∈ AM(G),T ∈ AM(G)∗ with v(e) = 1, then〈

M, v · T
〉

=
〈

m, u0 · (v · T)
〉

=
〈

m, v · (u0 · T)
〉

= 〈m, u0 · T〉 = 〈M,T〉.

This shows that M ∈ TIM(AM(G)).
Finally, if T ∈ UCBM(Ĝ), then

〈M,T〉 = 〈m, u0 · T〉 = 〈m,T〉,

since T ∈ UCBM(Ĝ) and m ∈ TIM(UCBM(Ĝ)). Therefore, R(M) = m and R is
surjective.
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The following result is well known for A(G) (see [4, 9]). The proof we give is a
modification of that given for A(G).

Proposition 3.8 For any locally compact group, there is a unique topologically invari-
ant mean on WAP(AM(G)).

Proof Let M be a topologically invariant mean on AM(G)∗. Then the restriction
of M to WAP(AM(G)) is clearly a topologically invariant mean on WAP(AM(G)).
By Goldstine’s Theorem we can find a net {uα}α∈I ⊂ AM(G) with τ (uα) → M in
the weak∗ topology of AM(G)∗∗, where τ is the canonical injection of AM(G) into
AM(G)∗∗. In particular, the restriction of τ (uα) converges in the weak∗ topology of
WAP(AM(G))∗ to M. Moreover, since M(Le) = 1, uα(e)→ 1.

Now let m be any topologically invariant mean on WAP(AM(G)), let u ∈ AM(G)
with ‖u‖AM (G) = 1, and let T ∈WAP(AM(G)). Then

〈uα · T, u〉 = 〈u · T, uα〉 → 〈M, u · T〉 = u(e)〈M,T〉.

It follows that the net {uα · T}α∈I converges in the weak∗-topology of AM(G)∗ to
〈M,T〉Le. But since T is weakly almost periodic, we in fact have that {uα ·T}α∈I con-
verges in the σ(AM(G)∗,AM(G)∗∗) topology to 〈M,T〉Le. From this we can conclude
that there is a sequence {vn} of convex combinations of the uα’s such that vn(e)→ 1
and vn · T → 〈M,T〉Le in norm. Hence

〈m,T〉 = lim
n→∞

vn(e)〈m,T〉 = lim
n→∞
〈m, vn · T〉 = 〈m, 〈M,T〉Le〉 = 〈M,T〉.

Corollary 3.9 If AM(G) is Arens regular, then G is discrete. Moreover, in this case
every amenable subgroup of G is finite.

Proof If AM(G) is Arens regular, then WAP(AM(G)) = AM(G)∗. In particular,
AM(G)∗ must have a unique invariant mean by Proposition 3.8. It then follows that
G must be discrete by Corollary 3.6.

If AM(G) is Arens regular and H is an amenble subgroup, then the restriction map
is a contractive homomorphism of AM(G) onto A(H). It follows that A(H) is also
Arens regular and hence that H is finite (see Lau and Wong [14]).

Corollary 3.10 Let G be a locally comapct group. If UCBM(Ĝ) ⊆ WAP(AM(G)),
then G is discrete.

Proof Assume that UCBM(Ĝ) ⊆ WAP(AM(G)). Then it follows that UCBM(Ĝ)
admits a unique topologically invariant mean. By Proposition 3.7 and Corollary 3.6,
G is discrete.

4 Uniformly Continuous Functionals and Operators Commuting
with A(G)

Let A be a commutative Banach algebra and let X and Y be commutative Banach
A-modules. As usual, we let B(X,Y ) denote the space of bounded linear maps from X
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to Y with B(X) = B(X,X). We let BA(X,Y ) denote the subspace of B(X,Y ) consisting
of all Γ that commute with the action of A, that is, all Γ ∈ B(X,Y ) such that Γ(u·x) =
u · Γ(x) for all u ∈ A and all x ∈ X.

