
COMMUTATION PROBLEMS INVOLVING RINGS
OF INFINITE MATRICES

by E. M. PATTERSON
(Received 4th December 1963)

1. Introduction
Let R be a ring and let J be the set of all integers. In the set M(R) of all

mappings A: J xJ->R, let addition and multiplication be defined by

A + B = C, where c y = au+bu (1)

AB = D, where du = £ «,*&*; (2)
keJ

Here atJ denotes the image of (i,j) under A and 6y , cy> dtj are similarly defined
for the mappings B, C, D. In (2) we require A, B to be such that the sum
Y, aiJ}kj is defined and is in R. Thus, in general, M(R) is not closed with

keJ

respect to multiplication.
When addition and multiplication are defined in this way, it is natural

to call the elements of M(R) infinite matrices over R. The (/, j)th element,
the ith row and the j th column of such a matrix are defined in the usual way.
We say that an infinite matrix A is row-finite if for each ieJ there exists a finite
subset N(i) of J, consisting of n(i) elements of J, such that

aik = 0 whenever k $ N(i).

Thus all but a finite number of the elements of each row are zero. If n(i) can
be chosen to be independent of i (that is, if the set {«(/): ieJ} is bounded
above) then we say that A is uniformly row-finite. If the set N(i) can be chosen
to be independent of i, then we say that A is row-bounded. Clearly a row-
bounded matrix is uniformly row-finite, but a uniformly row-finite matrix
need not be row-bounded.

The set of all row-finite matrices over R is a ring MP(R) with respect to
addition and multiplication defined by (1) and (2). The set of all uniformly
row-finite matrices is a subring M'P(R) of MP(R) and the set of row-bounded
matrices over R is a subring M*(R) of M'P(R). In fact, M*(R) is a two-sided
ideal of both MP(R) and M'P(R).

Column-finite, uniformly column-finite and column-bounded matrices can
be defined by analogy with the above.

Suppose that O is a mapping which associates with each ring R some
uniquely determined subring Q>(R) of R; suppose also that F is a mapping
which associates with each ring R some other ring F(R) such that if S is a
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56 E. M. PATTERSON

subring of R, then F(S) is a subring of F(R). By the commutation problem
for O and F we shall mean the following: in what circumstances do <f>(F{R))
and F(Q>(Rj) coincide?

In the present paper, we consider this problem when Fis one of the mappings
Mp, M'p and M* (where, for example, Mp means the mapping R-*MP(R)).
A case of some interest occurs when <& is the mapping T given by R-+r(R),
where F(R) is the Jacobson-Perlis radical (1) of R. For T, M* and for F, Mp

solutions to the commutation problem have been given in two previous papers
(2), (3), in which the following results were proved.

(i) The Jacobson-Perlis radical of M*(R) satisfies

T(M*(R)) = M%r(R))
for all rings R.

(ii) The Jacobson-Perlis radical of MP(R) satisfies

if and only if F(R) is right-vanishing in the sense of Levitzki.
In Section 2 we give a solution to the commutation problem for T and M'p

by proving the following theorem.

Theorem 1. The Jacobson-Perlis radical of M'p(R) satisfies

r(M'p(R)) = M'p(r(R))

if and only if T (R) is nilpotent.

Thus we have a stronger condition for T, M'p than for either T, Mp or
F, M*, despite the fact that M'p is " between " M* and Mp in the sense that

The remainder of the paper is devoted to the case in which O is the mapping
R->R", where Rx is the ath power of R (oceJ+, the set of positive integers)
and Fis one of the mappings Mp, M'p, M*. Again we obtain complete solutions
to the commutation problems.

2. The radical of the ring of uniformly row-finite matrices
To prove Theorem 1, we require the following result.

Lemma. Let R be a ring in which, given any sequence

a = {xt: ieJ+, x.ei?},

there is an integer p {depending upon a) such that every product

of p consecutive members of the sequence is zero. Then R is nilpotent.

Proof. If it is a non-nilpotent ring, then, given any positive integer q,
there exist elements yql, yq2, ..., yqq such that

Consider the sequence yiu y21, y2Z, y31, y32, J33, •••• Given any positive
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integer q, there is a set of q consecutive elements of this sequence whose product
is not zero. This proves the lemma.

