On the Diophantine Equation $n(n+d) \cdots(n+(k-1) d)=b y^{l}$

Dedicated to Professor P. Ribenboim on the occasion of his 75th birthday

K. Győry, L. Hajdu and N. Saradha

Abstract

We show that the product of four or five consecutive positive terms in arithmetic progression can never be a perfect power whenever the initial term is coprime to the common difference of the arithmetic progression. This is a generalization of the results of Euler and Obláth for the case of squares, and an extension of a theorem of Győry on three terms in arithmetic progressions. Several other results concerning the integral solutions of the equation of the title are also obtained. We extend results of Sander on the rational solutions of the equation in n, y when $b=d=1$. We show that there are only finitely many solutions in n, d, b, y when $k \geq 3, l \geq 2$ are fixed and $k+l>6$.

1 Introduction

In this paper we consider the diophantine equation

$$
\begin{equation*}
\Pi=\Pi(n, d, k)=n(n+d) \cdots(n+(k-1) d)=b y^{l} \tag{1.1}
\end{equation*}
$$

in positive integers $n, d, y, b, l \geq 2, k \geq 2$ with $\operatorname{gcd}(n, d)=1, P(b) \leq k$, where for any integer u with $|u|>1$ we write $P(u)$ for the greatest prime factor of u and we put $P(\pm 1)=1$. We also take b to be l-th power free.

First we take $l=2$. In this case, if $k=3, d=1$, then (1.1) has no solution except when $n \in\{1,2,48\}$. We refer to [17] for the details and history. Fermat showed that there are no four squares in arithmetic progression. Euler proved the more general result that a product of four terms in an arithmetic progression can never be a perfect square. Obláth [11] extended this result to the case $k=5$. Erdős [4] and Rigge [14], independently showed that a product of two or more consecutive integers is never a perfect square. Recently, Saradha and Shorey [19] proved that a product of four or more terms in an arithmetic progression can never be a perfect square provided that d is a power of a prime number.

Now we take $l \geq 3$. Erdős and Selfridge [5] proved the remarkable result that a product of two or more consecutive integers can never be a perfect power. When $d=1$, it was proved by Saradha [16] for $k \geq 4$ and by Győry [8] for $k=2,3$

[^0]that (1.1) has no solution with $P(y)>k$. Győry [9] showed that (1.1) for $k=3$ does not hold whenever $P(b) \leq 2$. His proof depends on the works of Wiles [26], Darmon and Merel [3] and Ribet [13] on generalized Fermat equations. In this result by Győry $P(b) \leq 2$ cannot be replaced by $P(b) \leq 3$; for $(k, l)=(3,3)$ equation (1.1) has infinitely many solutions with $P(b)=3$, see Tijdeman [25]. Saradha and Shorey [18] showed that (1.1) with $k \geq 4, P(b)<k$ implies that d has a prime factor $\equiv 1$ $\bmod l$. Thus (1.1) with $k \geq 4, P(b)<k$ and $l \geq 3$ has no solution, if d has only the prime factors 2,3 and 5 .

In this paper we show that for $k=4,5$ and $b=1,(1.1)$ has no solution. In other words,

Theorem 1 Equation (1.1) with $k=4,5$ and $b=1$ does not hold.
This gives an answer to a problem proposed by Guy; see D17 in his book [6]. In fact, for $l \geq 3$ we show more.

Theorem 2

(i) Let $k=4$. Then (1.1) with $l \geq 3$ and $P(b) \leq 2$ implies that l has a prime factor >3 and $8 \| \Pi$.
(ii) Let $k=5$. Then (1.1) with $l \geq 3$ and $P(b) \leq 2$ implies that l has a prime factor >3. Further, we have either $8 \| \Pi$ or $16|\mid \Pi$.

As will be seen below, for certain applications equation (1.1) is interesting also in the case when n and b are not necessarily positive integers, and $P(b) \leq 3$. We present some results ($c f$. Theorems 8-10) with these more general settings in Section 2. Theorems 1 and 2 will be simple consequences of our Theorems 8 and 9.

Now we consider the equation

$$
\begin{equation*}
x(x+1) \cdots(x+k-1)= \pm 2^{\alpha} z^{l} \tag{1.2}
\end{equation*}
$$

in rational numbers x and $z \geq 0$, and integers $k \geq 2, l \geq 2$ and α with $-l<\alpha<l$. We may restrict ourselves to the case $0 \leq \alpha<l$ by replacing in (1.2) α, z by $l-\alpha, z / 2$, respectively. If x and z are integers and $\alpha=0$, then by the result of Erdős and Selfridge, we see that $x=-j, z=0$ for $0 \leq j<k$ are the only solutions. These are also the solutions of (1.2) for each α; they will be called trivial. In what follows, we shall deal only with non-trivial solutions. Equation (1.2) was first considered by Sander [15], who studied it for $2 \leq k \leq 4$ and $\alpha=0$. By putting $x=n / d$ and $z=y / y_{1}$ with $\operatorname{gcd}(n, d)=\operatorname{gcd}\left(y, y_{1}\right)=1, d>0, y \geq 0$ and $y_{1}>0$, we see that (1.2) reduces to

$$
\begin{equation*}
n(n+d) \cdots(n+(k-1) d)= \pm 2^{\beta} u^{l} ; v^{l}=2^{\gamma} d^{k} \tag{1.3}
\end{equation*}
$$

where $(u, v)=\left(y, y_{1}\right)$ and $\beta+\gamma=\alpha$ for some non-negative integers β and γ. Thus solving (1.2) for rational values x and $z \geq 0$ is equivalent to solving equation (1.1) with $P(b) \leq 2$ for integers $n, y \geq 0$ and $d>0$ with the additional restriction that $2^{\gamma} d^{k}$ is an l-th power. With the help of our general Theorems 8 to 10 we shall prove:

Theorem 3 Let $2 \leq k \leq 18$ and $l \geq 3$ with $\operatorname{gcd}(l, k)=1$. Then (1.2) with $z \neq 0$ implies $k=2$ and $(x, z, \alpha)=(-1 / 2,1 / 2, l-2),(-2,1,1),(1,1,1)$.

