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Abstract

An integro-differential equation of Prandtl's type and a collocation method as well as a
collocation-quadrature method for its approximate solution is studied in weighted spaces
of continuous functions.

1. Introduction

This paper is devoted to the investigation of collocation and discrete collocation (or

collocation-quadrature) methods for the approximate solution of singular integro-

differential equations of Prandtl's type

g(x)v(x)+av'(x) + - I —dt + - f h(x,t)v(t)dt=f(x), (1.1)
n J_i t - x TC J_{

— 1 < x < 1, with the additional conditions,

0, (1.2)

where a, b e K are given constants and g,f : [—1, 1] —> C,h : [—1, I]2 — • C x C

are given functions. In [3] the authors consider a collocation and a collocation-

quadrature method with the help of weighted Sobolev spaces (see also Section 2 of the
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present paper) and optimal convergence rates are proved in respective Sobolev norms.
Here we investigate a regularized version of (1.1) in a scale of weighted Besov spaces
as subspaces of weighted spaces of continuous functions in order to obtain convergence
results for the above mentioned approximation methods in uniform norms. Weighted
uniform convergence results are obtained, for example, in [2,4,5,8]. Weighted Besov
spaces are introduced and used as a powerful tool in studying the uniform convergence
of polynomial approximation methods for Cauchy singular integral equations in [6].
The aim of the present paper is to show that this tool works also in the case of singular
integro-differential (or hypersingular integral) equations of the form (1.1).

In Section 2 we recall some mapping properties of singular integral operators in
weighted Sobolev spaces as well as in weighted spaces of continuous functions and
give a representation of the inverse operator of the hypersingular integral operator
involved in (1.1). With the help of this representation we prove the boundedness of
this operator in a scale of pairs of weighted Besov spaces. In Section 3 we describe the
collocation and collocation-quadrature methods under consideration and prove their
convergence as well as error estimates in weighted Besov norms. Finally, in Section 4
we make some remarks on a fast algorithm considered in [3], the uniform convergence
of which can be investigated with the technique presented in [7].

2. Mapping properties

Let a and b < 0 be real numbers with a2 + b2 = 1 and define a, 0 < a < 1, and
/J = 1 — a, by a — ib = e""". By va-^ and A we denote the Jacobi weight function
v"'P(x) = (1 — x)a(l + x)P and the Cauchy singular integral operator

(Au)(x) = avafi(x)u(x) + - [ -^- va-fi(t)dt, - 1 < x < 1, (2.1)
jr J-i t - x

respectively. If D = d/dx denotes the operator of generalized differentiation, then
the hypersingular integral operator V = DA is given by

(Vu)(x) = ^- \ava?(x)u(x) + - f ^ - vafi{t)dt\ (2.2)
dx L 7T J_, t — X J

(cf. [3, Section 2]). For y > — 1 and S > —1, let L ^ denote the weighted space of
complex-valued and square integrable functions on the interval [—1, 1] endowed with
the inner product and the norm

I rx

(u, v)Y,s = — u(x)v(x)vr-s(x)dx and \\u\\yS = y/{u,u)YtS,
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[3] Collocation of Prandtl's integro-differential equation 153

respectively. For real numbers s > 0 define the weighted Sobolev space \}y
 s

h by

I # = (« e \}y, : £ ( 1 +n)2* \(u,Py
nX,s\2 < °°1 -

where /?£•* is the normalized (with respect to (., .)YtS) Jacobi polynomial (with positive
leading coefficient) of degree n and the norm in hy'

s
s is given by

(
\«=0 /

\}Y'\ is a Banach space for all s > 0 and compactly embedded into \}y'\ for 0 < t < 5
(cf. [1, Conclusion 2.3]).