In [13] Lau showed that if G is an amenable group, then there is an isometric
algebra isomorphism between the space of bounded operators on V N(G) that com-
mute with the action of A(G) and the space UCB(Ĝ)∗, when the latter space is given
a multiplication that is analogous to one of the Arens products. In this section we
will prove the converse of this result. In addition, we will show that if G is M-weakly
amenable, then UCB(Ĝ)∗ can be identified with BA(G)(V N(G),AM(G)∗). We will
also generalize these results to the algebra AM(G).

We begin with the following extension theorem for M-amenable groups, which is
of independent interest.

Theorem 4.1 Assume that G is M-weakly amenable. Let Γ ∈ B(UCB(Ĝ)). Then
there exists Γ0 ∈ B(V N(G)) such that Γ0|UCB(Ĝ)

= Γ. Moreover, if Γ commutes with the
action of A(G) on UCB(Ĝ), then Γ0 commutes with the action of A(G) on V N(G).

Proof Let {uα}α∈I be an approximate identity for A(G) that is bounded in ‖ · ‖M

with ‖uα‖ ≤ C for each α ∈ I. Given α ∈ I define a bilinear form Λα : V N(G) ×
A(G)→ C by

Λα(T, u) =
〈

Γ(uα · T), u
〉
.

Then ‖Λα‖ ≤ C‖Γ‖. Hence by the Banach–Alaoglu Theorem, there exists a subnet
{Λαk} of {Λα} and a bilinear form Λ0 : V N(G)×A(G)→ C such that ‖Λ0‖ ≤ C‖Γ‖
and {Λαk} converges pointwise to Λ0. Next define Γ0 : V N(G)→ V N(G) by〈

Γ0(T), u
〉

= Λ0(T, u)

for every T ∈ V N(G) and u ∈ A(G). Then ‖Γ0‖ ≤ C‖Γ‖.
Let T ∈ UCB(Ĝ). Since {uαk}α∈I is a bounded approximate identity for AM(G)

and by Proposition 3.3(iii), ‖uαk · T − T‖V N(G) → 0. Hence

lim
αk

〈
Γ(uαk · T), u

〉
=
〈

Γ(T), u
〉

for every u ∈ A(G). Therefore, Γ0|UCB(Ĝ)
= Γ.

Assume that Γ commutes with the action of A(G) on UCB(Ĝ). Let v ∈ A(G) and
let T ∈ V N(G). Then〈

Γ0(v · T), u
〉

= lim
αk

〈
Γ(uαk · (v · T)), u

〉
= lim

αk

〈
Γ(v · (uαk · T)), u

〉
= lim

αk

〈
v · Γ(uαk · T), u

〉
=
〈

v · Γ0(T), u
〉
.

Therefore, Γ0 commutes with the action of A(G) on V N(G).

In [13], Lau showed that any m ∈ UCB(Ĝ)∗ induces an operator m̂L : V N(G) →
V N(G) such that m̂L(u ·T) = u ·T for every u ∈ A(G) and T ∈ V N(G). In this case,

〈m̂L(T), u〉 = 〈m, u · T〉
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for every u ∈ A(G) and T ∈ V N(G). Furthermore, if G is amenable, Lau shows that
‖m‖UCB(Ĝ) = ‖m̂L‖BA(G)(V N(G)).

We can improve on the above result by showing that the range of m̂L is contained
in AM(G)∗ and that in fact m̂L ∈ BA(G)(V N(G),AM(G)∗).

Lemma 4.2 Let m ∈ UCB(Ĝ)∗. Define〈
m̂L(T), v

〉
= 〈m, v · T〉

for v ∈ AM(G) and T ∈ V N(G). Then m̂L(T) ∈ AM(G)∗. Moreover,

m̂L ∈ BA(G)(V N(G),AM(G)∗)

with ‖m̂L‖BA(G)(V N(G),AM (G)∗) ≤ ‖m‖UCB(Ĝ)∗ .

Proof First observe that the definition of m̂L(T) makes sense by Proposition 3.3(i).
We also have that

|〈m̂L(T), v〉| = |〈m, v · T〉| ≤ ‖m‖UCB(Ĝ)∗‖v · T‖V N(G)

≤ ‖m‖UCB(Ĝ)∗‖v‖AM (G)‖T‖V N(G).