For small values of k we can remove the condition $\operatorname{gcd}(l, k)=1$. In the cases $k=2,3,4$ and $\alpha=0$, Sander [15] proved that (1.2) has no solution. We find, however, in Theorem 4 below that for $k=l=3$ there are two solutions which are missing from the corresponding Proposition 2 of [15]. Hence Conjecture 1 of Sander [15] stating that for $k \geq 3$, (1.2) with $\alpha=0$ has only the trivial solutions, should be modified accordingly. We also completely solve (1.2) with $\alpha=0$ for $k=5$, a new result. Thus we have:

Theorem 4 Let $2 \leq k \leq 5$ and $l \geq 3$. Then the only non-trivial solutions of (1.2) with $\alpha=0$ are given by $k=l=3$ and $(x, z)=(-2 / 3,2 / 3),(-4 / 3,2 / 3)$.

For (1.2) when $\alpha \neq 0$ we show:
Theorem 5 Let k and l be as in Theorem 4, with the assumption that $l \neq 4$ if $k=2$. Let $\alpha>0$.
(i) If $k=2$, then equation (1.2) has the only non-trivial solutions

$$
(x, z, \alpha)=(-1 / 2,1 / 2, l-2),(-2,1,1),(1,1,1)
$$

(ii) If $k=3,4$ then (1.2) has no non-trivial solution.
(iii) If $k=5$, then (1.2) implies that $l=5$ and $\alpha \in\{3,4\}$.

Remark The assumption that $l \neq 4$ if $k=2$ is necessary. It is well-known that there are infinitely many triples (p, q, r) of positive integers with $\operatorname{gcd}(p, q, r)=1$ satisfying $2 p^{4}-q^{4}=r^{2}$ (see e.g., [12, pp. 152-164]). By putting $x=q^{4} / r^{2}$, we see that (1.2) with $k=2, \alpha=1$ and $l=4$ has infinitely many solutions in (x, z).

So far we have given complete solutions of (1.1) or (1.2) for small values of k. Now we present some finiteness results on (1.1). For a complete survey on such results we refer to [2, 9, 22, 23, 25]. By applying Faltings' theorem, Darmon and Granville [2] showed that (1.1) with $b=1, k \geq 3, l \geq 4$ fixed has only finitely many solutions in n, d, y. We refine this result and extend it to the case $b>1$.

Theorem 6 For fixed $k \geq 3$ and $l \geq 2$ with $k+l>6$, equation (1.1) has only finitely many solutions in n, d, b, y.

Theorem 6 is best possible in the sense that for fixed $k \geq 3, l \geq 2$ with $k+l \leq 6$, (1.1) has in each case infinitely many solutions; cf. Tijdeman [25]. From the proof of Theorem 6, we observe that the above result is valid for the solutions of (1.1) with $n<0$ as well.

Shorey [22] proved that if $d>1$ and $l \geq 4$ then the abc-conjecture implies that k is bounded by an absolute constant. We refine this result as

Theorem 7 The abc-conjecture implies that (1.1) with $d>1, k \geq 3$ and $l \geq 4$ has only finitely many solutions in n, d, k, b, y, l.

We note that if we use an effective variant of the $a b c$-conjecture, then the above theorem is also effective. The restriction $d>1$ is obviously necessary; for $d=1$ and $n=1,(1.1)$ is solvable for every $k \geq 2$.

2 A Generalization of Equation (1.1)

In this section we consider the following generalization of equation (1.1):

$$
\begin{equation*}
\Pi=\Pi(n, d, k)=n(n+d) \cdots(n+(k-1) d)=b y^{l} \tag{2.1}
\end{equation*}
$$

in non-zero integers n, b and in $d>0, y>0, l \geq 2, k \geq 2$ with $\operatorname{gcd}(n, d)=1$, $P(b) \leq k$. Further, to make the representation $b y^{l}$ unique we assume here and in Theorems $8-10$ that y is not divisible by primes $\leq k$. Thus while considering (2.1), b is not taken as l-th power free. We note that if n, d, b, y is a solution of (2.1) then so is $-n-(k-1) d, d,(-1)^{k} b, y$.

In what follows, $\nu_{p}(u)$ denotes the order of p in u for any prime p and non-zero integer u.

Theorem 8 Suppose equation (2.1) holds.
(i) Let $k=3$ and $l \geq 3$. Then either

$$
(n, d, b, y) \in\{(-4,3,8,1),(-2,3,-8,1)\}
$$

or $l \nmid \nu_{3}(b)$. Moreover, if $P(l)>3$, then $\nu_{2}(b) \leq 5$.
(ii) Let $k=4$ and suppose that $P(l)>3$. Then $\nu_{3}(b)>0$, and either $\nu_{2}(b)=0$, $l \nmid \nu_{3}(b)$ or $\nu_{2}(b)=3$.
(iii) Let $k=5$. Suppose that $P(l)>3$, and that $l \mid \nu_{5}(b)$. Then $\nu_{3}(b)>0$, and either $\nu_{2}(b)=0, l \nmid \nu_{3}(b)$ or $\nu_{2}(b)=3$ or 4.

Remark For $k=3, \nu_{2}(b) \leq 5$ is sharp as is shown by the example

$$
2(2+7)(2+2 \cdot 7)=3^{2} \cdot 2^{5}
$$

Similarly, for $k=4, \nu_{2}(b)=3$ is sharp since $1 \cdot 2 \cdot 3 \cdot 4=3 \cdot 2^{3}$. For $(k, l)=(3,3)$ and $\nu_{3}(b)=1,2$, it is known that (2.1) has infinitely many solutions which can be seen by taking $b=3,6,36$; $c f$. Tijdeman [25].

For the cases $l=3,4$ we prove:

Theorem 9

(i) Let $l=3$. Then equation (2.1) with $k=4$ has only the solutions
$(n, d, b, y)=(-6,5,216,1),(-9,5,216,1),(-3,2,9,1),(1,1,24,1),(-4,1,24,1)$.
Further, (2.1) has no solution with $k=5,3 \mid \nu_{5}(b)$.
(ii) Let $l=4$ and $4\left|\nu_{3}(b), 4\right| \nu_{5}(b)$. Then equation (2.1) does not hold with $k=4,5$.

