Bump Functions with Hölder Derivatives

Thierry Gaspari

Abstract

We study the range of the gradients of a $C^{1, \alpha}$-smooth bump function defined on a Banach space. We find that this set must satisfy two geometrical conditions: It can not be too flat and it satisfies a strong compactness condition with respect to an appropriate distance. These notions are defined precisely below. With these results we illustrate the differences with the case of C^{1}-smooth bump functions. Finally, we give a sufficient condition on a subset of X^{*} so that it is the set of the gradients of a $C^{1,1}$-smooth bump function. In particular, if X is an infinite dimensional Banach space with a $C^{1,1}$-smooth bump function, then any convex open bounded subset of X^{*} containing 0 is the set of the gradients of a $C^{1,1}$-smooth bump function.

1 Introduction

A function from a Banach space X to \mathbb{R} with a bounded nonempty support is called a bump. For $\alpha \in] 0,1$] we say that a map with bounded support $g: X \rightarrow X^{*}$ is $\operatorname{Hölder}(\alpha)$ if there exists $K>0$ with $\|g(y)-g(x)\| \leq K\|y-x\|^{\alpha}$ for all $(x, y) \in X^{2}$. We then denote by $\omega_{\alpha}(g)$ the smallest constant K satisfying the above inequality. A Hölder(1) map g is just a Lipschitzian map and then $\omega_{1}(g)$ is $\operatorname{Lip}(g)$. We say that a function $f: X \rightarrow \mathbb{R}$ is $C^{1, \alpha}$-smooth if f is C^{1}-smooth and f^{\prime} is Hölder (α). We define

$$
\begin{aligned}
\mathcal{S}_{\alpha} & =\left\{f^{\prime}(X) ; f: X \rightarrow \mathbb{R} \text { is a } C^{1, \alpha} \text {-smooth bump }\right\}, \\
\mathcal{S} & =\left\{f^{\prime}(X) ; f: X \rightarrow \mathbb{R} \text { is a } C^{1} \text {-smooth bump }\right\} .
\end{aligned}
$$

We notice that these sets can be empty. In fact, there exists $\alpha \in] 0,1]$ such that \mathcal{S}_{α} is not empty if and only if X is superreflexive. This follows from Lemma IV.5.3 and Theorem V.3.2 of [6]. The set \mathcal{S} has been studied by many authors during the last years. A set F in S is a connected subset of X^{*}, compact if X is finite dimensional and analytic if X is infinite dimensional. Moreover, it can be proved, with Ekeland's variational principle ([6], Theorem I.2.4), that the norm closure of F is a neighbourhood of 0 . It was shown by D. Azagra and R. Deville in [1] that $X^{*} \in \mathcal{S}$, provided X is an infinite dimensional Banach space which admits a C^{1}-smooth and Lipschitzian bump. Sufficient conditions on bounded closed subsets of X^{*} to be in \mathcal{S} were obtained by J. M. Borwein, M. Fabian and P. D. Loewen in [4] when X is infinite dimensional, and by the same authors and I. Kortezov in [3] in the finite dimensional case. These results have been improved by D. Azagra, M. Fabian and M. Jimenez-Sevilla in [2]. The results of [2] will be detailed in the following of this paper. If X is infinite dimensional, there exist analytic subsets of X^{*}, neither closed nor open, which belong to \mathcal{S}. This was first done for convex sets by T. Gaspari in [8] and then with more general

[^0]conditions by M. Fabian, O. Kalenda and J. Kolář in [7]. We recall the extension of Darboux's theorem by J. Malý in [10]: If $f: X \rightarrow \mathbb{R}$ is Fréchet differentiable, then $f^{\prime}(X)$ is connected. This property does not remain true if the function is not real valued, as remarked in Problem 8.5.4 in [5] (see also [10] and [12]). We now introduce some notations.
$B(x, r)$ denotes the closed ball of center x and radius $r, S(x, r)$ is the sphere of center x and radius r. We sometimes write B_{X} instead of $B(0,1)$. The convex hull of a set M will be denoted by $\operatorname{co}(M)$. We recall that a function $f: X \rightarrow \mathbb{R}$ is said to be Fréchet differentiable at $x_{0} \in X$ if there exists $f^{\prime}\left(x_{0}\right)$ in X^{*} such that
$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)(h)}{\|h\|}=0
$$

Then $f^{\prime}\left(x_{0}\right)$ is called the derivative, or the gradient, of f at x_{0}. The set $f^{\prime}(X)=$ $\left\{f^{\prime}(x) ; x \in X\right\}$ is the range of the derivative of f. If f is a function from X to \mathbb{R}, the support of f is $\operatorname{Supp}(f)=\overline{\{x \in X: f(x) \neq 0\}}$. As said before, f is called a bump if its support is nonempty and bounded.

The symbol \mathbb{N} means the set $\{1,2, \ldots\}$. We denote by $\mathbb{N}<\mathbb{N}$ the set of finite sequences of natural numbers and $\mathbb{N}^{\mathbb{N}}$ the set of infinite sequences of natural numbers. If $s=\left(s_{1}, \ldots, s_{k}\right) \in \mathbb{N}<\mathbb{N}, k$ is called the length of s and we write $k=|s|$. If $k \geq 2$ we put $s_{-}=\left(s_{1}, \ldots, s_{k-1}\right)$. If $j \in\{1, \ldots, k\}, s \mid j=\left(s_{1}, \ldots, s_{j}\right)$. If $r=\left(r_{1}, \ldots, r_{m}\right) \in \mathbb{N}^{<} \mathbb{N}$, then $s^{\wedge} r=\left(s_{1}, \ldots, s_{k}, r_{1}, \ldots, r_{m}\right)$. If $\sigma=\left(\sigma_{j}\right)_{j \geq 1} \in \mathbb{N}^{\mathbb{N}}$ and $j \in \mathbb{N}$, then $\sigma \mid j=\left(\sigma_{1}, \ldots, \sigma_{j}\right)$.

Section 2 is devoted to the study of \mathcal{S}. Sufficient conditions on closed subsets of X^{*} so that they belong to \mathcal{S} have been obtained by D. Azagra, M. Fabian and M. JimenezSevilla in [2]. We observe in our two results of Section 2 that these conditions are almost optimal.

In Section 3 we study the sets $\left.\left.\mathcal{S}_{\alpha}, \alpha \in\right] 0,1\right]$ and their differences with \mathcal{S}. We find two necessary conditions on a subset A of X^{*} containing 0 so that it belongs to \mathcal{S}_{α}. The first one deals with the α-flatness of A.

Definition 1.1

(i) $\mathcal{F}_{\alpha}(A)=\sup \left\{l^{1+\alpha} \varepsilon^{-\alpha} ;(l, \varepsilon) \in \mathbb{R}^{+*^{2}}\right.$ such that there exist $z^{*} \in A$ and $e \in S_{X}$ with $B\left(z^{*}, l\right) \cap\left\{y^{*} \in A ;\left|\left\langle y^{*}-z^{*}, e\right\rangle\right|=\varepsilon\right\}=\varnothing$ and $\left.0 \notin B\left(z^{*}, l\right) \cap\left\{y^{*} \in A ;\left|\left\langle y^{*}-z^{*}, e\right\rangle\right| \leq \varepsilon\right\}\right\}$.
(ii) $\mathcal{F}_{\alpha}(A)$ is called the α-flatness of A.

This definition is not translation-invariant, hence we should have called it the α-flatness of the set A according to the point 0 . But for clarity we will simply write the α-flatness of the set A. The following picture illustrates the meaning of the flatness.

We prove that if $A \in \mathcal{S}_{\alpha}$ then the α-flatness of A is finite (Theorem 3.1).
For the second condition we need the following definitions. If $\gamma:[0,1] \rightarrow X^{*}$ is continuous we define, for $\alpha \in] 0,1$], the α-length of γ by

$$
l^{(\alpha)}(\gamma)=\sup \left\{\left(\sum_{i=1}^{n}\left\|\gamma\left(t_{i}\right)-\gamma\left(t_{i-1}\right)\right\|^{\frac{1}{\alpha}}\right)^{\alpha} ; n \in \mathbb{N}, 0=t_{0}<t_{1}<\cdots<t_{n}=1\right\}
$$

When $\alpha=1, l^{(1)}(\gamma)$ is the usual length of the $\operatorname{arc} \gamma([0,1])$ and will be written $l(\gamma)$. Now, for x and y in A we define

$$
d_{A}^{(\alpha)}(x, y)=\inf \left\{l^{(\alpha)}(\gamma) ; \gamma:[0,1] \rightarrow A \text { is continuous and }(\gamma(0), \gamma(1))=(x, y)\right\}
$$

Clearly, for all $\alpha \in] 0,1], d_{A}^{(\alpha)}$ is a distance on A and we have, for all $0<\beta \leq \alpha \leq 1$, $d_{A}^{(\beta)}(x, y) \leq d_{A}^{(\alpha)}(x, y)$. For $n \geq 1$ we define the index

$$
M_{n}^{(\alpha)}(A)=\sup _{\left(y_{1}, \ldots, y_{n}\right) \in A^{n}}\left\{\inf \left\{d_{A}^{(\alpha)}\left(y_{i}, y_{j}\right) ; 1 \leq i<j \leq n\right\}\right\}
$$

which measures the degree of precompactness of A for the distance $d_{A}^{(\alpha)}$. In particular the condition $M_{n}^{(\alpha)}(A) \rightarrow 0$ means that A equipped with the metric $d_{A}^{(\alpha)}$ is precompact. If $\alpha=1$ we will write $d_{A}(x, y)=d_{A}^{(1)}(x, y)$ and $M_{n}(A)=M_{n}^{(1)}(A)$. In Theorem 3.2 we obtain that if $A \in \mathcal{S}_{\alpha}$ and X is finite dimensional, then $M_{n}^{(\alpha)}(A)=O\left(n^{-\alpha / d}\right)$ with $d=\operatorname{dim} X$. When X is infinite dimensional we obtain that $\left(M_{n}^{(\alpha)}(A)\right)_{n}$ is bounded. Finally, with the results of Section 2 and Section 3 we construct subsets of X^{*} which are in S but not in \mathcal{S}_{α}.