Proof of Theorem 1. Suppose first that T(R) is nilpotent. Then M'p(r(R))
js a nilpotent ideal of M'P(R) (the index of nilpotency being the same as that
oflXR)). Hence

By a standard argument (see (2), Theorem 1), we can show that

for all rings R. Hence
HM'p(R)) = M'p(T(R)).

Suppose conversely that this condition is satisfied. Let
{*, :ieJ+}

be a sequence of elements in r(J?) and let A be the matrix for which
flii+i = xfceJ*), ai} = 0(i$J+ ox j # i+l).

Then AeM'p(T(R)) and so, by hypothesis, Aer(M'p(R)). Therefore A is
quasi-regular. Let B be the quasi-inverse of A. We have BA = A + B and
so the elements of B satisfy

0 = bu+l U*J+), (3)
bijXj = biJ+1 ( y # i,i,jeJ+), (4)

bitxl = xl+btt+l (iej+) (5)
Suppose that ieJ+. By (3) and (4), we have

6y = 0 O'gl).
Therefore, by (5),

and repeated application of (4) then gives
bi]= -X;X;+1...*;_!, O ^ / + l ) (6)

But B is uniformly row-finite and so there exists a positive integer n, independent
of i, such that at least one of the elements btj(j = i + l, « + 2, ..., i+n+l) is
zero. It follows from (6) that, if biS = Oandy'^Z+l, then biJ+1 = 0 . Therefore

bii + n+l = 0
and hence

xixl+l-"xi + a = "•

The integer n does not depend on i, but does depend on the matrix A or,
equivalently, depends on the sequence {*;}. Thus, given any sequence
a = {xt: ieJ+} in r(R), there exists an integer p = p(o) = n+1, such that
the product of any p consecutive members of a is zero. Hence, by the lemma,
T(R) is nilpotent.

3. Commutation problems involving the powers of a ring
Let R"(cc^2) be the octh power of the ring R: that is, the set of all elements

of the form
I,XyX2...Xa (XU X2, ..., Xa 6 R)
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in which the summation is over a finite number of terms. Suppose that O
is the mapping R-yR". Then it is natural to expect <1> to commute with the
mappings Mp, M'p and M* We shall show, however, that this is true without
restriction on R only in the case of Mp. We deal first with this case, proving
a result which is due to Dr C. St J. A. Nash-Williams, to whom I am indebted
for permission to include it here.

Theorem 2. For any ring R, we have

{Mp(R)Y = MJLRT).
Proof. Any element of {MP{R)}X can be expressed as a finite sum of products

of the form AlA2...Ax, where the A's are row-finite matrices over R. Since
each element of AlA2...Ax is in M", we have

Suppose now that A e M^R1). We shall construct a set of row-finite
matrices Au A2, •••, Ax over R such that A = A1A2...AX. These matrices
are such that At has at most one non-zero element in each column, A2, ...,
Ax^1 are diagonal matrices (these do not occur in the case a = 2) and Ax has
at most one non-zero element in each row.

Consider the elements in row 1 of A. Each of these is a finite sum of the
form l,x1x2...xx. The total number of products xlx2...xx involved is finite,
since A is row-finite. Suppose that there are X such products. Then we can
set up a one-one correspondence between them and the set consisting of the
integers (1, 2, ..., X). Suppose that xlx2-..xa is a product arising from the
element atj of A and that n is the integer corresponding to xlx2...xx. Then
we define the element in position (1, fi) of Ax to be xu those in position (ji, n)
of A2, ..., Aa-1 to be x2, ..., xa_t respectively, and that in position (ji,j) of
Ax to be xx. We do this for each \i in the set 1, 2, ..., X.

Next we consider the elements of row 2 in a similar manner. If in this
case there are X' non-zero products x1x2...xx involved, then we set up a one-one
correspondence between them and the set of integers X+l, X + 2, ..., X+X'.
We then carry out a similar process to that described above, starting with the
elements in row 2 of At.

Continuing in this way, we deal with each row of A in turn. At each stage
we ensure that the non-zero products x1x2...xt involved in the particular row
of A under consideration correspond to a finite set of integers which are not
involved in the correspondences for the other rows. All the remaining elements
of the matrices Ax, ..., Ax are defined to be zero.

