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On the Diophantine Equation
n(n + d) · · · (n + (k − 1)d) = by l

Dedicated to Professor P. Ribenboim on the occasion of his 75th birthday

K. Győry, L. Hajdu and N. Saradha

Abstract. We show that the product of four or five consecutive positive terms in arithmetic progression

can never be a perfect power whenever the initial term is coprime to the common difference of the

arithmetic progression. This is a generalization of the results of Euler and Obláth for the case of

squares, and an extension of a theorem of Győry on three terms in arithmetic progressions. Several

other results concerning the integral solutions of the equation of the title are also obtained. We extend

results of Sander on the rational solutions of the equation in n, y when b = d = 1. We show that there

are only finitely many solutions in n, d, b, y when k ≥ 3, l ≥ 2 are fixed and k + l > 6.

1 Introduction

In this paper we consider the diophantine equation

(1.1) Π = Π(n, d, k) = n(n + d) · · · (n + (k − 1)d) = byl

in positive integers n, d, y, b, l ≥ 2, k ≥ 2 with gcd(n, d) = 1, P(b) ≤ k, where for

any integer u with |u| > 1 we write P(u) for the greatest prime factor of u and we put

P(±1) = 1. We also take b to be l-th power free.

First we take l = 2. In this case, if k = 3, d = 1, then (1.1) has no solution except

when n ∈ {1, 2, 48}. We refer to [17] for the details and history. Fermat showed that

there are no four squares in arithmetic progression. Euler proved the more general

result that a product of four terms in an arithmetic progression can never be a perfect

square. Obláth [11] extended this result to the case k = 5. Erdős [4] and Rigge [14],

independently showed that a product of two or more consecutive integers is never a

perfect square. Recently, Saradha and Shorey [19] proved that a product of four or

more terms in an arithmetic progression can never be a perfect square provided that

d is a power of a prime number.

Now we take l ≥ 3. Erdős and Selfridge [5] proved the remarkable result that

a product of two or more consecutive integers can never be a perfect power. When

d = 1, it was proved by Saradha [16] for k ≥ 4 and by Győry [8] for k = 2, 3
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that (1.1) has no solution with P(y) > k. Győry [9] showed that (1.1) for k = 3

does not hold whenever P(b) ≤ 2. His proof depends on the works of Wiles [26],

Darmon and Merel [3] and Ribet [13] on generalized Fermat equations. In this result

by Győry P(b) ≤ 2 cannot be replaced by P(b) ≤ 3; for (k, l) = (3, 3) equation (1.1)

has infinitely many solutions with P(b) = 3, see Tijdeman [25]. Saradha and Shorey

[18] showed that (1.1) with k ≥ 4, P(b) < k implies that d has a prime factor ≡ 1

mod l. Thus (1.1) with k ≥ 4, P(b) < k and l ≥ 3 has no solution, if d has only the

prime factors 2, 3 and 5.

In this paper we show that for k = 4, 5 and b = 1, (1.1) has no solution. In other

words,

Theorem 1 Equation (1.1) with k = 4, 5 and b = 1 does not hold.

This gives an answer to a problem proposed by Guy; see D17 in his book [6]. In

fact, for l ≥ 3 we show more.

Theorem 2

(i) Let k = 4. Then (1.1) with l ≥ 3 and P(b) ≤ 2 implies that l has a prime factor

> 3 and 8 ‖ Π.

(ii) Let k = 5. Then (1.1) with l ≥ 3 and P(b) ≤ 2 implies that l has a prime factor

> 3. Further, we have either 8 ‖ Π or 16 ‖ Π.

As will be seen below, for certain applications equation (1.1) is interesting also in

the case when n and b are not necessarily positive integers, and P(b) ≤ 3. We present

some results (cf. Theorems 8–10) with these more general settings in Section 2. The-

orems 1 and 2 will be simple consequences of our Theorems 8 and 9.

Now we consider the equation

(1.2) x(x + 1) · · · (x + k − 1) = ±2αzl

in rational numbers x and z ≥ 0, and integers k ≥ 2, l ≥ 2 and α with −l < α < l.

We may restrict ourselves to the case 0 ≤ α < l by replacing in (1.2) α, z by l−α, z/2,

respectively. If x and z are integers and α = 0, then by the result of Erdős and

Selfridge, we see that x = − j, z = 0 for 0 ≤ j < k are the only solutions. These

are also the solutions of (1.2) for each α; they will be called trivial. In what follows,

we shall deal only with non-trivial solutions. Equation (1.2) was first considered by

Sander [15], who studied it for 2 ≤ k ≤ 4 and α = 0. By putting x = n/d and

z = y/y1 with gcd(n, d) = gcd(y, y1) = 1, d > 0, y ≥ 0 and y1 > 0, we see that

(1.2) reduces to

(1.3) n(n + d) · · · (n + (k − 1)d) = ±2βul; vl
= 2γdk

where (u, v) = (y, y1) and β + γ = α for some non-negative integers β and γ. Thus

solving (1.2) for rational values x and z ≥ 0 is equivalent to solving equation (1.1)

with P(b) ≤ 2 for integers n, y ≥ 0 and d > 0 with the additional restriction that

2γdk is an l-th power. With the help of our general Theorems 8 to 10 we shall prove:
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Theorem 3 Let 2 ≤ k ≤ 18 and l ≥ 3 with gcd(l, k) = 1. Then (1.2) with z 6= 0

implies k = 2 and (x, z, α) = (−1/2, 1/2, l − 2), (−2, 1, 1), (1, 1, 1).