From this it follows immediately that m̂L(T) ∈ AM(G)∗ with

‖m̂L(T)‖AM (G)∗ ≤ ‖m‖UCB(Ĝ)∗‖T‖V N(G).

Since the map T → m̂L(T) is clearly linear we get that m̂L ∈ B(V N(G),AM(G)∗)
with ‖m̂L‖B(V N(G),AM (G)∗) ≤ ‖m‖UCB(Ĝ)∗ . To see that m̂L ∈ BA(G)(V N(G),AM(G)∗)
observe that 〈

m̂L(u · T), v
〉

=
〈

m, v · (u · T)
〉

=
〈

m, (vu) · T)
〉

=
〈

m̂L(T), uv
〉

=
〈

u · m̂L(T), v
〉

for u ∈ A(G), v ∈ AM(G) and T ∈ V N(G).

Theorem 4.3 Let Λ : UCB(Ĝ)∗ → BA(G)(V N(G),AM(G)∗) be given by Λ(m) = m̂L

for m ∈ UCB(Ĝ)∗. Then Λ is linear, contractive and one-to-one. If G is M-weakly
amenable, then Λ is an isomorphism onto BA(G)(V N(G),AM(G)∗). Moreover, if AM(G)
has a bounded approximate identity {vα}α∈I such that ‖vα‖AM (G) ≤ C for some C and
every α ∈ I, then ‖Λ−1‖ ≤ C.

Proof It is easy to see that Λ is linear, and the previous lemma shows that it is con-
tractive. To see that Λ is one-to-one, let m1,m2 ∈ UCB(Ĝ)∗ with m1 6= m2. Since
A(G) ·V N(G) has a dense span in UCB(Ĝ), there exists u ∈ A(G) and T ∈ V N(G)
such that 〈m1, u ·T〉 6= 〈m2, u ·T〉. Then it follows immediately that Λ(m1) 6= Λ(m2).

Assume that G is M-weakly amenable. We must show that Λ is surjective. Let Γ ∈
BA(G)(V N(G),AM(G)∗). Then Γ∗ ∈ B(AM(G)∗∗,V N(G)∗). We may view {vα}α∈I as
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a bounded net in AM(G)∗∗. It follows that {Γ∗(vα)}α∈I is a bounded net in V N(G)∗.
By passing to a subnet if necessary, we may assume {Γ∗(vα)}α∈I converges in the
weak∗ topology to some φ ∈ V N(G)∗. Moreover,

‖φ‖V N(G)∗ ≤ sup{‖Γ∗‖B(AM (G)∗∗,V N(G)∗)‖vα‖AM (G)} ≤ C‖Γ∗‖B(AM (G)∗∗,V N(G)∗).

Let m = φ|UCB(Ĝ). Then

‖m‖UCB(Ĝ)∗ ≤ C‖Γ‖B(V N(G),AM (G)∗).

Let v ∈ AM(G) and T ∈ V N(G). Then〈
m̂L(T), v

〉
= 〈φ, v · T〉 = lim

α∈I

〈
Γ∗(vα), v · T

〉
= lim

α∈I

〈
vα,Γ(v · T)

〉
= lim

α∈I

〈
vα, v · Γ(T)

〉
=
〈

Γ(T), vαv
〉

=
〈

Γ(T), v
〉
.

It follows that m̂L(T) = Γ(T) for every T ∈ V N(G) and hence that Λ is surjective.
Finally, since ‖m‖UCB(Ĝ)∗ ≤ C‖Γ‖B(V N(G),AM (G)∗), we have that ‖Λ−1‖ ≤ C .

We saw in Proposition 3.3(iv) that if u ∈ A(G) and T ∈ V N(G), then u · T ∈
AM(G)∗. We can now improve upon this result.

Lemma 4.4 Assume that u ∈ A(G) and T ∈ V N(G). Then u · T ∈ UCBM(Ĝ) and
‖u · T‖AM (G)∗ ≤ ‖T‖V N(G)‖u‖A(G).

Proof We know that u · T ∈ AM(G)∗ for any u ∈ A(G), T ∈ V N(G) . Moreover, the
final inequality is obvious.

