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Bump Functions with Hölder Derivatives

Thierry Gaspari

Abstract. We study the range of the gradients of a C1,α-smooth bump function defined on a Banach

space. We find that this set must satisfy two geometrical conditions: It can not be too flat and it

satisfies a strong compactness condition with respect to an appropriate distance. These notions are

defined precisely below. With these results we illustrate the differences with the case of C1-smooth

bump functions. Finally, we give a sufficient condition on a subset of X∗ so that it is the set of the

gradients of a C1,1-smooth bump function. In particular, if X is an infinite dimensional Banach space

with a C1,1-smooth bump function, then any convex open bounded subset of X∗ containing 0 is the

set of the gradients of a C1,1-smooth bump function.

1 Introduction

A function from a Banach space X to R with a bounded nonempty support is called
a bump. For α ∈ ]0, 1] we say that a map with bounded support g : X → X∗ is
Hölder(α) if there exists K > 0 with ‖g(y) − g(x)‖ ≤ K‖y − x‖α for all (x, y) ∈ X2.
We then denote by ωα(g) the smallest constant K satisfying the above inequality. A

Hölder(1) map g is just a Lipschitzian map and then ω1(g) is Lip(g). We say that a
function f : X → R is C1,α-smooth if f is C1-smooth and f ′ is Hölder(α). We define

Sα = { f ′(X) ; f : X → R is a C1,α-smooth bump},

S = { f ′(X) ; f : X → R is a C1-smooth bump}.

We notice that these sets can be empty. In fact, there exists α ∈ ]0, 1] such that Sα

is not empty if and only if X is superreflexive. This follows from Lemma IV.5.3 and

Theorem V.3.2 of [6]. The set S has been studied by many authors during the last
years. A set F in S is a connected subset of X∗, compact if X is finite dimensional and
analytic if X is infinite dimensional. Moreover, it can be proved, with Ekeland’s vari-
ational principle ([6], Theorem I.2.4), that the norm closure of F is a neighbourhood

of 0. It was shown by D. Azagra and R. Deville in [1] that X∗ ∈ S, provided X is an in-
finite dimensional Banach space which admits a C1-smooth and Lipschitzian bump.
Sufficient conditions on bounded closed subsets of X∗ to be in S were obtained by
J. M. Borwein, M. Fabian and P. D. Loewen in [4] when X is infinite dimensional,

and by the same authors and I. Kortezov in [3] in the finite dimensional case. These
results have been improved by D. Azagra, M. Fabian and M. Jimenez-Sevilla in [2].
The results of [2] will be detailed in the following of this paper. If X is infinite dimen-
sional, there exist analytic subsets of X∗, neither closed nor open, which belong to S.

This was first done for convex sets by T. Gaspari in [8] and then with more general
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conditions by M. Fabian, O. Kalenda and J. Kolář in [7]. We recall the extension of
Darboux’s theorem by J. Malý in [10]: If f : X → R is Fréchet differentiable, then

f ′(X) is connected. This property does not remain true if the function is not real val-
ued, as remarked in Problem 8.5.4 in [5] (see also [10] and [12]). We now introduce
some notations.

B(x, r) denotes the closed ball of center x and radius r, S(x, r) is the sphere of

center x and radius r. We sometimes write BX instead of B(0, 1). The convex hull of
a set M will be denoted by co(M). We recall that a function f : X → R is said to be
Fréchet differentiable at x0 ∈ X if there exists f ′(x0) in X∗ such that

lim
h→0

f (x0 + h) − f (x0) − f ′(x0)(h)

‖h‖
= 0.

Then f ′(x0) is called the derivative, or the gradient, of f at x0. The set f ′(X) =

{ f ′(x) ; x ∈ X} is the range of the derivative of f . If f is a function from X to R, the
support of f is Supp( f ) = {x ∈ X : f (x) 6= 0}. As said before, f is called a bump if
its support is nonempty and bounded.

The symbol N means the set {1, 2, . . . }. We denote by N
<N the set of finite se-

quences of natural numbers and N
N the set of infinite sequences of natural num-

bers. If s = (s1, . . . , sk) ∈ N
<N, k is called the length of s and we write k = |s|.

If k ≥ 2 we put s = (s1, . . . , sk−1). If j ∈ {1, . . . , k}, s| j = (s1, . . . , s j). If

r = (r1, . . . , rm) ∈ N
<N, then sˆr = (s1, . . . , sk, r1, . . . , rm). If σ = (σ j) j≥1 ∈ N

N and
j ∈ N, then σ| j = (σ1, . . . , σ j).

Section 2 is devoted to the study of S. Sufficient conditions on closed subsets of X∗

so that they belong to S have been obtained by D. Azagra, M. Fabian and M. Jimenez-

Sevilla in [2]. We observe in our two results of Section 2 that these conditions are
almost optimal.

In Section 3 we study the sets Sα, α ∈ ]0, 1] and their differences with S. We find
two necessary conditions on a subset A of X∗ containing 0 so that it belongs to Sα.

The first one deals with the α-flatness of A.

Definition 1.1

(i) Fα(A) = sup
{

l1+αε−α ; (l, ε) ∈ R
+∗2

such that there exist z∗ ∈ A and e ∈ SX

with B(z∗, l) ∩ {y∗ ∈ A ; |〈y∗ − z∗, e〉| = ε} = ∅

and 0 /∈ B(z∗, l) ∩ {y∗ ∈ A ; |〈y∗ − z∗, e〉| ≤ ε}
}

.

(ii) Fα(A) is called the α-flatness of A.

