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Abstract. Multi-planet systems detected until now are in most cases characterized by hot-
Jupiters close to their central star as well as high eccentricities. As a consequence, from a
dynamical point of view, compact multi-planetary systems form a variety of the general N-
body problem (with N > 3), whose solutions are not necessarily known. Extrasolar planets are
up to now found in prograde (i.e. direct) orbital motions about their host star and often in
mean-motion resonances (MMR). In the present paper, we investigate a theoretical alternative
suitable for the stability of compact multi-planetary systems. When the outer planet moves on
a retrograde orbit in MMR with respect to the inner planet, we find that the so-called retro-
grade resonances present fine and characteristic structures particularly relevant for dynamical
stability. We show that retrograde resonances and their resources open a family of stabiliz-
ing mechanisms involving specific behaviors of apsidal precessions. We also point up that for
particular orbital data, retrograde MMRs may provide more robust stability compared to the
corresponding prograde MMRs.
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1. Introduction

To identify the dynamical state of multi-planetary systems, we use the MEGNO tech-
nique (the acronym of Mean Exponential Growth factor of Nearby Orbits; Cincotta
& Simo 2000). This method provides relevant information about the global dynamics
and the fine structure of the phase space, and yields simultaneously a good estimate of
the Lyapunov Characteristic Numbers with a comparatively small computational effort.
From the MEGNO technique, we have built the MIPS package (acronym of Megno Indi-
cator for Planetary Systems) specially devoted to the study of planetary systems in their
multi-dimensional space as well as their conditions of dynamical stability.

Particular planetary systems presented in this paper are only used as initial condition
sources for theoretical studies of 3-body problems. By convention, the reference system
is given by the orbital plane of the inner planet at ¢ = 0. Thus, we suppose the orbital
inclinations and the longitudes of node of the inner (noted 1) and the outer (noted 2)
planets (which are non-determined parameters from observations) as follows : 7; = 0° and
Q1 = 0° in such a way that the relative inclination and the relative longitude of nodes
are defined at t = 0 as follows : 4, = i — 97 = iy and €, = Qy — Q7 = Qy. The MIPS
maps presented in this paper have been confirmed by a second global analysis technique
(Marzari et al. 2006) based on the Frequency Map Analysis (FMA; Laskar 1993).
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2. Fine structure of retrograde resonance

Studying conditions of dynamical stability in the neighborhood of the HD 73526 two-
planet system (period ratio: 2/1, see initial conditions in Table 1), we only find one stable
and robust island (noted (2)) for a relative inclination of about 180° (see Fig. 2a). Such
a relative inclination (where in fact 4; = 0° and i = 180°) may be considered to a
coplanar system where the planet 2 has a retrograde motion with respect to the planet 1.
From a kinematic point of view, it amounts to consider a scale change of 180° in relative
inclinations. Taking into account initial conditions inside the island (2) of Fig. 1la, we
show that the presence of a strong mean-motion resonance (MMR) induces clear stability
zones with a nice V-shape structure, as shown in Fig. 1b plotted in the [a1, e;] parameter
space. Let us note the narrowness of this V-shape, namely only about 0.006 AU wide
for the inner planet (it is 5 times larger in the Jupiter-Saturn case). A similar V-shape
structure is obtained in [ag, e2] with about 0.015 AU wide. Due to the retrograde motion
of the outer planet 2, this MMR is a 2:1 retrograde resonance, also noted 2:-1 MMR.
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Figure 1. Panel (a): Stability map in the [i,,Q,] non-determined parameter space of the
HD 73526 planetary system (see Table 1). Panel(b): Stability map in the [a1, e1] parameter space
for initial conditions taken in the stable zone (2) of panel (a). Note that masses remain untouched
whatever the mutual inclinations may be; they are equal to their minimal observational values.
Black and dark-blue colors indicate stable orbits (< Y >=2+3% and <Y >= 2+ 5% respec-
tively with < Y >, the MEGNO indicator value) while warm colors indicate highly unstable
orbits.

