Bump Functions with Hölder Derivatives

Thierry Gaspari

Abstract. We study the range of the gradients of a $C^{1,\alpha}$ -smooth bump function defined on a Banach space. We find that this set must satisfy two geometrical conditions: It can not be too flat and it satisfies a strong compactness condition with respect to an appropriate distance. These notions are defined precisely below. With these results we illustrate the differences with the case of C^1 -smooth bump functions. Finally, we give a sufficient condition on a subset of X^* so that it is the set of the gradients of a $C^{1,1}$ -smooth bump function. In particular, if X is an infinite dimensional Banach space with a $C^{1,1}$ -smooth bump function, then any convex open bounded subset of X^* containing 0 is the set of the gradients of a $C^{1,1}$ -smooth bump function.

1 Introduction

A function from a Banach space *X* to \mathbb{R} with a bounded nonempty support is called a bump. For $\alpha \in [0, 1]$ we say that a map with bounded support $g: X \to X^*$ is Hölder(α) if there exists K > 0 with $||g(y) - g(x)|| \le K ||y - x||^{\alpha}$ for all $(x, y) \in X^2$. We then denote by $\omega_{\alpha}(g)$ the smallest constant *K* satisfying the above inequality. A Hölder(1) map *g* is just a Lipschitzian map and then $\omega_1(g)$ is Lip(*g*). We say that a function $f: X \to \mathbb{R}$ is $C^{1,\alpha}$ -smooth if *f* is C^1 -smooth and *f'* is Hölder(α). We define

 $\mathfrak{S}_{\alpha} = \{ f'(X) ; f : X \to \mathbb{R} \text{ is a } C^{1,\alpha} \text{-smooth bump} \},\$

 $S = \{ f'(X) ; f : X \to \mathbb{R} \text{ is a } C^1 \text{-smooth bump} \}.$

We notice that these sets can be empty. In fact, there exists $\alpha \in [0, 1]$ such that S_{α} is not empty if and only if X is superreflexive. This follows from Lemma IV.5.3 and Theorem V.3.2 of [6]. The set S has been studied by many authors during the last years. A set F in S is a connected subset of X^* , compact if X is finite dimensional and analytic if X is infinite dimensional. Moreover, it can be proved, with Ekeland's variational principle ([6], Theorem I.2.4), that the norm closure of F is a neighbourhood of 0. It was shown by D. Azagra and R. Deville in [1] that $X^* \in S$, provided X is an infinite dimensional Banach space which admits a C^1 -smooth and Lipschitzian bump. Sufficient conditions on bounded closed subsets of X^* to be in S were obtained by J. M. Borwein, M. Fabian and P. D. Loewen in [4] when X is infinite dimensional, and by the same authors and I. Kortezov in [3] in the finite dimensional case. These results have been improved by D. Azagra, M. Fabian and M. Jimenez-Sevilla in [2]. The results of [2] will be detailed in the following of this paper. If X is infinite dimensional, there exist analytic subsets of X^* , neither closed nor open, which belong to S. This was first done for convex sets by T. Gaspari in [8] and then with more general

Received by the editors June 25, 2002; revised March 4, 2003.

AMS subject classification: 46T20, 26E15, 26B05.

Keywords: Banach space, bump function, range of the derivative.

[©]Canadian Mathematical Society 2004.

conditions by M. Fabian, O. Kalenda and J. Kolář in [7]. We recall the extension of Darboux's theorem by J. Malý in [10]: If $f: X \to \mathbb{R}$ is Fréchet differentiable, then f'(X) is connected. This property does not remain true if the function is not real valued, as remarked in Problem 8.5.4 in [5] (see also [10] and [12]). We now introduce some notations.

B(x, r) denotes the closed ball of center x and radius r, S(x, r) is the sphere of center x and radius r. We sometimes write B_X instead of B(0, 1). The convex hull of a set M will be denoted by co(M). We recall that a function $f: X \to \mathbb{R}$ is said to be Fréchet differentiable at $x_0 \in X$ if there exists $f'(x_0)$ in X^* such that

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0)(h)}{\|h\|} = 0.$$

Then $f'(x_0)$ is called the derivative, or the gradient, of f at x_0 . The set $f'(X) = \{f'(x) : x \in X\}$ is the range of the derivative of f. If f is a function from X to \mathbb{R} , the support of f is Supp $(f) = \{x \in X : f(x) \neq 0\}$. As said before, f is called a bump if its support is nonempty and bounded.

The symbol \mathbb{N} means the set $\{1, 2, ...\}$. We denote by $\mathbb{N}^{<\mathbb{N}}$ the set of finite sequences of natural numbers and $\mathbb{N}^{\mathbb{N}}$ the set of infinite sequences of natural numbers. If $s = (s_1, ..., s_k) \in \mathbb{N}^{<\mathbb{N}}$, k is called the length of s and we write k = |s|. If $k \geq 2$ we put $s_- = (s_1, ..., s_{k-1})$. If $j \in \{1, ..., k\}$, $s|j = (s_1, ..., s_j)$. If $r = (r_1, ..., r_m) \in \mathbb{N}^{<\mathbb{N}}$, then $s \hat{r} = (s_1, ..., s_k, r_1, ..., r_m)$. If $\sigma = (\sigma_j)_{j \geq 1} \in \mathbb{N}^{\mathbb{N}}$ and $j \in \mathbb{N}$, then $\sigma|j = (\sigma_1, ..., \sigma_j)$.

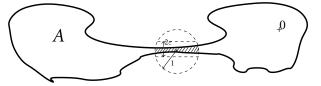
Section 2 is devoted to the study of S. Sufficient conditions on closed subsets of X^* so that they belong to S have been obtained by D. Azagra, M. Fabian and M. Jimenez-Sevilla in [2]. We observe in our two results of Section 2 that these conditions are almost optimal.

In Section 3 we study the sets S_{α} , $\alpha \in [0, 1]$ and their differences with S. We find two necessary conditions on a subset A of X^* containing 0 so that it belongs to S_{α} . The first one deals with the α -flatness of A.

Definition 1.1

- (i) $\mathcal{F}_{\alpha}(A) = \sup \left\{ l^{1+\alpha} \varepsilon^{-\alpha} ; (l, \varepsilon) \in \mathbb{R}^{+*2} \text{ such that there exist } z^* \in A \text{ and } e \in S_X \text{ with } B(z^*, l) \cap \left\{ y^* \in A ; |\langle y^* z^*, e \rangle| = \varepsilon \right\} = \emptyset$ and $0 \notin B(z^*, l) \cap \left\{ y^* \in A ; |\langle y^* - z^*, e \rangle| \le \varepsilon \right\} \right\}.$
- (ii) $\mathfrak{F}_{\alpha}(A)$ is called the α -flatness of A.

This definition is not translation-invariant, hence we should have called it the α -flatness of the set *A* according to the point 0. But for clarity we will simply write the α -flatness of the set *A*. The following picture illustrates the meaning of the flatness.



We prove that if $A \in S_{\alpha}$ then the α -flatness of A is finite (Theorem 3.1).

