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PINCHING THEOREMS FOR TEARDROPS AND
FOOTBALLS OF REVOLUTION

JOSEPH E. BORZELLINO

We give explicit optimal curvature pinching constants for the Riemannian (p,<?)-
football orbifolds under the assumption that they are realised as surfaces of revo-
lution in R3. We show that sufficiently pinched sectional curvature assumptions
imply that a (p, g)-football must be good.

INTRODUCTION

In this paper, a first step is made in answering a question posed by Thurston in [5]
where he asks for the best pinching constant for Riemannian metrics on the so-called
teardrop and football orbifolds. Recall that given integers 1 ^ p *J 9, a (p, g)-football
F is an orbifold whose underlying space is S2 , and whose singular locus consists of two
points. An open neighbourhood of one of these points is modelled on the quotient of
the unit disc D2 C E2 by Zp, where Zp acts on D2 by rotation about 0. The other
point is similarly modelled on the quotient of D2 by a Z, cyclic action fixing 0. If
p = 1, then F is commonly referred to as a teardrop, while if q = 1, then p = 1,
and F is the standard sphere S2 (that is, the orbifold whose underlying space is S2,
and whose singular locus is empty). For convenience, we regard teardrops as special
cases of footballs and refer to all such orbifolds F as footballs. Since we are interested
in studying Riemannian metrics on orbifolds, we assume that the complements of the
singular loci are smooth Riemannian manifolds, and that neighbourhoods of the singular
points are isometric to {D2, g) /2ir, where g is some smooth Riemannian metric on D2

and Z r acts by isometries on D2 fixing a single point. This data is sufficient to equip
our orbifolds with a Riemannian structure. For more detailed information, the reader
should consult [5]. A more Riemannian viewpoint is taken in both [1] and [2].

We say that a Riemannian orbifold is good if it arises as a global quotient M/G,
where M is a Riemannian manifold, and G is a group of isometries acting (properly)
discontinuously on M. Riemannian orbifolds that do not arise in this way are called
bad. In [5], it is shown that a (p, g)-football is good if and only if p = q. In [2], it
is proven that a n-dimensional complete Riemannian orbifold with Ricci curvature at
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least (n — 1) has diameter at most n, and if the diameter equals 7r, the orbifold must
be good. In particular, a football with sectional curvature at least 1 and diameter ir,
is good.

For our purposes, we consider only those those orbifolds which arise as surfaces of
revolution in R3. Given the results above, it seems natural to consider the following
interpretations of Thurston's problem.

THEOREM 1. Let F be a smooth Riemannian (p, q)—football that arises as a
surface of revolution in R3 with diameter w. Assume 1 ^ p ^ q. Then there exists an
explicit constant So(p,q) JS 0, depending only on p and q, such that if 0 ^ sec (F) ^
1 + So , then p = q. In other words, F is a good football. Moreover, So is optimal. This
means that if So is replaced by S > So, then there exists a (p, q)-football of revolution
F with p ^ q such that 0 ^ sec (F) < 1 + 6. The explicit formula for So is:

-. 2

a r c c o s - - ) + \ - - 1

THEOREM 2 . Let F be a smooth Riemannian (p, q)-football that arises as a
surface of revolution in R3. Assume 1 $J p ^ q. Then there exists an explicit constant
£o(p>?) ^ 0, depending only on p and q, such that if 1 ^ sec (F) ^ 1 +eo, then p = q.
In other words, F is a good football. Moreover, to is optimal. This means that if e<> is
replaced by e > £o , tAen there exists a (p,q)—football of revolution F with p ^ q such
that 1 ^ sec (F) < 1 + e. The explicit formula for eo is:

- f t ) " - 1

REMARK 3. It is clear that the formulas for #o and £o depend only on the ratio pq 1.
This is to be expected since a (p, q)—football can be regarded as an k—fold Riemannian
covering orbifold of a (kp, &g)-football, and hence both are locally isometric away from
the singular set. In the last section of this paper, we compute some values of So for
specific values of pg"1.

EXAMPLE 4. A smooth (2,5)—football F of revolution with diameter n cannot admit
a metric whose sectional curvature satisfies 0 ^ sec (F) ^ 1.85, by Theorem 1.