In the last section we find a sufficient condition to be in \mathcal{S}_{1} when X is an infinite dimensional separable Banach space (Theorem 4.1). In particular we show that if there exists a $C^{1,1}$-smooth bump on X, then any convex open bounded subset of X^{*} containing 0 belongs to \mathcal{S}_{1}.

2 The Set \mathcal{S}

First, if A is a subset of X^{*} we define, for x and y in A,

$$
\begin{aligned}
& p_{A}(x, y)=\inf \{\operatorname{diam}(\gamma([0,1])) ; \gamma:[0,1] \rightarrow A \text { is continuous } \\
& \text { and }(\gamma(0), \gamma(1))=(x, y)\} .
\end{aligned}
$$

Then p_{A} is a distance on A and if $0<\alpha \leq 1, p_{A}(x, y) \leq d_{A}^{(\alpha)}(x, y)$. For $n \geq 1$ we denote

$$
R_{n}(A)=\sup _{\left(y_{1}, \ldots, y_{n}\right) \in A^{n}}\left\{\inf \left\{p_{A}\left(y_{i}, y_{j}\right) ; 1 \leq i<j \leq n\right\}\right\}
$$

The condition $R_{n}(A) \rightarrow 0$ means that A equipped with the metric p_{A} is precompact. We notice that for all $n \in \mathbb{N}$ and $0<\alpha \leq 1, R_{n}(A) \leq M_{n}^{(\alpha)}(A)$.

Theorem 2.1 Let X be a finite dimensional Banach space and U be a connected open subset of X^{*} containing 0 . We consider the following assertions:
(i) $\lim _{n \rightarrow+\infty} R_{n}(U)=0$.
(ii) $\bar{U} \in \mathcal{S}$.
(iii) $\lim _{n \rightarrow+\infty} R_{n}(\bar{U})=0$.

Then $(\mathrm{i}) \Rightarrow$ (ii) \Rightarrow (iii).

Proof Step 1: $\lim _{n \rightarrow+\infty} R_{n}(U)=0 \Rightarrow \bar{U} \in \mathcal{S}$. We fix $\varepsilon>0$. There exists $N \in \mathbb{N}$ such that $R_{N}(U)<\varepsilon$. Let $\left(y_{i}^{*}\right)_{i \in I}$ be a maximal set in U with the property that for all $i, j \in I$ with $i \neq j, p_{U}\left(y_{i}^{*}, y_{j}^{*}\right) \geq \varepsilon$. By the choice of $N, \operatorname{Card}(I) \leq N$. Then, by maximality, $\left(y_{i}^{*}\right)_{i \in I}$ is a finite ε-net in U for the distance p_{U}. For $i \in I$ we define $V_{i}=\left\{z^{*} \in U ; p_{U}\left(z^{*}, y_{i}^{*}\right)<\varepsilon\right\}$. Then $\left(V_{i}\right)_{i \in I}$ is a finite family of open connected subsets of U, covering U, each one with diameter less than ε. According to Theorem 2.4 of [2] this implies the existence of $b: X \rightarrow \mathbb{R}$ a C^{1}-smooth bump such that $b^{\prime}(X)=\bar{U}$.
Step 2: $\bar{U} \in \mathcal{S} \Rightarrow \lim _{n \rightarrow+\infty} R_{n}(\bar{U})=0$. Let $b: X \rightarrow \mathbb{R}$ be a C^{1}-smooth bump with $b^{\prime}(X)=\bar{U}$. We fix $\varepsilon>0$. Since X is finite dimensional, b^{\prime} is uniformly continuous on $\operatorname{Supp}(b)$ and hence we find $\delta>0$ such that $\left\|b^{\prime}(x)-b^{\prime}(y)\right\|<\varepsilon$ if $\|x-y\|<\delta$. We take a finite δ-net in $\operatorname{Supp}(b)$ for the norm. Then its range by b^{\prime} is a finite ε-net in \bar{U} for the metric $p_{\bar{U}}$. We call N its cardinal; then $R_{N+1}(\bar{U})<2 \varepsilon$. Since $\left(R_{n}(\bar{U})\right)_{n}$ is decreasing, this proves that $\lim _{n \rightarrow+\infty} R_{n}(\bar{U})=0$.

The conditions are not equivalent since there exists an open subset A of \mathbb{R}^{2} satisfying (iii) but not (i). Here is a representation of such a set:

A is the open rectangle without the black pieces. Clearly $\lim _{n \rightarrow+\infty} R_{n}(\bar{A})=0$ whereas $R_{n}(A) \geq 1$ for all $n \geq 1$. We do not know if A is in \mathcal{S}. In infinite dimensions we have:

Theorem 2.2 Let X be a infinite dimensional Banach space with a separable dual and U be a connected open subset of X^{*} containing 0 . Let us consider the following assertions:
(i) For all $y^{*} \in \bar{U}$, there exists a continuous path from 0 to y^{*} through points of U.
(ii) $\bar{U} \in \mathcal{S}$.
(iii) For all $y^{*} \in \bar{U}$, there exists a continuous path from 0 to y^{*} through points of \bar{U}.

Then (i) \Rightarrow (ii) \Rightarrow (iii).

Proof The difficult implication (i) \Rightarrow (ii) has been proved in [2, Theorem 2.3]. Let us prove that (ii) \Rightarrow (iii). Let $y^{*} \in \bar{U}=b^{\prime}(X)$. There exist x_{0} and x in X such that $b^{\prime}\left(x_{0}\right)=0$ and $b^{\prime}(x)=y^{*}$. Then the path γ defined by $\gamma(t)=b^{\prime}\left(t x+(1-t) x_{0}\right)$, $t \in[0,1]$, is a continuous path from 0 to y^{*} through points of $b^{\prime}(X)=\bar{U}$.

The previous example shows that (iii) and (i) are not equivalent. Indeed the point $(2,1)$ can be joined to 0 by a continuous path in the closure of A, but there is no continuous path from 0 to it through points of A.

We remark that, if $X=\mathbb{R}^{d}$ with $d \in \mathbb{N}$, the positive results deal only with subsets of \mathbb{R}^{d} which are the closure of their interior. In fact, it is an open question if this condition is necessary. This question was written in [3] and was partially answered in $[8]$ where it was proved that if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a C^{2}-smooth bump, then $f^{\prime}\left(\mathbb{R}^{2}\right)$ is the closure of its interior. J. Kolár and J. Kristensen have recently proved the same result with weaker assumptions on the regularity of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ (see [9]). On the other hand, L. Rifford has shown in [11] that if $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a C^{d+1}-smooth bump, then $f^{\prime}\left(\mathbb{R}^{d}\right)$ is the closure of its interior.

Now we give an example from [8] which illustrates the differences between the finite and the infinite dimensional cases. Let H be a separable Hilbert space and define

$$
\begin{gathered}
P_{1}=(]-1,2[\times]-1,0[) \cup(] 1,2[\times]-1,1[) \\
P_{2}=\left(\bigcup_{q \geq 1}\right] 2^{-1}+\cdots+2^{-q}-8^{-q}, 2^{-1}+\cdots+2^{-q}+8^{-q}[) \times[0,1[(\text { comb's teeth })
\end{gathered}
$$

and

$$
P=\left(\left(-\frac{3}{2}, 0\right)+\left(P_{1} \cup P_{2}\right)\right) \times \operatorname{int} B_{H} .
$$

The comb in \mathbb{R}^{2}.
Then the comb P is an open subset of $X=\mathbb{R}^{2} \times H$. If $\operatorname{dim} H=+\infty$ then $\bar{P} \in \mathcal{S}$ since P satisfies the condition (i) in Theorem 2.2. But if H is finite dimensional, $\bar{P} \notin \mathcal{S}$. Indeed $R_{n}(\bar{P}) \geq 1$ for all n and so P does not satisfy (iii) of Theorem 2.1.