For the second condition we need the following definitions. If $\gamma: [0,1] \to X^*$ is continuous we define, for $\alpha \in [0,1]$, the α -length of γ by

$$l^{(\alpha)}(\gamma) = \sup \left\{ \left(\sum_{i=1}^{n} \|\gamma(t_i) - \gamma(t_{i-1})\|^{\frac{1}{\alpha}} \right)^{\alpha} ; n \in \mathbb{N}, 0 = t_0 < t_1 < \dots < t_n = 1 \right\}.$$

When $\alpha = 1$, $l^{(1)}(\gamma)$ is the usual length of the arc $\gamma([0, 1])$ and will be written $l(\gamma)$. Now, for x and y in A we define

$$d_A^{(\alpha)}(x,y) = \inf \left\{ l^{(\alpha)}(\gamma) ; \gamma \colon [0,1] \to A \text{ is continuous and } (\gamma(0),\gamma(1)) = (x,y) \right\}.$$

Clearly, for all $\alpha \in [0, 1]$, $d_A^{(\alpha)}$ is a distance on A and we have, for all $0 < \beta \le \alpha \le 1$, $d_A^{(\beta)}(x, y) \le d_A^{(\alpha)}(x, y)$. For $n \ge 1$ we define the index

$$M_n^{(\alpha)}(A) = \sup_{(y_1, \dots, y_n) \in A^n} \left\{ \inf\{d_A^{(\alpha)}(y_i, y_j) ; 1 \le i < j \le n\} \right\}$$

which measures the degree of precompactness of A for the distance $d_A^{(\alpha)}$. In particular the condition $M_n^{(\alpha)}(A) \to 0$ means that A equipped with the metric $d_A^{(\alpha)}$ is precompact. If $\alpha = 1$ we will write $d_A(x, y) = d_A^{(1)}(x, y)$ and $M_n(A) = M_n^{(1)}(A)$. In Theorem 3.2 we obtain that if $A \in S_{\alpha}$ and X is finite dimensional, then $M_n^{(\alpha)}(A) = O(n^{-\alpha/d})$ with $d = \dim X$. When X is infinite dimensional we obtain that $(M_n^{(\alpha)}(A))_n$ is bounded. Finally, with the results of Section 2 and Section 3 we construct subsets of X^* which are in S but not in S_{α} .

In the last section we find a sufficient condition to be in S_1 when *X* is an infinite dimensional separable Banach space (Theorem 4.1). In particular we show that if there exists a $C^{1,1}$ -smooth bump on *X*, then any convex open bounded subset of X^* containing 0 belongs to S_1 .

2 The Set **S**

First, if A is a subset of X^* we define, for x and y in A,

$$p_A(x, y) = \inf \{ \operatorname{diam}(\gamma([0, 1])); \gamma \colon [0, 1] \to A \text{ is continuous } \}$$

and
$$(\gamma(0), \gamma(1)) = (x, y)$$
.

Then p_A is a distance on A and if $0 < \alpha \le 1$, $p_A(x, y) \le d_A^{(\alpha)}(x, y)$. For $n \ge 1$ we denote

$$R_n(A) = \sup_{(y_1, \dots, y_n) \in A^n} \left\{ \inf \{ p_A(y_i, y_j) ; 1 \le i < j \le n \} \right\}.$$

The condition $R_n(A) \to 0$ means that *A* equipped with the metric p_A is precompact. We notice that for all $n \in \mathbb{N}$ and $0 < \alpha \le 1$, $R_n(A) \le M_n^{(\alpha)}(A)$. **Theorem 2.1** Let X be a finite dimensional Banach space and U be a connected open subset of X^* containing 0. We consider the following assertions:

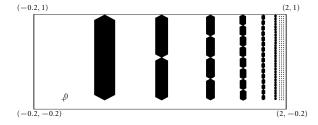
- (i) $\lim_{n\to+\infty} R_n(U) = 0.$
- (ii) $\overline{U} \in S$.
- (iii) $\lim_{n\to+\infty} R_n(\overline{U}) = 0.$

Then (i) \Rightarrow (ii) \Rightarrow (iii).

Proof Step 1: $\lim_{n\to+\infty} R_n(U) = 0 \Rightarrow \overline{U} \in S$. We fix $\varepsilon > 0$. There exists $N \in \mathbb{N}$ such that $R_N(U) < \varepsilon$. Let $(y_i^*)_{i \in I}$ be a maximal set in U with the property that for all $i, j \in I$ with $i \neq j$, $p_U(y_i^*, y_j^*) \ge \varepsilon$. By the choice of N, $\operatorname{Card}(I) \le N$. Then, by maximality, $(y_i^*)_{i \in I}$ is a finite ε -net in U for the distance p_U . For $i \in I$ we define $V_i = \{z^* \in U ; p_U(z^*, y_i^*) < \varepsilon\}$. Then $(V_i)_{i \in I}$ is a finite family of open connected subsets of U, covering U, each one with diameter less than ε . According to Theorem 2.4 of [2] this implies the existence of $b: X \to \mathbb{R}$ a C^1 -smooth bump such that $b'(X) = \overline{U}$. Step 2: $\overline{U} \in S \Rightarrow \lim_{n \to +\infty} R_n(\overline{U}) = 0$. Let $b: X \to \mathbb{R}$ be a C^1 -smooth bump with

Step 2: $U \in S \Rightarrow \lim_{n \to +\infty} R_n(U) = 0$. Let $b: X \to \mathbb{R}$ be a C^1 -smooth bump with $b'(X) = \overline{U}$. We fix $\varepsilon > 0$. Since X is finite dimensional, b' is uniformly continuous on Supp(b) and hence we find $\delta > 0$ such that $||b'(x) - b'(y)|| < \varepsilon$ if $||x - y|| < \delta$. We take a finite δ -net in Supp(b) for the norm. Then its range by b' is a finite ε -net in \overline{U} for the metric $p_{\overline{U}}$. We call N its cardinal; then $R_{N+1}(\overline{U}) < 2\varepsilon$. Since $(R_n(\overline{U}))_n$ is decreasing, this proves that $\lim_{n \to +\infty} R_n(\overline{U}) = 0$.

The conditions are not equivalent since there exists an open subset A of \mathbb{R}^2 satisfying (iii) but not (i). Here is a representation of such a set:



A is the open rectangle without the black pieces. Clearly $\lim_{n\to+\infty} R_n(\overline{A}) = 0$ whereas $R_n(A) \ge 1$ for all $n \ge 1$. We do not know if *A* is in *S*. In infinite dimensions we have:

Theorem 2.2 Let X be a infinite dimensional Banach space with a separable dual and U be a connected open subset of X^* containing 0. Let us consider the following assertions:

- (i) For all $y^* \in \overline{U}$, there exists a continuous path from 0 to y^* through points of U.
- (ii) $\overline{U} \in S$.
- (iii) For all $y^* \in \overline{U}$, there exists a continuous path from 0 to y^* through points of \overline{U} .

Then (i) \Rightarrow (ii) \Rightarrow (iii).

Proof The difficult implication (i) \Rightarrow (ii) has been proved in [2, Theorem 2.3]. Let us prove that (ii) \Rightarrow (iii). Let $y^* \in \overline{U} = b'(X)$. There exist x_0 and x in X such that $b'(x_0) = 0$ and $b'(x) = y^*$. Then the path γ defined by $\gamma(t) = b'(tx + (1 - t)x_0)$, $t \in [0, 1]$, is a continuous path from 0 to y^* through points of $b'(X) = \overline{U}$.

The previous example shows that (iii) and (i) are not equivalent. Indeed the point (2, 1) can be joined to 0 by a continuous path in the closure of *A*, but there is no continuous path from 0 to it through points of *A*.