3. Efficiency of retrograde resonances

Fig. 2 exhibits stability maps in the [i,, (] parameter space considering a scale re-
duction of the HD 82943 planetary system (see Table 1) according to a factor 7.5 on
semi-major axes (masses remaining untouched). The dynamical behavior of the reduced
system (Fig. 2b) with respect to the initial one (Fig. 2a) points up the clear robustness
of retrograde configurations contrary to prograde ones. The “prograde” stable islands
completely disappear while only the “retrograde” stable island resists, persists and even
extends more or less. Even for very small semi-major axes and large planetary masses,
which should a priori easily make a system unstable or chaotic, stability is possible with
counter-revolving orbits.
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Figure 2. Stability maps in the [i,,Q,] parameter space. Panel (a): initial HD 82943 planetary
system (see Table 1). Panel (b): scale reduction of the HD 82943 planetary system according to
a factor 7.5 on semi- major axes. Masses in Panel (a) and Panel (b) are identical. Color scale is
the same as in Fig. 1.

In the case of the 2:1 retrograde resonance, although close approaches happen more
often (3 for the 2:-1 MMR) compared to the 2:1 prograde resonance, the 2:-1 MMR
remains very efficient for stability because of faster close approaches between the planets.
A more detailed numerical study of retrograde resonances can be found in Gayon & Bois

(2008).
Elements | HD 73526 HD 82943 HD 128311 HD 160691 HD 202206
Mitar (Mo) | 1.08+0.05 1.15 0.84 1.08 £ 0.05 1.15
n i) (M) 2.9+0.2 1.85 1.56 + 0.16 1.67 +0.11 17.4
mosin b U 2540.3 1.84 3.08 £0.11 3.10 £0.71 2.44
o (AU) 0.66 + 0.01 0.75 1.109 £0.008  1.50 £ 0.02 0.83
1.05 + 0.02 1.18 1.73540.014  4.17 4 0.07 2.55
0.19+0.05  0.38+0.01 0.38+0.08 0204003  0.435+0.001
€ 0.1440.09  0.1840.04 0.21 4+ 0.21 0.574+0.1  0.267 & 0.021
(deg) 203 +9 124.0+3 80.14 16 204 +9 161.18 + 0.30
wldesg 13476 237.0 + 13 21.6 & 61 161 +8 78.99 + 6.65
M (deg) 86 + 13 0 257.6 & 2.7 0 105.05 & 0.48
8 82 4 27 75.21 + 1.96 166 4 2 126+£11.2 311.6+9.5

Table 1. Orbital parameters of the HD 73526, HD 82943, HD 128311, HD 160691 and HD 202206
planetary systems. Data sources come from Tinney et al. (2006), Mayor et al. (2004), Vogt et al.
(2005), McCarthy et al. (2004) and Correia et al. (2005) respectively. For each system and each
orbital element, the first line corresponds to the inner planet and the second one to the outer
planet.
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Data sources Period ratio Prograde MMR Retrograde MMR

HD 73526 2/1 17 500
HD 82943 2/1 755 1000
HD 128311 2/1 249 137
HD 160691 5/1 € 320
HD 202206 5/1 € 631

Table 2. Statistical results. For each type of MMR (prograde or retrograde), 1000 random
systems have been integrated in the error bars of each data source. The proportion of stable
systems over 1000 is indicated in each case. ¢ designates a very small value that depends on
the size of the random system size. Data sources come from Tinney et al. (2006), Mayor et al.
(2004), Vogt et al. (2005), McCarthy et al. (2004) and Correia et al. (2005) respectively (see
Table 1).

4. Occurrence of stable counter-revolving configurations

The occurence of stable two-planet systems including counter-revolving orbits appears
in the neighborhood of a few systems observed in 2:1 or 5:1 MMR. New observations
frequently induce new determinations of orbital elements. It is the case for the HD 160691
planetary system given with 2 planets in McCarthy et al. (2004) then with 4 planets in
Pepe et al. (2007). Hence, systems related to initial conditions used here (see Table 1) have
to be considered as academic systems. Statistical results for stability of these academic
systems are presented in Table 2, both in the prograde case (i, = 0°) and in the retrograde
case (i, = 180°). For each data source, 1000 random systems taken inside observational
error bars have been integrated. Among these random systems, the proportion of stable
systems either with prograde orbits or with counter-revolving orbits is given in Table 2. In
all cases, a significant number of stable systems is found in retrograde MMR. Moreover,
in most data sources, retrograde possibilities predominate.