This definition is not translation-invariant, hence we should have called it the α-flat-
ness of the set A according to the point 0. But for clarity we will simply write the
α-flatness of the set A. The following picture illustrates the meaning of the flatness.

A
+0

2ε

1
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We prove that if A ∈ Sα then the α-flatness of A is finite (Theorem 3.1).

For the second condition we need the following definitions. If γ : [0, 1] → X∗ is
continuous we define, for α ∈ ]0, 1], the α-length of γ by

l(α)(γ) = sup
{(

n
∑

i=1

‖γ(ti) − γ(ti−1)‖
1

α

)α
; n ∈ N, 0 = t0 < t1 < · · · < tn = 1

}

.

When α = 1, l(1)(γ) is the usual length of the arc γ([0, 1]) and will be written l(γ).
Now, for x and y in A we define

d(α)
A (x, y) = inf

{

l(α)(γ) ; γ : [0, 1] → A is continuous and (γ(0), γ(1)) = (x, y)
}

.

Clearly, for all α ∈ ]0, 1], d(α)
A is a distance on A and we have, for all 0 < β ≤ α ≤ 1,

d
(β)
A (x, y) ≤ d(α)

A (x, y). For n ≥ 1 we define the index

M(α)
n (A) = sup

(y1,...,yn)∈An

{

inf{d(α)
A (yi , y j) ; 1 ≤ i < j ≤ n}

}

which measures the degree of precompactness of A for the distance d(α)
A . In particular

the condition M(α)
n (A) → 0 means that A equipped with the metric d(α)

A is precom-

pact. If α = 1 we will write dA(x, y) = d(1)
A (x, y) and Mn(A) = M(1)

n (A). In Theorem
3.2 we obtain that if A ∈ Sα and X is finite dimensional, then M(α)

n (A) = O(n−α/d)
with d = dim X. When X is infinite dimensional we obtain that (M(α)

n (A))n is

bounded. Finally, with the results of Section 2 and Section 3 we construct subsets
of X∗ which are in S but not in Sα.

In the last section we find a sufficient condition to be in S1 when X is an infinite
dimensional separable Banach space (Theorem 4.1). In particular we show that if
there exists a C1,1-smooth bump on X, then any convex open bounded subset of X∗

containing 0 belongs to S1.

2 The Set S

First, if A is a subset of X∗ we define, for x and y in A,

pA(x, y) = inf
{

diam(γ([0, 1])) ; γ : [0, 1] → A is continuous

and (γ(0), γ(1)) = (x, y)
}

.

Then pA is a distance on A and if 0 < α ≤ 1, pA(x, y) ≤ d(α)
A (x, y). For n ≥ 1 we

denote

Rn(A) = sup
(y1,...,yn)∈An

{

inf{pA(yi , y j) ; 1 ≤ i < j ≤ n}
}

.

The condition Rn(A) → 0 means that A equipped with the metric pA is precompact.
We notice that for all n ∈ N and 0 < α ≤ 1, Rn(A) ≤ M(α)

n (A).
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Theorem 2.1 Let X be a finite dimensional Banach space and U be a connected open

subset of X∗ containing 0. We consider the following assertions:

(i) limn→+∞ Rn(U ) = 0.
(ii) U ∈ S.

(iii) limn→+∞ Rn(U ) = 0.

Then (i) ⇒ (ii) ⇒ (iii).

Proof Step 1: limn→+∞ Rn(U ) = 0 ⇒ U ∈ S. We fix ε > 0. There exists N ∈ N

such that RN (U ) < ε. Let (y∗i )i∈I be a maximal set in U with the property that
for all i, j ∈ I with i 6= j, pU (y∗i , y∗j ) ≥ ε. By the choice of N , Card(I) ≤ N .

Then, by maximality, (y∗i )i∈I is a finite ε-net in U for the distance pU . For i ∈ I

we define Vi = {z∗ ∈ U ; pU (z∗, y∗i ) < ε}. Then (Vi)i∈I is a finite family of open
connected subsets of U , covering U , each one with diameter less than ε. According to
Theorem 2.4 of [2] this implies the existence of b : X → R a C1-smooth bump such

that b ′(X) = U .

Step 2: U ∈ S ⇒ limn→+∞ Rn(U ) = 0. Let b : X → R be a C1-smooth bump with
b ′(X) = U . We fix ε > 0. Since X is finite dimensional, b ′ is uniformly continuous
on Supp(b) and hence we find δ > 0 such that ‖b ′(x) − b ′(y)‖ < ε if ‖x − y‖ < δ.
We take a finite δ-net in Supp(b) for the norm. Then its range by b ′ is a finite ε-net

in U for the metric pU . We call N its cardinal; then RN+1(U ) < 2ε. Since (Rn(U ))n is
decreasing, this proves that limn→+∞ Rn(U ) = 0.

The conditions are not equivalent since there exists an open subset A of R
2 satis-

fying (iii) but not (i). Here is a representation of such a set:

(−0.2, 1)

(−0.2,−0.2)

+0

(2, 1)

(2,−0.2)

A is the open rectangle without the black pieces. Clearly limn→+∞ Rn(A) = 0 whereas
Rn(A) ≥ 1 for all n ≥ 1. We do not know if A is in S. In infinite dimensions we have:

Theorem 2.2 Let X be a infinite dimensional Banach space with a separable dual and

U be a connected open subset of X∗ containing 0. Let us consider the following assertions:

(i) For all y∗ ∈ U , there exists a continuous path from 0 to y∗ through points of U .

(ii) U ∈ S.

(iii) For all y∗ ∈ U , there exists a continuous path from 0 to y∗ through points of U .