3 Necessary Conditions to Be in \mathcal{S}_{α}

Theorem 3.1 Let X be a Banach space, A be a subset of X^{*} and $\left.\alpha \in\right] 0$, 1]. If $A \in \mathcal{S}_{\alpha}$, then $\mathcal{F}_{\alpha}(A)<+\infty$.

Proof Let f be a $C^{1, \alpha}$-smooth bump such that $f^{\prime}(X)=A$ and $\operatorname{Supp}(f) \subset B_{X}$. We are going to prove that

$$
\mathcal{F}_{\alpha}(A) \leq 3\left(\frac{4}{\alpha}\right)^{\alpha}(1+\alpha)^{1+\alpha} \omega_{\alpha}\left(f^{\prime}\right)
$$

We fix $f^{\prime}\left(x_{0}\right) \in A, e_{1} \in S_{X}, l>0$ and $\varepsilon>0$ such that

$$
\begin{align*}
& B\left(f^{\prime}\left(x_{0}\right), l\right) \cap\left\{y^{*} \in A ;\left|\left\langle y^{*}-f^{\prime}\left(x_{0}\right), e_{1}\right\rangle\right|=\varepsilon\right\}=\varnothing \tag{3.1}\\
& \text { and } \quad 0 \notin B\left(f^{\prime}\left(x_{0}\right), l\right) \cap\left\{y^{*} \in A ;\left|\left\langle y^{*}-f^{\prime}\left(x_{0}\right), e_{1}\right\rangle\right| \leq \varepsilon\right\} .
\end{align*}
$$

We will show that

$$
\begin{equation*}
\omega_{\alpha}\left(f^{\prime}\right) \geq 3^{-1}\left(\frac{\alpha}{4}\right)^{\alpha}(1+\alpha)^{-(1+\alpha)} l^{1+\alpha} \varepsilon^{-\alpha} \tag{3.2}
\end{equation*}
$$

In the following we write $\omega=\omega_{\alpha}\left(f^{\prime}\right)$. We take $\delta \in(0,1)$ and we define

$$
C=B\left(f^{\prime}\left(x_{0}\right), \delta l\right) \cap\left\{y^{*} \in X^{*} ;\left|\left\langle y^{*}-f^{\prime}\left(x_{0}\right), e_{1}\right\rangle\right| \leq \varepsilon\right\} \text { and } D=f^{\prime-1}(C)
$$

Since $f^{\prime}\left(x_{0}\right) \in C, x_{0}$ belongs to D. Now $0 \notin C$, hence D is a subset of $\operatorname{Supp}(f) \subset B_{X}$. So we can define $s=\sup \left\{t \geq 0 ;\left[x_{0}, x_{0}+t e_{1}\right] \subset\right.$ int $\left.D\right\}$ and notice that $s \leq 2$. We denote

$$
x_{1}=x_{0}+s e_{1} .
$$

Then $x_{1} \in \partial D=\partial\left(f^{\prime-1}(C)\right)$, and it follows with the continuity of f^{\prime} that

$$
\begin{array}{r}
f^{\prime}\left(x_{1}\right) \in \partial C=\left(\partial B\left(f^{\prime}\left(x_{0}\right), \delta l\right) \cap\left\{y^{*} \in X^{*} ;\left|\left\langle y^{*}-f^{\prime}\left(x_{0}\right), e_{1}\right\rangle\right| \leq \varepsilon\right\}\right) \\
\bigcup\left(B\left(f^{\prime}\left(x_{0}\right), \delta l\right) \cap\left\{y^{*} \in X^{*} ;\left|\left\langle y^{*}-f^{\prime}\left(x_{0}\right), e_{1}\right\rangle\right|=\varepsilon\right\}\right)
\end{array}
$$

Now $f^{\prime}\left(x_{1}\right) \in A$ and $A \cap\left(B\left(f^{\prime}\left(x_{0}\right), \delta l\right) \cap\left\{y^{*} \in X^{*} ;\left|\left\langle y^{*}-f^{\prime}\left(x_{0}\right), e_{1}\right\rangle\right|=\varepsilon\right\}\right)=\varnothing$, because of (3.1). Therefore $f^{\prime}\left(x_{1}\right) \in \partial B\left(f^{\prime}\left(x_{0}\right), \delta l\right)$ and so

$$
\left\|f^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{0}\right)\right\| \geq \delta l
$$

Now we fix $\beta \in(0, \delta)$ and $e_{2} \in S_{X}$ with $\left\langle f^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{0}\right), e_{2}\right\rangle=\beta l$. We put $c=$ $(\gamma l / \omega)^{1 / \alpha}$, where γ is taken in $(0,1-\delta)$. The numbers δ, β and γ will be optimized at the end of the proof. We denote

$$
\begin{gathered}
x_{2}=x_{1}+c e_{2} \text { and } x_{3}=x_{0}+c e_{2}=x_{2}-s e_{1}, \\
z_{1}=\left\langle f^{\prime}\left(x_{0}\right), e_{1}\right\rangle \text { and } z_{2}=\left\langle f^{\prime}\left(x_{0}\right), e_{2}\right\rangle .
\end{gathered}
$$

Then we have

$$
\begin{align*}
\left|f\left(x_{2}\right)-f\left(x_{1}\right)-z_{2} c\right| \leq\left|f\left(x_{2}\right)-f\left(x_{3}\right)-z_{1} s\right|+\left|f\left(x_{3}\right)-f\left(x_{0}\right)-z_{2} c\right| \tag{3.3}\\
+\left|f\left(x_{0}\right)-f\left(x_{1}\right)+z_{1} s\right|
\end{align*}
$$

We are going to apply the mean value theorem on each side of the parallelogram $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. This will give an estimation of each member in the inequality (3.3), and then we will prove (3.2).

First we apply the mean value theorem to the function $g_{1}(t)=f\left(x_{1}+t e_{2}\right)-z_{2} t$, $t \in[0, c]$ and we obtain t_{0} in this interval such that

$$
f\left(x_{2}\right)-f\left(x_{1}\right)-z_{2} c=g_{1}^{\prime}\left(t_{0}\right) c=\left\langle f^{\prime}\left(x_{1}+t_{0} e_{2}\right)-f^{\prime}\left(x_{0}\right), e_{2}\right\rangle c .
$$

Now, if $x \in\left[x_{1}, x_{2}\right]$, we have

$$
\begin{aligned}
\left|\left\langle f^{\prime}(x)-f^{\prime}\left(x_{0}\right), e_{2}\right\rangle\right| & \geq\left|\left\langle f^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{0}\right), e_{2}\right\rangle\right|-\left\|f^{\prime}\left(x_{1}\right)-f^{\prime}(x)\right\| \\
& \geq \beta l-\omega\left\|x_{2}-x_{1}\right\|^{\alpha} \geq(\beta-\gamma) l .
\end{aligned}
$$

With this inequality we get

$$
\begin{equation*}
\left|f\left(x_{2}\right)-f\left(x_{1}\right)-z_{2} c\right| \geq(\beta-\gamma) l c \tag{3.4}
\end{equation*}
$$

If $x \in\left[x_{3}, x_{2}\right]$ then $\left|\left\langle f^{\prime}(x)-f^{\prime}\left(x_{0}\right), e_{1}\right\rangle\right|<\varepsilon$. Indeed let $x=x_{3}+t e_{1} \in\left[x_{3}, x_{2}\right]$ with $t \in[0, s]$. If we put $w=x_{0}+t e_{1}=x-c e_{2}$, then $w \in D$ hence $f^{\prime}(w) \in C$. Moreover, for all $y \in[w, x],\left\|f^{\prime}(y)-f^{\prime}(w)\right\| \leq \omega\|y-w\|^{\alpha} \leq \omega c^{\alpha} \leq \gamma l$. Therefore $f^{\prime}([w, x]) \subset B\left(f^{\prime}\left(x_{0}\right), \delta l+\gamma l\right) \subset B\left(f^{\prime}\left(x_{0}\right), l\right)$, since $\gamma \in(0,1-\delta)$. Then $f^{\prime}([w, x]) \cap$ $\left\{y^{*} \in A ;\left|\left\langle y^{*}-f^{\prime}\left(x_{0}\right), e_{1}\right\rangle\right|=\varepsilon\right\}=\varnothing$. Recall that f^{\prime} is continuous, thus $f^{\prime}([w, x])$ is connected. Since $f^{\prime}(w) \in C \cap A \subset\left\{y^{*} \in A ;\left|\left\langle y^{*}-f^{\prime}\left(x_{0}\right), e_{1}\right\rangle\right|<\varepsilon\right\}, f^{\prime}([w, x])$ is also included in $\left\{y^{*} \in A ;\left|\left\langle y^{*}-f^{\prime}\left(x_{0}\right), e_{1}\right\rangle\right|<\varepsilon\right\}$. Thus $\left|\left\langle f^{\prime}(x)-f^{\prime}\left(x_{0}\right), e_{1}\right\rangle\right|<\varepsilon$. With the mean value theorem applied to the function $g_{2}(t)=f\left(x_{3}+t e_{1}\right)-z_{1} t$, $t \in[0, s]$, we obtain that

$$
\begin{equation*}
\left|f\left(x_{2}\right)-f\left(x_{3}\right)-z_{1} s\right| \leq \varepsilon s . \tag{3.5}
\end{equation*}
$$