We must show that u · T ∈ UCBM(Ĝ). To do this we first assume that
u0 ∈ A(G) ∩C00(G) and that T ∈ V N(G) is arbitrary. Then we can find v ∈ A(G) ⊆
AM(G) such that vu0 = u0. It follows that u0 ·T = (vu0)·T = v ·(u0 ·T) ∈ UCBM(Ĝ).

Next, we let u ∈ A(G), T ∈ V N(G) be arbitrary. Let ε > 0. We know that there
exists a u0 ∈ A(G) ∩ C00(G) such that ‖u − u0‖A(G) < ε. Moreover, from the above
we see that u0 · T ∈ UCBM(Ĝ). Next, if v ∈ AM(G) with ‖v‖M ≤ 1, we have

|〈u · T, v〉 − 〈u0 · T, v〉| = |〈(u− u0) · T, v〉|

≤ ‖T‖V N(G)‖u− u0‖A(G)‖v‖M ≤ ε‖T‖V N(G).

Hence, ‖u · T − u0T‖AM (G)∗ ≤ ε‖T‖V N(G). This shows that u · T ∈ UCBM(Ĝ).

Let M ∈ UCBM(Ĝ)∗. Following [13] we can define a map M̂L : V N(G)→ V N(G)
by 〈

M̂L(T), u
〉

= 〈M, u · T〉,
(

T ∈ V N(G) and u ∈ A(G)
)
.

We will now show that every M̂L defines a bounded operator on V N(G) that com-
mutes with the action of A(G) on V N(G).
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Lemma 4.5 Let M ∈ UCBM(Ĝ)∗. If u ∈ A(G) and T ∈ V N(G), then M̂L(u · T) =
u · M̂L(T) and ‖M̂L‖B(V N(G)) ≤ ‖M‖UCBM (Ĝ)∗ .

Proof Let u, v ∈ A(G) and T ∈ V N(G). Then〈
M̂L(u · T), v

〉
=
〈

M, v · (u · T)
〉

= 〈M, vu · T〉

=
〈

M̂L(T), uv
〉

=
〈

u · M̂L(T), v
〉
.

By Lemma 4.4, it is also easy to see that

|〈M̂L(T), u〉| = |〈M, u · T〉| ≤ ‖M‖UCBM (Ĝ))∗‖u‖A(G)‖T‖V N(G)

so that ‖M̂L‖V N(G) ≤ ‖M‖UCBM (Ĝ)∗ .

Proposition 4.6 Let Φ : UCBM(Ĝ))∗ → BA(G)(V N(G)) be given by Φ(M) = M̂L.
Then Φ is linear, contractive and one-to-one.

Proof It is easy to see that Φ is linear. The previous lemma shows that it is contrac-
tive.

To see that Φ is one-to-one, let M1,M2 ∈ UCBM(Ĝ)∗ with M1 6= M2. Since
A(G) ·V N(G) has a dense span in UCBM(Ĝ), there exists u ∈ A(G) and T ∈ V N(G)
such that 〈M1, u · T〉 6= 〈M2, u · T〉. Then it follows immediately that Φ(M1) 6=
Φ(M2).

Lemma 4.7 We have that i∗(UCBM(Ĝ)) = UCB(Ĝ) if and only if G is amenable.

Proof It follows from Proposition 3.3 that i∗(UCBM(Ĝ) ⊆ UCB(Ĝ). If G is amen-
able, then AM(G) = A(G), so clearly i∗(UCBM(Ĝ)) = UCB(Ĝ).

Conversely, assume that i∗(UCBM(Ĝ)) = UCB(Ĝ). Let τ be the restriction of i∗

onto UCBM(Ĝ). Then τ∗ : UCB(Ĝ)∗ → UCBM(Ĝ)∗ is also an isomorphism. Let
u ∈ AM(G). Then u ∈ UCBM(Ĝ)∗, and since τ∗ is onto, u = τ∗(v) for some v ∈
UCB(Ĝ)∗. Moreover, since C∗ρ (G) ⊆ UCB(Ĝ), the function u determines a bounded
linear functional on C∗ρ (G) with 〈u, f 〉 =

∫
G u(x) f (x)dx for each f ∈ L1(G) (see [5]

for the reduced group C∗ algebra C∗ρ (G)). In particular, this shows that u ∈ Bρ(G) ⊆
B(G) (see [5] for Bρ(G)). It follows that AM(G) ⊆ B(G), and hence that G is amenable
by Proposition 2.2.