Then (i) ⇒ (ii) ⇒ (iii).
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Proof The difficult implication (i) ⇒ (ii) has been proved in [2, Theorem 2.3]. Let
us prove that (ii) ⇒ (iii). Let y∗ ∈ U = b ′(X). There exist x0 and x in X such that

b ′(x0) = 0 and b ′(x) = y∗. Then the path γ defined by γ(t) = b ′(tx + (1 − t)x0),
t ∈ [0, 1], is a continuous path from 0 to y∗ through points of b ′(X) = U .

The previous example shows that (iii) and (i) are not equivalent. Indeed the point

(2, 1) can be joined to 0 by a continuous path in the closure of A, but there is no
continuous path from 0 to it through points of A.

We remark that, if X = R
d with d ∈ N, the positive results deal only with subsets

of R
d which are the closure of their interior. In fact, it is an open question if this

condition is necessary. This question was written in [3] and was partially answered
in [8] where it was proved that if f : R

2 → R is a C2-smooth bump, then f ′(R
2) is

the closure of its interior. J. Kolár and J. Kristensen have recently proved the same
result with weaker assumptions on the regularity of f : R

2 → R (see [9]). On the

other hand, L. Rifford has shown in [11] that if f : R
d → R is a Cd+1-smooth bump,

then f ′(R
d) is the closure of its interior.

Now we give an example from [8] which illustrates the differences between the
finite and the infinite dimensional cases. Let H be a separable Hilbert space and

define

P1 = ( ]−1, 2[ × ]−1, 0[ ) ∪ ( ]1, 2[ × ]−1, 1[ ),

P2 =

(

⋃

q≥1

]2−1 + · · · + 2−q − 8−q, 2−1 + · · · + 2−q + 8−q[
)

× [0, 1[ (comb’s teeth)

and

P =

(

(− 3
2
, 0) + (P1 ∪ P2)

)

× int BH .

+0

The comb in R
2.

Then the comb P is an open subset of X = R
2 ×H. If dim H = +∞ then P ∈ S since

P satisfies the condition (i) in Theorem 2.2. But if H is finite dimensional, P /∈ S.
Indeed Rn(P) ≥ 1 for all n and so P does not satisfy (iii) of Theorem 2.1.

3 Necessary Conditions to Be in Sα

Theorem 3.1 Let X be a Banach space, A be a subset of X∗ and α ∈ ]0, 1]. If A ∈ Sα,

then Fα(A) < +∞.
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Proof Let f be a C1,α-smooth bump such that f ′(X) = A and Supp( f ) ⊂ BX . We
are going to prove that

Fα(A) ≤ 3
( 4

α

)α
(1 + α)1+αωα( f ′).

We fix f ′(x0) ∈ A, e1 ∈ SX , l > 0 and ε > 0 such that

(3.1)
B( f ′(x0), l) ∩ {y∗ ∈ A ; |〈y∗ − f ′(x0), e1〉| = ε} = ∅

and 0 /∈ B( f ′(x0), l) ∩ {y∗ ∈ A ; |〈y∗ − f ′(x0), e1〉| ≤ ε}.

We will show that

(3.2) ωα( f ′) ≥ 3−1
( α

4

)α
(1 + α)−(1+α)l1+αε−α.

In the following we write ω = ωα( f ′). We take δ ∈ (0, 1) and we define

C = B( f ′(x0), δl) ∩ {y∗ ∈ X∗ ; |〈y∗ − f ′(x0), e1〉| ≤ ε} and D = f ′−1
(C).

Since f ′(x0) ∈ C , x0 belongs to D. Now 0 /∈ C , hence D is a subset of Supp( f ) ⊂ BX .
So we can define s = sup{t ≥ 0 ; [x0, x0 + te1] ⊂ int D} and notice that s ≤ 2. We
denote

x1 = x0 + se1.

Then x1 ∈ ∂D = ∂( f ′−1
(C)), and it follows with the continuity of f ′ that

f ′(x1) ∈ ∂C =

(

∂B( f ′(x0), δl) ∩ {y∗ ∈ X∗ ; |〈y∗ − f ′(x0), e1〉| ≤ ε}
)

⋃

(

B( f ′(x0), δl) ∩ {y∗ ∈ X∗ ; |〈y∗ − f ′(x0), e1〉| = ε}
)

.

Now f ′(x1) ∈ A and A∩
(

B( f ′(x0), δl)∩{y∗ ∈ X∗ ; |〈y∗− f ′(x0), e1〉| = ε}
)

= ∅,
because of (3.1). Therefore f ′(x1) ∈ ∂B( f ′(x0), δl) and so

‖ f ′(x1) − f ′(x0)‖ ≥ δl.

Now we fix β ∈ (0, δ) and e2 ∈ SX with 〈 f ′(x1) − f ′(x0), e2〉 = βl. We put c =

(γl/ω)1/α, where γ is taken in (0, 1 − δ). The numbers δ, β and γ will be optimized

at the end of the proof. We denote

x2 = x1 + ce2 and x3 = x0 + ce2 = x2 − se1,

z1 = 〈 f ′(x0), e1〉 and z2 = 〈 f ′(x0), e2〉.

Then we have

| f (x2) − f (x1) − z2c| ≤ | f (x2) − f (x3) − z1s| + | f (x3) − f (x0) − z2c|(3.3)

+ | f (x0) − f (x1) + z1s|.
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We are going to apply the mean value theorem on each side of the parallelogram
(x0, x1, x2, x3). This will give an estimation of each member in the inequality (3.3),

and then we will prove (3.2).
First we apply the mean value theorem to the function g1(t) = f (x1 + te2) − z2t ,

t ∈ [0, c] and we obtain t0 in this interval such that

f (x2) − f (x1) − z2c = g ′
1(t0)c = 〈 f ′(x1 + t0e2) − f ′(x0), e2〉c.