We remark that, if $X = \mathbb{R}^d$ with $d \in \mathbb{N}$, the positive results deal only with subsets of \mathbb{R}^d which are the closure of their interior. In fact, it is an open question if this condition is necessary. This question was written in [3] and was partially answered in [8] where it was proved that if $f: \mathbb{R}^2 \to \mathbb{R}$ is a C^2 -smooth bump, then $f'(\mathbb{R}^2)$ is the closure of its interior. J. Kolár and J. Kristensen have recently proved the same result with weaker assumptions on the regularity of $f: \mathbb{R}^2 \to \mathbb{R}$ (see [9]). On the other hand, L. Rifford has shown in [11] that if $f: \mathbb{R}^d \to \mathbb{R}$ is a C^{d+1} -smooth bump, then $f'(\mathbb{R}^d)$ is the closure of its interior.

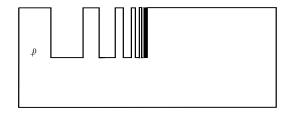
Now we give an example from [8] which illustrates the differences between the finite and the infinite dimensional cases. Let H be a separable Hilbert space and define

$$P_1 = (]-1, 2[\times]-1, 0[) \cup (]1, 2[\times]-1, 1[),$$

$$P_2 = \left(\bigcup_{q\geq 1} \left[2^{-1} + \dots + 2^{-q} - 8^{-q}, 2^{-1} + \dots + 2^{-q} + 8^{-q}\right]\right) \times [0, 1] \text{ (comb's teeth)}$$

and

$$P = \left(\left(-\frac{3}{2}, 0 \right) + \left(P_1 \cup P_2 \right) \right) \times \text{ int } B_H.$$



The comb in \mathbb{R}^2 *.*

Then the comb *P* is an open subset of $X = \mathbb{R}^2 \times H$. If dim $H = +\infty$ then $\overline{P} \in S$ since *P* satisfies the condition (i) in Theorem 2.2. But if *H* is finite dimensional, $\overline{P} \notin S$. Indeed $R_n(\overline{P}) \ge 1$ for all *n* and so *P* does not satisfy (iii) of Theorem 2.1.

3 Necessary Conditions to Be in S_{α}

Theorem 3.1 Let X be a Banach space, A be a subset of X^* and $\alpha \in [0, 1]$. If $A \in S_{\alpha}$, then $\mathfrak{F}_{\alpha}(A) < +\infty$.

Proof Let *f* be a $C^{1,\alpha}$ -smooth bump such that f'(X) = A and $\text{Supp}(f) \subset B_X$. We are going to prove that

$$\mathfrak{F}_{\alpha}(A) \leq 3\left(\frac{4}{\alpha}\right)^{\alpha}(1+\alpha)^{1+\alpha}\omega_{\alpha}(f').$$

We fix $f'(x_0) \in A$, $e_1 \in S_X$, l > 0 and $\varepsilon > 0$ such that

(3.1)
$$B(f'(x_0), l) \cap \{y^* \in A ; |\langle y^* - f'(x_0), e_1 \rangle| = \varepsilon\} = \emptyset$$

and $0 \notin B(f'(x_0), l) \cap \{y^* \in A ; |\langle y^* - f'(x_0), e_1 \rangle| \le \varepsilon\}.$

We will show that

(3.2)
$$\omega_{\alpha}(f') \ge 3^{-1} \left(\frac{\alpha}{4}\right)^{\alpha} (1+\alpha)^{-(1+\alpha)} l^{1+\alpha} \varepsilon^{-\alpha}$$

In the following we write $\omega = \omega_{\alpha}(f')$. We take $\delta \in (0, 1)$ and we define

$$C = B(f'(x_0), \delta l) \cap \{y^* \in X^* ; |\langle y^* - f'(x_0), e_1 \rangle| \le \varepsilon\} \text{ and } D = f'^{-1}(C).$$

Since $f'(x_0) \in C$, x_0 belongs to D. Now $0 \notin C$, hence D is a subset of $\text{Supp}(f) \subset B_X$. So we can define $s = \sup\{t \ge 0 ; [x_0, x_0 + te_1] \subset \text{int } D\}$ and notice that $s \le 2$. We denote

$$x_1 = x_0 + se_1.$$

Then $x_1 \in \partial D = \partial (f'^{-1}(C))$, and it follows with the continuity of f' that

$$f'(x_1) \in \partial C = \left(\partial B(f'(x_0), \delta l) \cap \{ y^* \in X^* ; |\langle y^* - f'(x_0), e_1 \rangle| \le \varepsilon \} \right)$$
$$\bigcup \left(B(f'(x_0), \delta l) \cap \{ y^* \in X^* ; |\langle y^* - f'(x_0), e_1 \rangle| = \varepsilon \} \right).$$

Now $f'(x_1) \in A$ and $A \cap (B(f'(x_0), \delta l) \cap \{y^* \in X^*; |\langle y^* - f'(x_0), e_1 \rangle| = \varepsilon\}) = \emptyset$, because of (3.1). Therefore $f'(x_1) \in \partial B(f'(x_0), \delta l)$ and so

$$||f'(x_1) - f'(x_0)|| \ge \delta l.$$

Now we fix $\beta \in (0, \delta)$ and $e_2 \in S_X$ with $\langle f'(x_1) - f'(x_0), e_2 \rangle = \beta l$. We put $c = (\gamma l/\omega)^{1/\alpha}$, where γ is taken in $(0, 1 - \delta)$. The numbers δ , β and γ will be optimized at the end of the proof. We denote

$$x_2 = x_1 + ce_2$$
 and $x_3 = x_0 + ce_2 = x_2 - se_1$,
 $z_1 = \langle f'(x_0), e_1 \rangle$ and $z_2 = \langle f'(x_0), e_2 \rangle$.

Then we have

$$(3.3) |f(x_2) - f(x_1) - z_2 c| \le |f(x_2) - f(x_3) - z_1 s| + |f(x_3) - f(x_0) - z_2 c| + |f(x_0) - f(x_1) + z_1 s|.$$

We are going to apply the mean value theorem on each side of the parallelogram (x_0, x_1, x_2, x_3) . This will give an estimation of each member in the inequality (3.3), and then we will prove (3.2).

First we apply the mean value theorem to the function $g_1(t) = f(x_1 + te_2) - z_2 t$, $t \in [0, c]$ and we obtain t_0 in this interval such that

$$f(x_2) - f(x_1) - z_2 c = g'_1(t_0)c = \langle f'(x_1 + t_0 e_2) - f'(x_0), e_2 \rangle c.$$

Now, if $x \in [x_1, x_2]$, we have

$$\begin{split} |\langle f'(x) - f'(x_0), e_2 \rangle| &\geq |\langle f'(x_1) - f'(x_0), e_2 \rangle| - \|f'(x_1) - f'(x)\| \\ &\geq \beta l - \omega \|x_2 - x_1\|^{\alpha} \geq (\beta - \gamma) l. \end{split}$$