For all $x \in\left[x_{0}, x_{3}\right],\left|\left\langle f^{\prime}(x)-f^{\prime}\left(x_{0}\right), e_{2}\right\rangle\right| \leq \omega\left\|x_{3}-x_{0}\right\|^{\alpha} \leq \gamma l$. Then the mean value theorem gives that

$$
\begin{equation*}
\left|f\left(x_{3}\right)-f\left(x_{0}\right)-z_{2} c\right| \leq \gamma l c . \tag{3.6}
\end{equation*}
$$

We now apply the mean value theorem to the function $g_{3}(t)=z_{1} t-f\left(x_{0}+t e_{1}\right)$, $t \in[0, s]$. It gives $t_{1} \in[0, s]$ such that $g_{3}(s)-g_{3}(0)=g_{3}^{\prime}\left(t_{1}\right) s$. Consequently

$$
\begin{aligned}
\left|f\left(x_{0}\right)-f\left(x_{1}\right)+z_{1} s\right| & =\left|g_{3}^{\prime}\left(t_{1}\right) s\right|=\left|\left\langle f^{\prime}\left(x_{0}\right), e_{1}\right\rangle-\left\langle f^{\prime}\left(x_{0}+t_{1} e_{1}\right), e_{1}\right\rangle\right| s \\
& =\left|\left\langle f^{\prime}\left(x_{0}+t_{1} e_{1}\right)-f^{\prime}\left(x_{0}\right), e_{1}\right\rangle\right| s
\end{aligned}
$$

But $x_{0}+t_{1} e_{1} \in D$, hence $f^{\prime}\left(x_{0}+t_{1} e_{1}\right) \in C$. Thus we obtain that

$$
\begin{equation*}
\left|f\left(x_{0}\right)-f\left(x_{1}\right)+z_{1} s\right| \leq \varepsilon s \tag{3.7}
\end{equation*}
$$

Now we use the inequalities (3.4), (3.5), (3.6) and (3.7) in (3.3) and we get

$$
(\beta-\gamma) l c \leq \varepsilon s+\gamma l c+\varepsilon s \leq 4 \varepsilon+\gamma l c
$$

and hence $(\beta-2 \gamma) l(\gamma l / \omega)^{\frac{1}{\alpha}} \leq 4 \varepsilon$. We choose $\delta \in(0,1), \beta \in(0, \delta)$ and $\gamma \in(0,1-\delta)$ to maximize $\gamma(\beta-2 \gamma)^{\alpha}$. For this we put

$$
\delta=1-\frac{1}{3(1+\alpha)}, \beta \rightarrow \delta \text { and } \gamma \rightarrow 1-\delta
$$

and we obtain

$$
\omega \geq l^{1+\alpha}(4 \varepsilon)^{-\alpha} 3^{-1} \alpha^{\alpha}(1+\alpha)^{-(1+\alpha)}
$$

This gives (3.2) and this proves that

$$
\mathcal{F}_{\alpha}(A) \leq 3\left(\frac{4}{\alpha}\right)^{\alpha}(1+\alpha)^{1+\alpha} \omega
$$

In particular $\mathcal{F}_{\alpha}(A)<+\infty$.
This theorem allows us to build simple examples of subsets of X^{*} which are in the set \mathcal{S} but not in \mathcal{S}_{α}.

Example 1: The drop too flat. We fix $\alpha \in] 0,1]$ and a Hilbert space H and we build a subset of $\mathbb{R}^{2} \times H$ which is in \mathcal{S} but not in $\bigcup_{\beta \in] \alpha, 1]} \mathcal{S}_{\beta}$. We put

$$
D_{\alpha}=\left(B_{\mathbb{R}^{2}} \cup\left\{(x, y) ; y \in\left[\frac{1}{2}, 2\right],|x| \leq C_{\alpha}(2-y)^{1+1 / \alpha}\right\}\right) \times B_{H}
$$

with $C_{\alpha}=2^{1 / \alpha} 3^{-(1+1 / \alpha)}$. Here is a representation of the drop D_{α} in the two-dimensional case.

If $\beta \in$] $\alpha, 1], \mathcal{F}_{\beta}\left(D_{\alpha}\right)=+\infty$, since the quotient $y^{1+\beta} /\left(y^{1+1 / \alpha}\right)^{\beta}=y^{1-\beta / \alpha}$ goes to $+\infty$ when y goes to 0 . Therefore, for all $\beta \in] \alpha, 1], D_{\alpha} \notin \mathcal{S}_{\beta}$. However $D_{\alpha} \in \mathcal{S}$ since D_{α} satisfies the conditions (i) in Theorems 2.1 and 2.2.

Example 2: The comb with flat broken teeth. We construct a comb in $\mathbb{R}^{2} \times H$ which is in \mathcal{S} but not in any \mathcal{S}_{α} because its teeth are too flat. For $n \geq 1$ we denote

$$
\begin{gathered}
D_{n}=\left[-1+\sum_{k=1}^{n-1} 2^{1-k},-1+\sum_{k=1}^{n-1} 2^{1-k}+2^{-n}\right] \times\left[4^{-1}, 4^{-1}+n^{-2}\right] \\
C=\left(\left([-1,1] \times\left[-4^{-1}, 4^{-1}\right]\right) \bigcup\left(\bigcup_{n \geq 1} D_{n}\right)\right) \times B_{H}
\end{gathered}
$$

Then, for all $\alpha \in] 0,1], \mathcal{F}_{\alpha}(C)=+\infty$, since the quotient $\left(n^{-2}\right)^{1+\alpha} /\left(2^{-n}\right)^{\alpha}$ goes to infinity when $n \rightarrow+\infty$. Now C satisfies the conditions (i) of Theorems 2.1 and 2.2. Consequently, $C \in \mathcal{S}$ but $C \notin \bigcup_{\alpha \in] 0,1]} \mathcal{S}_{\alpha}$.

We now establish the second necessary condition which is an adaptation of the condition (iii) in Theorem 2.1 in the case of Hölder derivatives.

Theorem 3.2 Let X be a Banach space, A be a subset of X^{*} and $\left.\alpha \in\right] 0$, 1]. If $A \in \mathcal{S}_{\alpha}$ and $\operatorname{dim} X=d<+\infty$, then

$$
M_{n}^{(\alpha)}(A)=O\left(n^{-\alpha / d}\right)
$$

If $A \in S_{\alpha}$ and X is infinite dimensional, then the sequence $\left(M_{n}^{(\alpha)}(A)\right)_{n}$ is bounded.
Proof Let $b: X \rightarrow \mathbb{R}$ be a $C^{1, \alpha}$-smooth bump such that $b^{\prime}(X)=A$. We can suppose that $\operatorname{Supp}(b) \subset B_{X}$. We fix $n \geq 1$, we take $\left(y_{1}^{*}, \ldots, y_{n}^{*}\right)$ in A^{n} and we write

$$
M=\inf \left\{d_{A}^{(\alpha)}\left(y_{i}^{*}, y_{j}^{*}\right) ; 1 \leq i<j \leq n\right\}
$$

For all $i \in\{1, \ldots, n\}$, there exists $x_{i} \in B_{X}$ with $b^{\prime}\left(x_{i}\right)=y_{i}^{*}$. We fix i and j and we denote by $\gamma_{i, j}$ the path defined by $\gamma_{i, j}(t)=b^{\prime}\left((1-t) x_{i}+t x_{j}\right), t \in[0,1]$. Then

$$
\begin{aligned}
& l^{(\alpha)}\left(\gamma_{i, j}\right) \leq \sup \left\{\left(\sum_{k=1}^{n}\left\|b^{\prime}\left(\left(1-t_{k}\right) x_{i}+t_{k} x_{j}\right)-b^{\prime}\left(\left(1-t_{k-1}\right) x_{i}+t_{k-1} x_{j}\right)\right\|^{\frac{1}{\alpha}}\right)^{\alpha}\right. \\
& \left.n \in \mathbb{N}, 0=t_{0}<t_{1}<\cdots<t_{n}=1\right\} \\
& \leq \sup \left\{\left(\sum_{k=1}^{n}\left(\omega_{\alpha}\left(b^{\prime}\right)\left\|\left(t_{k}-t_{k-1}\right)\left(x_{i}-x_{j}\right)\right\|^{\alpha}\right)^{\frac{1}{\alpha}}\right)^{\alpha} ;\right. \\
& \left.n \in \mathbb{N}, 0=t_{0}<t_{1}<\cdots<t_{n}=1\right\} \\
& \leq \sup \left\{\left(\omega_{\alpha}\left(b^{\prime}\right)^{\frac{1}{\alpha}}\left\|x_{i}-x_{j}\right\| \sum_{k=1}^{n}\left(t_{k}-t_{k-1}\right)\right)^{\alpha}\right. \\
& \left.\quad n \in \mathbb{N}, 0=t_{0}<t_{1}<\cdots<t_{n}=1\right\} \\
& \leq \omega_{\alpha}\left(b^{\prime}\right)\left\|x_{i}-x_{j}\right\|^{\alpha} .
\end{aligned}
$$