Now, if x ∈ [x1, x2], we have

|〈 f ′(x) − f ′(x0), e2〉| ≥ |〈 f ′(x1) − f ′(x0), e2〉| − ‖ f ′(x1) − f ′(x)‖

≥ βl − ω‖x2 − x1‖
α ≥ (β − γ)l.

With this inequality we get

(3.4) | f (x2) − f (x1) − z2c| ≥ (β − γ)lc.

If x ∈ [x3, x2] then |〈 f ′(x) − f ′(x0), e1〉| < ε. Indeed let x = x3 + te1 ∈ [x3, x2]
with t ∈ [0, s]. If we put w = x0 + te1 = x − ce2, then w ∈ D hence f ′(w) ∈ C .
Moreover, for all y ∈ [w, x], ‖ f ′(y) − f ′(w)‖ ≤ ω‖y − w‖α ≤ ωcα ≤ γl. Therefore
f ′([w, x]) ⊂ B( f ′(x0), δl +γl) ⊂ B( f ′(x0), l), since γ ∈ (0, 1− δ). Then f ′([w, x])∩
{y∗ ∈ A ; |〈y∗ − f ′(x0), e1〉| = ε} = ∅. Recall that f ′ is continuous, thus f ′([w, x])
is connected. Since f ′(w) ∈ C ∩A ⊂ {y∗ ∈ A ; |〈y∗− f ′(x0), e1〉| < ε}, f ′([w, x]) is
also included in {y∗ ∈ A ; |〈y∗ − f ′(x0), e1〉| < ε}. Thus |〈 f ′(x) − f ′(x0), e1〉| < ε.
With the mean value theorem applied to the function g2(t) = f (x3 + te1) − z1t ,

t ∈ [0, s], we obtain that

(3.5) | f (x2) − f (x3) − z1s| ≤ εs.

For all x ∈ [x0, x3], |〈 f ′(x) − f ′(x0), e2〉| ≤ ω‖x3 − x0‖
α ≤ γl. Then the mean

value theorem gives that

(3.6) | f (x3) − f (x0) − z2c| ≤ γlc.

We now apply the mean value theorem to the function g3(t) = z1t − f (x0 + te1),
t ∈ [0, s]. It gives t1 ∈ [0, s] such that g3(s) − g3(0) = g ′

3(t1)s. Consequently

| f (x0) − f (x1) + z1s| = |g ′
3(t1)s| = |〈 f ′(x0), e1〉 − 〈 f ′(x0 + t1e1), e1〉|s

= |〈 f ′(x0 + t1e1) − f ′(x0), e1〉|s.

But x0 + t1e1 ∈ D, hence f ′(x0 + t1e1) ∈ C . Thus we obtain that

(3.7) | f (x0) − f (x1) + z1s| ≤ εs.

Now we use the inequalities (3.4), (3.5), (3.6) and (3.7) in (3.3) and we get

(β − γ)lc ≤ εs + γlc + εs ≤ 4ε + γlc
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and hence (β−2γ)l(γl/ω)
1

α ≤ 4ε. We choose δ ∈ (0, 1), β ∈ (0, δ) and γ ∈ (0, 1−δ)
to maximize γ(β − 2γ)α. For this we put

δ = 1 −
1

3(1 + α)
, β → δ and γ → 1 − δ

and we obtain

ω ≥ l1+α(4ε)−α3−1αα(1 + α)−(1+α).

This gives (3.2) and this proves that

Fα(A) ≤ 3
( 4

α

)α
(1 + α)1+αω.

In particular Fα(A) < +∞.

This theorem allows us to build simple examples of subsets of X∗ which are in the set
S but not in Sα.

Example 1: The drop too flat. We fix α ∈ ]0, 1] and a Hilbert space H and we build
a subset of R

2 × H which is in S but not in
⋃

β∈]α,1] Sβ . We put

Dα =

(

BR2 ∪ {(x, y) ; y ∈
[ 1

2
, 2

]

, |x| ≤ Cα(2 − y)1+1/α}
)

× BH

with Cα = 21/α3−(1+1/α). Here is a representation of the drop Dα in the two-dimen-
sional case.

+0

If β ∈ ]α, 1], Fβ(Dα) = +∞, since the quotient y1+β/(y1+1/α)β
= y1−β/α goes to

+∞ when y goes to 0. Therefore, for all β ∈ ]α, 1], Dα /∈ Sβ . However Dα ∈ S since
Dα satisfies the conditions (i) in Theorems 2.1 and 2.2.

Example 2: The comb with flat broken teeth. We construct a comb in R
2×H which

is in S but not in any Sα because its teeth are too flat. For n ≥ 1 we denote

Dn =

[

− 1 +

n−1
∑

k=1

21−k,−1 +

n−1
∑

k=1

21−k + 2−n
]

× [4−1, 4−1 + n−2],

C =

(

([−1, 1] × [−4−1, 4−1])
⋃

(
⋃

n≥1

Dn)
)

× BH .
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+0

Then, for all α ∈ ]0, 1], Fα(C) = +∞, since the quotient (n−2)1+α/(2−n)α goes to
infinity when n → +∞. Now C satisfies the conditions (i) of Theorems 2.1 and 2.2.
Consequently, C ∈ S but C /∈

⋃

α∈]0,1] Sα.

We now establish the second necessary condition which is an adaptation of the
condition (iii) in Theorem 2.1 in the case of Hölder derivatives.