5. Resources of retrograde resonances

The 2:1 (prograde) MMRs preserved by synchronous precessions of the apsidal lines
(ASPs) are from now on well understood (see for instance Lee & Peale 2002, Bois et al.
2003, Ji et al. 2003, Ferraz-Mello et al. 2005). The MMR-ASP combination is often very
effective; however, ASPs may also exist alone for stability of planetary systems. Related
to subtle relations between the eccentricity of the inner orbit (e1) and the relative apsidal
longitude A® (i.e. @3 —&9), Fig. 3 permits to observe how the 2:1 retrograde MMR brings
out its resources in the [Aw, e;] parameter space :

e In the island (1) (i.e. inside the [a, e] V-shape of Fig. 1b), the 2:-1 MMR is combined
with a uniformly prograde ASP (both planets precess on average at the same rate and
in the same prograde direction).

e In the island (2) (i.e. outside but close to the [a,e] V-shape of Fig. 1b), the 2:-1
near-MMR is combined with a particular apsidal behavior that we have called a rocking
ASP (see Gayon & Bois 2008): both planets precess at the same rate but in opposite
directions.

e The [A®, e;] map also exposes a third island (3) that proves to be a wholly chaotic
zone on long term integrations.

Let us note that the division between islands (1) and (2) is related to the degree of
closeness to the 2:-1 MMR.
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6. Conclusion

We have found that retrograde resonances present fine and characteristic structures
particularly relevant for dynamical stability. We have also shown that in cases of very
compact systems obtained by scale reduction, only the "retrograde” stable islands sur-
vive. From our statistical approach and the scale reduction experiment, we have expressed
the efficiency for stability of retrograde resonances. Such an efficiency can be understood
by very fast close approaches between the planets although they are in greater number.

We plan to present an Hamiltonian approach of retrograde MMRs in a forthcoming
paper (Gayon, Bois, & Scholl, 2008). Besides, in Gayon & Bois (2008), we propose two
mechanisms of formation for systems harboring counter-revolving orbits. Free-floating
planets or the Slingshot model might indeed explain the origin of such planetary systems.

In the end, we may conclude that retrograde resonances prove to be a feasible stabilizing
mechanism.

Acknowledgements

We thank the anonymous referee for his comments that greatly helped to improve the
paper.

References

Bois, E., Kiseleva-Eggleton, L., Rambaux, N., & Pilat-Lohinger, E. 2003, ApJ, 598, 1312

Cincotta, P. & Simd, C. 2000, AEAS, 147, 205

Correia, A. C. M., Udry, S., Mayor, M., Laskar, J., Naef, D., Pepe, F., Queloz, D., Santos, N.
C. 2006, A&A, 440, 751

Ferraz-Mello, S., Michtchenko, T. A., Beaugé, C., & Callegari, N. 2005, Lecture Notes in Physics,
683, 219

Gayon, J. & Bois, E. 2008, A&A, accepted, [arXiv:0801.1089v2]

Gayon, J., Bois, E., & Scholl, H. 2008, Celestial Mechanics and Dynamical Astronomy, Special
Issue : “Theory and Applications of Dynamical Systems”, to be submitted

Ji, J., Kinoshita, H., Liu, L., Li, G., & Nakai, H. 2003, Celestial Mechanics and Dynamical
Astronomy, 87, 113

Laskar, J. 1993, Physica D, 67, 257
Lee, M. H. & Peale, S. J. 2002, ApJ, 567, 596

Mayor, M., Udry, S., Naef, D., Pepe, F., Queloz, D., Santos, N. C., Burnet, M. 2004, A&A, 415,
391

Marzari, F., Scholl, H., & Tricarico, P. 2006, A& A, 453, 341

https://doi.org/10.1017/51743921308017055 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921308017055

516 J. Gayon & E. Bois

McCarthy, C., Butler, R. P., Tinney, C. G., Jones, H. R. A., Marcy, G. W. Carter, B., Penny,
A. J., & Fischer, D. A. 2004, ApJ, 617, 575

Pepe, F., Correia, A. C. M., Mayor, M., Tamuz, O., Couetdic, J., Benz, W., Bertaux, J.-L.,
Bouchy, F., Laskar, J., Lovis, C., Naef, D., Queloz, D., Santos, N. C., Sivan, J.-P., Sos-
nowska, D., & Udry, S. 2007, A&A, 462, 769

Tinney, C. G., Butler, R. P., Marcy, G. W., Jones, H. R. A., Laughlin, G., Carter, B. D, Bailey,
J. A., & O’Toole, S. 2006, ApJ, 647, 594

Vogt, S. S., Butler, R. P., Marcy, G. W., Fischer, D. A., Henry, G. W., Laughlin G., Wright, J.
T., Johnson, J. A. 2005, ApJ, 632, 638

https://doi.org/10.1017/51743921308017055 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921308017055