Then we have A = AX...AX and so

Thus Theorem 2 is proved.
Analogous results do not hold for M'p, M*; the above construction for

the matrix At does not necessarily give a matrix which is in M'P(R) or M*(R)
even when A is in M'P(R') or M*(RX).

Let R" denote the set of all members of Rx which are sums of at most q
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terms of the form xlx2...xa, where xu x2, ..., xa e R. Thus

Rq =

Clearly Rx = (J Rq and Rq<=Rq+1(q e J+).
qeJ*

Suppose that there exists an integer q such that
Rq = Rq+i (7)

Then it is easily verified that R*. = R". In this case, we shall write 2(a) for the
least positive value of q for which (7) is satisfied. If there is no integer q such
that (7) is satisfied, we shall write A(a) = oo.

Theorem 3. For any ring R, we have

{M'p(R)Y= U M'p{Rq).
qeJ*

Proof. Suppose that Au A2, ..., AaeM'p(R). Let np be the maximum
number of non-zero elements in a row of AP(P = 1, 2, ..., a). Then the (i,j)th
element of AlA2...Aa is a sum of at most n = ntn2...nx products of the form
xxx2...xa, where xu x2, •••, xa e R. Hence AlA2...Axe M'^RD. It follows
that any finite sum of the form I,XlX2...Xx, where Xu X2, ..., Xxe M'P(R),
belongs to (J M',,(Rq). Therefore

qeJ*

{ M ; ( R ) } « C (J M'p{Rq).

Now suppose that AeM'p{Rq) for some qeJ+. Then there exist Bu B2,
..., BqeM'P(RX) such that A = Bi + B2 + ... + Bq.

Given any matrix C such that C e M'p(R1), we can write

C = Cl + C2+... + Cn,

where each of the matrices Cu C2, ..., Cn has at most one non-zero element
in each row, of the form xlx2...xa.

Let D be a matrix of this type. Thus, given i e J, there exists^ e J for which

dij = xnxi2...xia, dik = Q(k # j).

Define Dp(fl = 1, 2, ..., a —1) to be the diagonal matrix whose (/, /)th element
is xip- and whose remaining elements are zero; define Da to be the matrix
whose (i,y")th element is xh and whose remaining elements are zero. Then

D = DlD2...Dxe{M'p(R)}x.

Hence C e {M'p{R)f and so each matrix Bu B2, ..., Bq belongs to {M'p(R)}a.
Therefore A e {M'p(R)f and thus

(J M;(
qeJ*

This proves Theorem 3.
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We can now give a necessary and sufficient condition for the mappings
R->R" and M'p to commute.

Theorem 4. The ath power of the ring M'p(R) satisfies

{M'p(R)}' = M'p(R')
if and only if A(a) < oo.

Proof. If A(a) = oo there exists a matrix A e M'P(R") such that A $ M'P(R%)
for any q. For example, choose A to be a diagonal matrix whose (/, /)th element
(for i ^ 1) is in R^ but not in R) for 1 <LjS»-1. Hence

M;(H«)# U M;(*P
and therefore, by Theorem 3,

If A(a)<oo, then

U
since RJ = R" for # = l(a). Hence, by Theorem 3, we have

By using similar arguments we can prove analogous results for the com-
mutativity of the mappings R-*R* and M*. In particular, we have the following
analogue of Theorem 4.

Theorem 5. The ath power of the ring M*(R) satisfies

{M%R)Y = M%R")
if and only if l(a) < oo.

In many cases, it is clear that the integer A(a) defined above is finite for
all a. For example, if R has an identity with respect to multiplication, then
A(a) = 1 for all a. Moreover, the argument used in the proof of Theorem 2
shows that A(a) = 1 for the ring MP(R), where R is any ring.

On the other hand, if R is a free ring (without unity) on an infinite number
of symbols, then it is not difficult to verify that A(a) = oo for all values of
a> 1. If )8 is an integer > 1, then RjRf is a nilpotent ring for which 2(<x) = oo
when l<a</?, and A(a) = 1 when a^/?.
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