Thus

$$
M \leq \omega_{\alpha}\left(b^{\prime}\right) \inf \left\{\left\|x_{i}-x_{j}\right\|^{\alpha} ; 1 \leq i<j \leq n\right\}
$$

We first assume $d=\operatorname{dim} X<+\infty$ and we put $\beta=\inf \left\{\left\|x_{i}-x_{j}\right\|^{\alpha} ; 1 \leq i<j \leq n\right\}$. Then the disjoint union of the $B\left(x_{i}, 2^{-1} \beta^{\frac{1}{\alpha}}\right), 1 \leq i \leq n$, is included in $\left(1+2^{-1} \beta^{\frac{1}{\alpha}}\right) B_{X}$, and then $n\left(2^{-1} \beta^{\frac{1}{\alpha}}\right)^{d} \leq\left(1+2^{-1} \beta^{\frac{1}{\alpha}}\right)^{d}$. It follows that

$$
\beta^{\frac{1}{\alpha}} \leq \frac{2}{n^{\frac{1}{d}}-1}
$$

and hence $M \leq \omega_{\alpha}\left(b^{\prime}\right)\left(2 / n^{\frac{1}{d}}-1\right)^{\alpha}$. Finally, $M_{n}^{(\alpha)}(A)=O\left(n^{-\alpha / d}\right)$. Now, if $d=+\infty$, $\inf \left\{\left\|x_{i}-x_{j}\right\| ; 1 \leq i<j \leq n\right\} \leq 2$ and hence $M \leq 2^{\alpha} \omega_{\alpha}\left(b^{\prime}\right)$. Thus the sequence $\left(M_{n}^{(\alpha)}(A)\right)_{n}$ is bounded.

Example 3: The spiral with infinite α-length. For all $\alpha \in] 0,1]$ there exists a set V_{α} with a finite α-flatness such that $M_{n}^{(\alpha)}\left(V_{\alpha}\right)=+\infty$ for all $n \in \mathbb{N}$. For example we can take

$$
\begin{gathered}
T_{\alpha}=\left(-\frac{1}{2}, 0\right)+\overline{\bigcup_{n \geq 0}\left(B_{n} \cup C_{n}\right)} \text { where } \\
B_{n}=\left[a_{n}, a_{n+1}\right] \times\left[-a_{n}-\varepsilon_{n+1},-a_{n}+\varepsilon_{n+1}\right], \\
C_{n}=\left[a_{n+1}-\varepsilon_{n+1}, a_{n+1}+\varepsilon_{n+1}\right] \times\left[-a_{n},-a_{n+1}\right] \\
a_{0}=0, \quad a_{n}=\sum_{k=1}^{n}(-1)^{k-1} k^{-\alpha} \text { and } \varepsilon_{n}=\frac{\alpha}{20} n^{-1-\alpha} \text { for } n \geq 1 .
\end{gathered}
$$

Then T_{α} is a spiral in \mathbb{R}^{2} which contains 0 and has an infinite α-length, since

$$
\sum_{n \geq 1}\left|a_{n+1}-a_{n}\right|^{\frac{1}{\alpha}}=+\infty
$$

If H is a Hilbert space we define $V_{\alpha}=T_{\alpha} \times B_{H}$. Since the distance $d_{V_{\alpha}}^{(\alpha)}$ is unbounded, we have $M_{n}^{(\alpha)}\left(V_{\alpha}\right)=+\infty$ for all $n \in \mathbb{N}$ and hence $V_{\alpha} \notin \mathcal{S}_{\alpha}$. On the other hand,
$\mathcal{F}_{\alpha}\left(V_{\alpha}\right)<+\infty$ because the quotients $\left|a_{n+1}-a_{n}\right|^{1+\alpha} / \varepsilon_{n}^{\alpha}$ are bounded by the constant $\left(\frac{20}{\alpha}\right)^{\alpha}$. Now we claim that $V_{\alpha} \in \mathcal{S}$. Indeed $\lim _{n \rightarrow+\infty} R_{n}\left(\right.$ int $\left.V_{\alpha}\right)=0$ and then Theorem 2.1 gives the conclusion if H is finite dimensional. If H is infinite dimensional, for all $y^{*} \in V_{\alpha}$ there exists a continuous path from 0 to y^{*} through points of int V_{α}. So Theorem 2.2 proves that $V_{\alpha} \in \mathcal{S}$.

We remark that none of the two necessary conditions implies the other. Indeed, let $\alpha \in] 0,1]$. Then Example 3 shows a set V_{α} with a finite α-flatness such that $M_{n}^{(\alpha)}\left(V_{\alpha}\right)=+\infty$ for all n. On the other hand, if $\left.\left.\beta \in\right] \alpha, 1\right]$, the drop D_{α} in Example 1 has an infinite β-flatness but clearly $M_{n}^{(\beta)}\left(D_{\alpha}\right)=O\left(n^{-\beta / d}\right)$ where d is the dimension.

4 Sufficient Conditions to Be in \mathcal{S}_{1}

We have shown that a set A of S_{1} satisfies two conditions: It must have a finite flatness and it cannot have too many points far away from each other for the distance $d_{A}^{(1)}=$ d_{A}. We now find a sufficient geometrical condition on a subset A of X^{*} so that A belongs to \mathcal{S}_{1}.

Theorem 4.1 Let X be an infinite dimensional separable Banach space with $b: X \rightarrow$ $\mathbb{R} a C^{1,1}$-smooth bump. There exists a constant $K>1$ so that if U is an open subset of X^{*} satisfying
(J) There exist $a \in(0,1)$ and $C>0$ such that for all $y^{*} \in U$, there are $n \in \mathbb{N}$, and $\left(y_{0}^{*}, y_{1}^{*}, \ldots, y_{n}^{*}\right) \in U^{n+1}$ where $y_{0}^{*}=0$ and $y_{n}^{*}=y^{*}$ with

$$
\operatorname{co}\left(B\left(y_{i-1}^{*}, a\left\|y_{i}^{*}-y_{i-1}^{*}\right\|\right) \cup\left\{y_{i}^{*}\right\}\right) \subset U
$$

and $\left\|y_{i}^{*}-y_{i-1}^{*}\right\|<C\left(\frac{a}{K}\right)^{i}$ for all $i \in\{1, \ldots, n\}$.
Then $U \in \mathcal{S}_{1}$.
We notice that the existence of a C^{1}-smooth bump on X and the separability of X imply that X^{*} is separable ([6], page 58). The condition ($\left.\mathcal{J}\right)$ means that any point in U can be joined to 0 by a "good" path, that is a finite union of drops which are not too flat, as it is shown in the following picture:

This condition is stable by finite superpositions. Indeed if F_{1}, F_{2} satisfy (\mathcal{J}) and $y_{1}^{*} \in$ F_{1}, then $F_{1} \cup\left(y_{1}^{*}+F_{2}\right)$ also satisfies (J). We give examples of subsets satisfying this condition.

Definition 4.2 Let U be a bounded open subset of X^{*}. We say that U is uniformly star-shaped if there exists $a>0$ such that $\operatorname{co}\left(a B_{X^{*}} \cup\left\{y^{*}\right\}\right) \subset U$ for all $y^{*} \in U$.

For example, convex open bounded subsets of X^{*} containing 0 are uniformly starshaped. Clearly uniformly star shaped sets satisfy condition (J), so Theorem 4.1 yields the following result.

Theorem 4.3 Let X be an infinite dimensional separable Banach space with $b: X \rightarrow \mathbb{R}$ a $C^{1,1}$-smooth bump. Let U be a bounded open subset of X^{*}. If U is uniformly starshaped, then $U \in \mathcal{S}_{1}$.