PROPOSITION 2.1 ([3, Corollary 2.8]). For each s > 0, the hypersingular integral
operator V defined by (2.2) is a continuous isomorphism between L ^ + l and L ^ .
Moreover, for u € L^+ 1,

n + \){u, pa
n*

n=0

where the series converges in the sense o ^

Now our first aim is to describe the inverse operator of V : L^ + 1 -> L ^ . After this
we will study the mapping properties of V~l in appropriate pairs of weighted spaces
of continuous functions. In view of Proposition 2.1, the operator V"1 : h2p'a —> L ^ + I

is uniquely determined by

v " l " /' 0 1 2

and by continuity (since the set of polynomials is dense in L ^ ) .
Let us remember some mapping properties of Cauchy singular integral operators

of type (2.1). If X and Y are Banach spaces then by S£(X, Y) we denote the space of
linear and bounded operators from X into Y. In the case of X = Y we write -^(X)
instead of jSf(X,X).

LEMMA 2.2 ([13, Theorem 9.14], [1, Lemma 4.1]). If X and v are integers, such
that

— 1 < y := X + a, 8 := v — a < 1,
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and

(Ay,su)(x) = avyS(x)u(x) + - f -^- vy-'(t)dt,
n ;_i t - x

(Ay.sf)(t) = av~^-\t)f «) - - [ t^- v-y--\x)dx,

then AY,h € -Sf(L2;*, VlY _s) and Ay,s e if (L2j; ,_„ L^) for all s > 0. Moreover, for
K := -(k + v) = -(y + S),

Ay,Sp
y/ = i-lfp^-1, K.sP7'~S = (- l)Vrt , n = 0, 1, 2,... ,

(p^'f = pZi'~S = 0) and AyjAyj = / , ific < 0, «5 well as AYisAy^ = I, ifK > 0.

PROPOSITION 2.3. The inverse operator V~l : L 2 ^ -*• L2;^+1 o/f/ie hypersingular
integral operator (2.2) can be written in the form

y- 1 = V := AWB, (2.3)

where the continuous operators B : L2,'^ —• L2'^ _o, W : L ^ _o ->• L 2 / ! "^ , —
Vls

a^ and A :Vls
a
+lfi^L2

a;;
1 are defined by

)u(x)-- f ^ - v f i a

Tt J-i t — X
r b f

(Wu)(x) = a v'p-a{t)u{t)dt / v-^-a(t)\n\x-t\u(t)dt

and

(Au)(x) = av-"--p{x)u{x) - - f - ^ - «-"•-"(0 dt,
7! J-\t -X

respectively.

PROOF. If we choose in Lemma 2.2 y = a — 1 and S = —a, then /5 = —y, a = — S
and B = AYj. Thus

fl € Sf (L2;;, L24_O) and ty£-« = - /> ;£ -* , n = 0, 1, 2 , . . . . (2.4)

From the generalized Rodrigues' formula [14, (4.10.1)] it follows, for arbitrary
y > —1,8 > —1 and n = 1 ,2 , . . . ,

2£ [d -
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which implies (for y = —ft, 8 = —a)

v-''-°(t)p;>\-a(t) dt = - - ^ va-fi(x)pa/(x), n = 0, 1, 2 , . . . ,

and, with the help of partial integration,

/ v->--a(t)ln[x-t\p;>r(t)dt = —- ZfAlv'-'Vldt, /i = 0 , l ,2 ,
J-i n-\-1 j_i t—x

Consequently, for n = 0, 1, 2 , . . . ,

taking into account Lemma 2.2. Again by Lemma 2.2, we have

and

APn+\ — Aa,pP^+\~ = p " ' P , n = 0,1,2,... . (2.6)

Putting (2.4), (2.5) and (2.6) together, we obtain

(AWB)pp
n
a = —^—pa/, n = 0 , 1 , 2 , . . . .