Theorem 10 Let $d=2^{h} d_{1}^{l}(h \geq 0), l \mid \nu_{p}(b)$ for each prime p with $3 \leq p \leq k$. Suppose that $2 \leq k \leq 18$ if $\nu_{2}(d)<4$, and let $2 \leq k \leq 30$ otherwise, i.e., if $\nu_{2}(d) \geq 4$. Further, in the latter case we suppose that l has a prime factor >3. Then the only solutions of (2.1) are as follows: $k=2$ and $(n, d, b, y)=(-2,1,2,1),(1,1,2,1)$, $(-1,2,-1,1)$.

3 Notation and Lemmas

By equation (2.1), we observe that if a prime $p>k$ divides Π, then it divides only one term in Π and $\nu_{p}(\Pi) \equiv 0 \bmod l$. Hence we deduce that

$$
\begin{equation*}
n+i d=a_{i} x_{i}^{l} \tag{3.1}
\end{equation*}
$$

with $P\left(a_{i}\right) \leq \max (P(b), k-1), x_{i}>0, a_{i} l$-th power free for $0 \leq i<k$. Also we have $\operatorname{gcd}\left(x_{i}, x_{j}\right)=1$ for each $i \neq j$ if $2^{l} \geq k$. Further,

$$
\begin{equation*}
n+i d=A_{i} X_{i}^{l} \tag{3.2}
\end{equation*}
$$

with $P\left(A_{i}\right) \leq k, X_{i}>0, \operatorname{gcd}\left(X_{i}, \prod_{p \leq k} p\right)=1$ for $0 \leq i<k$. Note that $\operatorname{gcd}\left(X_{i}, X_{j}\right)=1$ for each $i \neq j$. We need several lemmas for the proofs of our theorems. We begin with a result by Győry [9].

Lemma 1 Equation (1.1) with $k=3, l>2$ and $P(b) \leq 2$ has no solution.
Győry derives the above result as a consequence of the following statement (cf. [9, Theorem G]) on a generalized Fermat equation.

Lemma 2 Let $l \geq 3, \alpha \geq 0$ be integers. Then the equation

$$
x^{l}+y^{l}=2^{\alpha} z^{l}
$$

in relatively prime integers $x, y, z \geq 1$ has no solution for $\alpha \neq 1$, and for $\alpha=1$ the equation has only the trivial solution $x=y=z=1$. Further, the equation

$$
x^{l}-y^{l}=2^{\alpha} z^{l}
$$

has no solution in relatively prime integers $x, y, z \geq 1$.
The above result was established by Wiles [26] for $\alpha \equiv 0 \bmod l$, by Darmon and Merel [3] for $\alpha \equiv 1 \bmod l$, and by Ribet [13] for $\alpha \not \equiv 0,1 \bmod l$ and $l \geq 5$ prime. For the other cases, see Győry [9].

In [18], Saradha and Shorey gave the following result on a more general Fermat equation by using the contributions of Wiles [26], Ribet [13] and others. The first such results were due to Serre [10] and Kraus [21]; see also Sander [15, p. 432].

Lemma 3 Let lbe a positive integer having a prime factor >3. Suppose that a, b, c are non-zero integers such that either $P(a b c) \leq 3$ or a, b, c are composed of only 2 and 5 . Then the equation

$$
a x^{l}+b y^{l}=c z^{l}
$$

in non-zero integers x, y, z with $\operatorname{gcd}\left(a x^{l}, b y^{l}, c z^{l}\right)=1, \nu_{2}\left(b y^{l}\right) \geq 4$ has no solution.
Bennett and Skinner [1] proved the following:
Lemma 4 The only solution to the equation

$$
x^{l}+y^{l}=2 z^{2}
$$

in integers x, y, z, l with $\operatorname{gcd}(x, y, z)=1, x>y, l \geq 4$ is $(x, y, z, l)=(3,-1, \pm 11,5)$.
We shall also use the following consequence of Lemma 4.
Lemma 5 The equation

$$
x^{l}-y^{l}=2 z^{2}
$$

in integers x, y, z, l with $\operatorname{gcd}(x, y, z)=1, x>y$ and $l \geq 4$ even with $l \neq 6$ has no solution.

Proof Suppose that the equation holds. We may assume that x, y, z are positive. Let $l=2^{k} l_{1}$ with $k \geq 1, l_{1}$ odd. If $k \geq 2$, we arrive at a contradiction by (iii) of Lemma 7 below. Hence $k=1$ and $l_{1} \geq 5$ odd. We now deduce that either

$$
x^{l_{1}}+y^{l_{1}}=2 z_{1}^{2}, x^{l_{1}}-y^{l_{1}}=z_{2}^{2}
$$

or

$$
x^{l_{1}}+y^{l_{1}}=z_{1}^{2}, x^{l_{1}}-y^{l_{1}}=2 z_{2}^{2}
$$

with some positive integers z_{1}, z_{2}, which is impossible by Lemma 4.
We also need results on several cubic and quartic equations. Cubic equations were extensively studied by Selmer [20] in a long paper. We present here results on these cubic equations which we come across in the proofs of our theorems. The study of quartic equations dates back to Euler. We refer to the book of Ribenboim [12, pp. 164-177], for the quartic equations we are interested in here.

Lemma 6 The equations

$$
x^{3}+2 y^{3}=3 z^{3} ; \quad x^{3}+4 y^{3}=3 z^{3}
$$

have no solution in non-zero integers x, y, z with $\operatorname{gcd}(x, y, z)=1$ and $|x y z|>1$, and the equations

$$
x^{3}+y^{3}=3 z^{3} ; \quad x^{3}+y^{3}=4 z^{3} ; \quad x^{3}+4 y^{3}=9 z^{3}
$$

have no solution in non-zero integers x, y, z with $\operatorname{gcd}(x, y, z)=1$.