With this inequality we get

(3.4)
$$|f(x_2) - f(x_1) - z_2 c| \ge (\beta - \gamma) lc.$$

If $x \in [x_3, x_2]$ then $|\langle f'(x) - f'(x_0), e_1 \rangle| < \varepsilon$. Indeed let $x = x_3 + te_1 \in [x_3, x_2]$ with $t \in [0, s]$. If we put $w = x_0 + te_1 = x - ce_2$, then $w \in D$ hence $f'(w) \in C$. Moreover, for all $y \in [w, x]$, $||f'(y) - f'(w)|| \le \omega ||y - w||^{\alpha} \le \omega c^{\alpha} \le \gamma l$. Therefore $f'([w, x]) \subset B(f'(x_0), \delta l + \gamma l) \subset B(f'(x_0), l)$, since $\gamma \in (0, 1 - \delta)$. Then $f'([w, x]) \cap \{y^* \in A ; |\langle y^* - f'(x_0), e_1 \rangle| = \varepsilon\} = \emptyset$. Recall that f' is continuous, thus f'([w, x]) is connected. Since $f'(w) \in C \cap A \subset \{y^* \in A ; |\langle y^* - f'(x_0), e_1 \rangle| < \varepsilon\}$, f'([w, x]) is also included in $\{y^* \in A ; |\langle y^* - f'(x_0), e_1 \rangle| < \varepsilon\}$. Thus $|\langle f'(x) - f'(x_0), e_1 \rangle| < \varepsilon$. With the mean value theorem applied to the function $g_2(t) = f(x_3 + te_1) - z_1t$, $t \in [0, s]$, we obtain that

$$(3.5) |f(x_2) - f(x_3) - z_1 s| \le \varepsilon s.$$

For all $x \in [x_0, x_3]$, $|\langle f'(x) - f'(x_0), e_2 \rangle| \le \omega ||x_3 - x_0||^{\alpha} \le \gamma l$. Then the mean value theorem gives that

(3.6)
$$|f(x_3) - f(x_0) - z_2 c| \le \gamma l c.$$

We now apply the mean value theorem to the function $g_3(t) = z_1t - f(x_0 + te_1)$, $t \in [0, s]$. It gives $t_1 \in [0, s]$ such that $g_3(s) - g_3(0) = g'_3(t_1)s$. Consequently

$$|f(x_0) - f(x_1) + z_1 s| = |g'_3(t_1)s| = |\langle f'(x_0), e_1 \rangle - \langle f'(x_0 + t_1 e_1), e_1 \rangle|s$$

= |\langle f'(x_0 + t_1 e_1) - f'(x_0), e_1 \rangle |s.

But $x_0 + t_1e_1 \in D$, hence $f'(x_0 + t_1e_1) \in C$. Thus we obtain that

$$(3.7) |f(x_0) - f(x_1) + z_1 s| \le \varepsilon s.$$

Now we use the inequalities (3.4), (3.5), (3.6) and (3.7) in (3.3) and we get

$$(\beta - \gamma)lc \leq \varepsilon s + \gamma lc + \varepsilon s \leq 4\varepsilon + \gamma lc$$

and hence $(\beta - 2\gamma)l(\gamma l/\omega)^{\frac{1}{\alpha}} \leq 4\varepsilon$. We choose $\delta \in (0, 1), \beta \in (0, \delta)$ and $\gamma \in (0, 1-\delta)$ to maximize $\gamma(\beta - 2\gamma)^{\alpha}$. For this we put

$$\delta = 1 - \frac{1}{3(1 + \alpha)}, \beta \rightarrow \delta \text{ and } \gamma \rightarrow 1 - \delta$$

and we obtain

$$\omega \ge l^{1+\alpha} (4\varepsilon)^{-\alpha} 3^{-1} \alpha^{\alpha} (1+\alpha)^{-(1+\alpha)}.$$

This gives (3.2) and this proves that

$$\mathfrak{F}_{\alpha}(A) \leq \Im \left(\frac{4}{\alpha}\right)^{\alpha} (1+\alpha)^{1+\alpha} \omega$$

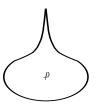
In particular $\mathcal{F}_{\alpha}(A) < +\infty$.

This theorem allows us to build simple examples of subsets of X^* which are in the set S but not in S_{α} .

Example 1: The drop too flat. We fix $\alpha \in]0, 1]$ and a Hilbert space *H* and we build a subset of $\mathbb{R}^2 \times H$ which is in S but not in $\bigcup_{\beta \in]\alpha, 1]} S_{\beta}$. We put

$$D_{\alpha} = \left(B_{\mathbb{R}^2} \cup \{(x, y) ; y \in \left[\frac{1}{2}, 2\right], |x| \le C_{\alpha}(2 - y)^{1 + 1/\alpha}\}\right) \times B_H$$

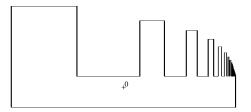
with $C_{\alpha} = 2^{1/\alpha} 3^{-(1+1/\alpha)}$. Here is a representation of the drop D_{α} in the two-dimensional case.



If $\beta \in]\alpha, 1]$, $\mathfrak{F}_{\beta}(D_{\alpha}) = +\infty$, since the quotient $y^{1+\beta}/(y^{1+1/\alpha})^{\beta} = y^{1-\beta/\alpha}$ goes to $+\infty$ when y goes to 0. Therefore, for all $\beta \in]\alpha, 1]$, $D_{\alpha} \notin \mathfrak{S}_{\beta}$. However $D_{\alpha} \in \mathfrak{S}$ since D_{α} satisfies the conditions (i) in Theorems 2.1 and 2.2.

Example 2: The comb with flat broken teeth. We construct a comb in $\mathbb{R}^2 \times H$ which is in S but not in any S_α because its teeth are too flat. For $n \ge 1$ we denote

$$D_n = \left[-1 + \sum_{k=1}^{n-1} 2^{1-k}, -1 + \sum_{k=1}^{n-1} 2^{1-k} + 2^{-n} \right] \times [4^{-1}, 4^{-1} + n^{-2}]$$
$$C = \left(\left([-1, 1] \times [-4^{-1}, 4^{-1}] \right) \bigcup \left(\bigcup_{n \ge 1} D_n \right) \right) \times B_H.$$



Then, for all $\alpha \in [0, 1]$, $\mathcal{F}_{\alpha}(C) = +\infty$, since the quotient $(n^{-2})^{1+\alpha}/(2^{-n})^{\alpha}$ goes to infinity when $n \to +\infty$. Now *C* satisfies the conditions (i) of Theorems 2.1 and 2.2. Consequently, $C \in S$ but $C \notin \bigcup_{\alpha \in [0,1]} S_{\alpha}$.

We now establish the second necessary condition which is an adaptation of the condition (iii) in Theorem 2.1 in the case of Hölder derivatives.

Theorem 3.2 Let X be a Banach space, A be a subset of X^* and $\alpha \in [0, 1]$. If $A \in S_{\alpha}$ and dim $X = d < +\infty$, then

$$M_n^{(\alpha)}(A) = O(n^{-\alpha/d}).$$

If $A \in S_{\alpha}$ and X is infinite dimensional, then the sequence $(M_n^{(\alpha)}(A))_n$ is bounded.