Thus it remains to prove that W e & (L2^ _„, L 2 . ^ ) . Obviously W : L2^ _„ ->•
L?.a_p is continuous. Now, let u e Li'^_a. Then u = YlT=o(u<Pnfi'~a)-P.-aPn^'"
(in the sense of L2_B ) and, in view of (2.5),

wu = {u,p^-

Since, due to Lemma 2.2,

n=l

7T J_\ t — X

we have Wp^^'~a = c_0,_o/?<p~/3, where c_ ,̂_tt is a constant. It follows that

. . . »2

The proposition is proved.
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For nonnegative real constants p and r, we denote by CPiX the Banach space
of all continuous functions u : (-1,1) -*• C, where vp<xu belongs to the space
C = C[—1, 1] of all continuous functions over [—1, 1]. The norm in CPiT is defined
by

Nl«..,.r = IIMW"ITIIOO . where IML := sup{\v(x)\ : * € [ -1 , 1]}.

Furthermore, let C°pr be the closed subspace of C p r of functions u e CPxI with

(u'-rK)(l) = 0 if p > 0 and (v"-Tu)(-l) = 0 if x > 0.

Let n n denote the set of polynomials of degree less than n (Tl0 := {0}). For a function
w e C p r , we denote by E%r(u) the best weighted uniform approximation of u by
polynomials belonging to Fln, that is,

For constants x > 0 a nd q > 0 we define the weighted Besov space

Cx« = \ u e C -Null [ £ ' I ( " ) ( " + 1)> -n = 0 1 2 l<ool
p r I ' ^ ' f>'x-x-i ' I [1 + log(n + 1)]« ' J J

C^1^ is a Banach space and compactly embedded into C° r. Moreover, if

log9'"*2 n
hm = 0

then Cx
p\f is compactly embedded into C%f and if p < p', r < x' then C™ C C*;q

r,
continuously (see [6, Section 3]). The Bernstein-type inequalities

/ . ^ . , . p . z (2-7)

and

\\PlU*., < "*~x' WP \\p,t,x',<,' ° < X' < X, (2.8)

for all p e n n can be easily checked.

LEMMA 2.4 ([6, Proposition 4.7, Remark 4.9, Remark 4.16]). Lef y and S be de-
fined as in Lemma 2.2, where y± and 5* are nonnegative constants satisfying
y = y+ — y~ and 8 = S+ — S~. Then

Ay,s e J?(C™S+, C™p) ify- <\and&-<\

and

: y , CJ;^1) ify+ < 1 and8+ < 1.
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In all that follows, we denote by c a positive constant which can have different
values in different places. Moreover, by c ^ c(n,f,...) we will indicate that c is
independent of n, / , . . . To prove a "sharp" mapping property of V in a scale of pairs
of weighted Besov spaces using the representation (2.3) we need the following lemma.
Let y and 5 be defined as in Lemma 2.2 and let y± and 8± be nonnegative constants
satisfying y+ - y~ = y, 8+ - 8~ = 8 and y± < 1, 8± < 1. Note that u e CY-iS-
does not in general imply u e L2

yS.

LEMMA 2.5 (cf. [9, Proposition 5.2]). Ific = -(y +8) > 0 then AytSAY,su = ufor
aii u e c*:y .

PROOF. Let u e C*Lq
s- and Pn € n n with ||M - Pn\^,v-,i- = Ef-S'(u). Then, for

m < n,

Ey
m's~(u-Pn)<\\u-Pn\\^y-tS-

+ 1)]" c [1 + log(« + I)]"
<

- C (n + iy ~ (m + \y/2 (n +
and, for m > n,

[ l+ log (m+ !)]•? 1

Thus

^ [l + log(n
I

From Lemma 2.4 it follows that

Since, in view of Lemma 2.2, AYtiAyjPtt = Pn and limn^oo ||M — P J I ^ y- s- = 0, we
obtain the relation AyjAyju — u.