Theorem 4.8 Let G be a locally compact group. Let Υ : UCB(Ĝ)∗ → BA(G)(V N(G))
be given by Υ(m) = m̂L for each m ∈ UCB(Ĝ)∗. Then Υ is surjective if and only if G is
amenable.

Proof If G is amenable, then Υ is surjective by [12, Theorem 6.2].

We have seen that i∗ maps UCBM(Ĝ) into UCB(Ĝ) by Proposition 3.3. As in the
preceding, we let let τ = i∗|UCBM(Ĝ). We also let Φ : UCBM(Ĝ)∗ → BA(G)(V N(G))
be given by Φ(M) = M̂L.
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Then it is easy to see that the following diagram commutes:

BA(G)(V N(G))

UCB(Ĝ)∗
τ∗
//

Υ
88

UCBM(Ĝ)∗.

Φ

OO

Assume that Υ : UCB(Ĝ)∗ → BA(G)(V N(G)) is onto. Then since Φ is one-to-
one, τ∗ must also be onto. However, this would mean that i∗ maps UCBM(Ĝ) onto
UCB(Ĝ), since τ∗ is one-to-one by Lemma 4.4 (see Rudin [18, p. 103]). In particular,
G is amenable by Lemma 4.7.

Let M ∈ UCBM(Ĝ)∗. Then it is easy to see that the operator M̂L defined by
〈M̂L(T), u〉 = 〈M, u ·T〉 for T ∈ AM(G)∗ and u ∈ AM(G) is in BAM (G)(AM(G)∗). The
following result is an analogue of Theorem 4.8. In the following the tensor product
is the projective tensor product as Banach spaces.

Theorem 4.9 Let the map Φ : UCBM(Ĝ)∗ → BAM (G)(AM(G)∗) be defined by
Φ(M) = M̂L. Then Φ is an isomorphism if and only if G is M-weakly amenable.

Proof Let
η : AM(G)⊗ AM(G)∗/H→ UCBM(Ĝ)

be defined by

η
( ∞∑

i=1

ui ⊗ Ti + H
)

=

∞∑
i=1

uiTi for
∞∑
i=1

ui ⊗ Ti ∈ AM(G)⊗ AM(G)∗,

where
H = span

{
(uv)⊗ f − u⊗ (v f ) : u, v ∈ A(G), f ∈ V N(G)

}
.

Then it is clear that η is well defined and ‖η‖ ≤ 1. It follows from Banach space
theory that

BAM (G)(AM(G)∗) =
(

AM(G)⊗ AM(G)∗/H
)∗
.

Hence we have
η∗ : UCBM(Ĝ)∗ → BAM (G)

(
AM(G)∗

)
.

It is routine to check that η∗(M) = M̂L for each M ∈ UCBM(Ĝ)∗. So η∗ = Φ. If G
is M-weakly amenable, then AM(G) has a bounded approximate identity. By Cohen’s
factorization theorem, UCBM(Ĝ) = AM(G) · AM(G)∗ (see also [9, p. 373]). Hence
η is surjective and so Φ = η∗ is 1 - 1 (see Rudin [18, p. 103]). To show that Φ is
surjective, let m ∈ BAM (G)(AM(G)∗) and let {aα} be a bounded approximate identity
in AM(G) with ‖aα‖AM (G) ≤ C . For any u f ∈ UCBM(Ĝ) with ‖u f ‖UCBM (Ĝ) ≤ 1,
where u ∈ AM(G) and f ∈ AM(G)∗, define m̃ ∈ UCBM(Ĝ)∗ by

〈m̃, u f 〉 = lim
α

〈
m, aα ⊗ (u f ) + H

〉
= lim

α

〈
m, (aαu)⊗ f + H

〉
= 〈m, u⊗ f + H〉.
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Hence |〈m̃, u f 〉| ≤ ‖aα‖AM (G)‖u f ‖AM (G)∗ ≤ C . So ‖m̃‖UCBM (Ĝ)∗ ≤ C . Thus, m =
η∗(m̃) and so Φ is surjective.