For small values of k we can remove the condition gcd(l, k) = 1. In the cases

k = 2, 3, 4 and α = 0, Sander [15] proved that (1.2) has no solution. We find,

however, in Theorem 4 below that for k = l = 3 there are two solutions which are

missing from the corresponding Proposition 2 of [15]. Hence Conjecture 1 of Sander

[15] stating that for k ≥ 3, (1.2) with α = 0 has only the trivial solutions, should be

modified accordingly. We also completely solve (1.2) with α = 0 for k = 5, a new

result. Thus we have:

Theorem 4 Let 2 ≤ k ≤ 5 and l ≥ 3. Then the only non-trivial solutions of (1.2)

with α = 0 are given by k = l = 3 and (x, z) = (−2/3, 2/3), (−4/3, 2/3).

For (1.2) when α 6= 0 we show:

Theorem 5 Let k and l be as in Theorem 4, with the assumption that l 6= 4 if k = 2.

Let α > 0.

(i) If k = 2, then equation (1.2) has the only non-trivial solutions

(x, z, α) = (−1/2, 1/2, l − 2), (−2, 1, 1), (1, 1, 1).

(ii) If k = 3, 4 then (1.2) has no non-trivial solution.

(iii) If k = 5, then (1.2) implies that l = 5 and α ∈ {3, 4}.

Remark The assumption that l 6= 4 if k = 2 is necessary. It is well-known that there

are infinitely many triples (p, q, r) of positive integers with gcd(p, q, r) = 1 satisfying

2p4 − q4
= r2 (see e.g., [12, pp. 152–164] ). By putting x = q4/r2, we see that (1.2)

with k = 2, α = 1 and l = 4 has infinitely many solutions in (x, z).

So far we have given complete solutions of (1.1) or (1.2) for small values of k. Now

we present some finiteness results on (1.1). For a complete survey on such results we

refer to [2, 9, 22, 23, 25]. By applying Faltings’ theorem, Darmon and Granville [2]

showed that (1.1) with b = 1, k ≥ 3, l ≥ 4 fixed has only finitely many solutions in

n, d, y. We refine this result and extend it to the case b > 1.

Theorem 6 For fixed k ≥ 3 and l ≥ 2 with k + l > 6, equation (1.1) has only finitely

many solutions in n, d, b, y.

Theorem 6 is best possible in the sense that for fixed k ≥ 3, l ≥ 2 with k + l ≤ 6,

(1.1) has in each case infinitely many solutions; cf. Tijdeman [25]. From the proof

of Theorem 6, we observe that the above result is valid for the solutions of (1.1) with

n < 0 as well.

Shorey [22] proved that if d > 1 and l ≥ 4 then the abc-conjecture implies that k

is bounded by an absolute constant. We refine this result as

Theorem 7 The abc-conjecture implies that (1.1) with d > 1, k ≥ 3 and l ≥ 4 has

only finitely many solutions in n, d, k, b, y, l.
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We note that if we use an effective variant of the abc-conjecture, then the above

theorem is also effective. The restriction d > 1 is obviously necessary; for d = 1 and

n = 1, (1.1) is solvable for every k ≥ 2.

2 A Generalization of Equation (1.1)

In this section we consider the following generalization of equation (1.1):

(2.1) Π = Π(n, d, k) = n(n + d) · · · (n + (k − 1)d) = byl

in non-zero integers n, b and in d > 0, y > 0, l ≥ 2, k ≥ 2 with gcd(n, d) = 1,

P(b) ≤ k. Further, to make the representation byl unique we assume here and in

Theorems 8–10 that y is not divisible by primes ≤ k. Thus while considering (2.1), b

is not taken as l-th power free. We note that if n, d, b, y is a solution of (2.1) then so

is −n − (k − 1)d, d, (−1)kb, y.

In what follows, νp(u) denotes the order of p in u for any prime p and non-zero

integer u.

Theorem 8 Suppose equation (2.1) holds.

(i) Let k = 3 and l ≥ 3. Then either

(n, d, b, y) ∈ {(−4, 3, 8, 1), (−2, 3,−8, 1)},

or l ∤ ν3(b). Moreover, if P(l) > 3, then ν2(b) ≤ 5.

(ii) Let k = 4 and suppose that P(l) > 3. Then ν3(b) > 0, and either ν2(b) = 0,

l ∤ ν3(b) or ν2(b) = 3.