Lemma 7 Let x, y, z be positive integers with $\operatorname{gcd}(x, y, z)=1$ and $\alpha \geq 0$ an integer.
(i) If $x^{4}-2^{\alpha} y^{4}=z^{2}$, then $\alpha \equiv 1 \bmod 4$.
(ii) If $2^{\alpha} x^{4}-y^{4}=z^{2}$, then $\alpha \equiv 1 \bmod 4$.
(iii) $x^{4}-y^{4}=2^{\alpha} z^{2}$ is impossible.
(iv) If $x^{4}+y^{4}=2^{\alpha} z^{2}$, then $x=y=z=1$.

Lemma 8 Let (2.1) be valid, and suppose that $l \mid \nu_{p}(b)$ for each prime p with $3 \leq$ $p \leq k$. There exist indices i, j with $0 \leq i<j<k$ such that in (3.1)

$$
\begin{equation*}
a_{i}=\tau_{i} 2^{\alpha_{i}}, a_{j}=\tau_{j} 2^{\alpha_{j}}, j-i=2^{\delta} \text { for } 2 \leq k \leq 18 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i}=\tau_{i}, a_{j}=\tau_{j}, j-i=2^{\varrho} 3^{\varepsilon} \text { or } 2^{\varrho} 5^{\varepsilon} \text { for } 2 \leq k \leq 30 \text { if } d \text { is even. } \tag{3.4}
\end{equation*}
$$

Here $\alpha_{i}, \alpha_{j}, \delta, \varrho, \varepsilon$ denote some non-negative integers, and τ_{i}, τ_{j} may assume ± 1.
Proof of Lemma 8 The assertion can be easily checked for $k \leq 6$. We explain the case $k=7$ and d odd. We observe that in this case $7 \nmid a_{i}$ for $0 \leq i<k$. Further we have either 5 not dividing any a_{i} or 5 dividing a_{0}, a_{5} or 5 dividing a_{1}, a_{6}. Suppose $5 \nmid a_{i}$ for $0 \leq i<k$. Then the statement follows with $i=0, j=1$ if $3 \nmid a_{0} a_{1} ; i=1$, $j=2$ if $3 \mid a_{0} ; i=0, j=2$ if $3 \mid a_{1}$. Hence we may assume that 5 divides either a_{0}, a_{5} or a_{1}, a_{6}. The assertion follows with $i=2, j=3$ if $3 \nmid a_{2} a_{3}$, with $i=3, j=4$ if $3 \mid a_{2}$, and with $i=4, j=5$ if $3 \mid a_{3}$. This procedure has been programmed and (3.3) is checked. When d is even we observe that all the a_{i} s are odd and we check that (3.4) is valid for $k \leq 30$. The largest cases $k=29,30$ took 8 hours of computation.

4 Proofs of Theorems 8-10

We will use the notation introduced in the previous section without any further mention.

Proof of Theorem 8 Suppose equation (2.1) holds. For $k=3,4$ and for $k=5$ with $l \mid \nu_{5}(b),(3.2)$ can be modified such that $n+i d=A_{i} X_{i}^{l}$ with

$$
\begin{equation*}
A_{i}=\tau_{i} 2^{\alpha_{i}} 3^{\beta_{i}}, \tau_{i}= \pm 1, X_{i}>0, \operatorname{gcd}\left(X_{i}, 6\right)=1 \text { for } 0 \leq i<k \tag{4.1}
\end{equation*}
$$

Let $\alpha=\max \left(\alpha_{0}, \ldots, \alpha_{k-1}\right)$.
(i): Let $k=3$. First we show that in this case $l \nmid \nu_{3}(b)$. We assume that

$$
\begin{equation*}
(n, d, b, y) \notin\{(-4,3,8,1),(-2,3,-8,1)\} . \tag{4.2}
\end{equation*}
$$

Suppose to the contrary that $l \mid \nu_{3}(b)$. Then $\beta_{i}=l t_{i}$ with non-negative integers t_{i} among which at least two are zero. By Lemma 1, we may suppose that $n<0$ and
$n+2 d>0$. In view of $\operatorname{gcd}(n, d)=1$ we infer that $(n, n+d)=(n+2 d, n+d)=1$ and $(n, n+2 d)=1$ or 2 .

If $n+d$ is even, then $n, n+2 d$ are odd and we deduce from (4.1) that

$$
n+d=\tau_{1} 2^{\alpha_{1}}\left(3^{t_{1}} X_{1}\right)^{l}, n=-\left(3^{t_{0}} X_{0}\right)^{l}, n+2 d=\left(3^{t_{2}} X_{2}\right)^{l}
$$

with $\tau_{1}= \pm 1$ and $\alpha_{1} \geq 1$. Then

$$
\begin{equation*}
-\left(3^{t_{0}} X_{0}\right)^{l}+\left(3^{t_{2}} X_{2}\right)^{l}=\tau_{1} 2^{\alpha_{1}+1}\left(3^{t_{1}} X_{1}\right)^{l} \tag{4.3}
\end{equation*}
$$

By Lemma 2 we obtain that there is no solution in this case.
If $n+d$ is odd then there are two subcases to be distinguished. If n and $n+2 d$ are also odd then we arrive at equation (4.3) with $\alpha_{1}=0$, which leads to a contradiction.

Assume now that n and $n+2 d$ are even. Then we get from (4.1) that

$$
\begin{equation*}
n+d=\tau_{1}\left(3^{t_{1}} X_{1}\right)^{l}, \quad n=-2^{\alpha_{0}}\left(3^{t_{0}} X_{0}\right)^{l}, \quad n+2 d=2^{\alpha_{2}}\left(3^{t_{2}} X_{2}\right)^{l} \tag{4.4}
\end{equation*}
$$

where $\tau_{1}= \pm 1, \alpha_{0}, \alpha_{2} \geq 1$ such that one of α_{0}, α_{2} equals 1 , and $3^{t_{0}} X_{0}, 3^{t_{1}} X_{1}, 3^{t_{2}} X_{2}$ are relatively prime odd positive integers. If $\alpha_{2}=1$, then we obtain that

$$
-2^{\alpha_{0}-1}\left(3^{t_{0}} X_{0}\right)^{l}+\left(3^{t_{2}} X_{2}\right)^{l}=\tau_{1}\left(3^{t_{1}} X_{1}\right)^{l}
$$

which by Lemma 2 gives $\alpha_{0}=2, \tau_{1}=-1, t_{i}=0$ for $i=0,1,2$ and $X_{0}=X_{1}=$ $X_{2}=1$. We infer from (4.4) that $(n, d, b, y)=(-4,3,8,1)$ which is excluded.