PROPOSITION 2.6. For arbitrary x > 0 and q > 0, the operator V defined in (2.3)
is continuous from C^l^- into Cx.t+ij2~

l
s++i/2>

 wnere Y~ ~ Y+ = ^. S~ — 5 + = a,
0 < y+, 8+ < 1/2 and 1/2 < y~, 8~ < 1.
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PROOF. We use the representation V = A WB (see Proposition 2.3). Since B =
AY,s with y = a — 1 = — ft and 5 = —a, from Lemma 2.4 it follows that

BeJSf(CJ:y.C#£). (2.9)

Now, let u e C*:y. Then u = Bue C*;^1 and

n J-it-

using Lemma 2.5 and y + S = — 1. Taking into account the relation

(see, for example, [6, Corollary 3.10], where the assertion is formulated for n =
2, 3 , . . . , since Ep

n-
X is defined slightly differently from the definition given here),

where/ ' e Cp+1/2,I+i/2 and c ^ c(n,f), we obtain

U2,U2 £ E y - r { ) ' o g ^ + 1) | | | U ^ 9 ) B = l f 2 t . . . .

Since, in view of (2.9),

Bu)

< c || WBuW,. < c l|B«lloo.y+.«+ <

we get

WB e JSf(C^_, q.+lf/2.,._1/2). (2.10)

To consider A = Aa-P, we set a+ = y+ + 1/2, fi+ = S+ + 1/2, a~ = y~ - 1/2,
f}~ = 8~ — 1/2 and obtain, with the help of Lemma 2.4,

The assertion now follows from (2.10) and (2.11).

COROLLARY 2.7. For the case a = 0, b = - 1 , f/iaf w, a = £ = 1/2, the previous
proposition gives V € JSf (Cf;2

9
1/2, C f ^ 1 ) .

LEMMA 2.8 ([6, Lemma 4.14]). / / / e Cj0
9 then, for all u € C™,

ll/wll^p.r < C ||M||Xi9iPr,

where c ^ c(u), that is, the operator of multiplication by f belongs to
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In the following lemma we formulate a result on the mapping properties of the
operator K given by

(Ku)(x) = - / h{x, t)u(t)va^(t)dt, -1 < x < 1. (2.12)

For this, h e C™x n Cw,t,, means that the function G(x, t) := h(x, t)v"-z (x)vv^ (t) is
continuous for (JC, t) e [—1, I]2 and hv,'K := h(., t)v"^(t) belongs to C£* uniformly
with respect to / e [—1, 1].

LEMMA 2.9 ([6, Proposition 4.12]). Let a*, P±, v and £ be nonnegative numbers
satisfyinga = a+-a~, P = P+-P~, v+a~ < 1 andt+p- < I. Ifh e C

COROLLARY 2.10. lfy± and S± are defined as in Proposition 2.6, v + y~ < 3/2,
? + 8- < 3/2 anrf/i e CJ;?,, n Cw,e,,, r^en K e ^f(Cx++1/2,i++1/2, CJ;«).

PROOF. One has only to take into account the relations a = I — /3 = y+ + 1/2 —
(y~ - 1/2) and /? = 1 - a = 8+ + 1/2 - (8~ - 1/2).

3. The collocation method

For all that follows we assume that y± and 5± are real numbers satisfying

y--y+=P, 8~-8+=a, 0 < y+, 8+ < 1/2, 1/2 < K~, 5~ < 1

(c/ Proposition 2.6) and set a+ = y+ + 1/2, «- = / - - 1/2, fi+ = 8+ + 1/2 and
p-=S~- 1/2.

Let {Xn }jji, be a sequence of partitions of the interval [— 1, 1], Xn = (xni , . . . , xnn},
with - 1 < jcnn < xn,n_, < • • • < xni < 1 and xnl £ 1 if p > 0, xnn ^ 1 if r > 0. We
denote the Lagrange interpolation operator with respect to Xn by Ln = Lx\ that is,
Lnf e T\n and (Lnf)(xnj) =f(xnj),j = 1, . . . , n. The weighted Lebesgue constant
| |LJ|p r is defined by

||LJ|,,r :=sup{||Ln/IUP,r : / € C,,r, ]]/]]„,,„ = 1}.