Proof Let $b: X \to \mathbb{R}$ be a $C^{1,\alpha}$ -smooth bump such that b'(X) = A. We can suppose that $\operatorname{Supp}(b) \subset B_X$. We fix $n \ge 1$, we take (y_1^*, \ldots, y_n^*) in A^n and we write

$$M = \inf\{d_A^{(\alpha)}(y_i^*, y_j^*) ; 1 \le i < j \le n\}.$$

For all $i \in \{1, ..., n\}$, there exists $x_i \in B_X$ with $b'(x_i) = y_i^*$. We fix i and j and we denote by $\gamma_{i,j}$ the path defined by $\gamma_{i,j}(t) = b'((1-t)x_i + tx_j), t \in [0, 1]$. Then

$$\begin{split} l^{(\alpha)}(\gamma_{i,j}) &\leq \sup \left\{ \left(\sum_{k=1}^{n} \| b'((1-t_{k})x_{i}+t_{k}x_{j}) - b'((1-t_{k-1})x_{i}+t_{k-1}x_{j}) \|^{\frac{1}{\alpha}} \right)^{\alpha}; \\ &n \in \mathbb{N}, 0 = t_{0} < t_{1} < \dots < t_{n} = 1 \right\} \\ &\leq \sup \left\{ \left(\sum_{k=1}^{n} (\omega_{\alpha}(b')\|(t_{k}-t_{k-1})(x_{i}-x_{j})\|^{\alpha})^{\frac{1}{\alpha}} \right)^{\alpha}; \\ &n \in \mathbb{N}, 0 = t_{0} < t_{1} < \dots < t_{n} = 1 \right\} \\ &\leq \sup \left\{ \left(\omega_{\alpha}(b')^{\frac{1}{\alpha}}\|x_{i}-x_{j}\|\sum_{k=1}^{n} (t_{k}-t_{k-1}) \right)^{\alpha}; \\ &n \in \mathbb{N}, 0 = t_{0} < t_{1} < \dots < t_{n} = 1 \right\} \\ &\leq \omega_{\alpha}(b')\|x_{i}-x_{j}\|^{\alpha}. \end{split}$$

Thus

$$M \leq \omega_{lpha}(b') \inf \{ \|x_i - x_j\|^{lpha} ; 1 \leq i < j \leq n \}.$$

We first assume $d = \dim X < +\infty$ and we put $\beta = \inf\{\|x_i - x_j\|^{\alpha} ; 1 \le i < j \le n\}$. Then the disjoint union of the $B(x_i, 2^{-1}\beta^{\frac{1}{\alpha}}), 1 \le i \le n$, is included in $(1+2^{-1}\beta^{\frac{1}{\alpha}})B_X$, and then $n(2^{-1}\beta^{\frac{1}{\alpha}})^d \le (1+2^{-1}\beta^{\frac{1}{\alpha}})^d$. It follows that

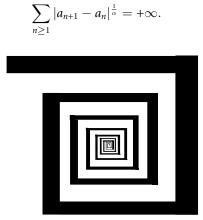
$$\beta^{\frac{1}{\alpha}} \leq \frac{2}{n^{\frac{1}{d}} - 1}$$

and hence $M \leq \omega_{\alpha}(b')(2/n^{\frac{1}{d}}-1)^{\alpha}$. Finally, $M_n^{(\alpha)}(A) = O(n^{-\alpha/d})$. Now, if $d = +\infty$, $\inf\{\|x_i - x_j\| : 1 \leq i < j \leq n\} \leq 2$ and hence $M \leq 2^{\alpha}\omega_{\alpha}(b')$. Thus the sequence $(M_n^{(\alpha)}(A))_n$ is bounded.

Example 3: The spiral with infinite α *-length.* For all $\alpha \in]0, 1]$ there exists a set V_{α} with a finite α -flatness such that $M_n^{(\alpha)}(V_{\alpha}) = +\infty$ for all $n \in \mathbb{N}$. For example we can take

$$T_{\alpha} = \left(-\frac{1}{2}, 0\right) + \overline{\bigcup_{n \ge 0} (B_n \cup C_n)} \text{ where}$$
$$B_n = [a_n, a_{n+1}] \times \left[-a_n - \varepsilon_{n+1}, -a_n + \varepsilon_{n+1}\right],$$
$$C_n = [a_{n+1} - \varepsilon_{n+1}, a_{n+1} + \varepsilon_{n+1}] \times \left[-a_n, -a_{n+1}\right],$$
$$a_0 = 0, \quad a_n = \sum_{k=1}^n (-1)^{k-1} k^{-\alpha} \text{ and } \varepsilon_n = \frac{\alpha}{20} n^{-1-\alpha} \text{ for } n \ge 1.$$

Then T_{α} is a spiral in \mathbb{R}^2 which contains 0 and has an infinite α -length, since



If *H* is a Hilbert space we define $V_{\alpha} = T_{\alpha} \times B_{H}$. Since the distance $d_{V_{\alpha}}^{(\alpha)}$ is unbounded, we have $M_{n}^{(\alpha)}(V_{\alpha}) = +\infty$ for all $n \in \mathbb{N}$ and hence $V_{\alpha} \notin S_{\alpha}$. On the other hand,

 $\mathcal{F}_{\alpha}(V_{\alpha}) < +\infty$ because the quotients $|a_{n+1} - a_n|^{1+\alpha}/\varepsilon_n^{\alpha}$ are bounded by the constant $(\frac{20}{\alpha})^{\alpha}$. Now we claim that $V_{\alpha} \in S$. Indeed $\lim_{n \to +\infty} R_n(\operatorname{int} V_{\alpha}) = 0$ and then Theorem 2.1 gives the conclusion if *H* is finite dimensional. If *H* is infinite dimensional, for all $y^* \in V_{\alpha}$ there exists a continuous path from 0 to y^* through points of int V_{α} . So Theorem 2.2 proves that $V_{\alpha} \in S$.

We remark that none of the two necessary conditions implies the other. Indeed, let $\alpha \in [0, 1]$. Then Example 3 shows a set V_{α} with a finite α -flatness such that $M_n^{(\alpha)}(V_{\alpha}) = +\infty$ for all n. On the other hand, if $\beta \in [\alpha, 1]$, the drop D_{α} in Example 1 has an infinite β -flatness but clearly $M_n^{(\beta)}(D_{\alpha}) = O(n^{-\beta/d})$ where d is the dimension.

4 Sufficient Conditions to Be in S₁

We have shown that a set *A* of S_1 satisfies two conditions: It must have a finite flatness and it cannot have too many points far away from each other for the distance $d_A^{(1)} = d_A$. We now find a sufficient geometrical condition on a subset *A* of X^* so that *A* belongs to S_1 .

Theorem 4.1 Let X be an infinite dimensional separable Banach space with $b: X \rightarrow \mathbb{R}$ a $C^{1,1}$ -smooth bump. There exists a constant K > 1 so that if U is an open subset of X^* satisfying

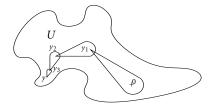
(3) There exist $a \in (0, 1)$ and C > 0 such that for all $y^* \in U$, there are $n \in \mathbb{N}$, and $(y_0^*, y_1^*, \dots, y_n^*) \in U^{n+1}$ where $y_0^* = 0$ and $y_n^* = y^*$ with

$$co(B(y_{i-1}^*, a || y_i^* - y_{i-1}^* ||) \cup \{y_i^*\}) \subset U$$

and
$$||y_i^* - y_{i-1}^*|| < C(\frac{a}{\kappa})^i$$
 for all $i \in \{1, \ldots, n\}$

Then $U \in S_1$.

We notice that the existence of a C^1 -smooth bump on X and the separability of X imply that X^* is separable ([6], page 58). The condition (\mathcal{J}) means that any point in U can be joined to 0 by a "good" path, that is a finite union of drops which are not too flat, as it is shown in the following picture:



This condition is stable by finite superpositions. Indeed if F_1 , F_2 satisfy (\mathcal{J}) and $y_1^* \in F_1$, then $F_1 \cup (y_1^* + F_2)$ also satisfies (\mathcal{J}). We give examples of subsets satisfying this condition.