Finally, if $\alpha_{0}=1$ then

$$
-\left(3^{t_{0}} X_{0}\right)^{l}+2^{\alpha_{2}-1}\left(3^{t_{2}} X_{2}\right)^{l}=\tau_{1}\left(3^{t_{1}} X_{1}\right)^{l}
$$

and Lemma 2 implies that $\alpha_{2}=2, \tau_{1}=1, t_{i}=0$ for $i=0,1,2, X_{0}=X_{1}=X_{2}=1$. Then, by (4.4) we get $(n, d, b, y)=(-2,3,-8,1)$ which is excluded. So if (4.2) holds, then $l \nmid \nu_{3}(b)$.

Assume now that l has a prime factor >3. We may suppose that d is odd since otherwise $\nu_{2}(b)=0$. Further, we have

$$
\begin{equation*}
A_{0} X_{0}^{l}+A_{2} X_{2}^{l}=2 A_{1} X_{1}^{l} \tag{4.5}
\end{equation*}
$$

If $\alpha=1$, then clearly $\nu_{2}(b) \leq 2$. Assume that $\alpha>1$. We observe that

$$
\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right) \in\{(\alpha, 0,1),(1,0, \alpha),(0, \alpha, 0)\}
$$

Now we apply Lemma 3 to (4.5) to get $\alpha \leq 4$. Hence $\nu_{2}(b) \leq 5$.
(ii): Let $k=4$. In case of $\nu_{3}(b)=0$, i.e. if

$$
\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)=(0,0,0,0)
$$

we can use the results just proved for $k=3$ to show that there is no solution. Hence $\nu_{3}(b)>0$. Further, we have

$$
\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\{(0,0,0,0),(\alpha, 0,1,0),(1,0, \alpha, 0),(0, \alpha, 0,1),(0,1,0, \alpha)\}
$$

If d is even, then $\nu_{2}(b)=0$. Suppose $l \mid \nu_{3}(b)$. Then we have

$$
\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right) \in\{(t l-1,0,0,1),(1,0,0, t l-1)\}
$$

for some integer $t>0$. In both cases we see that

$$
\tau_{1} \tau_{2}\left(X_{1} X_{2}\right)^{l}-\tau_{0} \tau_{3}\left(3^{t} X_{0} X_{3}\right)^{l}=(n+d)(n+2 d)-n(n+3 d)=2 d^{2}
$$

As $X_{i}>0(i=0,1,2,3)$, this equation has no non-trivial solution by Lemmas 4 and 5. Thus $l \nmid \nu_{3}(b)$.

Let d be odd. Then $\alpha>1$, whence $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \neq(0,0,0,0)$. We take $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(\alpha, 0,1,0)$, in the other cases the proof is similar. We apply Lemma 3 to the equation

$$
2 A_{0} X_{0}^{l}+A_{3} X_{3}^{l}=2 n+(n+3 d)=3(n+d)=3 A_{1} X_{1}^{l}
$$

to get $\alpha \leq 2$. As clearly $\alpha \geq 2$, thus $\nu_{2}(b)=3$ and part (ii) is proved.
(iii): Let $k=5$ and $P(b)<5$. Then we have

$$
\begin{aligned}
\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \in\{(0,0,0,0,0) & (\alpha, 0,1,0,2), \\
& (2,0,1,0, \alpha) \\
& (1,0, \alpha, 0,1),(0, \alpha, 0,1,0),(0,1,0, \alpha, 0)\}
\end{aligned}
$$

Suppose $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=(0,0,0,0,0)$. Then we argue as in the case $k=4$ to see that $l \nmid \nu_{3}(b)$. In the next two possibilities, we observe that $\alpha>2$. On the other hand, applying Lemma 3 to the equations obtained from the equalities

$$
2 n+(n+3 d)=3(n+d) \text { and }(n+d)+2(n+4 d)=3(n+3 d)
$$

we get $\alpha \leq 2$, a contradiction. For the last three quintuples we apply Lemma 3 to the equations obtained from

$$
(n+i d)+(n+(i+2) d)=2(n+(i+1) d), i=1,0,2
$$

respectively, to find $\alpha \leq 2$. As $\alpha \geq 2$, we get $\nu_{2}(b)=3$ or 4 .
Further, if $\beta_{i}=0$ for $i=0, \ldots, 4$, then by part (ii) of the theorem, (2.1) has no solution with $k=5$. Thus $\nu_{3}(b)>0$, and (iii) is also proved.

Proof of Theorem 9 Suppose that (2.1) holds. Since $k=4$ or 5, we can modify (3.2) so that $n+i d=A_{i} X_{i}^{l}$ and

$$
A_{i}=\tau_{i} 2^{\alpha_{i}} 3^{\beta_{i}} \text { with } \tau_{i}= \pm 1, X_{i}>0, \operatorname{gcd}\left(X_{i}, 6\right)=1 \text { for } i=0,1, \ldots, k-1
$$

Further, we have $\operatorname{gcd}\left(X_{i}, X_{j}\right)=1$ whenever $i \neq j$.
Assume first that $k=4$. Let $\alpha=\max \left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, and observe that $\alpha=0$ or $\alpha \geq 2$. Moreover, we have

$$
\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\{(0,0,0,0),(\alpha, 0,1,0),(1,0, \alpha, 0),(0, \alpha, 0,1),(0,1,0, \alpha)\}
$$

Let $l=3$. Suppose first that $\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)=(0,0,0,0)$. Then we may apply part (i) of Theorem 8 to the first three factors of the left hand side of (2.1) to prove that there is no solution in this case. Thus we may assume that

$$
\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right) \in\{(1,0,0, \beta),(\beta, 0,0,1),(0, \beta, 0,0),(0,0, \beta, 0)\}
$$

with $\beta \geq 1$.
Using one of the equalities

$$
A_{0} X_{0}^{3}+A_{2} X_{2}^{3}=2 A_{1} X_{1}^{3}, \quad A_{1} X_{1}^{3}+A_{3} X_{3}^{3}=2 A_{2} X_{2}^{3}
$$

or

$$
2 A_{0} X_{0}^{3}+A_{3} X_{3}^{3}=3 A_{1} X_{1}^{3}, \quad A_{0} X_{0}^{3}+2 A_{3} X_{3}^{3}=3 A_{2} X_{2}^{3}
$$

we can reduce each of the 20 cases arising to one of the cubic equations in Lemma 6. Hence by this lemma, we get all the solutions listed in the theorem in this case.