EXAMPLE 5. A smooth (2,5)-football F of revolution cannot admit a metric whose
sectional curvature satisfies 1 ^ sec(F) ^ 6.25, by Theorem 2.

A good football of diameter TT always admits a metric of constant curvature 1,
by realising it as an appropriate quotient of (5n , can), the sphere of constant curva-
ture 1. It is shown in the proof of Theorem 1 (respectively, Theorem 2) that So = 0
(respectively, £Q = 0) implies that p — q. Hence we have the following corollary.
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COROLLARY 1 . Let F be as above in Theorem 1 (respectively, Theorem 2).

Then the following are equivalent:

(i) 60 = 0 (respectively, eo = 0);
(ii) p = q.

One might also consider the related question: Suppose F is a smooth Riemannian
(P> ?)—football with diameter TT. Does there exist po ^ 0, such that if sec(F) ^ 1 —/io ,
then p = q ? If po = 0, then the results in [2] mentioned above imply that p = q.
However, the next result shows that in fact Ho — 0 is optimal.

THEOREM 7 . There exists a sequence {Fn} of bad (p, q)-footballs Fn such that
diam Fn = ir and 1 — 1/rc ^ sec (Fn).

The classification of bad 2-dimensional orbifolds [5], shows that if O is any com-
pact 2-dimensional bad orbifold that admits a metric with nonnegative curvature then
0 has an orientable orbifold double covering which is either a football or teardrop.
Such bad orbifolds are either teardrops, footballs, or (p, g)-hemispheres: these are orb-
ifolds whose underlying space is D2 and whose singular locus is modelled locally on
quotients of D2 by the dihedral group Dn, the group of order In generated by re-
flections in two lines which intersect at an angle of n/n. The singular locus of the
quotient D2/Dn, is commonly referred to as a corner reflector of order n. More sim-
ply, take a (p, g)-football (or teardrop) and reflect across the "equator" containing the
two singular points. The resulting quotient is a (p, g)-hemisphere. If F is a compact
2-dimensional bad Riemannian orbifold whose orientable orbifold double covering is a
football of revolution, we shall call F an orbifold of revolution. With this in mind, one
gets the immediate corollary to Theorems 1 and 2:

COROLLARY 8 . Theorems 1 and 2 remain valid if F is any compact 2-dimensional
bad Riemannian orbifold of revolution.

One last result is that the proofs of Theorems 1 and 2 do not use the fact that p
and q are integers. Hence, Theorems 1 and 2 remain valid for cone-footballs. These
are footballs whose singular locus is modelled on a cone of (possibly irrational) angle a
with 0 < a < 2TT .

COROLLARY 9 . Theorems 1 and 2 remain valid if F is only assumed to be a
(p,q)-cone-football of revolution.

The main tool in proving Theorem 1 and Theorem 2 will be the Sturm Comparison
Theorem. The explicit solvability of the comparison differential equation makes it
possible to compute the optimal pinching constants.

The next few sections of this paper will be devoted to the setup and proof of
Theorems 1 and 2. To fix notation, we shall first recall the relevant facts about surfaces
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of revolution in R3, and give a precise statement of the Sturm Comparison Theorem

that will be sufficient for our needs.

SURFACES OF REVOLUTION AND THE STURM COMPARISON THEOREM

Although what is done in this section is elementary, to achieve the goal of computing

explicit pinching constants requires us to catalog the necessary formulas to be used.

SURFACES OF REVOLUTION AND FLAT CONES.

Let 7 = (x(t),y(t)) : I = [0,b] —> K2 be a smooth arc-length parametrised curve

in the plane with y(t) > 0 on (0,6) and y(0) = y{b) = 0. Recall that the surface of

revolution obtained by revolving the curve 7 about the z-axis in K3 is given by the

map / : / x R - > R 3

(t,6) H-> (x(t),y{t) cos 6, y(t) sin 0)

with metric g = di2 + [y(t)]2 dO2. Alternatively, this surface may be regarded as the

metric completion of the Riemannian warped product (0,6) xy(t) S1. The map /

restricted to 0 = 00 = constant is called a meridian and the map / restricted to t =

to = constant is called a parallel. Since the metric g depends only on t, g is rotationally

symmetric, and thus the sectional curvature K at a point (t, 6) depends only on the

value of t. A standard computation shows that the curvature K{t) = —y"/y. See for

example [3, page 238].