In [4, Theorem 4.1], [10, Remark 3.3] and [11, Theorems 2.2, 2.3], the authors
construct partitions {Xn}^=l with corresponding ||Ln||PiI = O(logn), using systems
of zeros of orthogonal polynomials with additional nodes. Recalling Proposition 2.3
and assuming that K e _Sf ( L ^ , L2, a) and/ e L2, a , we can write (1.1) for v = va^u,
u e L2;^, in the equivalent form

[/ + V(T + K)]u = Vf, (3.1)
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where F denotes the multiplication operator with F(x) := g(x)v"tP(x), which is
assumed to be continuous from L ^ to L^ a.

Let tnk and conk, k = 1 . . . . , n, be the nodes and weights of the Gaussian rule with
respect to the weight va^(t) and define, for u e Ca+^+,

n

(Knu)(x) = Y,<»nkHx, tnk)u(tnk). (3.2)

To find an approximate solution of (3.1) we look for a polynomial un e n n satisfying

rOc,)«„(*„,) + ((V + K)un) (xnj) =f(xnj), j = 1 , . . . , n,

or

r(xnj)un (xnj) + ((V + Kn)un) (xnj )=f(xnj), j = 1 , . . . , n.

Since, in view of Proposition 2.1, V(nn) = nn , the last two systems of equations are
equivalent to searching for a solution un e n n (or un e L^+ 1) of

[/ + VLn{T + K)]un = VLJ (3.3)

or

[/ + VLn(V + Kn)]un = VLJ, (3.4)

respectively. In the following we will study (3.1) as well as (3.3) and (3.4) in
appropriate pairs of weighted Besov spaces defined above. For this end we need
some preliminary results.

LEMMA 3.1 ([7, Lemma 2.1]). Ifu € Cp,x, un e nn and

l|M-«Jloo,p,r < <<>(«) , 1 1 = 1 , 2 , . . . ,

then, for 0 < x' < X>

COROLLARY 3.2. / / / e C£? and Pn e n n wirt || Pn - / IL.P,, = E^{f), then

-f\\P.r,X',q < C ||/||PiT,x., 1 O S ( " + 1 ) , 0 < X ' < X,

where c ^ c(n, ^' , / ) .
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COROLLARY 3.3. / / / € C*;* andp < y~, x < S~, then, for0 < x' < x>

where c ^ c(n, x'<f)-

PROOF. L e t / € C*;« and Pn € n n with | | / - Pn\\^PtZ = E£-T(f). Then, by the
definition of the space C™,

\\f-p\\ <cl°gq(n + l)

oo.p.z — nX

Consequently, in view of Corollary 3.2 and (2.7),

| | / - LJ \\p^x,<q < | | / - Pn\\p,x,x,,q + \\Ln(f - Pn)\\p,z,x,,q

which implies, together with Proposition 2.6, the assertion.

COROLLARY 3.4. Let a = 0, b = - 1 , y~ = S~ = 1/2, y+ = 8+ = 0, x > 0,
£ > 0 andO < e' < x- If? € Cjo£

then

\ \ L n r u ) \ \ l / 2 l / 2 x , + l q + l < c ^ ^ \\Ln\\l/2A/2\\u\\l/2A/2^ (3.5)

for all u e C\jl1/2 anrf 0 < x ' 5 X < X + £ . vv/iere c 7̂  c(n, x ' . «).

lim I! ? r - VLn? I! ^ z ^ ^ . , r,+«.,+,x = 0. (3.6)

PROOF. Let u e Cf;|jl/2. Then, by Lemma 2.8 ?u e Cf;|1/2, and (3.5) follows
from Corollary 3.3. Choosing x' = £ and x = e + e' leads to (3.6).