(iii) Let k = 5. Suppose that P(l) > 3, and that l | ν5(b). Then ν3(b) > 0, and either

ν2(b) = 0, l ∤ ν3(b) or ν2(b) = 3 or 4.

Remark For k = 3, ν2(b) ≤ 5 is sharp as is shown by the example

2(2 + 7)(2 + 2 · 7) = 32 · 25.

Similarly, for k = 4, ν2(b) = 3 is sharp since 1 · 2 · 3 · 4 = 3 · 23. For (k, l) = (3, 3)

and ν3(b) = 1, 2, it is known that (2.1) has infinitely many solutions which can be

seen by taking b = 3, 6, 36; cf. Tijdeman [25].

For the cases l = 3, 4 we prove:

Theorem 9

(i) Let l = 3. Then equation (2.1) with k = 4 has only the solutions

(n, d, b, y) = (−6, 5, 216, 1), (−9, 5, 216, 1), (−3, 2, 9, 1), (1, 1, 24, 1), (−4, 1, 24, 1).

Further, (2.1) has no solution with k = 5, 3 | ν5(b).

(ii) Let l = 4 and 4 | ν3(b), 4 | ν5(b). Then equation (2.1) does not hold with k = 4, 5.
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Theorem 10 Let d = 2hdl
1

(h ≥ 0), l | νp(b) for each prime p with 3 ≤ p ≤ k.

Suppose that 2 ≤ k ≤ 18 if ν2(d) < 4, and let 2 ≤ k ≤ 30 otherwise, i.e., if ν2(d) ≥ 4.

Further, in the latter case we suppose that l has a prime factor > 3. Then the only

solutions of (2.1) are as follows: k = 2 and (n, d, b, y) = (−2, 1, 2, 1), (1, 1, 2, 1),

(−1, 2,−1, 1).

3 Notation and Lemmas

By equation (2.1), we observe that if a prime p > k divides Π, then it divides only

one term in Π and νp(Π) ≡ 0 mod l. Hence we deduce that

(3.1) n + id = aix
l
i

with P(ai) ≤ max(P(b), k− 1), xi > 0, ai l-th power free for 0 ≤ i < k. Also we have

gcd(xi , x j) = 1 for each i 6= j if 2l ≥ k. Further,

(3.2) n + id = AiX
l
i

with P(Ai) ≤ k, Xi > 0, gcd
(

Xi,
∏

p≤k p
)

= 1 for 0 ≤ i < k. Note that

gcd(Xi , X j) = 1 for each i 6= j. We need several lemmas for the proofs of our

theorems. We begin with a result by Győry [9].

Lemma 1 Equation (1.1) with k = 3, l > 2 and P(b) ≤ 2 has no solution.

Győry derives the above result as a consequence of the following statement (cf. [9,

Theorem G]) on a generalized Fermat equation.

Lemma 2 Let l ≥ 3, α ≥ 0 be integers. Then the equation

xl + yl
= 2αzl

in relatively prime integers x, y, z ≥ 1 has no solution for α 6= 1, and for α = 1 the

equation has only the trivial solution x = y = z = 1. Further, the equation

xl − yl
= 2αzl

has no solution in relatively prime integers x, y, z ≥ 1.

The above result was established by Wiles [26] for α ≡ 0 mod l, by Darmon and

Merel [3] for α ≡ 1 mod l, and by Ribet [13] for α 6≡ 0, 1 mod l and l ≥ 5 prime.

For the other cases, see Győry [9].

In [18], Saradha and Shorey gave the following result on a more general Fermat

equation by using the contributions of Wiles [26], Ribet [13] and others. The first

such results were due to Serre [10] and Kraus [21]; see also Sander [15, p. 432].
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Lemma 3 Let l be a positive integer having a prime factor > 3. Suppose that a, b, c are

non-zero integers such that either P(abc) ≤ 3 or a, b, c are composed of only 2 and 5.

Then the equation

axl + byl
= czl

in non-zero integers x, y, z with gcd(axl, byl, czl) = 1, ν2(byl) ≥ 4 has no solution.

Bennett and Skinner [1] proved the following:

Lemma 4 The only solution to the equation

xl + yl
= 2z2

in integers x, y, z, l with gcd(x, y, z) = 1, x > y, l ≥ 4 is (x, y, z, l) = (3,−1,±11, 5).

We shall also use the following consequence of Lemma 4.

Lemma 5 The equation

xl − yl
= 2z2

in integers x, y, z, l with gcd(x, y, z) = 1, x > y and l ≥ 4 even with l 6= 6 has no

solution.

Proof Suppose that the equation holds. We may assume that x, y, z are positive. Let

l = 2kl1 with k ≥ 1, l1 odd. If k ≥ 2, we arrive at a contradiction by (iii) of Lemma 7

below. Hence k = 1 and l1 ≥ 5 odd. We now deduce that either

xl1 + yl1 = 2z2

1
, xl1 − yl1 = z2

2

or

xl1 + yl1 = z2

1
, xl1 − yl1 = 2z2

2

with some positive integers z1, z2, which is impossible by Lemma 4.