DEFINITION 10: A flat cone of type a is the flat metric space obtained by identi-

fying the two edges of an infinite wedge of (interior) angle a in R2. See Figure 1.

wedge in R2
cone in R3

Figure 1

As a surface of revolution in R3, a flat cone can be realised by rotating the half-line

y(t) = (tajiO)t, t ^ 0 about the a:-axis in K3, where 0 < 9 < TT/2 is the angle that

the line y makes with the z-axis in R2. An arc-length parametrisation of y is given

by cr{t) = (t cos 6, t sin 6). The (2-dimensional) volume of B(v, R), the metric ball of

radius R centred at the vertex v of the cone, is given by

Vol B(v, R) = 2n t si
Jo

t sin 0 dt = nR2 sin 0.
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On the other hand, the same metric ball B(v,R) on a flat cone of type a , has volume
Vol B{v,R) = (a/27r) (nR2) = aR2/2. Equating the two expressions for Vol B(v,R)

yields

6 = arcsin ( — ) .
\2TT/

FOOTBALLS AS SURFACES OF REVOLUTION.

We now exhibit (p, g)-footballs as surfaces of revolution. Suppose that 7 =
(x(t),y(t)) is a smooth profile curve for a (p, g)-football F of diameter D with cur-
vature K(t) ^ 0. Note that by definition of Riemannian football the singular points
of F must correspond to 7(0) and ~y(D). Also the singular points must realise the
diameter D. To see this, let xi, x2 be two points such that d(xi,x2) = D. Let

= C. Then by the triangle inequality

d(-y{D),x1) + d(1{D),x2) > d{xx,x2) = D.

However, note that d(j(0),Xi) + d[xi,j(D)) = C since meridians are minimising
geodesies. Adding the two previous inequalities then implies that C ^ D. Since
D is the diameter of F, we must have d{~f(Q),j(D)) = D.

Thus, in the notation of the previous section, we have, / = [0, D], y(t) > 0 on
the open interval (0,D), and y(0) = y{D) — 0. Furthermore, the curvature condition
implies that y" ^ 0 for t G (0, D). We are assuming that 1 ^ p ^ q. Note that
the tangent line to 7 at t = 0 must sweep out a flat cone (opening in the positive x

direction with vertex (0,0,0)) of type 2tr/p, and that the tangent line to 7 at t = D

is a flat cone (opening in the negative x direction with vertex (Z),0,0)) of type 2ir/q.

Thus we have

'(0) = tan (aarcsin Q ) ) = (p2 - l)"1'2 ¥ t,

- 7 V ) = tan (arcsin Q ) ) = (9
2 - l)-1'* ^ i q

Note that £p ^ £q. In the special case where p — 1, we regard £p = +00, likewise
£, = +00 if q = 1 also. Since we have assumed that 7 is parametrised by arc-length,
we have

*(*)= f yll-[y'{s)?ds.
Jo

In order for x(t) to be defined we must have \y'(t)\ < 1. We shall show this shortly,
but for now assume that x(t) is well—defined. Now

y(0) = m = -TJB=, and similarly T'(") -
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A simple analysis of the function h(z) = z/\/l — z2 shows that h is monotone increasing
on the interval ( — 1,1) and the range of h is K. The inverse function is h~1(z) =

z / \ / l + z2 : M. —> (—1,1). Thus, in order for our profile curve to have the correct initial
and terminal slopes, we need

y'(0) = h-1^) =

y>(D) = h-\-tq) = -Th= =1— = -a'1

Summarising our analysis, we have shown that if 7 = (x(t),y(t)) is the profile
curve for a (p, g)-football of revolution of diameter D, and with curvature K(t) ^ 0,
then the following conditions must be satisfied for the function y(t):

(i) y" + K(t)y = 0 for ie[0,D],

(ii) y >0for te(0,D),

(iv) y\Q)=p-\

(v) y " < 0 .

Condition (v) implies that K{t) ^ 0 and that y'(t) is monotone non-increasing.
Since 1 ^ p'1 = y'(0) ^ g"1 = -y'(D) > 0, it follows that y'2 < 1, and hence that

*(*) = / J1 ~ [y'(a)}2 ds i s well-defined.
0

T H E STURM COMPARISON THEOREM.