Theorem 3.2 Let X be a Banach space, A be a subset of X∗ and α ∈ ]0, 1]. If A ∈ Sα

and dim X = d < +∞, then

M(α)
n (A) = O(n−α/d).

If A ∈ Sα and X is infinite dimensional, then the sequence (M(α)
n (A))n is bounded.

Proof Let b : X → R be a C1,α-smooth bump such that b ′(X) = A. We can suppose
that Supp(b) ⊂ BX . We fix n ≥ 1, we take (y∗1 , . . . , y∗n ) in An and we write

M = inf{d(α)
A (y∗i , y∗j ) ; 1 ≤ i < j ≤ n}.

For all i ∈ {1, . . . , n}, there exists xi ∈ BX with b ′(xi) = y∗i . We fix i and j and we
denote by γi, j the path defined by γi, j(t) = b ′((1 − t)xi + tx j), t ∈ [0, 1]. Then

l(α)(γi, j) ≤ sup
{

(

n
∑

k=1

‖b ′((1 − tk)xi + tkx j) − b ′((1 − tk−1)xi + tk−1x j)‖
1

α

)α
;

n ∈ N, 0 = t0 < t1 < · · · < tn = 1
}

≤ sup
{

(

n
∑

k=1

(ωα(b ′)‖(tk − tk−1)(xi − x j)‖
α)

1

α

)α
;

n ∈ N, 0 = t0 < t1 < · · · < tn = 1
}

≤ sup
{

(

ωα(b ′)
1

α ‖xi − x j‖
n

∑

k=1

(tk − tk−1)
)α

;

n ∈ N, 0 = t0 < t1 < · · · < tn = 1
}

≤ ωα(b ′)‖xi − x j‖
α.
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Thus
M ≤ ωα(b ′) inf {‖xi − x j‖

α ; 1 ≤ i < j ≤ n}.

We first assume d = dim X < +∞ and we put β = inf{‖xi −x j‖
α ; 1 ≤ i < j ≤ n} .

Then the disjoint union of the B(xi , 2−1β
1

α ), 1 ≤ i ≤ n, is included in (1+2−1β
1

α )BX ,
and then n(2−1β

1

α )d ≤ (1 + 2−1β
1

α )d. It follows that

β
1

α ≤
2

n
1

d − 1

and hence M ≤ ωα(b ′)(2/n
1

d − 1)α. Finally, M(α)
n (A) = O(n−α/d). Now, if d = +∞,

inf{‖xi − x j‖ ; 1 ≤ i < j ≤ n} ≤ 2 and hence M ≤ 2αωα(b ′). Thus the sequence
(M(α)

n (A))n is bounded.

Example 3: The spiral with infinite α-length. For all α ∈]0, 1] there exists a set Vα

with a finite α-flatness such that M(α)
n (Vα) = +∞ for all n ∈ N. For example we can

take

Tα = (−
1

2
, 0) +

⋃

n≥0

(Bn ∪Cn) where

Bn = [an, an+1] × [−an − εn+1,−an + εn+1],

Cn = [an+1 − εn+1, an+1 + εn+1] × [−an,−an+1],

a0 = 0, an =

n
∑

k=1

(−1)k−1k−α and εn =

α

20
n−1−α for n ≥ 1.

Then Tα is a spiral in R
2 which contains 0 and has an infinite α-length, since

∑

n≥1

|an+1 − an|
1

α = +∞.

If H is a Hilbert space we define Vα = Tα×BH . Since the distance d(α)
Vα

is unbounded,

we have M(α)
n (Vα) = +∞ for all n ∈ N and hence Vα /∈ Sα. On the other hand,
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Bump Functions with Hölder Derivatives 709

Fα(Vα) < +∞ because the quotients |an+1 − an|
1+α/εα

n are bounded by the constant
( 20

α )α. Now we claim that Vα ∈ S. Indeed limn→+∞ Rn(int Vα) = 0 and then Theo-

rem 2.1 gives the conclusion if H is finite dimensional. If H is infinite dimensional,
for all y∗ ∈ Vα there exists a continuous path from 0 to y∗ through points of int Vα.
So Theorem 2.2 proves that Vα ∈ S.

We remark that none of the two necessary conditions implies the other. Indeed,

let α ∈ ]0, 1]. Then Example 3 shows a set Vα with a finite α-flatness such that
M(α)

n (Vα) = +∞ for all n. On the other hand, if β ∈ ]α, 1], the drop Dα in Example 1
has an infinite β-flatness but clearly M(β)

n (Dα) = O(n−β/d) where d is the dimension.

4 Sufficient Conditions to Be in S1

We have shown that a set A of S1 satisfies two conditions: It must have a finite flatness
and it cannot have too many points far away from each other for the distance d(1)

A =

dA. We now find a sufficient geometrical condition on a subset A of X∗ so that A

belongs to S1.

Theorem 4.1 Let X be an infinite dimensional separable Banach space with b : X →
R a C1,1-smooth bump. There exists a constant K > 1 so that if U is an open subset of

X∗ satisfying

(J) There exist a ∈ (0, 1) and C > 0 such that for all y∗ ∈ U , there are n ∈ N, and

(y∗0 , y∗1 , . . . , y∗n ) ∈ U n+1 where y∗0 = 0 and y∗n = y∗ with

co(B(y∗i−1, a‖y∗i − y∗i−1‖) ∪ {y∗i }) ⊂ U

and ‖y∗i − y∗i−1‖ < C( a
K

)i for all i ∈ {1, . . . , n}.

Then U ∈ S1.