We also need results on several cubic and quartic equations. Cubic equations were

extensively studied by Selmer [20] in a long paper. We present here results on these

cubic equations which we come across in the proofs of our theorems. The study

of quartic equations dates back to Euler. We refer to the book of Ribenboim [12,

pp. 164–177], for the quartic equations we are interested in here.

Lemma 6 The equations

x3 + 2y3
= 3z3; x3 + 4y3

= 3z3

have no solution in non-zero integers x, y, z with gcd(x, y, z) = 1 and |xyz| > 1, and

the equations

x3 + y3
= 3z3; x3 + y3

= 4z3; x3 + 4y3
= 9z3

have no solution in non-zero integers x, y, z with gcd(x, y, z) = 1.
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Lemma 7 Let x, y, z be positive integers with gcd(x, y, z) = 1 and α ≥ 0 an integer.

(i) If x4 − 2α y4
= z2, then α ≡ 1 mod 4.

(ii) If 2αx4 − y4
= z2, then α ≡ 1 mod 4.

(iii) x4 − y4
= 2αz2 is impossible.

(iv) If x4 + y4
= 2αz2, then x = y = z = 1.

Lemma 8 Let (2.1) be valid, and suppose that l | νp(b) for each prime p with 3 ≤
p ≤ k. There exist indices i, j with 0 ≤ i < j < k such that in (3.1)

(3.3) ai = τi2
αi , a j = τ j2

α j , j − i = 2δ for 2 ≤ k ≤ 18

and

(3.4) ai = τi, a j = τ j , j − i = 2̺3ε or 2̺5ε for 2 ≤ k ≤ 30 if d is even.

Here αi , α j , δ, ̺, ε denote some non-negative integers, and τi, τ j may assume ±1.

Proof of Lemma 8 The assertion can be easily checked for k ≤ 6. We explain the

case k = 7 and d odd. We observe that in this case 7 ∤ ai for 0 ≤ i < k. Further

we have either 5 not dividing any ai or 5 dividing a0, a5 or 5 dividing a1, a6. Suppose

5 ∤ ai for 0 ≤ i < k. Then the statement follows with i = 0, j = 1 if 3 ∤ a0a1; i = 1,

j = 2 if 3 | a0; i = 0, j = 2 if 3 | a1. Hence we may assume that 5 divides either

a0, a5 or a1, a6. The assertion follows with i = 2, j = 3 if 3 ∤ a2a3, with i = 3, j = 4

if 3 | a2, and with i = 4, j = 5 if 3 | a3. This procedure has been programmed and

(3.3) is checked. When d is even we observe that all the ais are odd and we check that

(3.4) is valid for k ≤ 30. The largest cases k = 29, 30 took 8 hours of computation.

4 Proofs of Theorems 8–10

We will use the notation introduced in the previous section without any further men-

tion.

Proof of Theorem 8 Suppose equation (2.1) holds. For k = 3, 4 and for k = 5 with

l | ν5(b), (3.2) can be modified such that n + id = AiX
l
i with

(4.1) Ai = τi2
αi 3βi , τi = ±1, Xi > 0, gcd(Xi , 6) = 1 for 0 ≤ i < k.

Let α = max(α0, . . . , αk−1).

(i): Let k = 3. First we show that in this case l ∤ ν3(b). We assume that

(4.2) (n, d, b, y) /∈ {(−4, 3, 8, 1), (−2, 3,−8, 1)}.

Suppose to the contrary that l | ν3(b). Then βi = lti with non-negative integers ti

among which at least two are zero. By Lemma 1, we may suppose that n < 0 and
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n + 2d > 0. In view of gcd(n, d) = 1 we infer that (n, n + d) = (n + 2d, n + d) = 1

and (n, n + 2d) = 1 or 2.

If n + d is even, then n, n + 2d are odd and we deduce from (4.1) that

n + d = τ12α1 (3t1 X1)
l
, n = −(3t0 X0)

l
, n + 2d = (3t2 X2)

l

with τ1 = ±1 and α1 ≥ 1. Then

(4.3) −(3t0 X0)
l
+ (3t2 X2)

l
= τ12α1+1(3t1 X1)

l
.

By Lemma 2 we obtain that there is no solution in this case.

If n + d is odd then there are two subcases to be distinguished. If n and n + 2d are

also odd then we arrive at equation (4.3) with α1 = 0, which leads to a contradiction.