The star-shaped condition must be uniform. Indeed let us consider the set

$$
D=\left(\operatorname{int}\left(B_{\mathbb{R}^{2}}\right) \cup\left\{(x, y) ; y \in\left(\frac{1}{2}, 2\right),|x|<\frac{4}{27}(2-y)^{3}\right\}\right) \times \operatorname{int} B_{H}
$$

where H is an infinite dimensional Hilbert space. This drop was introduced in Example 1 of Section 3. Clearly, for all $y^{*} \in D$, there is $a>0$ (which depends on y^{*}) such that $\operatorname{co}\left(a B_{X^{*}} \cup\left\{y^{*}\right\}\right) \subset D$. Nevertheless $D \notin \mathcal{S}_{1}$ because D has an infinite 1-flatness (see Theorem 3.1).

We are now going to prove Theorem 4.1. First we need the
Lemma 4.4 Let X be an infinite dimensional separable Banach space with $b: X \rightarrow \mathbb{R}$ a $C^{1,1}$-smooth bump. There exists $K_{1}>1$ such that for all $y^{*} \in X^{*}$ and $\varepsilon \in\left(0,\left\|y^{*}\right\|\right)$, there exists a $C^{1,1}$-smooth bump $f: X \rightarrow \mathbb{R}$ such that
(i) $f^{\prime}(X) \subset \operatorname{co}\left(\varepsilon B_{X^{*}} \cup\left\{y^{*}\right\}\right)$,
(ii) $f^{\prime}(x)=y^{*}$ for all $x \in\left(K_{1}\left\|y^{*}\right\|\right)^{-1} \varepsilon B_{X}$,
(iii) $\operatorname{Supp}(f) \subset B_{X}$ and f^{\prime} is $\left(K_{1}\left\|y^{*}\right\|^{2} \varepsilon^{-1}\right)$-Lipschitzian.

This lemma is a variant of a lemma from [4]. We give its proof for the sake of completness.

Proof We take $b_{0}: X \rightarrow \mathbb{R}$ a $C^{1,1}$-smooth bump. Without loss of generality we may assume that $b_{0} \geq 0$ and $b_{0}(0)=1$. There is $M>3$ such that $b_{0}^{\prime}(X) \subset M B_{X^{*}}$, $\operatorname{Supp}\left(b_{0}\right) \subset M B_{X}, \operatorname{Lip}\left(b_{0}^{\prime}\right) \leq M$ and $b_{0}(X) \subset[0, M]$. The function defined by

$$
b(x)=M^{-2} \varepsilon b_{0}(M x)
$$

satisfies $b^{\prime}(X) \subset \varepsilon B_{X^{*}}, \operatorname{Supp}(b) \subset B_{X}, \operatorname{Lip}\left(b^{\prime}\right) \leq M \varepsilon, b(X) \subset\left[0, M^{-1} \varepsilon\right]$ and $b(0)=M^{-2} \varepsilon$. We fix

$$
r=6^{-1} b(0)=6^{-1} M^{-2} \varepsilon
$$

Clearly there exists a C^{∞}-smooth function $\varphi: \mathbb{R} \rightarrow\left[r,+\infty\left[\right.\right.$ such that $\varphi^{\prime}(\mathbb{R}) \subset$ $[0,1], \varphi^{\prime \prime}(\mathbb{R}) \subset\left[-r^{-1}, r^{-1}\right]$ and $\varphi(t)=t$ if $t \geq 2 r$. There exists also $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a C^{∞}-smooth function such that $\left\|g^{\prime \prime}(t, s)\right\| \leq 2 r^{-1}$ for all $(t, s) \in \mathbb{R}^{2}, g^{\prime}\left(\mathbb{R}^{2}\right)=$ $\{(t, 1-t) ; t \in[0,1]\}$ and

$$
g(t, s)= \begin{cases}t & \text { if } s \geq t+r \\ s & \text { if } s \leq t-r\end{cases}
$$

The construction of g is written in [4]. We define

$$
f(x)=g\left(b(x), \varphi\left(\left\langle y^{*}, x\right\rangle+3 r\right)\right), x \in X
$$

Let us check that f satisfies the required properties. Clearly f is C^{1}-smooth. If $b(x)=0$, then $\varphi\left(\left\langle y^{*}, x\right\rangle+3 r\right) \geq b(x)+r$ and hence $f(x)=b(x)=0$. So f is a bump and $\operatorname{Supp}(f) \subset \operatorname{Supp}(b) \subset B_{X}$.

Let $x \in r\left\|y^{*}\right\|^{-1} B_{X}$. Then $\left\langle y^{*}, x\right\rangle+3 r \in[2 r, 4 r]$ so $f(x)=g\left(b(x),\left\langle y^{*}, x\right\rangle+3 r\right)$. With the mean value theorem,

$$
b(x) \geq b(0)-\varepsilon\|x\| \geq 6 r-r \geq 5 r
$$

Thus $\left\langle y^{*}, x\right\rangle+3 r \leq b(x)-r$ and hence $f(x)=\left\langle y^{*}, x\right\rangle+3 r$. Consequently,

$$
f^{\prime}(x)=y^{*} \text { for all } x \in r\left\|y^{*}\right\|^{-1} B_{X}=6^{-1} M^{-2} \varepsilon\left\|y^{*}\right\|^{-1} B_{X}
$$

Let $x \in X$. There exists $t(x) \in[0,1]$ so that $g^{\prime}\left(b(x), \varphi\left(\left\langle y^{*}, x\right\rangle+3 r\right)\right)=$ $(t(x), 1-t(x))$. Thus

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}\left(b(x), \varphi\left(\left\langle y^{*}, x\right\rangle+3 r\right)\right)\left(b^{\prime}(x), \varphi^{\prime}\left(\left\langle y^{*}, x\right\rangle+3 r\right) y^{*}\right) \\
& =t(x) b^{\prime}(x)+(1-t(x)) \varphi^{\prime}\left(\left\langle y^{*}, x\right\rangle+3 r\right) y^{*} \\
& =t(x) b^{\prime}(x)+(1-t(x)) \alpha(x) y^{*} \text { with } \alpha(x) \in[0,1]
\end{aligned}
$$

Then $f^{\prime}(x) \in \operatorname{co}\left(b^{\prime}(X) \cup\left\{\alpha(x) y^{*}\right\}\right) \subset \operatorname{co}\left(\varepsilon B_{X^{*}} \cup\left\{y^{*}\right\}\right)$. Therefore

$$
f^{\prime}(X) \subset \operatorname{co}\left(\varepsilon B_{X^{*}} \cup\left\{y^{*}\right\}\right)
$$

We are going to prove that

$$
\begin{equation*}
f^{\prime} \text { is } K_{1}\left\|y^{*}\right\|^{2} \varepsilon^{-1} \text { Lipschitzian with } K_{1}=62 M^{2} \tag{4.1}
\end{equation*}
$$

We take x_{1} and x_{2} in $\operatorname{Supp}(f) \subset B_{X}$. We write $a(x)=\left\langle y^{*}, x\right\rangle+3 r$. Then

$$
\begin{aligned}
f^{\prime}\left(x_{2}\right)-f^{\prime}\left(x_{1}\right)=g^{\prime} & \left(b\left(x_{2}\right), \varphi\left(a\left(x_{2}\right)\right)\right) \\
& \times\left(b^{\prime}\left(x_{2}\right)-b^{\prime}\left(x_{1}\right),\left(\varphi^{\prime}\left(a\left(x_{2}\right)\right)-\varphi^{\prime}\left(a\left(x_{1}\right)\right)\right) y^{*}\right) \\
- & \left(g^{\prime}\left(b\left(x_{1}\right), \varphi\left(a\left(x_{1}\right)\right)\right)-g^{\prime}\left(b\left(x_{2}\right), \varphi\left(a\left(x_{2}\right)\right)\right)\right) \\
& \times\left(b^{\prime}\left(x_{1}\right), \varphi^{\prime}\left(a\left(x_{1}\right)\right) y^{*}\right) .
\end{aligned}
$$

Using this and the mean value theorem we obtain

$$
\begin{aligned}
&\left\|f^{\prime}\left(x_{2}\right)-f^{\prime}\left(x_{1}\right)\right\| \leq\left\|g^{\prime}\right\|_{\infty}\left(\operatorname{Lip}\left(b^{\prime}\right)+\left\|\varphi^{\prime \prime}\right\|_{\infty}\left\|y^{*}\right\|^{2}\right)\left\|x_{2}-x_{1}\right\| \\
&+\left\|g^{\prime \prime}\right\|_{\infty}\left(\left\|b^{\prime}\right\|_{\infty}+\left\|\varphi^{\prime}\right\|_{\infty}\left\|y^{*}\right\|\right)^{2}\left\|x_{2}-x_{1}\right\|
\end{aligned}
$$

With the hypotheses on g, φ and b this gives

$$
\left\|f^{\prime}\left(x_{2}\right)-f^{\prime}\left(x_{1}\right)\right\| \leq 2\left(M \varepsilon+r^{-1}\left\|y^{*}\right\|^{2}+r^{-1}\left(\varepsilon+\left\|y^{*}\right\|\right)^{2}\right)\left\|x_{2}-x_{1}\right\|
$$

and hence f^{\prime} is Lipschitzian. Recall that $\varepsilon<\left\|y^{*}\right\|$, thus

$$
\operatorname{Lip}\left(f^{\prime}\right) \leq 2\left(M+6 M^{2}+24 M^{2}\right)\left\|y^{*}\right\|^{2} \varepsilon^{-1} \leq K_{1}\left\|y^{*}\right\|^{2} \varepsilon^{-1}
$$

Consequently (4.1) is proved and the proof of the lemma is complete.