Let $l=4$. If $4 \mid \beta_{i}$ for some i and $\beta_{j}=0$ for each $j \neq i$, then we may use again part (i) of Theorem 8 to conclude that there is no solution. There remains the case $\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)=\left(\beta_{0}, 0,0, \beta_{3}\right)$ with positive β_{0}, β_{3} such that $4 \mid\left(\beta_{0}+\beta_{3}\right)$. Further, we have $3 \nmid d$. In what follows, we assume that $\beta_{0}=4 t-1(t \in \mathbb{N}), \beta_{3}=1$. In the opposite case $\beta_{0}=1, \beta_{3}=4 t-1(t \in \mathbb{N})$, we can argue in a similar way.

When

$$
\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\{(0,0,0,0),(1,0, \alpha, 0),(\alpha, 0,1,0)\}
$$

by using the relation $2 A_{0} X_{0}^{4}+A_{3} X_{3}^{4}=3 A_{1} X_{1}^{4}$, we get the equations

$$
\begin{gathered}
2\left(3^{2 t-1} X_{0}^{2}\right)^{2}=\tau_{0} \tau_{1} X_{1}^{4}-\tau_{0} \tau_{3} X_{3}^{4} \\
4\left(3^{2 t-1} X_{0}^{2}\right)^{2}=\tau_{0} \tau_{1} X_{1}^{4}-\tau_{0} \tau_{3} X_{3}^{4} \\
2^{\alpha+1}\left(3^{2 t-1} X_{0}^{2}\right)^{2}=\tau_{0} \tau_{1} X_{1}^{4}-\tau_{0} \tau_{3} X_{3}^{4}
\end{gathered}
$$

respectively, which are all impossible by Lemma 7.
In case of $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(0, \alpha, 0,1)$ we apply $A_{0} X_{0}^{4}+2 A_{3} X_{3}^{4}=3 A_{2} X_{2}^{4}$ to obtain

$$
\tau_{0} 3^{4 t-2} X_{0}^{4}+\tau_{3} 4 X_{3}^{4}=\tau_{2} X_{2}^{4}
$$

which by $2 \nmid X_{i}(i=0,1,2,3)$ leads to a contradiction $\bmod 16$.
Finally, suppose that $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(0,1,0, \alpha)$. We have $\left(A_{0}, A_{1}, A_{2}, A_{3}\right)=$ $\left(\tau_{0} 3^{4 t-1}, \tau_{1} 2, \tau_{2}, \tau_{3} 2^{\alpha} 3\right)$. By $2 A_{0} X_{0}^{4}+A_{3} X_{3}^{4}=3 A_{1} X_{1}^{4}$, we get

$$
\tau_{0} 3^{4 t-2} X_{0}^{4}+\tau_{3} 2^{\alpha-1} X_{3}^{4}=\tau_{1} X_{1}^{4}
$$

As $2 \nmid X_{i}$, the equation mod 16 gives $\alpha=4$. However, the relation $A_{0} X_{0}^{4}+2 A_{3} X_{3}^{4}=$ $3 A_{2} X_{2}^{4}$ yields

$$
\tau_{0} 3^{4 t-2} X_{0}^{4}+\tau_{3} 32 X_{3}^{4}=\tau_{2} X_{2}^{4}
$$

which is impossible mod 16.
Now we take $k=5$. If $l=3$ then we may apply the statement proved above for $k=4$ to the first four factors of the left hand side of (2.1) and the assertion follows. When $l=4$, the problem can be reduced to the case $k=4$ by considering the first or last four factors of the left hand side of (2.1), according as $3 \mid n$ or $3 \nmid n$. Then the statement immediately follows from the result just proved above for $k=4$.

Proof of Theorem 10 Suppose first that $\nu_{2}(d)<4$ and $2 \leq k \leq 18$. Write $d_{1}=$ $2^{h_{1}} d_{2}$ with d_{2} odd. Hence $d=2^{h+l h_{1}} d_{2}^{l}$; put $h_{0}=h+l h_{1}$. By Lemma 8 , there exist i, j with $0 \leq i<j<k$ such that (3.1) and (3.3) hold. Further, if p^{β} divides x_{i} and x_{j} for some prime p and integer $\beta>0$, then $p^{\beta l} \mid(j-i) d$ implying $p^{\beta l} \mid(j-i)$. Hence $p^{\beta l} \leq 17$ giving $p=2, \beta=1, l=3 ; p=2, \beta=1, l=4$. Thus we have

$$
\tau_{j} 2^{\alpha_{j}} x_{j}^{l}-\tau_{i} 2^{\alpha_{i}} x_{i}^{l}=2^{\delta} d=2^{\delta+h_{0}} d_{2}^{l}
$$

Now we write $2^{\alpha_{i}} x_{i}^{l}=2^{t_{i}} z_{i}^{l}$ and $2^{\alpha_{j}} x_{j}^{l}=2^{t_{j}} z_{j}^{l}$ with z_{i} and z_{j} odd. Then by the preceding observation we see that $\operatorname{gcd}\left(z_{i}, z_{j}\right)=1$. Also

$$
2^{\delta+h_{0}} d_{2}^{l}=\tau_{j} 2^{t_{j}} z_{j}^{l}-\tau_{i} 2^{t_{i}} z_{i}^{l} .
$$

Since d_{2}, z_{i}, z_{j} are all odd, it follows that exactly two among $\delta+h_{0}, t_{i}, t_{j}$ are equal, and the third is greater than the others. Suppose $t_{i}=t_{j}$. Then

$$
2^{\delta+h_{0}-t_{i}} d_{2}^{l}=\tau_{j} z_{j}^{l}-\tau_{i} z_{i}^{l}
$$

Hence by Lemma 2 we have $d_{2}=z_{j}=z_{i}=1$, giving $d=2^{h_{0}}, \delta+h_{0}-t_{i}=1, n+i d=$ $\tau_{i} 2^{\delta+h_{0}-1}, n+j d=\tau_{j} 2^{\delta+h_{0}-1}$.