We shall need the following version of the Sturm Comparison Theorem. See [4,

p.333] for a proof.

THEOREM 1 1 . Let f,h be two continuous functions satisfying f(t) ^ h(t) for

all t in an interval I, and let <f>,r) be two functions satisfying the following differential

equations on I:

<t>"+f4, = Q,

7/" + hv = 0.

Assume that <j> ^ 0, and let a,b £ I be two consecutive zeros of <j>. Assume that

Tj(a) = 4>(a) = 0 an<^ that T)'(o) = <j>'(a) > 0. If r is the smallest zero of TJ in (a, b],

then

with equality for some t if and only if f = h on [o, t].
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EXAMPLES.

In this section we construct the examples of Theorem 7.

PROOF OF THEOREM 7: We use the notation and setup as in (*). Fix p ^ q.
Consider curves of the following type:

i ^ v'1 / n
y[ '(t) = , sin VI - n"1* for t £ [0, _J

(^ Q~x i f / 7T

y\ '(t) = H sin VI - n - 1 U + I -

See Figure 2.

Figure 2

Then there exists a smallest t{o
n) € (0,TT) such that y{

2
n) (t(

0
n)) = y\n)(t[n)) • Form the

continuous composite curve:

Consider now the (non-smooth) (p, g)-football of revolution .Fn denned by yn{t)-

Clearly, secfi^J = 1 — 1/n except at t = t$ . Rounding off the singularity at

<o , gives a smooth curve yn{t) whose corresponding (p, g)-football of revolution Fn

satisfies sec (-Fn) ^ 1 — 1/n. Of course, performing this smoothing process over smaller
regions forces the sectional curvature of the resulting Fn to blow up at tj1 . This
completes the proof. U

THEOREM 1

This section will be devoted to a proof of Theorem 1.
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PROOF OF THEOREM 1: Let F be a (p, g)-football satisfying the hypotheses of
Theorem 1. Let

£o = inf{6 ^ 0 | F admits a smooth Riemannian metric with 0 ^ sec(F) ^ 1 + fi}.

Clearly, 60 < +oo. We use the notation and setup of (*) with D = n. Consider the
following differential equations:

y"+K(t)y = 0,

r," + (1 + 80)V = 0,

where 77 is a smooth function with 77(0) = 0 and T/'(0) = y'(0) = p"1 > 0. Then

p : sin -v/l +

Since by assumption K(t) < 1 + £0 for t £ [0,TT], the Sturm Comparison Theorem
implies that y(i) ^ rj(t) for t E [O,ir/y/l + 60] •

If 60 = 0, then y(t) ^ t)(t) on [0, TT] , and since y(w) = 77(71-) = 0, the Sturm theorem
implies that y(t) = 77(2) on [0,TT]. In particular, y'(7r) = -q~x — T]'(iv) = -p'1, and
hence p = q.

yd)

Assume now that So ^ 0. Then there exists t0 with TT/(2\/1 + #o) < 0̂ <
7r/(-v/l + 60) such that the tangent line to 77 at t0 passes through the point (7r,0).
See Figure 3. The equation expressing this condition is:

(p 1/y/TT!>o) sin \/TT*o to _! /-,,' = p cos V1 +
to — T

This implies that

(**)
def.

0 = tan VI + £0 U - VI + 60 (to - w) = *(<o)-
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Now ^(TT/X/1 + SO) > 0 and *(7r/(2\/l + SO)) = -oo. This suffices to prove the
existence of to - Concavity of the function y(t) imphes that — g"1 = y'(7r) < T]'(to) for
otherwise y(<i) = ^(^l) for some ti £ [to, n/s/1 + So) . The Sturm Comparison theorem
then implies that y(t) = r)(t) for 0 ^ t ^ t\. Since y" ^ 0, we have y'(<) ^ y'{to) for
t g [to,7r]. Smoothness of the curve y now implies that y(so) = 0 for some so £ ('li71"),
contradicting y > 0 on the interval (0,TT) . Hence we may conclude that —g"1 <
This condition is expressed by the equation:

which implies that

(***)

Note that (by the geometrical interpretation of (**) ), So \ 0 implies to S ir • Thus
So is given by the equality case of (***). See Remark 12. Equality in (***) combined
with condition (**), yields the desired formula for So . This completes the proof. U

REMARK 12: The construction in the proof above shows that given p and q, there
exists a non-smooth (p, q)-football F of revolution with 0 ^ sec (F) ^ 1 + So(p,q) =
1+So except along a single parallel. Namely, using the notation in the proof of Theorem
1, choose:

P ' 1

: sin t e [0, t0]

[to,Tv].