Assume now that n and n + 2d are even. Then we get from (4.1) that

(4.4) n + d = τ1(3t1 X1)
l
, n = −2α0 (3t0 X0)

l
, n + 2d = 2α2 (3t2 X2)

l

where τ1 = ±1, α0, α2 ≥ 1 such that one of α0, α2 equals 1, and 3t0 X0, 3t1 X1, 3t2 X2

are relatively prime odd positive integers. If α2 = 1, then we obtain that

−2α0−1(3t0 X0)
l
+ (3t2 X2)

l
= τ1(3t1 X1)

l
,

which by Lemma 2 gives α0 = 2, τ1 = −1, ti = 0 for i = 0, 1, 2 and X0 = X1 =

X2 = 1. We infer from (4.4) that (n, d, b, y) = (−4, 3, 8, 1) which is excluded.

Finally, if α0 = 1 then

−(3t0 X0)
l
+ 2α2−1(3t2 X2)

l
= τ1(3t1 X1)

l
,

and Lemma 2 implies that α2 = 2, τ1 = 1, ti = 0 for i = 0, 1, 2, X0 = X1 = X2 = 1.

Then, by (4.4) we get (n, d, b, y) = (−2, 3,−8, 1) which is excluded. So if (4.2) holds,

then l ∤ ν3(b).

Assume now that l has a prime factor > 3. We may suppose that d is odd since

otherwise ν2(b) = 0. Further, we have

(4.5) A0Xl
0

+ A2Xl
2

= 2A1Xl
1
.

If α = 1, then clearly ν2(b) ≤ 2. Assume that α > 1. We observe that

(α0, α1, α2) ∈ {(α, 0, 1), (1, 0, α), (0, α, 0)}.

Now we apply Lemma 3 to (4.5) to get α ≤ 4. Hence ν2(b) ≤ 5.

(ii): Let k = 4. In case of ν3(b) = 0, i.e. if

(β0, β1, β2, β3) = (0, 0, 0, 0)
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we can use the results just proved for k = 3 to show that there is no solution. Hence

ν3(b) > 0. Further, we have

(α0, α1, α2, α3) ∈ {(0, 0, 0, 0), (α, 0, 1, 0), (1, 0, α, 0), (0, α, 0, 1), (0, 1, 0, α)}.

If d is even, then ν2(b) = 0. Suppose l | ν3(b). Then we have

(β0, β1, β2, β3) ∈ {(tl − 1, 0, 0, 1), (1, 0, 0, tl − 1)}

for some integer t > 0. In both cases we see that

τ1τ2(X1X2)l − τ0τ3(3t X0X3)
l
= (n + d)(n + 2d) − n(n + 3d) = 2d2.

As Xi > 0 (i = 0, 1, 2, 3), this equation has no non-trivial solution by Lemmas 4

and 5. Thus l ∤ ν3(b).

Let d be odd. Then α > 1, whence (α0, α1, α2, α3) 6= (0, 0, 0, 0). We take

(α0, α1, α2, α3) = (α, 0, 1, 0), in the other cases the proof is similar. We apply

Lemma 3 to the equation

2A0Xl
0

+ A3Xl
3
= 2n + (n + 3d) = 3(n + d) = 3A1Xl

1

to get α ≤ 2. As clearly α ≥ 2, thus ν2(b) = 3 and part (ii) is proved.

(iii): Let k = 5 and P(b) < 5. Then we have

(α0, α1, α2, α3, α4) ∈ {(0, 0, 0, 0, 0), (α, 0, 1, 0, 2), (2, 0, 1, 0, α),

(1, 0, α, 0, 1), (0, α, 0, 1, 0), (0, 1, 0, α, 0)}.

Suppose (α0, α1, α2, α3, α4) = (0, 0, 0, 0, 0). Then we argue as in the case k = 4 to

see that l ∤ ν3(b). In the next two possibilities, we observe that α > 2. On the other

hand, applying Lemma 3 to the equations obtained from the equalities

2n + (n + 3d) = 3(n + d) and (n + d) + 2(n + 4d) = 3(n + 3d)

we get α ≤ 2, a contradiction. For the last three quintuples we apply Lemma 3 to the

equations obtained from

(n + id) + (n + (i + 2)d) = 2(n + (i + 1)d), i = 1, 0, 2,

respectively, to find α ≤ 2. As α ≥ 2, we get ν2(b) = 3 or 4.

Further, if βi = 0 for i = 0, . . . , 4, then by part (ii) of the theorem, (2.1) has no

solution with k = 5. Thus ν3(b) > 0, and (iii) is also proved.

https://doi.org/10.4153/CMB-2004-037-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-037-1
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Proof of Theorem 9 Suppose that (2.1) holds. Since k = 4 or 5, we can modify

(3.2) so that n + id = AiX
l
i and

Ai = τi2
αi 3βi with τi = ±1, Xi > 0, gcd(Xi , 6) = 1 for i = 0, 1, . . . , k − 1.

Further, we have gcd(Xi , X j) = 1 whenever i 6= j.

Assume first that k = 4. Let α = max(α0, α1, α2, α3), and observe that α = 0 or

α ≥ 2. Moreover, we have

(α0, α1, α2, α3) ∈ {(0, 0, 0, 0), (α, 0, 1, 0), (1, 0, α, 0), (0, α, 0, 1), (0, 1, 0, α)}.