We notice that the existence of a C1-smooth bump on X and the separability of X

imply that X∗ is separable ([6], page 58). The condition (J) means that any point in

U can be joined to 0 by a “good” path, that is a finite union of drops which are not
too flat, as it is shown in the following picture:

U
y2

y3

y

y1

+0

This condition is stable by finite superpositions. Indeed if F1, F2 satisfy (J) and y∗1 ∈
F1, then F1 ∪ (y∗1 + F2) also satisfies (J). We give examples of subsets satisfying this
condition.

Definition 4.2 Let U be a bounded open subset of X∗. We say that U is uniformly

star-shaped if there exists a > 0 such that co(aBX∗ ∪ {y∗}) ⊂ U for all y∗ ∈ U .
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For example, convex open bounded subsets of X∗ containing 0 are uniformly star-
shaped. Clearly uniformly star shaped sets satisfy condition (J), so Theorem 4.1

yields the following result.

Theorem 4.3 Let X be an infinite dimensional separable Banach space with b : X → R

a C1,1-smooth bump. Let U be a bounded open subset of X∗. If U is uniformly star-

shaped, then U ∈ S1.

The star-shaped condition must be uniform. Indeed let us consider the set

D =

(

int(BR2 ) ∪ {(x, y) ; y ∈ (
1

2
, 2), |x| <

4

27
(2 − y)3}

)

× int BH

where H is an infinite dimensional Hilbert space. This drop was introduced in Exam-
ple 1 of Section 3. Clearly, for all y∗ ∈ D, there is a > 0 (which depends on y∗) such
that co(aBX∗ ∪ {y∗}) ⊂ D. Nevertheless D /∈ S1 because D has an infinite 1-flatness

(see Theorem 3.1).

We are now going to prove Theorem 4.1. First we need the

Lemma 4.4 Let X be an infinite dimensional separable Banach space with b : X → R

a C1,1-smooth bump. There exists K1 > 1 such that for all y∗ ∈ X∗ and ε ∈ (0, ‖y∗‖),

there exists a C1,1-smooth bump f : X → R such that

(i) f ′(X) ⊂ co(εBX∗ ∪ {y∗}),

(ii) f ′(x) = y∗ for all x ∈ (K1‖y∗‖)−1εBX ,

(iii) Supp( f ) ⊂ BX and f ′ is (K1‖y∗‖2ε−1)−Lipschitzian.

This lemma is a variant of a lemma from [4]. We give its proof for the sake of com-
pletness.

Proof We take b0 : X → R a C1,1-smooth bump. Without loss of generality we may
assume that b0 ≥ 0 and b0(0) = 1. There is M > 3 such that b ′

0(X) ⊂ MBX∗ ,
Supp(b0) ⊂ MBX , Lip(b ′

0) ≤ M and b0(X) ⊂ [0, M]. The function defined by

b(x) = M−2εb0(Mx)

satisfies b ′(X) ⊂ εBX∗ , Supp(b) ⊂ BX , Lip(b ′) ≤ Mε, b(X) ⊂ [0, M−1ε] and
b(0) = M−2ε. We fix

r = 6−1b(0) = 6−1M−2ε.

Clearly there exists a C∞-smooth function ϕ : R → [r, +∞[ such that ϕ ′(R) ⊂
[0, 1], ϕ ′ ′(R) ⊂ [−r−1, r−1] and ϕ(t) = t if t ≥ 2r. There exists also g : R

2 → R

a C∞-smooth function such that ‖g ′ ′(t, s)‖ ≤ 2r−1 for all (t, s) ∈ R
2, g ′(R

2) =

{(t, 1 − t) ; t ∈ [0, 1]} and

g(t, s) =

{

t if s ≥ t + r,

s if s ≤ t − r.
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The construction of g is written in [4]. We define

f (x) = g
(

b(x), ϕ(〈y∗, x〉 + 3r)
)

, x ∈ X.

Let us check that f satisfies the required properties. Clearly f is C1-smooth. If
b(x) = 0, then ϕ(〈y∗, x〉 + 3r) ≥ b(x) + r and hence f (x) = b(x) = 0. So f is

a bump and Supp( f ) ⊂ Supp(b) ⊂ BX .

Let x ∈ r‖y∗‖−1BX . Then 〈y∗, x〉 + 3r ∈ [2r, 4r] so f (x) = g
(

b(x), 〈y∗, x〉 + 3r
)

.
With the mean value theorem,

b(x) ≥ b(0) − ε‖x‖ ≥ 6r − r ≥ 5r.

Thus 〈y∗, x〉 + 3r ≤ b(x) − r and hence f (x) = 〈y∗, x〉 + 3r. Consequently,

f ′(x) = y∗ for all x ∈ r‖y∗‖−1BX = 6−1M−2ε‖y∗‖−1BX.

Let x ∈ X. There exists t(x) ∈ [0, 1] so that g ′
(

b(x), ϕ(〈y∗, x〉 + 3r)
)

=

(t(x), 1 − t(x)). Thus

f ′(x) = g ′
(

b(x), ϕ(〈y∗, x〉 + 3r)
)(

b ′(x), ϕ ′(〈y∗, x〉 + 3r)y∗
)

= t(x)b ′(x) + (1 − t(x))ϕ ′(〈y∗, x〉 + 3r)y∗

= t(x)b ′(x) + (1 − t(x))α(x)y∗ with α(x) ∈ [0, 1].

Then f ′(x) ∈ co(b ′(X) ∪ {α(x)y∗}) ⊂ co(εBX∗ ∪ {y∗}). Therefore

f ′(X) ⊂ co(εBX∗ ∪ {y∗}).

We are going to prove that

(4.1) f ′ is K1‖y∗‖2ε−1 Lipschitzian with K1 = 62M2.