We now put $K=6 K_{1}$ where K_{1} is the constant given by Lemma 4.4.
Proof of Theorem 4.1 Let U be as in the theorem. For $i \geq 0$ and $y^{*} \in U$ we define
$T_{i}\left(y^{*}\right)=\left\{z^{*} \in U ; \operatorname{co}\left(B\left(y^{*}, a\left\|z^{*}-y^{*}\right\|\right) \cup\left\{z^{*}\right\}\right) \subset U\right.$ and $\left.\left\|z^{*}-y^{*}\right\|<C\left(\frac{a}{K}\right)^{i+1}\right\}$.
The condition (J) is clearly open. It means that if D is a dense countable subset of U, then for all $y^{*} \in U$ there are $n \in \mathbb{N},\left(y_{0}^{*}=0, \ldots, y_{n-1}^{*}, y_{n}^{*}=y^{*}\right) \in D^{n} \times\left\{y^{*}\right\}$ such that for all $i \in\{1, \ldots, n\}, y_{i}^{*} \in T_{i-1}\left(y_{i-1}^{*}\right)$. We now fix a dense subset D of U and $q \geq 1$. We define

$$
\begin{aligned}
U_{q}=\{ & y^{*} \in U ; \text { there exist } n \geq 1,\left(y_{0}^{*}=0, \ldots, y_{n}^{*}=y^{*}\right) \in D^{n} \times\left\{y^{*}\right\} \\
& \text { such that for all } i \in\{1, \ldots, n\}, y_{i}^{*} \in T_{i-1}\left(y_{i-1}^{*}\right) \\
& \text { and } \left.\operatorname{dist}\left(\bigcup_{i=1}^{n}\left[y_{i-1}^{*}, y_{i}^{*}\right], \partial U\right)>q^{-1}\right\} .
\end{aligned}
$$

Step 1: We code U_{q} with multiindices. We define a mapping φ on $\mathbb{N}^{<\mathbb{N}}$ by induction. We first put

$$
\left\{\varphi(s) ; s \in \mathbb{N}^{<\mathbb{N}} \text { and }|s|=1\right\}=D \cap T_{0}(0) \cap U_{q}
$$

Then, if $\varphi(s)$ is defined for $s \in \mathbb{N}^{<\mathbb{N}}$, we denote

$$
\left\{\varphi\left(s^{\wedge} j\right) ; j \in \mathbb{N}\right\}=D \cap T_{|s|}(\varphi(s)) \cap U_{q}
$$

Now, if $\sigma \in \mathbb{N}^{\mathbb{N}},(\varphi(\sigma \mid k))_{k}$ is clearly convergent. Moreover,

$$
\begin{equation*}
U_{q} \subset\left\{\lim _{k}(\varphi(\sigma \mid k)) ; \sigma \in \mathbb{N}^{\mathbb{N}}\right\} \tag{4.2}
\end{equation*}
$$

Indeed we let $y^{*} \in U_{q}, n \geq 1$ and $\left(y_{0}^{*}=0, \ldots, y_{n}^{*}=y^{*}\right) \in D^{n} \times\left\{y^{*}\right\}$ such that for all $i \in\{1, \ldots, n\}, y_{i}^{*} \in T_{i-1}\left(y_{i-1}^{*}\right)$ and $\operatorname{dist}\left(\bigcup_{i=1}^{n}\left[y_{i-1}^{*}, y_{i}^{*}\right], \partial U\right)>q^{-1}$. Then there exists $s=\left(s_{1}, \ldots, s_{n-1}\right) \in \mathbb{N}^{n-1}$ such that for all $i \in\{1, \ldots, n-1\}$, $y_{i}^{*}=\varphi(s \mid i)$. Since $y^{*} \in T_{n-1}\left(y_{n-1}^{*}\right) \cap U_{q}$ we can find $s_{n} \in \mathbb{N}$ with $\left\|y^{*}-\varphi\left(s^{\wedge} s_{n}\right)\right\|$ small enough
to have $y^{*} \in T_{n}\left(\varphi\left(s^{\wedge} s_{n}\right)\right)$. By induction, for all $k \geq n$, there is $s_{k} \in \mathbb{N}$ such that $y^{*} \in T_{k}\left(\varphi\left(\left(s_{1}, \ldots, s_{k}\right)\right)\right)$ and hence

$$
\left\|y^{*}-\varphi\left(s_{1}, \ldots, s_{k}\right)\right\|<C\left(\frac{a}{K}\right)^{k+1}
$$

Then $y^{*}=\lim _{k} \varphi\left(\left(s_{1}, \ldots, s_{k}\right)\right)$ and (4.2) is proved.
In the following, if $|s|=1$, we will denote $\varphi\left(s_{-}\right)=0$ and $x_{s_{-}}=0$. We remark that, by construction, for all $s \in \mathbb{N}^{<\mathbb{N}}$ we have

$$
\begin{equation*}
\left\|\varphi(s)-\varphi\left(s_{-}\right)\right\| \leq C\left(\frac{a}{K}\right)^{|s|} \tag{4.3}
\end{equation*}
$$

We are now going to construct the required bump. First, since X is infinite dimensional, for a given $x \in X$ and $\delta>0$, there exists a sequence $\left(w_{k}\right)_{k \in \mathbb{N}}$ in $B\left(x, \frac{5 \delta}{6}\right)$ such that $\left\|w_{k}-w_{q}\right\|>\frac{\delta}{3}$ if $k \neq q$. We write $w_{k}=w_{k}(x, \delta)$. We will proceed by induction over $k:=|s|$. We define $\beta=a K^{-1}=a\left(6 K_{1}\right)^{-1}$ and remark that $\beta<6^{-1}$.

For $k \in \mathbb{N}$, denote by $\mathcal{P}(k)$ the following statement: For all $s \in \mathbb{N}^{k}$, there are $x_{s} \in B_{X}$ and a $C^{1,1}$-smooth bump $h_{s}: X \rightarrow \mathbb{R}$ such that
(i) $\quad h_{s}^{\prime}(x)=\varphi(s)-\varphi\left(s_{-}\right)$for all $x \in B\left(x_{s}, \beta^{|s|}\right)$.
(ii) $\operatorname{Supp}\left(h_{s}\right) \subset B\left(x_{s_{-}}, \beta^{|s|-1}\right) \subset B_{X}$.
(iii) If $|r|=|s|$ and $r \neq s$, then $\operatorname{Supp}\left(h_{r}\right) \cap \operatorname{Supp}\left(h_{s}\right)=\varnothing$.
(iv) $\operatorname{Lip}\left(h_{s}^{\prime}\right) \leq C$.
(v) $\varphi\left(s_{-}\right)+h_{s}^{\prime}(X) \subset \operatorname{co}\left(B\left(\varphi\left(s_{-}\right), a\left\|\varphi(s)-\varphi\left(s_{-}\right)\right\|\right) \cup\{\varphi(s)\}\right) \subset U_{q}$.

Step 2: $\mathcal{P}(k)$ holds for all $k \geq 1$. We first show that $\mathcal{P}(1)$ holds. Let $s \in \mathbb{N}^{<\mathbb{N}}$ with $|s|=1$. We obtain with Lemma 4.4 a $C^{1,1}$-smooth bump $g_{s}: X \rightarrow \mathbb{R}$ such that $g_{s}^{\prime}(X) \subset \operatorname{co}(B(0, a\|\varphi(s)\|) \cup\{\varphi(s)\}) \subset U_{q}, \operatorname{Supp}\left(g_{s}\right) \subset B_{X}, g_{s}^{\prime}(x)=\varphi(s)$ if $\|x\| \leq a K_{1}^{-1}$ and $\operatorname{Lip}\left(g_{s}^{\prime}\right) \leq K_{1} a^{-1}\|\varphi(s)\| \leq 6^{-1} C$ since $\|\varphi(s)\| \leq C \frac{a}{K}$ (see (4.3)). We define

$$
h_{s}(x)=6^{-1} g_{s}\left(6\left(x-w_{s(1)}(0,1)\right)\right)
$$

Then $\operatorname{Supp}\left(h_{s}\right) \subset B\left(w_{s(1)}(0,1), 6^{-1}\right) \subset B_{X}$. Furthermore there exists $x_{s} \in B_{X}$ so that $h_{s}^{\prime}(x)=\varphi(s)$ for all $x \in B\left(x_{s}, \beta\right)$. If $s \neq r$ and $|s|=|r|=1$, then $\operatorname{Supp}\left(h_{s}\right) \cap$ $\operatorname{Supp}\left(h_{r}\right) \subset B\left(w_{s(1)}(0,1), 6^{-1}\right) \cap B\left(w_{r(1)}(0,1), 6^{-1}\right)=\varnothing$. Finally,