Let l = 3. Suppose first that (β0, β1, β2, β3) = (0, 0, 0, 0). Then we may apply part

(i) of Theorem 8 to the first three factors of the left hand side of (2.1) to prove that

there is no solution in this case. Thus we may assume that

(β0, β1, β2, β3) ∈ {(1, 0, 0, β), (β, 0, 0, 1), (0, β, 0, 0), (0, 0, β, 0)}

with β ≥ 1.

Using one of the equalities

A0X3

0
+ A2X3

2
= 2A1X3

1
, A1X3

1
+ A3X3

3
= 2A2X3

2
,

or

2A0X3

0
+ A3X3

3
= 3A1X3

1
, A0X3

0
+ 2A3X3

3
= 3A2X3

2
,

we can reduce each of the 20 cases arising to one of the cubic equations in Lemma 6.

Hence by this lemma, we get all the solutions listed in the theorem in this case.

Let l = 4. If 4 | βi for some i and β j = 0 for each j 6= i, then we may use again

part (i) of Theorem 8 to conclude that there is no solution. There remains the case

(β0, β1, β2, β3) = (β0, 0, 0, β3) with positive β0, β3 such that 4 | (β0 + β3). Further,

we have 3 ∤ d. In what follows, we assume that β0 = 4t − 1 (t ∈ N), β3 = 1. In the

opposite case β0 = 1, β3 = 4t − 1 (t ∈ N), we can argue in a similar way.

When

(α0, α1, α2, α3) ∈ {(0, 0, 0, 0), (1, 0, α, 0), (α, 0, 1, 0)},

by using the relation 2A0X4

0
+ A3X4

3
= 3A1X4

1
, we get the equations

2(32t−1X2

0
)

2

= τ0τ1X4

1
− τ0τ3X4

3
,

4(32t−1X2

0
)

2

= τ0τ1X4

1
− τ0τ3X4

3
,

2α+1(32t−1X2

0
)

2

= τ0τ1X4

1
− τ0τ3X4

3
,

respectively, which are all impossible by Lemma 7.

In case of (α0, α1, α2, α3) = (0, α, 0, 1) we apply A0X4

0
+2A3X4

3
= 3A2X4

2
to obtain

τ034t−2X4

0
+ τ34X4

3
= τ2X4

2
,
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which by 2 ∤ Xi (i = 0, 1, 2, 3) leads to a contradiction mod 16.

Finally, suppose that (α0, α1, α2, α3) = (0, 1, 0, α). We have (A0, A1, A2, A3) =

(τ034t−1, τ12, τ2, τ32α3). By 2A0X4

0
+ A3X4

3
= 3A1X4

1
, we get

τ034t−2X4

0
+ τ32α−1X4

3
= τ1X4

1
.

As 2 ∤ Xi , the equation mod 16 gives α = 4. However, the relation A0X4

0
+ 2A3X4

3
=

3A2X4

2
yields

τ034t−2X4

0
+ τ332X4

3
= τ2X4

2
,

which is impossible mod 16.

Now we take k = 5. If l = 3 then we may apply the statement proved above for

k = 4 to the first four factors of the left hand side of (2.1) and the assertion follows.

When l = 4, the problem can be reduced to the case k = 4 by considering the first

or last four factors of the left hand side of (2.1), according as 3 | n or 3 ∤ n. Then the

statement immediately follows from the result just proved above for k = 4.

Proof of Theorem 10 Suppose first that ν2(d) < 4 and 2 ≤ k ≤ 18. Write d1 =

2h1 d2 with d2 odd. Hence d = 2h+lh1 dl
2
; put h0 = h + lh1. By Lemma 8, there exist i, j

with 0 ≤ i < j < k such that (3.1) and (3.3) hold. Further, if pβ divides xi and x j for

some prime p and integer β > 0, then pβl | ( j − i)d implying pβl | ( j − i). Hence

pβl ≤ 17 giving p = 2, β = 1, l = 3; p = 2, β = 1, l = 4. Thus we have

τ j2
α j xl

j − τi2
αi xl

i = 2δd = 2δ+h0 dl
2
.

Now we write 2αi xl
i = 2ti zl

i and 2α j xl
j = 2t j zl

j with zi and z j odd. Then by the

preceding observation we see that gcd(zi , z j) = 1. Also

2δ+h0 dl
2
= τ j2

t j zl
j − τi2

ti zl
i .

Since d2, zi , z j are all odd, it follows that exactly two among δ +h0, ti, t j are equal, and

the third is greater than the others. Suppose ti = t j . Then

2δ+h0−ti dl
2
= τ jz

l
j − τiz

l
i .

Hence by Lemma 2 we have d2 = z j = zi = 1, giving d = 2h0 , δ+h0−ti = 1, n+ id =

τi2
δ+h0−1, n + jd = τ j2

δ+h0−1.