We take x1 and x2 in Supp( f ) ⊂ BX . We write a(x) = 〈y∗, x〉 + 3r. Then

f ′(x2) − f ′(x1) = g ′
(

b(x2), ϕ(a(x2))
)

×
(

b ′(x2) − b ′(x1),
(

ϕ ′(a(x2)) − ϕ ′(a(x1))
)

y∗
)

−
(

g ′ (b(x1), ϕ(a(x1))) − g ′(b(x2), ϕ(a(x2)))
)

×
(

b ′(x1), ϕ ′(a(x1))y∗
)

.

Using this and the mean value theorem we obtain

‖ f ′(x2) − f ′(x1)‖ ≤ ‖g ′‖∞
(

Lip(b ′) + ‖ϕ ′′‖∞‖y∗‖2
)

‖x2 − x1‖

+ ‖g ′ ′‖∞(‖b ′‖∞ + ‖ϕ ′‖∞‖y∗‖)2‖x2 − x1‖.
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With the hypotheses on g, ϕ and b this gives

‖ f ′(x2) − f ′(x1)‖ ≤ 2
(

Mε + r−1‖y∗‖2 + r−1(ε + ‖y∗‖)2
)

‖x2 − x1‖

and hence f ′ is Lipschitzian. Recall that ε < ‖y∗‖, thus

Lip( f ′) ≤ 2(M + 6M2 + 24M2)‖y∗‖2ε−1 ≤ K1‖y∗‖2ε−1.

Consequently (4.1) is proved and the proof of the lemma is complete.

We now put K = 6K1 where K1 is the constant given by Lemma 4.4.

Proof of Theorem 4.1 Let U be as in the theorem. For i ≥ 0 and y∗ ∈ U we define

Ti(y∗) =

{

z∗ ∈ U ; co(B(y∗, a‖z∗− y∗‖)∪{z∗}) ⊂ U and ‖z∗− y∗‖ < C(
a

K
)i+1

}

.

The condition (J) is clearly open. It means that if D is a dense countable subset of U ,

then for all y∗ ∈ U there are n ∈ N, (y∗0 = 0, . . . , y∗n−1, y∗n = y∗) ∈ Dn × {y∗} such
that for all i ∈ {1, . . . , n}, y∗i ∈ Ti−1(y∗i−1). We now fix a dense subset D of U and
q ≥ 1. We define

Uq =

{

y∗ ∈ U ; there exist n ≥ 1, (y∗0 = 0, . . . , y∗n = y∗) ∈ Dn × {y∗}

such that for all i ∈ {1, . . . , n}, y∗i ∈ Ti−1(y∗i−1)

and dist
(

n
⋃

i=1

[y∗i−1, y∗i ], ∂U
)

> q−1
}

.

Step 1: We code Uq with multiindices. We define a mapping ϕ on N
<N by induction.

We first put

{ϕ(s) ; s ∈ N
<N and |s| = 1} = D ∩ T0(0) ∩Uq.

Then, if ϕ(s) is defined for s ∈ N
<N, we denote

{ϕ(sˆ j) ; j ∈ N} = D ∩ T|s|(ϕ(s)) ∩Uq.

Now, if σ ∈ N
N, (ϕ(σ|k))k is clearly convergent. Moreover,

(4.2) Uq ⊂
{

lim
k

(ϕ(σ|k)) ; σ ∈ N
N
}

.

Indeed we let y∗ ∈ Uq, n ≥ 1 and (y∗0 = 0, . . . , y∗n = y∗) ∈ Dn × {y∗} such that for
all i ∈ {1, . . . , n}, y∗i ∈ Ti−1(y∗i−1) and dist(

⋃n
i=1 [y∗i−1, y∗i ], ∂U ) > q−1. Then there

exists s = (s1, . . . , sn−1) ∈ N
n−1 such that for all i ∈ {1, . . . , n − 1}, y∗i = ϕ(s|i).

Since y∗ ∈ Tn−1(y∗n−1) ∩ Uq we can find sn ∈ N with ‖y∗ − ϕ(sˆsn)‖ small enough
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to have y∗ ∈ Tn(ϕ(sˆ sn)). By induction, for all k ≥ n, there is sk ∈ N such that
y∗ ∈ Tk(ϕ((s1, . . . , sk))) and hence

‖y∗ − ϕ(s1, . . . , sk)‖ < C(
a

K
)k+1.

Then y∗ = limk ϕ((s1, . . . , sk)) and (4.2) is proved.

In the following, if |s| = 1, we will denote ϕ(s ) = 0 and xs = 0. We remark that,
by construction, for all s ∈ N

<N we have

(4.3) ‖ϕ(s) − ϕ(s )‖ ≤ C(
a

K
)|s|.

We are now going to construct the required bump. First, since X is infinite dimen-
sional, for a given x ∈ X and δ > 0, there exists a sequence (wk)k∈N in B(x, 5δ

6
) such

that ‖wk − wq‖ > δ
3

if k 6= q. We write wk = wk(x, δ). We will proceed by induction
over k := |s|. We define β = aK−1

= a(6K1)−1 and remark that β < 6−1.

For k ∈ N, denote by P(k) the following statement: For all s ∈ N
k, there are

xs ∈ BX and a C1,1-smooth bump hs : X → R such that

(i) h ′
s (x) = ϕ(s) − ϕ(s ) for all x ∈ B(xs, β

|s|).
(ii) Supp(hs) ⊂ B(xs , β|s|−1) ⊂ BX .
(iii) If |r| = |s| and r 6= s, then Supp(hr) ∩ Supp(hs) = ∅.