$$
\operatorname{Lip}\left(h_{s}^{\prime}\right) \leq 6 \operatorname{Lip}\left(g_{s}^{\prime}\right) \leq C
$$

and hence $\mathcal{P}(1)$ holds.
We now fix $k \geq 1$ and assume that $\mathcal{P}(k)$ holds. Let $s \in \mathbb{N}^{<\mathbb{N}}$ with $|s|=k+1$. We apply Lemma 4.4 and obtain a $C^{1,1}$-smooth bump $g_{s}: X \rightarrow \mathbb{R}$ such that $\varphi\left(s_{-}\right)+$ $g_{s}^{\prime}(X) \subset \operatorname{co}\left(B\left(\varphi\left(s_{-}\right), a\left\|\varphi(s)-\varphi\left(s_{-}\right)\right\|\right) \cup\{\varphi(s)\}\right) \subset U_{q}, \operatorname{Supp}\left(g_{s}\right) \subset B_{X}, g_{s}^{\prime}(x)=$ $\varphi(s)-\varphi\left(s_{-}\right)$if $\|x\| \leq a K_{1}^{-1}$ and $\operatorname{Lip}\left(g_{s}^{\prime}\right) \leq K_{1} a^{-1}\left\|\varphi(s)-\varphi\left(s_{-}\right)\right\|$. We define $x_{s}=$ $w_{s(k+1)}\left(x_{s_{-}}, \beta^{|s|-1}\right)$ and

$$
h_{s}(x)=6^{-1} \beta^{|s|-1} g_{s}\left(6 \beta^{1-|s|}\left(x-x_{s}\right)\right) .
$$

Then $\operatorname{Supp}\left(h_{s}\right) \subset B\left(x_{s}, 6^{-1} \beta^{|s|-1}\right) \subset B\left(x_{s_{-}}, \beta^{|s|-1}\right) \subset B_{X}$. For all $x \in B\left(x_{s}, \beta^{|s|}\right)$, $\left\|6 \beta^{1-|s|}\left(x-x_{s}\right)\right\| \leq 6 \beta \leq a K_{1}^{-1}$ and hence $h_{s}^{\prime}(x)=\varphi(s)-\varphi\left(s_{-}\right)$. Clearly, if $s \neq r$ and $|s|=|r|=k+1$, then $\operatorname{Supp}\left(h_{s}\right) \cap \operatorname{Supp}\left(h_{r}\right)=\varnothing$. Finally, with (4.3),

$$
\operatorname{Lip}\left(h_{s}^{\prime}\right) \leq 6 \beta^{1-|s|} \operatorname{Lip}\left(g_{s}^{\prime}\right) \leq\left\|\varphi(s)-\varphi\left(s_{-}\right)\right\| \beta^{-|s|} \leq C .
$$

So $\mathcal{P}(k+1)$ holds.
Step 3: The function $F_{q}=\sum_{k \geq 1} \sum_{|s|=k} h_{s}$ is a $C^{1,1}$-smooth bump. For $k \geq 1$ we put $H_{k}(x)=\sum_{|s|=k} h_{s}(x)$. Then H_{k} is C^{1} - smooth since it is the sum of C^{1}-smooth functions with disjoint supports. For all $x \in X$,

$$
\left\|H_{k}^{\prime}(x)\right\| \leq \sup \left\{\left\|h_{s}^{\prime}(x)\right\| ;|s|=k\right\} \leq C \beta^{k-1}
$$

since, for all $s \in \mathbb{N}^{k}, h_{s}{ }^{\prime}$ is C-Lipschitzian and has its support in $B\left(x_{s_{-}}, \beta^{k-1}\right)$. By the mean value theorem, and using $\operatorname{Supp}\left(H_{k}\right) \subset B_{X}$, we get

$$
\left|H_{k}(x)\right| \leq 2 C \beta^{k-1}
$$

Therefore F_{q} is a C^{1}-smooth bump. Moreover

$$
\operatorname{Lip}\left(F_{q}^{\prime}\right) \leq \sup \left\{\operatorname{Lip}\left(h_{s}^{\prime}\right) ; s \in \mathbb{N}^{<\mathbb{N}}\right\} \leq C
$$

Step 4: $U_{q} \subset F_{q}^{\prime}(X) \subset U$. It is clear that $F_{q}^{\prime}(X) \subset \overline{U_{q}} \subset U$. Now let $G_{k}(x)=$ $\sum_{1 \leq j \leq k} H_{j}(x)$. For all $s \in \mathbb{N}^{<N}, B\left(x_{s}, \beta^{|s|}\right) \subset B\left(x_{s_{-}}, \beta^{|s|-1}\right)$. Thus, if $k \geq 1$ and $|s|=k, H_{j}^{\prime}\left(x_{s}\right)=\varphi(s \mid j)-\varphi(s \mid j-1)$ for all $1 \leq j \leq k$ and hence $G_{k}^{\prime}\left(x_{s}\right)=\varphi(s)$.

We fix $y^{*} \in U_{q}$. By (4.2) there exists $\sigma \in \mathbb{N}^{\mathbb{N}}$ with $y^{*}=\lim _{k} \varphi\left(\sigma_{\mid k}\right)$. We take x in $\bigcap_{k \geq 1} B\left(x_{\sigma \mid k}, \beta^{k}\right)$. Then $\left(x_{\sigma \mid k}\right)_{k}$ converges to x and since $\left(G_{k}^{\prime}\right)_{k}$ is uniformly convergent, we have

$$
F_{q}^{\prime}(x)=\lim _{k} G_{k}^{\prime}\left(x_{\sigma \mid k}\right)=\lim _{k} \varphi(\sigma \mid k)=y^{*} .
$$

Step 5: The sum of the F_{q} is the desired bump. We consider a 3-separated sequence $\left(u_{q}\right)_{q \geq 1}$ in $7 B_{X}$ and we denote

$$
F(x)=\sum_{q \geq 1} F_{q}\left(x-u_{q}\right), x \in X
$$

Then F is a $C^{1,1}$-smooth bump and $\bigcup_{q \geq 1} U_{q} \subset F^{\prime}(X) \subset U$, hence $F^{\prime}(X)=U$.
In the finite dimensional case, there exist some partial results obtained with finite constructions. For example, any compact convex polyhedron P in \mathbb{R}^{2}, with $0 \in$ int P, is the range of the derivative of a C^{∞}-smooth bump $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and hence is in \mathcal{S}_{1} (see [3]). We can ask the following question: "Does a uniformly star-shaped compact subset of \mathbb{R}^{d} belong to \mathscr{S}_{1} ?"

References

[1] D. Azagra and R. Deville, James' theorem fails for starlike bodies. J. Funct. Anal. 180(2001), 328-346.
[2] D. Azagra, M. Fabian and M. Jimenez-Sevilla, Exact filling of figures with the derivatives of smooth mappings. Preprint (2001).
[3] J. M. Borwein, M. Fabian, I. Kortezov and P. D. Loewen, The range of the gradient of a continuously differentiable bump. J. Nonlinear Convex Anal. 2(2001), 1-19.
[4] J. M. Borwein, M. Fabian and P. D. Loewen, The range of the gradient of a Lipschitz C^{1}-smooth bump in infinite dimensions. Israel J. Math. 132(2002), 239-251.
[5] J. Dieudonné, Fundations of Modern Analysis. Academic Press, New York, 1969.
[6] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces. Pitman Monographs and Surveys in Pure and Applied Mathematic 64, Wiley, New York, 1993.
[7] M. Fabian, O. Kalenda and J. Kolář, Filling analytic sets by the derivatives of C^{1}-smooth bumps. Preprint (2002).
[8] T. Gaspari, On the range of the derivative of a real valued function with bounded support. Studia Math. 153(2002), 81-99.
[9] J. Kolář, J. Kristensen, The set of gradients of a bump. Preprint (2002).
[10] J. Malý, The Darboux property for gradients. Real Anal. Exchange 22(1996-1997), 167-173.
[11] L. Rifford, Range of the gradient of a smooth bump function in finite dimensions. Proc. Amer. Math. Soc. 131(2003), 3063-3066.
[12] J. Saint-Raymond, Local inversion for differentiable functions and Darboux property. Preprint (2001).

Mathématiques Pures de Bordeaux
UMR 5467 CNRS,
Université Bordeaux 1
351, cours de la Libération
33400 Talence
France
e-mail: gaspari@math.u-bordeaux.fr

[^0]: Received by the editors June 25, 2002; revised March 4, 2003.
 AMS subject classification: 46T20, 26E15, 26B05.
 Keywords: Banach space, bump function, range of the derivative.
 (C)Canadian Mathematical Society 2004.