Suppose d is even. Then n + id = τi , n + jd = τ j and δ + h0 = 1. Hence h0 = 1

giving d = 2, n + 2i = −1, n + 2 j = 1. It is easy to check that the only solution

to (2.1) is given by k = 2 and (n, d, b, y) = (−1, 2,−1, 1). Suppose d is odd. Then

h0 = 0 giving d = 1 and δ − ti = 1, n + i = τi2
δ−1, n + j = τ j2

δ−1. Using δ ≤ 4,

we get for k = 2 the solutions as (n, d, b, y) = (−2, 1, 2, 1) and (1, 1, 2, 1), and for

k ≥ 3 we check that there exists a prime p > 2 with p ‖ Π(n, 1, k). Hence equation

(2.1) does not hold if k ≥ 3. The argument for the cases δ + h0 = ti or δ + h0 = t j is

similar.

Now let ν2(d) ≥ 4 and 2 ≤ k ≤ 30, and suppose that l is divisible by a prime > 3.

Then by (3.4) we have

τ jx
l
j − τix

l
i = 2̺3εd or 2̺5εd.

We apply Lemma 3 to see that (2.1) has no solution in this case.

https://doi.org/10.4153/CMB-2004-037-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-037-1
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5 Proofs of Theorems 1–5

Proof of Theorem 1 Let k = 4, 5. When l = 2, the assertion is the result of Euler

for k = 4 and of Obláth for k = 5. We observe from (1.1) that whenever l ≥ 3, we

may assume l to be a prime. The assertion for any prime l ≥ 5 follows from Theorem

8 and for l = 3 from Theorem 9. Hence the theorem follows for any l ≥ 2.

Proof of Theorem 2 (i) Let k = 4. Suppose (1.1) holds with l ≥ 3 and P(b) ≤ 2.

From part (ii) of Theorem 8, we find that 8 ‖ Π whenever l has a prime factor > 3.

For l = 3, 4 we apply Theorem 9 to see that (1.1) cannot hold with P(b) ≤ 2. Hence

the statement follows.

(ii) Let k = 5. We apply part (iii) of Theorem 8 for l ≥ 5 and Theorem 9 for l = 3, 4

to obtain the assertion.

Proof of Theorem 3 Suppose 2 ≤ k ≤ 18, l ≥ 3 with gcd(l, k) = 1 and equation

(1.2) holds. Then (1.3) is valid. Further, from the second equality of (1.3) it follows

that d = 2hdl
1

(h ≥ 0) since gcd(l, k) = 1. By Theorem 10 we get that (1.2) has only

the solutions

(x, z, α) = (−1/2, 1/2, l − 2), (−2, 1, 1), (1, 1, 1),

and the theorem is proved.

Proof of Theorem 4 Assume (1.2) with α = 0. Hence (1.3) is valid with β =

γ = 0. By Theorem 3, we need to consider only the cases k = l = 3, 4, 5 and

k = 2, l = 4. For k = l = 3, using part (i) of Theorem 8 we get (n, d) ∈
{(−4, 3), (−2, 3)}, which gives x = −4/3,−2/3. By part (ii) of Theorem 9 and

part (iii) of Theorem 8 we can exclude the possibilities k = l = 4 and k = l = 5,

respectively. Finally, let k = 2, l = 4. Then by (1.3) and (3.1) we get

a1x4

1
− a0x4

0
= v2,

with a0a1 = ±1. However, by using Lemma 7 one can easily see that there is no

solution in this case.

Proof of Theorem 5 Assume (1.2) with α > 0. Then (1.3) is valid. By Theorem 3

we get all solutions for k = 2, l ≥ 3 prime, and we need to consider only k = l =

3, 4, 5 and k = 2, l = 8. Using part (i) of Theorem 8 we get that there is no solution

with k = l = 3. For k = l = 4 and k = l = 5 by part (ii) of Theorem 9 and part (iii)

of Theorem 8, respectively, we get that the former case is excluded while in the latter

case α = 3, 4.

Finally, suppose that k = 2 and l = 8. Now (1.3) yields that n = ±2β0 x4

0
and

n + d = ±2β1 x4

1
with (β0, β1) = (β, 0) or (0, β), x0, x1 > 0 and gcd(x0, x1) = 1.

Moreover, γ is even, and v4
= 2γ/2d. Thus we obtain the equation

±2β0 x4

0
+ 2−γ/2v4

= ±2β1 x4

1
.
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By Lemma 2 we get x0 = x1 = v = 1, whence d = 1 and n = 1 or n = −2. Thus

we obtain the solutions (x, z, α) = (1, 1, 1), (−2, 1, 1) which were already found, and

the theorem follows.

6 Proofs of Theorems 6 and 7

Proof of Theorem 6 Since k and l are fixed and the ai in (3.1) are l-th power free

with P(ai) ≤ k, the coefficients ai may assume only finitely many values. Fix ai for

i = 0, . . . , k − 1.