(iv) Lip(h ′
s ) ≤ C .

(v) ϕ(s ) + h ′
s (X) ⊂ co(B(ϕ(s ), a‖ϕ(s) − ϕ(s )‖) ∪ {ϕ(s)}) ⊂ Uq .

Step 2: P(k) holds for all k ≥ 1. We first show that P(1) holds. Let s ∈ N
<N

with |s| = 1. We obtain with Lemma 4.4 a C1,1-smooth bump gs : X → R such

that g ′
s (X) ⊂ co(B(0, a‖ϕ(s)‖) ∪ {ϕ(s)}) ⊂ Uq, Supp(gs) ⊂ BX , g ′

s (x) = ϕ(s) if
‖x‖ ≤ aK−1

1 and Lip(g ′
s ) ≤ K1a−1‖ϕ(s)‖ ≤ 6−1C since ‖ϕ(s)‖ ≤ C a

K
(see (4.3)).

We define

hs(x) = 6−1gs

(

6(x − ws(1)(0, 1))
)

.

Then Supp(hs) ⊂ B(ws(1)(0, 1), 6−1) ⊂ BX . Furthermore there exists xs ∈ BX so
that h ′

s (x) = ϕ(s) for all x ∈ B(xs, β). If s 6= r and |s| = |r| = 1, then Supp(hs) ∩
Supp(hr) ⊂ B(ws(1)(0, 1), 6−1) ∩ B(wr(1)(0, 1), 6−1) = ∅. Finally,

Lip(h ′
s ) ≤ 6 Lip(g ′

s ) ≤ C

and hence P(1) holds.

We now fix k ≥ 1 and assume that P(k) holds. Let s ∈ N
<N with |s| = k + 1.

We apply Lemma 4.4 and obtain a C1,1-smooth bump gs : X → R such that ϕ(s ) +
g ′

s (X) ⊂ co(B(ϕ(s ), a‖ϕ(s) − ϕ(s )‖) ∪ {ϕ(s)}) ⊂ Uq, Supp(gs) ⊂ BX , g ′
s (x) =

ϕ(s) − ϕ(s ) if ‖x‖ ≤ aK−1
1 and Lip(g ′

s ) ≤ K1a−1‖ϕ(s) − ϕ(s )‖. We define xs =

ws(k+1)(xs , β|s|−1) and

hs(x) = 6−1β|s|−1gs

(

6β1−|s|(x − xs)
)

.
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Then Supp(hs) ⊂ B(xs, 6−1β|s|−1) ⊂ B(xs , β|s|−1) ⊂ BX . For all x ∈ B(xs, β
|s|),

‖6β1−|s|(x − xs)‖ ≤ 6β ≤ aK−1
1 and hence h ′

s (x) = ϕ(s) − ϕ(s ). Clearly, if s 6= r

and |s| = |r| = k + 1, then Supp(hs) ∩ Supp(hr) = ∅. Finally, with (4.3),

Lip(h ′
s ) ≤ 6β1−|s| Lip(g ′

s ) ≤ ‖ϕ(s) − ϕ(s )‖β−|s| ≤ C.

So P(k + 1) holds.

Step 3: The function Fq =

∑

k≥1

∑

|s|=k hs is a C1,1-smooth bump. For k ≥ 1 we

put Hk(x) =

∑

|s|=k hs(x). Then Hk is C1- smooth since it is the sum of C1-smooth
functions with disjoint supports. For all x ∈ X,

‖H ′
k(x)‖ ≤ sup{‖hs

′(x)‖ ; |s| = k} ≤ Cβk−1

since, for all s ∈ N
k, hs

′ is C-Lipschitzian and has its support in B(xs , βk−1). By the
mean value theorem, and using Supp(Hk) ⊂ BX , we get

|Hk(x)| ≤ 2Cβk−1.

Therefore Fq is a C1-smooth bump. Moreover

Lip(F ′
q) ≤ sup{Lip(h ′

s ) ; s ∈ N
<N} ≤ C.

Step 4: Uq ⊂ F ′
q(X) ⊂ U . It is clear that F ′

q(X) ⊂ Uq ⊂ U . Now let Gk(x) =

∑

1≤ j≤k H j(x). For all s ∈ N
<N, B(xs, β

|s|) ⊂ B(xs , β|s|−1). Thus, if k ≥ 1 and

|s| = k, H ′
j (xs) = ϕ(s| j) − ϕ(s| j − 1) for all 1 ≤ j ≤ k and hence G ′

k(xs) = ϕ(s).

We fix y∗ ∈ Uq. By (4.2) there exists σ ∈ N
N with y∗ = limk ϕ(σ|k). We take x

in
⋂

k≥1 B(xσ|k, β
k). Then (xσ|k)k converges to x and since (G ′

k)k is uniformly conver-
gent, we have

F ′
q(x) = lim

k
G ′

k(xσ|k) = lim
k

ϕ(σ|k) = y∗.

Step 5: The sum of the Fq is the desired bump. We consider a 3-separated sequence

(uq)q≥1 in 7BX and we denote

F(x) =

∑

q≥1

Fq(x − uq), x ∈ X.

Then F is a C1,1-smooth bump and
⋃

q≥1 Uq ⊂ F ′(X) ⊂ U , hence F ′(X) = U .

In the finite dimensional case, there exist some partial results obtained with finite

constructions. For example, any compact convex polyhedron P in R
2, with 0 ∈ int P,

is the range of the derivative of a C∞-smooth bump f : R
2 → R, and hence is in S1

(see [3]). We can ask the following question: “Does a uniformly star-shaped compact
subset of R

d belong to S1?”
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