COROLLARY 3.5. Ifh e C£+^ n Cv,(,,for some x > 0, e > 0, v + y~ < 3/2,
+ <5~ < 3/2 anrf p < y~, T < 8~, and if

l i mjog^+u ( i J
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then

\\V(Ku - LnKu)\\a+f)+x,+lq+l f c ' 0 ^ 1 ' ||L.||p.r IMU+,,+ (3.7)

for all u € Co+,0+ and 0 < x' 5 X + £. where c =£ c(n, x', u), and

lim I VK - VLnK\\ ( +l,+l) = 0. (3.8)

PROOF. Let u e Ca+t/»+. Then, by Corollary 2.10, Ku e Cx+
z
e-q and (3.7) follows

from Corollary 3.3. The second assertion we get from the first one for x' = £•

Now we are able to prove the main results of the present paper. For all that follows
we assume that 0 < p < y~ and 0 < r < S~.

THEOREM 3.6. Consider the case T = 0 and assume that

(a) h e Cx+y n Cv^,for some x > 0, s > 0, v + y~ < 3/2 and f + 5~ < 3/2,
(b) l i n w o o ^ ^ III.,, 11^=0,

and that the homogeneous equation (3.1) possesses only the trivial solution in C*t '̂ ++' •
Then, for each f e Cx

p
+

T
e'q, (3.1) has a unique solution u* € C^t1 > 9 + 1. Moreover,

for all sufficiently large n, the collocation equations (3.3) possess a unique solution
M* and

PROOF. In view of Lemma 2.9 and Proposition 2.6, the operator VK : C ^ ; 9 + 1 —>
Cx

a+
+l

fi-+
q+i is compact for 0 < x' < X + s. Thus (/ + VK)-1 € JSf ( C ^ ; 9 + 1 ) exists,

and! since Vf € CxT^'q+\ (3.1) has a unique solution u* € C*+
+£''9+1. From

(3.8) it follows that the inverses (/ + VLnK)~l : Ce
aVj+

+l —• C*t'^+1 exist for all
sufficiently large n and are uniformly bounded. Using (2.8) we get, for Pn e Fln with
\\Pn ~ «*lloo.«*./.+ = Eft+iu*) ande < X' < X + e,

|| P _ u* ||
II1" nlla+,^+,x'+l.«+l

< ^ ' - (up . - u*\\a+^e+Uq+l +1«* - u:\\a+f)+e+iq+l). (3.io)

By Corollary 3.2 we have

\\Pn ~ «la+./»*..+ l.,+ l < C
l 0 g ' ( n + 1 ) ||«*||o+i/,+ i J r + e + l i ,+ 1 . (3.11)

nK
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Furthermore,

I " -
<c\\<iI+VLnK)u*-VLnf\\a+fS+e+lq+1

<c(\\V(f - Lnf)\\a+fi+£+lq+l + \\V(LnK -

< c l 0 g ? ( " + 1) ||Ln||,,r {\\f\\p,T,x+£,q + lluiloo
n*

taking into account Corollary 3.3 and (3.7). Together with (3.10) and (3.11) we get

IK - « : | ^ . ^ + I . , + 1 <c J+£-x.
 )[\\Ln\\p,z+log(n + 1)] ||/ ||,>rijr4€>f .

Since

+ l) (3.12)

(see [15, 16]), the error estimate (3.9) is proved.