Suppose d is even. Then $n+i d=\tau_{i}, n+j d=\tau_{j}$ and $\delta+h_{0}=1$. Hence $h_{0}=1$ giving $d=2, n+2 i=-1, n+2 j=1$. It is easy to check that the only solution to (2.1) is given by $k=2$ and $(n, d, b, y)=(-1,2,-1,1)$. Suppose d is odd. Then $h_{0}=0$ giving $d=1$ and $\delta-t_{i}=1, n+i=\tau_{i} 2^{\delta-1}, n+j=\tau_{j} 2^{\delta-1}$. Using $\delta \leq 4$, we get for $k=2$ the solutions as $(n, d, b, y)=(-2,1,2,1)$ and $(1,1,2,1)$, and for $k \geq 3$ we check that there exists a prime $p>2$ with $p \| \Pi(n, 1, k)$. Hence equation (2.1) does not hold if $k \geq 3$. The argument for the cases $\delta+h_{0}=t_{i}$ or $\delta+h_{0}=t_{j}$ is similar.

Now let $\nu_{2}(d) \geq 4$ and $2 \leq k \leq 30$, and suppose that l is divisible by a prime >3. Then by (3.4) we have

$$
\tau_{j} x_{j}^{l}-\tau_{i} x_{i}^{l}=2^{\varrho} 3^{\varepsilon} d \text { or } 2^{\varrho} 5^{\varepsilon} d
$$

We apply Lemma 3 to see that (2.1) has no solution in this case.

5 Proofs of Theorems 1-5

Proof of Theorem 1 Let $k=4,5$. When $l=2$, the assertion is the result of Euler for $k=4$ and of Obláth for $k=5$. We observe from (1.1) that whenever $l \geq 3$, we may assume l to be a prime. The assertion for any prime $l \geq 5$ follows from Theorem 8 and for $l=3$ from Theorem 9. Hence the theorem follows for any $l \geq 2$.

Proof of Theorem 2 (i) Let $k=4$. Suppose (1.1) holds with $l \geq 3$ and $P(b) \leq 2$. From part (ii) of Theorem 8 , we find that $8 \| \Pi$ whenever l has a prime factor >3. For $l=3,4$ we apply Theorem 9 to see that (1.1) cannot hold with $P(b) \leq 2$. Hence the statement follows.
(ii) Let $k=5$. We apply part (iii) of Theorem 8 for $l \geq 5$ and Theorem 9 for $l=3,4$ to obtain the assertion.

Proof of Theorem 3 Suppose $2 \leq k \leq 18, l \geq 3$ with $\operatorname{gcd}(l, k)=1$ and equation (1.2) holds. Then (1.3) is valid. Further, from the second equality of (1.3) it follows that $d=2^{h} d_{1}^{l}(h \geq 0)$ since $\operatorname{gcd}(l, k)=1$. By Theorem 10 we get that (1.2) has only the solutions

$$
(x, z, \alpha)=(-1 / 2,1 / 2, l-2),(-2,1,1),(1,1,1)
$$

and the theorem is proved.
Proof of Theorem 4 Assume (1.2) with $\alpha=0$. Hence (1.3) is valid with $\beta=$ $\gamma=0$. By Theorem 3, we need to consider only the cases $k=l=3,4,5$ and $k=2, l=4$. For $k=l=3$, using part (i) of Theorem 8 we get $(n, d) \in$ $\{(-4,3),(-2,3)\}$, which gives $x=-4 / 3,-2 / 3$. By part (ii) of Theorem 9 and part (iii) of Theorem 8 we can exclude the possibilities $k=l=4$ and $k=l=5$, respectively. Finally, let $k=2, l=4$. Then by (1.3) and (3.1) we get

$$
a_{1} x_{1}^{4}-a_{0} x_{0}^{4}=v^{2}
$$

with $a_{0} a_{1}= \pm 1$. However, by using Lemma 7 one can easily see that there is no solution in this case.

Proof of Theorem 5 Assume (1.2) with $\alpha>0$. Then (1.3) is valid. By Theorem 3 we get all solutions for $k=2, l \geq 3$ prime, and we need to consider only $k=l=$ $3,4,5$ and $k=2, l=8$. Using part (i) of Theorem 8 we get that there is no solution with $k=l=3$. For $k=l=4$ and $k=l=5$ by part (ii) of Theorem 9 and part (iii) of Theorem 8, respectively, we get that the former case is excluded while in the latter case $\alpha=3,4$.

Finally, suppose that $k=2$ and $l=8$. Now (1.3) yields that $n= \pm 2^{\beta_{0}} x_{0}^{4}$ and $n+d= \pm 2^{\beta_{1}} x_{1}^{4}$ with $\left(\beta_{0}, \beta_{1}\right)=(\beta, 0)$ or $(0, \beta), x_{0}, x_{1}>0$ and $\operatorname{gcd}\left(x_{0}, x_{1}\right)=1$. Moreover, γ is even, and $v^{4}=2^{\gamma / 2} d$. Thus we obtain the equation

$$
\pm 2^{\beta_{0}} x_{0}^{4}+2^{-\gamma / 2} v^{4}= \pm 2^{\beta_{1}} x_{1}^{4}
$$

By Lemma 2 we get $x_{0}=x_{1}=v=1$, whence $d=1$ and $n=1$ or $n=-2$. Thus we obtain the solutions $(x, z, \alpha)=(1,1,1),(-2,1,1)$ which were already found, and the theorem follows.

6 Proofs of Theorems 6 and 7

Proof of Theorem 6 Since k and l are fixed and the a_{i} in (3.1) are l-th power free with $P\left(a_{i}\right) \leq k$, the coefficients a_{i} may assume only finitely many values. Fix a_{i} for $i=0, \ldots, k-1$.