Definition 4.2 Let U be a bounded open subset of X^* . We say that U is *uniformly star-shaped* if there exists a > 0 such that $co(aB_{X^*} \cup \{y^*\}) \subset U$ for all $y^* \in U$.

For example, convex open bounded subsets of X^* containing 0 are uniformly starshaped. Clearly uniformly star shaped sets satisfy condition (\mathcal{J}), so Theorem 4.1 yields the following result.

Theorem 4.3 Let X be an infinite dimensional separable Banach space with $b: X \to \mathbb{R}$ a $C^{1,1}$ -smooth bump. Let U be a bounded open subset of X^* . If U is uniformly starshaped, then $U \in S_1$.

The star-shaped condition must be uniform. Indeed let us consider the set

$$D = \left(\operatorname{int}(B_{\mathbb{R}^2}) \cup \{ (x, y) ; y \in (\frac{1}{2}, 2), |x| < \frac{4}{27}(2 - y)^3 \} \right) \times \operatorname{int} B_H$$

where *H* is an infinite dimensional Hilbert space. This drop was introduced in Example 1 of Section 3. Clearly, for all $y^* \in D$, there is a > 0 (which depends on y^*) such that $co(aB_{X^*} \cup \{y^*\}) \subset D$. Nevertheless $D \notin S_1$ because *D* has an infinite 1-flatness (see Theorem 3.1).

We are now going to prove Theorem 4.1. First we need the

Lemma 4.4 Let X be an infinite dimensional separable Banach space with $b: X \to \mathbb{R}$ a $C^{1,1}$ -smooth bump. There exists $K_1 > 1$ such that for all $y^* \in X^*$ and $\varepsilon \in (0, ||y^*||)$, there exists a $C^{1,1}$ -smooth bump $f: X \to \mathbb{R}$ such that

(i) f'(X) ⊂ co(εB_{X*} ∪ {y*}),
(ii) f'(x) = y* for all x ∈ (K₁||y*||)⁻¹εB_X,
(iii) Supp(f) ⊂ B_X and f' is (K₁||y*||²ε⁻¹)−Lipschitzian.

This lemma is a variant of a lemma from [4]. We give its proof for the sake of completness.

Proof We take $b_0: X \to \mathbb{R}$ a $C^{1,1}$ -smooth bump. Without loss of generality we may assume that $b_0 \ge 0$ and $b_0(0) = 1$. There is M > 3 such that $b'_0(X) \subset MB_{X^*}$, $\operatorname{Supp}(b_0) \subset MB_X$, $\operatorname{Lip}(b'_0) \le M$ and $b_0(X) \subset [0, M]$. The function defined by

$$b(x) = M^{-2}\varepsilon b_0(Mx)$$

satisfies $b'(X) \subset \varepsilon B_{X^*}$, $\operatorname{Supp}(b) \subset B_X$, $\operatorname{Lip}(b') \leq M\varepsilon$, $b(X) \subset [0, M^{-1}\varepsilon]$ and $b(0) = M^{-2}\varepsilon$. We fix

$$r = 6^{-1}b(0) = 6^{-1}M^{-2}\varepsilon.$$

Clearly there exists a C^{∞} -smooth function $\varphi \colon \mathbb{R} \to [r, +\infty[$ such that $\varphi'(\mathbb{R}) \subset [0, 1], \varphi''(\mathbb{R}) \subset [-r^{-1}, r^{-1}]$ and $\varphi(t) = t$ if $t \ge 2r$. There exists also $g \colon \mathbb{R}^2 \to \mathbb{R}$ a C^{∞} -smooth function such that $\|g''(t, s)\| \le 2r^{-1}$ for all $(t, s) \in \mathbb{R}^2, g'(\mathbb{R}^2) = \{(t, 1-t); t \in [0, 1]\}$ and

$$g(t,s) = \begin{cases} t & \text{if } s \ge t+r, \\ s & \text{if } s \le t-r. \end{cases}$$

The construction of g is written in [4]. We define

$$f(x) = g(b(x), \varphi(\langle y^*, x \rangle + 3r)), x \in X.$$

Let us check that f satisfies the required properties. Clearly f is C^1 -smooth. If b(x) = 0, then $\varphi(\langle y^*, x \rangle + 3r) \ge b(x) + r$ and hence f(x) = b(x) = 0. So f is a bump and Supp $(f) \subset$ Supp $(b) \subset B_X$.

Let $x \in r ||y^*||^{-1} B_X$. Then $\langle y^*, x \rangle + 3r \in [2r, 4r]$ so $f(x) = g(b(x), \langle y^*, x \rangle + 3r)$. With the mean value theorem,

$$b(x) \ge b(0) - \varepsilon ||x|| \ge 6r - r \ge 5r.$$

Thus $\langle y^*, x \rangle + 3r \leq b(x) - r$ and hence $f(x) = \langle y^*, x \rangle + 3r$. Consequently,

$$f'(x) = y^*$$
 for all $x \in r ||y^*||^{-1} B_X = 6^{-1} M^{-2} \varepsilon ||y^*||^{-1} B_X.$

Let $x \in X$. There exists $t(x) \in [0,1]$ so that $g'(b(x), \varphi(\langle y^*, x \rangle + 3r)) = (t(x), 1 - t(x))$. Thus

$$f'(x) = g'(b(x), \varphi(\langle y^*, x \rangle + 3r))(b'(x), \varphi'(\langle y^*, x \rangle + 3r)y^*)$$

= $t(x)b'(x) + (1 - t(x))\varphi'(\langle y^*, x \rangle + 3r)y^*$
= $t(x)b'(x) + (1 - t(x))\alpha(x)y^*$ with $\alpha(x) \in [0, 1].$

Then $f'(x) \in \operatorname{co}(b'(X) \cup \{\alpha(x)y^*\}) \subset \operatorname{co}(\varepsilon B_{X^*} \cup \{y^*\})$. Therefore

$$f'(X) \subset \operatorname{co}(\varepsilon B_{X^*} \cup \{y^*\}).$$

We are going to prove that

(4.1)
$$f' \text{ is } K_1 \|y^*\|^2 \varepsilon^{-1} \text{ Lipschitzian with } K_1 = 62M^2$$

We take x_1 and x_2 in Supp $(f) \subset B_X$. We write $a(x) = \langle y^*, x \rangle + 3r$. Then

$$\begin{aligned} f'(x_2) - f'(x_1) &= g'\big(b(x_2), \varphi(a(x_2))\big) \\ &\times \big(b'(x_2) - b'(x_1), \big(\varphi'(a(x_2)) - \varphi'(a(x_1))\big) \ y^*\big) \\ &- \big(g'(b(x_1), \varphi(a(x_1))) - g'(b(x_2), \varphi(a(x_2)))\big) \\ &\times \big(b'(x_1), \varphi'(a(x_1))y^*\big) \,. \end{aligned}$$

Using this and the mean value theorem we obtain

$$\|f'(x_2) - f'(x_1)\| \le \|g'\|_{\infty} (\operatorname{Lip}(b') + \|\varphi''\|_{\infty} \|y^*\|^2) \|x_2 - x_1\| + \|g''\|_{\infty} (\|b'\|_{\infty} + \|\varphi'\|_{\infty} \|y^*\|)^2 \|x_2 - x_1\|.$$

With the hypotheses on g, φ and b this gives

$$||f'(x_2) - f'(x_1)|| \le 2(M\varepsilon + r^{-1}||y^*||^2 + r^{-1}(\varepsilon + ||y^*||)^2) ||x_2 - x_1||$$

and hence f' is Lipschitzian. Recall that $\varepsilon < ||y^*||$, thus

$$\operatorname{Lip}(f') \le 2(M + 6M^2 + 24M^2) \|y^*\|^2 \varepsilon^{-1} \le K_1 \|y^*\|^2 \varepsilon^{-1}.$$

Consequently (4.1) is proved and the proof of the lemma is complete.