Conversely, let Φ be an isomorphism. Then Φ is surjective and so the identity op-
erator I = Φ(ι) for some ι ∈ UCBM(Ĝ)∗. Since UCBM(Ĝ) is a subspace of AM(G)∗,
we extend ι to a functional ι̃ on AM(G)∗ with the same norm. Since ι̃ ∈ AM(G)∗∗,
by Goldstine’s theorem, there is a net {uα} in AM(G) such that ‖uα‖AM (G) ≤ ‖̃ι‖ for
all α and uα → ι̃ in the σ(AM(G)∗∗,AM(G)∗)-topology. Hence for every a ∈ AM(G)
and f ∈ AM(G)∗, since Φ = η∗, we have

〈a, f 〉 = 〈I, a⊗ f 〉 =
〈
η∗(ι), a⊗ f

〉
=
〈
ι, η(a⊗ f )

〉
= 〈̃ι, a f 〉.

Hence we have
〈uαa− a, f 〉 = 〈uα, a f 〉 − 〈̃ι, a f 〉 → 0.

Thus, {uα} is a bounded weak approximate identity for AM(G). Hence AM(G) has a
bounded approximate identity (see Bonsall and Duncan [1, p. 58]). Therefore A(G)
is M-weakly amenable.

The proof of the following result is a modification of the proof of Theorem 4.9.

Theorem 4.10 If the map Φ : UCBM(Ĝ)∗ → BA(G)(V N(G)) defined by Φ(M) = M̂L

is surjective, then G is M-weakly amenable.

Proof It follows from Lemma 4.4 that map

η : A(G)⊗V N(G)/H→ UCBM(Ĝ)

defined by

η
( ∞∑

i=1

ui ⊗ Ti + H
)

=

∞∑
i=1

uiTi , for
∞∑
i=1

ui ⊗ Ti ∈ A(G)⊗V N(G)

is well defined and ‖η‖ ≤ 1, where

H = span
{

(uv)⊗ f − u⊗ (v f ) : u, v ∈ A(G), f ∈ V N(G)
}
.

Then it follows from Banach space theory that

BA(G)(V N(G)) =
(

A(G)⊗V N(G)/H
)∗

and η∗ : UCBM(Ĝ)∗ → BA(G)(V N(G)).

It is easy to see that Φ = η∗. Let I be the identity map in BA(G)(V N(G)). If Φ is
surjective, then I = Φ(ι) for some ι ∈ UCBM(Ĝ)∗. Since UCBM(Ĝ) is a subspace
of AM(G)∗, we extend ι to a functional ι̃ on AM(G)∗ with the same norm. Since
ι̃ ∈ AM(G)∗∗, by the Goldstine’s theorem, there is a net {uα} in AM(G) such that
‖uα‖AM (G) ≤ ‖̃ι‖ for all α and uα → ι̃ in the σ(AM(G)∗∗,AM(G)∗)-topology. For
every a ∈ AM(G) and f ∈ AM(G)∗, let an ∈ A(G) such that ‖an − a‖M → 0. Since f
is also in V N(G), we have

〈an, f 〉 = 〈I, an ⊗ f 〉 =
〈

Φ(ι), an ⊗ f
〉

=
〈
η∗(ι), an ⊗ f

〉
= 〈̃ι, an f 〉.
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Let n→∞ we get 〈̃ι, a f 〉 = 〈a, f 〉. Hence we have

〈uαa− a, f 〉 = 〈uα, a f 〉 − 〈̃ι, a f 〉 → 0.

Thus, {uα} is a bounded weak approximate identity for AM(G). Hence AM(G) has a
bounded approximate identity (see Bosall and Duncan [1, P. 58]). Therefore A(G) is
M-weakly amenable.
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