THEOREM 3.7. Assume a = 0, b = - 1 (that is, a = fi = 1/2) and that

(a) T € C%pqfor some x > 0 and e > 0,
(b) h e Cx^2

ejq
/2x D CVtKitfor some v < 1 and £ < 1,

(c) l i m ^ ^ 1 2 S ^ IIL.11,,2,^ = 0 for some 0 < E' < min{l, X ) ,

and that the homogeneous equation (3.1) possesses only the trivial solution in C*^','^1.
Thenjoreachf € C f ^ , (3.1) has a unique solution u* € Cf^'9"1"1. Moreoverjor
all sufficiently large n, (3.3) possesses a unique solution u*n and, for £ < x' ^ X + e>

PROOF. By Lemma 2.8 and Corollary 2.7, the operator VT : Cf£1,'/2
+1 —>•

Cf/Ji>2+1 i s compact for 0 < x' < X + e- The compactness of ?AT : Cf^1,//1 —>
Cf/J

1
1/2

+1 a s w e ^ a s ^ e u n i i u e existence of the solution u* e Cf^i / l^ 1 °f (3-1) are
proved as in the proof of Theorem 3.6. From (3.6) and (3.8) it follows that the inverses
[/ + VLn(T + AT)]'1 : C f ; ^ 1 —• C^j1,^1 exist for all sufficiently large n and are
uniformly bounded. In the same way as in the proof of Theorem 3.6 we obtain the
estimation (3.13) using relation (3.5) for x' = E and X = X + B.

To investigate the collocation-quadrature method (3.4) we need the following
lemma, the proof of which can be found in [6, proof of Theorem 6.8].
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LEMMA 3.8. Ifh € C*;'x n Ctl,, that is, h e C™, D C,{., o/u* /i(*> .)u">r0O e
C*'f uniformly with respect to x e [— 1, 1], where v + y~ < 3/2 and £ + 8~ < 3/2,

for all p e nn, where Kn is defined in (3.2) and c ^ c(n, p).

THEOREM 3.9. Let T = 0 a/id assume that

(a) /i € C£%« n Cx
v
+

K
effor some x > 0, e > 0, v + y~ < 3/2 and!;+8~ < 3/2,

(b) lim(1^^=±li' | |L-IUr=O.
a«rf r/tar the homogeneous equation (3.1) /las only the trivial solution in C*t^++ .
Then, for each f e Cx

p
+

Z
c'q, (3.1) has a unique solution u* € Cx

aT^'q+X- Moreover.for
all sufficiently large n, the collocation-quadrature equations (3.4) possess a unique
solution u*n and, for e < x' < X + £>

where c ^ c(«, x'. £)•

PROOF. AS in the proof of Theorem 3.6 we get (/ + VK)~l e ^(Cx'+
+l

fif
+l) for

0 < x'5 X + £- By Proposition 2.6 and (2.7) we have, for u e Ca+,̂ +,

I VLn(tfn - K)u\\a+(j+x,+iq+l < c \\Ln(Kn - JOiiH,,-,,-,,.,,

Consequently, in view of Lemma 3.8 and Corollary 3.5,

\\V(LnKn - K)p\\a+p+x,+u+x < c ^ ± 1 2 | | L J U l l pH^^ (3.15)

for all p 6 nn . Choosing x' = £ and taking into account that nn is invariant with re-
spect to I+VLnKn, we obtain the invertibility of I+VLnKn:(T\n, ||-||o+,^+,£+i,,+i) —>•
(nn , II •IL+,̂ +1£+i,9+i) for aH sufficiently large n as well as the uniform boundedness of
the respective inverse operators. If u* € nn is the solution of (3.4) and Pn € FIn with

+,J+ = Ef-^iu*), where u* 6 C^ t ' ' * + 1 is the solution of (3.1), then- K OO.«+,

r n ~ M«IL+,^+,£+i.g+i

<c\\U + VLnKn)Pn-VLnf\\a+p+e+lq+l

= c\\V(f -LJ) + {I+ VK)(Pn - «•) + V(LnKn -
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<c(\\V(f - Lnf)\\a+p+e+lq+l + HP, - «lo+,,+,£+1,g+1

+ \\V(LnKn-K)Pn\\a+p+e+lq+l).