We now put $K = 6K_1$ where K_1 is the constant given by Lemma 4.4.

Proof of Theorem 4.1 Let U be as in the theorem. For $i \ge 0$ and $y^* \in U$ we define

$$T_i(y^*) = \left\{ z^* \in U ; \operatorname{co}(B(y^*, a \| z^* - y^* \|) \cup \{ z^* \}) \subset U \text{ and } \| z^* - y^* \| < C(\frac{a}{K})^{i+1} \right\}.$$

The condition (\mathcal{J}) is clearly open. It means that if *D* is a dense countable subset of *U*, then for all $y^* \in U$ there are $n \in \mathbb{N}$, $(y_0^* = 0, \ldots, y_{n-1}^*, y_n^* = y^*) \in D^n \times \{y^*\}$ such that for all $i \in \{1, \ldots, n\}$, $y_i^* \in T_{i-1}(y_{i-1}^*)$. We now fix a dense subset *D* of *U* and $q \ge 1$. We define

$$U_{q} = \left\{ y^{*} \in U ; \text{ there exist } n \ge 1, (y_{0}^{*} = 0, \dots, y_{n}^{*} = y^{*}) \in D^{n} \times \{y^{*}\} \right.$$

such that for all $i \in \{1, \dots, n\}, y_{i}^{*} \in T_{i-1}(y_{i-1}^{*})$
and dist $\left(\bigcup_{i=1}^{n} [y_{i-1}^{*}, y_{i}^{*}], \partial U\right) > q^{-1} \right\}.$

Step 1: We code U_q with multiindices. We define a mapping φ on $\mathbb{N}^{<\mathbb{N}}$ by induction. We first put

$$\{\varphi(s); s \in \mathbb{N}^{<\mathbb{N}} \text{ and } |s|=1\} = D \cap T_0(0) \cap U_q.$$

Then, if $\varphi(s)$ is defined for $s \in \mathbb{N}^{<\mathbb{N}}$, we denote

$$\{\varphi(s^{\prime}j); j \in \mathbb{N}\} = D \cap T_{|s|}(\varphi(s)) \cap U_q.$$

Now, if $\sigma \in \mathbb{N}^{\mathbb{N}}$, $(\varphi(\sigma|k))_k$ is clearly convergent. Moreover,

(4.2)
$$U_q \subset \left\{ \lim_k (\varphi(\sigma|k)) ; \sigma \in \mathbb{N}^{\mathbb{N}} \right\}.$$

Indeed we let $y^* \in U_q$, $n \ge 1$ and $(y_0^* = 0, \ldots, y_n^* = y^*) \in D^n \times \{y^*\}$ such that for all $i \in \{1, \ldots, n\}$, $y_i^* \in T_{i-1}(y_{i-1}^*)$ and dist $(\bigcup_{i=1}^n [y_{i-1}^*, y_i^*], \partial U) > q^{-1}$. Then there exists $s = (s_1, \ldots, s_{n-1}) \in \mathbb{N}^{n-1}$ such that for all $i \in \{1, \ldots, n-1\}$, $y_i^* = \varphi(s|i)$. Since $y^* \in T_{n-1}(y_{n-1}^*) \cap U_q$ we can find $s_n \in \mathbb{N}$ with $\|y^* - \varphi(s^*s_n)\|$ small enough

Bump Functions with Hölder Derivatives

to have $y^* \in T_n(\varphi(s^*s_n))$. By induction, for all $k \ge n$, there is $s_k \in \mathbb{N}$ such that $y^* \in T_k(\varphi((s_1, \ldots, s_k)))$ and hence

$$\|y^* - \varphi(s_1, \ldots, s_k)\| < C(\frac{a}{K})^{k+1}$$

Then $y^* = \lim_k \varphi((s_1, \ldots, s_k))$ and (4.2) is proved.

In the following, if |s| = 1, we will denote $\varphi(s_{-}) = 0$ and $x_{s_{-}} = 0$. We remark that, by construction, for all $s \in \mathbb{N}^{<\mathbb{N}}$ we have

(4.3)
$$\|\varphi(s) - \varphi(s_{-})\| \le C(\frac{a}{K})^{|s|}.$$

We are now going to construct the required bump. First, since *X* is infinite dimensional, for a given $x \in X$ and $\delta > 0$, there exists a sequence $(w_k)_{k \in \mathbb{N}}$ in $B(x, \frac{5\delta}{6})$ such that $||w_k - w_q|| > \frac{\delta}{3}$ if $k \neq q$. We write $w_k = w_k(x, \delta)$. We will proceed by induction over k := |s|. We define $\beta = aK^{-1} = a(6K_1)^{-1}$ and remark that $\beta < 6^{-1}$.

For $k \in \mathbb{N}$, denote by $\mathcal{P}(k)$ the following statement: For all $s \in \mathbb{N}^k$, there are $x_s \in B_X$ and a $C^{1,1}$ -smooth bump $h_s \colon X \to \mathbb{R}$ such that

- (i) $h'_s(x) = \varphi(s) \varphi(s_{-})$ for all $x \in B(x_s, \beta^{|s|})$.
- (ii) $\operatorname{Supp}(h_s) \subset B(x_s, \beta^{|s|-1}) \subset B_X.$
- (iii) If |r| = |s| and $r \neq s$, then $\text{Supp}(h_r) \cap \text{Supp}(h_s) = \emptyset$.
- (iv) $\operatorname{Lip}(h'_{s}) \leq C$.
- (v) $\varphi(s_{-}) + h'_{s}(X) \subset \operatorname{co}(B(\varphi(s_{-}), a \| \varphi(s) \varphi(s_{-}) \|) \cup \{\varphi(s)\}) \subset U_{q}$.

Step 2: $\mathcal{P}(k)$ holds for all $k \geq 1$. We first show that $\mathcal{P}(1)$ holds. Let $s \in \mathbb{N}^{<\mathbb{N}}$ with |s| = 1. We obtain with Lemma 4.4 a $C^{1,1}$ -smooth bump $g_s \colon X \to \mathbb{R}$ such that $g'_s(X) \subset \operatorname{co}(B(0, a \| \varphi(s) \|) \cup \{\varphi(s)\}) \subset U_q$, $\operatorname{Supp}(g_s) \subset B_X$, $g'_s(x) = \varphi(s)$ if $\|x\| \leq aK_1^{-1}$ and $\operatorname{Lip}(g'_s) \leq K_1a^{-1}\|\varphi(s)\| \leq 6^{-1}C$ since $\|\varphi(s)\| \leq C\frac{a}{K}$ (see (4.3)). We define

$$h_s(x) = 6^{-1}g_s(6(x - w_{s(1)}(0, 1)))$$

Then $\operatorname{Supp}(h_s) \subset B(w_{s(1)}(0,1), 6^{-1}) \subset B_X$. Furthermore there exists $x_s \in B_X$ so that $h'_s(x) = \varphi(s)$ for all $x \in B(x_s, \beta)$. If $s \neq r$ and |s| = |r| = 1, then $\operatorname{Supp}(h_s) \cap \operatorname{Supp}(h_r) \subset B(w_{s(1)}(0,1), 6^{-1}) \cap B(w_{r(1)}(0,1), 6^{-1}) = \emptyset$. Finally,

$$\operatorname{Lip}(h'_s) \le 6 \operatorname{Lip}(g'_s) \le C$$

and hence $\mathcal{P}(1)$ holds.