Note that y(t) is not C2 at t0.

THEOREM 2

This section will be devoted to a proof of Theorem 2.

PROOF OF THEOREM 2: Let F be a (p,g)-football satisfying the hypotheses of
Theorem 2. Let

eo = inf{e ^ 0 | F admits a smooth Riemannian metric with 1 ^ sec(ir) ^ 1 +£o}-

Clearly, eo < +oo. Let diam(F) = D. Applying the Sturm Comparison theorem
(using the upper curvature bound) implies that D ^ TT/V'I + Co • The conditions (*)
hold exactly as before. Consider the following differential equations:

4>" + 4> = o ,
y" + K(t)y = 0,
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where rj,<f> are smooth functions with rj(D) = 0 and f]'{D) = —p 1 and ^(0) = 0 and
0'(O) = q-1. Then

(f>{i) = g"1 sini

and

sin *(,-(J>-^_)).

Since by assumption 1 ^ K(t) < 1 + e0 for i £ [0, D], the Sturm Comparison Theorem
implies that

v(t) < y(t) ie[D-

y(t)^cf>(t) forte [0,1?].

If e0 = 0 , then y(t) > r)(t) = p'1 sm{t - (D - it)) on [0,D]. But <f>(t) > rj(t)

which implies that D =tt. So, y{it) = 0(T) = 0 and by the equality case of the Sturm
comparison theorem we must have y(t) = <f>(t) on [0, IT) , and thus as before we conclude
that p — q.

We now assume that eo > 0. Obviously, if maxr}(t) > max^>(2), then no such
function y(t) can exist. This condition is equivalent to the condition

which implies that

< - -

Hence we can conclude that no (p, g)-football of revolution can satisfy 1 ^ sec
(q/p) • We now claim that in fact eo = {q/p) — 1. To see this we proceed as before and
construct a non-smooth (p, g)-football of revolution with 1 ^ sec(JF') $J l+£o = (<?/p)2

at all smooth points. Namely let

See Figure 4.
Note that 77 is just 77 with Z> = it/2 + it/{2^/1 +e 0 ) - Let F be the football

generated by y{t), then diamF = TT/2 + ir/(2\/l + eo) • Since any smooth football F
with diam F = diam F has a generating curve y which would have to pass through the
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Figure 4

point (7r/2,y(7r/2)), the equality case of the Sturm comparison theorem would imply
that y would agree with cj>(t) on [0,TT/2] and fj(t) on [ir/2,diain.F], which would
contradict the smoothness of y(t). So now suppose that D = diam F =£ diam F.
Note that changing D amounts to a simple horizontal translation of rj(i) and any such
translation T] would attain a maximum of q~^ at t = to ^ 7r/2. But then 77(̂ 0) > $(^0)1
and as we have seen before, no generating function y(t) would exist. This completes
the proof. U

THE OPTIMAL PINCHING CONSTANTS

In this section we tabulate some values of the optimal pinching constants 6o(p, q)
and £o(p,<z), for special values of p/q, and also give the graph of So as a function of

P/Q-

p/q j( £o(p>g)
.01
.03
.05
.07
.09
.10
.20
.30
.40
.50

1044.4
122.55
46.254
24.588
15.411
12.683
3.5092
1.5893
0.8505
0.4835

£o{p,q)
9999.0
1110.1
399.00
203.08
122.46
99.000
24.000
10.111
5.2500
3.0000

p/9 || *o(p,g)
.60
.70
.80
.90
.93
.95
.97
.99
1.0

0.2752
0.1482
0.0689
0.0213
0.0120
0.0071
0.0032
0.0006
0.0000

£o{p,q)
1.7778
1.0408
0.5625
0.2346
0.1562
0.1080
0.0628
0.0203
0.0000

The graph of £0 as a function of p/q is given in Figure 5.
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