Thus, with the help of Corollary 3.3, Corollary 3.2 and (3.15), we conclude

since IIPJL,^,^ < 2 ||M*||00,a+,̂ +. It follows that

| |u — un\\a+ p+ ^,+l q+l

< ii «* - P«IL + I / , + ^ + I , , + I+«* ' - ' |p« - « : m , + , ,
gg+V + l) , logg(»

and taking (3.12) into account, the theorem is proved.

If we combine the proofs of Theorems 3.7 and 3.9 we obtain the following theorem.

THEOREM 3.10. Assume a = 0, b = - 1 (that is, a = £ = 1/2) and that

(a) r € Cffiqfor some x > 0 and e > 0,
(b) h € Cf£i'2iJt n Cx

v
+

K
e;q for some v < 1 andt, < 1,

(c) lim^oo ' " y IIZ-n II i/2,1/2 = 0 for some 0 < e' < min{l, x).

and r/iaf //ie homogeneous equation (3.1)possesses only the trivial solution in C^2,'//2 •
Then, for each f e Cf̂ *J*2i (3.1) /ia^ a unique solution u* € Cf^j^2'*

+ . Moreover,
for all sufficiently large n, (3.4) /ia5 a unique solution u*n and, for s < x' < X + £»

||«* — M-ll < c
1 ° g ' ( M + 1 ) „, „

I 1/2,1/2,^+1.,+! - C
 nx+e-X'

4. Some remarks on a fast algorithm

In [3, Section 4] the authors study a fast algorithm for (1.1) in the case where a = 0
and b = — 1, based on a collocation-quadrature method like (3.4), the computational
complexity of which is O(nlogn). Convergence properties of this algorithm are
proved in weighted Sobolev norms, and the interested reader can also find numerical

https://doi.org/10.1017/S1446181100011688 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011688


166 M. R. Capobianco, G. Criscuolo, P. Junghanns and U. Luther [16]

results for the collocation-quadrature method and the fast algorithm. The paper [7]
investigates the uniform convergence of such a fast algorithm for Cauchy singular
integral equations. Using the technique of [7] and the convergence results of the
present paper it is possible to study the uniform convergence of the fast algorithm of
[3]. Moreover, if we apply the following Lemma 4.1, which is an improvement of [7,
Lemma 2.2] in the case where a = ft = 1/2, then the considerations can be simplified
in comparison to the proofs given in [7].

Let Sn = 5n
1/21/2 denote the Fourier projection operator with respect to the or-

thonormal system {plJ2'x/2}%0, that is,

We remark that

LEMMA 4.1. For all f e Ci/2 i l /2 we have the estimate

WSJ IL.i/2,1/2 < c ln(n + 1) ||/ IU.,/2,,/2 , n = 1, 2 , . . . ,

where c ^ c(n,f).

PROOF. We use the relations ([12, Part I, Chapt. VII, Section 2])

sin((2n + l)£/2) 1

and

i r / 2
i
* Jo sinf

From (4.1) and (4.2) it follows that

sin(2« , . , , ,u _ , ^ o

sin T sin ̂  ^ 2 sin

i

^ [ ; (r-^)-cosy
sin r sin £ r ^

2 sin ̂  J '
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Since

(Snf)(x) = -f f^p)l2x'\t)p)n"'\W^

we conclude that

1 / •*rs in^±i(r-£) sin?fi(r + ?)l

2TT JO ^ sin ^ sin ^ J

7
sin

/(COST) sinrrfr^ J

/ (cos r ) s i n T dr

1 /•" sin 22±i6>
= r - / . 2

e / (cos(^ + 0)) sin(? + 9) dG
2n J_n sin §

1 Z111 sin Izp-O r
= = - / . \ [f (cos(? + 5)) sin(? + 0)

27r Jo sin | L

(cos(£ - 9)) sin(£ - 9)] d9

sin(2n + 1)8 r
:— 1/ (cos(£ +

o sin o

- 28)) sin(f - 25)] d8.

By (4.3) we can estimate (x = cos £)

which proves the lemma.
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