We now fix $k \ge 1$ and assume that $\mathcal{P}(k)$ holds. Let $s \in \mathbb{N}^{<\mathbb{N}}$ with |s| = k + 1. We apply Lemma 4.4 and obtain a $C^{1,1}$ -smooth bump $g_s: X \to \mathbb{R}$ such that $\varphi(s_-) + g'_s(X) \subset \operatorname{co}(B(\varphi(s_-), a \| \varphi(s) - \varphi(s_-)\|) \cup \{\varphi(s)\}) \subset U_q$, $\operatorname{Supp}(g_s) \subset B_X$, $g'_s(x) = \varphi(s) - \varphi(s_-)$ if $\|x\| \le aK_1^{-1}$ and $\operatorname{Lip}(g'_s) \le K_1a^{-1}\|\varphi(s) - \varphi(s_-)\|$. We define $x_s = w_{s(k+1)}(x_{s_-}, \beta^{|s|-1})$ and

$$h_s(x) = 6^{-1} \beta^{|s|-1} g_s (6\beta^{1-|s|} (x-x_s))$$

Then $\operatorname{Supp}(h_s) \subset B(x_s, 6^{-1}\beta^{|s|-1}) \subset B(x_{s_-}, \beta^{|s|-1}) \subset B_X$. For all $x \in B(x_s, \beta^{|s|})$, $\|6\beta^{1-|s|}(x-x_s)\| \leq 6\beta \leq aK_1^{-1}$ and hence $h'_s(x) = \varphi(s) - \varphi(s_-)$. Clearly, if $s \neq r$ and |s| = |r| = k + 1, then $\operatorname{Supp}(h_s) \cap \operatorname{Supp}(h_r) = \emptyset$. Finally, with (4.3),

$$\operatorname{Lip}(h'_{s}) \leq 6\beta^{1-|s|} \operatorname{Lip}(g'_{s}) \leq \|\varphi(s) - \varphi(s_{-})\|\beta^{-|s|} \leq C.$$

So $\mathcal{P}(k+1)$ holds.

Step 3: The function $F_q = \sum_{k \ge 1} \sum_{|s|=k} h_s$ is a $C^{1,1}$ -smooth bump. For $k \ge 1$ we put $H_k(x) = \sum_{|s|=k} h_s(x)$. Then H_k is C^1 - smooth since it is the sum of C^1 -smooth functions with disjoint supports. For all $x \in X$,

$$\|H'_k(x)\| \le \sup\{\|h_s{\,}'(x)\| \ ; \ |s| = k\} \le C\beta^{k-1}$$

since, for all $s \in \mathbb{N}^k$, h_s' is *C*-Lipschitzian and has its support in $B(x_{s_*}, \beta^{k-1})$. By the mean value theorem, and using $\text{Supp}(H_k) \subset B_X$, we get

$$|H_k(x)| \le 2C\beta^{k-1}$$

Therefore F_q is a C^1 -smooth bump. Moreover

$$\operatorname{Lip}(F'_{a}) \leq \sup \{\operatorname{Lip}(h'_{s}) ; s \in \mathbb{N}^{<\mathbb{N}}\} \leq C.$$

Step 4: $U_q \subset F'_q(X) \subset U$. It is clear that $F'_q(X) \subset \overline{U_q} \subset U$. Now let $G_k(x) = \sum_{1 \leq j \leq k} H_j(x)$. For all $s \in \mathbb{N}^{<\mathbb{N}}$, $B(x_s, \beta^{|s|}) \subset B(x_s, \beta^{|s|-1})$. Thus, if $k \geq 1$ and |s| = k, $H'_j(x_s) = \varphi(s|j) - \varphi(s|j-1)$ for all $1 \leq j \leq k$ and hence $G'_k(x_s) = \varphi(s)$.

We fix $y^* \in U_q$. By (4.2) there exists $\sigma \in \mathbb{N}^{\mathbb{N}}$ with $y^* = \lim_k \varphi(\sigma_k)$. We take x in $\bigcap_{k\geq 1} B(x_{\sigma|k}, \beta^k)$. Then $(x_{\sigma|k})_k$ converges to x and since $(G'_k)_k$ is uniformly convergent, we have

$$F'_q(x) = \lim_k G'_k(x_{\sigma|k}) = \lim_k \varphi(\sigma|k) = y^*$$

Step 5: The sum of the F_q is the desired bump. We consider a 3-separated sequence $(u_q)_{q>1}$ in $7B_X$ and we denote

$$F(x) = \sum_{q \ge 1} F_q(x - u_q), x \in X.$$

Then *F* is a $C^{1,1}$ -smooth bump and $\bigcup_{q>1} U_q \subset F'(X) \subset U$, hence F'(X) = U.

In the finite dimensional case, there exist some partial results obtained with finite constructions. For example, any compact convex polyhedron P in \mathbb{R}^2 , with $0 \in \operatorname{int} P$, is the range of the derivative of a C^{∞} -smooth bump $f \colon \mathbb{R}^2 \to \mathbb{R}$, and hence is in S_1 (see [3]). We can ask the following question: "Does a uniformly star-shaped compact subset of \mathbb{R}^d belong to S_1 ?"

Bump Functions with Hölder Derivatives

References

- D. Azagra and R. Deville, James' theorem fails for starlike bodies. J. Funct. Anal. 180(2001), 328–346. [1]
- [2] D. Azagra, M. Fabian and M. Jimenez-Sevilla, Exact filling of figures with the derivatives of smooth mappings. Preprint (2001).
- J. M. Borwein, M. Fabian, I. Kortezov and P. D. Loewen, The range of the gradient of a continuously [3] differentiable bump. J. Nonlinear Convex Anal. 2(2001), 1-19.
- J. M. Borwein, M. Fabian and P. D. Loewen, The range of the gradient of a Lipschitz C¹-smooth [4]bump in infinite dimensions. Israel J. Math. 132(2002), 239-251.
- J. Dieudonné, Fundations of Modern Analysis. Academic Press, New York, 1969. [5]
- R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces. Pitman [6]
- Monographs and Surveys in Pure and Applied Mathematic 64, Wiley, New York, 1993. M. Fabian, O. Kalenda and J. Kolář, *Filling analytic sets by the derivatives of* C^1 *-smooth bumps.* [7] Preprint (2002).
- [8] T. Gaspari, On the range of the derivative of a real valued function with bounded support. Studia Math. 153(2002), 81-99.
- J. Kolář, J. Kristensen, The set of gradients of a bump. Preprint (2002).
- [10] J. Malý, *The Darboux property for gradients*. Real Anal. Exchange 22(1996–1997), 167–173.
 [11] L. Rifford, *Range of the gradient of a smooth bump function in finite dimensions*. Proc. Amer. Math. Soc. 131(2003), 3063-3066.
- [12] J. Saint-Raymond, Local inversion for differentiable functions and Darboux property. Preprint (2001).

Mathématiques Pures de Bordeaux UMR 5467 CNRS, Université Bordeaux 1 351, cours de la Libération 33400 Talence France e-mail: gaspari@math.u-bordeaux.fr