We take j consecutive terms from the product Π(n, d, k) in (1.1), say n + id, n +

(i + 1)d, . . . , n + (i + j − 1)d with i = 0, j = k if k = 3 or 4, and i ≥ 0, j = 5 if

k ≥ 5. It follows from (3.1) and

(n + id) + (n + (i + 2)d) = 2(n + (i + 1)d)

that

(6.1) (2ai+1xi+1)l
= (2ai+1)l−1(aix

l
i + ai+2xl

i+2
).

Further, if k ≥ 4, then we get similarly

(6.2) (2ai+3xi+3)l
= (2ai+3)l−1(−aix

l
i + 3ai+2xl

i+2
),

and if k ≥ 5, then

(6.3) (ai+4xi+4)l
= (ai+4)l−1(−aix

l
i + 2ai+2xl

i+2
).

Denote by F1(xi , xi+2), F2(xi , xi+2), F3(xi , xi+2) the right-hand side of (6.1), (6.2) and

(6.3), respectively.

By assumption, gcd(n, d) = 1. Hence it is easy to see that gcd(n + id, n +(i +2)d) |
2, which implies that gcd(xi , xi+2) = 1.

First consider the case when k ≥ 5. Then, by assumption k + l > 6, hence we get

l ≥ 2. Multiplying the equations (6.1) to (6.3) and putting

F(xi , xi+2) =

3
∏

t=1

Ft (xi , xi+2),

we arrive at the equation

(6.4) F(xi , xi+2) = zl

with z = 4ai+1ai+3ai+4xi+1xi+3xi+4. Here F is a homogeneous polynomial in xi , xi+2

with integral coefficients and with 3l ≥ 6 pairwise linearly independent linear factors

over Q̄ . Hence by [2, Theorem 1] we see that xi , xi+2, z, and hence also xi+1, xi+3,

xi+4 may assume only finitely many integral values. Since this is true for any five
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consecutive terms in the product Π(n, d, k), we see that all xi with 0 ≤ i < k assume

only finitely many values. Thus n, d are bounded, and so b, y are also bounded.

Next assume that k = 4. Then, by assumption, l ≥ 3. In this case (6.1) and (6.2)

imply (6.4) with the choice i = 0,

F(x0, x2) =

2
∏

t=1

Ft (x0, x2) and z = 4a1a3x1x3.

Then Theorem 1 of [2] applies again to (6.4) and proves our theorem.

Finally, if k = 3 and l ≥ 4, then we can take in (6.4) F(x0, x2) = F1(x0, x2) and

z = 2a1x1 and the assertion follows in the same way as before.

Proof of Theorem 7 We denote by c1, . . . , c8 explicitly computable absolute con-

stants. We assume (1.1) with d > 1, k ≥ 3 and l ≥ 4. We take (n, d, k) 6= (2, 7, 3).

Then by a theorem of Shorey and Tijdeman [24], P(Π) > k, whence P(y) > k.

By a result of Shorey [22], the abc-conjecture implies that k ≤ c1. We fix k with

3 ≤ k ≤ c1. For 0 ≤ i < j < k − 1, we have

( j − i)(n + (k − 1)d) + (k − 1 − j)(n + id) = (k − 1 − i)(n + jd).

It is easy to see that the greatest common divisor of these three terms is at most k2.

Now we use (3.1) in the above equality and divide by the greatest common divisor to

get

(6.5) ek−1xl
k−1

+ eix
l
i = e jx

l
j ,

where ek−1, ei, e j are coprime positive integers composed only of primes not exceed-

ing k. Since P(y) > k, at least one of the numbers x0, . . . , xk−1, say xi , has a prime

factor greater than k. Put X = max(xk−1, xi , x j). We now apply the abc-conjecture to

(6.5) with ε = 1/4 to get

Xl ≤ c2

(

∏

p≤k

p
) 5/4( ∏

p|xk−1xi x j

p
) 5/4

≤ c3X3·5/4.

Thus

Xl−3.75 ≤ c3.

As X > 1 and l ≥ 4, we obtain l ≤ c4 whence Xl ≤ c5. This means that in (6.5)

xl
k−1

, xl
i and xl

j can assume only finitely many values. We fix such possible values

of xl
k−1

, xl
i and xl

j . Then (6.5) becomes an S-unit equation for the set of primes

S = {p | p ≤ k}, which equation has only finitely many solutions in ek−1, ei, e j ,

moreover max(ek−1, ei, e j) ≤ c6 (cf. [7]). Consequently,

n + (k − 1)d = ak−1xl
k−1

≤ k2ek−1xl
k−1

≤ c7.

Thus n, d, b, y are all bounded by c8.
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Remark In the above proof we used an effective version of the abc-conjecture, when

c2 is explicitly computable. For l ≥ 7, we could also use the weak abc-conjecture with

ε = 1 and c2=1.
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Tribute to Paul Erdős, Cambridge University Press, Cambridge, 1990, pp. 385–389.

https://doi.org/10.4153/CMB-2004-037-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-037-1
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