We take j consecutive terms from the product $\Pi(n, d, k)$ in (1.1), say $n+i d, n+$ $(i+1) d, \ldots, n+(i+j-1) d$ with $i=0, j=k$ if $k=3$ or 4 , and $i \geq 0, j=5$ if $k \geq 5$. It follows from (3.1) and

$$
(n+i d)+(n+(i+2) d)=2(n+(i+1) d)
$$

that

$$
\begin{equation*}
\left(2 a_{i+1} x_{i+1}\right)^{l}=\left(2 a_{i+1}\right)^{l-1}\left(a_{i} x_{i}^{l}+a_{i+2} x_{i+2}^{l}\right) \tag{6.1}
\end{equation*}
$$

Further, if $k \geq 4$, then we get similarly

$$
\begin{equation*}
\left(2 a_{i+3} x_{i+3}\right)^{l}=\left(2 a_{i+3}\right)^{l-1}\left(-a_{i} x_{i}^{l}+3 a_{i+2} x_{i+2}^{l}\right) \tag{6.2}
\end{equation*}
$$

and if $k \geq 5$, then

$$
\begin{equation*}
\left(a_{i+4} x_{i+4}\right)^{l}=\left(a_{i+4}\right)^{l-1}\left(-a_{i} x_{i}^{l}+2 a_{i+2} x_{i+2}^{l}\right) \tag{6.3}
\end{equation*}
$$

Denote by $F_{1}\left(x_{i}, x_{i+2}\right), F_{2}\left(x_{i}, x_{i+2}\right), F_{3}\left(x_{i}, x_{i+2}\right)$ the right-hand side of (6.1), (6.2) and (6.3), respectively.

By assumption, $\operatorname{gcd}(n, d)=1$. Hence it is easy to see that $\operatorname{gcd}(n+i d, n+(i+2) d) \mid$ 2 , which implies that $\operatorname{gcd}\left(x_{i}, x_{i+2}\right)=1$.

First consider the case when $k \geq 5$. Then, by assumption $k+l>6$, hence we get $l \geq 2$. Multiplying the equations (6.1) to (6.3) and putting

$$
F\left(x_{i}, x_{i+2}\right)=\prod_{t=1}^{3} F_{t}\left(x_{i}, x_{i+2}\right)
$$

we arrive at the equation

$$
\begin{equation*}
F\left(x_{i}, x_{i+2}\right)=z^{l} \tag{6.4}
\end{equation*}
$$

with $z=4 a_{i+1} a_{i+3} a_{i+4} x_{i+1} x_{i+3} x_{i+4}$. Here F is a homogeneous polynomial in x_{i}, x_{i+2} with integral coefficients and with $3 l \geq 6$ pairwise linearly independent linear factors over $\left(\overline{\mathbb{O}}\right.$. Hence by [2 , Theorem 1] we see that x_{i}, x_{i+2}, z, and hence also x_{i+1}, x_{i+3}, x_{i+4} may assume only finitely many integral values. Since this is true for any five
consecutive terms in the product $\Pi(n, d, k)$, we see that all x_{i} with $0 \leq i<k$ assume only finitely many values. Thus n, d are bounded, and so b, y are also bounded.

Next assume that $k=4$. Then, by assumption, $l \geq 3$. In this case (6.1) and (6.2) imply (6.4) with the choice $i=0$,

$$
F\left(x_{0}, x_{2}\right)=\prod_{t=1}^{2} F_{t}\left(x_{0}, x_{2}\right) \text { and } z=4 a_{1} a_{3} x_{1} x_{3}
$$

Then Theorem 1 of [2] applies again to (6.4) and proves our theorem.
Finally, if $k=3$ and $l \geq 4$, then we can take in (6.4) $F\left(x_{0}, x_{2}\right)=F_{1}\left(x_{0}, x_{2}\right)$ and $z=2 a_{1} x_{1}$ and the assertion follows in the same way as before.

Proof of Theorem 7 We denote by c_{1}, \ldots, c_{8} explicitly computable absolute constants. We assume (1.1) with $d>1, k \geq 3$ and $l \geq 4$. We take $(n, d, k) \neq(2,7,3)$. Then by a theorem of Shorey and Tijdeman [24], $P(\Pi)>k$, whence $P(y)>k$. By a result of Shorey [22], the $a b c$-conjecture implies that $k \leq c_{1}$. We fix k with $3 \leq k \leq c_{1}$. For $0 \leq i<j<k-1$, we have

$$
(j-i)(n+(k-1) d)+(k-1-j)(n+i d)=(k-1-i)(n+j d)
$$

It is easy to see that the greatest common divisor of these three terms is at most k^{2}. Now we use (3.1) in the above equality and divide by the greatest common divisor to get

$$
\begin{equation*}
e_{k-1} x_{k-1}^{l}+e_{i} x_{i}^{l}=e_{j} x_{j}^{l} \tag{6.5}
\end{equation*}
$$

where e_{k-1}, e_{i}, e_{j} are coprime positive integers composed only of primes not exceeding k. Since $P(y)>k$, at least one of the numbers x_{0}, \ldots, x_{k-1}, say x_{i}, has a prime factor greater than k. Put $X=\max \left(x_{k-1}, x_{i}, x_{j}\right)$. We now apply the $a b c$-conjecture to (6.5) with $\varepsilon=1 / 4$ to get

$$
X^{l} \leq c_{2}\left(\prod_{p \leq k} p\right)^{5 / 4}\left(\prod_{p \mid x_{k-1} x_{i} x_{j}} p\right)^{5 / 4} \leq c_{3} X^{3 \cdot 5 / 4}
$$

Thus

$$
X^{l-3.75} \leq c_{3}
$$

As $X>1$ and $l \geq 4$, we obtain $l \leq c_{4}$ whence $X^{l} \leq c_{5}$. This means that in (6.5) x_{k-1}^{l}, x_{i}^{l} and x_{j}^{l} can assume only finitely many values. We fix such possible values of x_{k-1}^{l}, x_{i}^{l} and x_{j}^{l}. Then (6.5) becomes an S-unit equation for the set of primes $S=\{p \mid p \leq k\}$, which equation has only finitely many solutions in e_{k-1}, e_{i}, e_{j}, moreover $\max \left(e_{k-1}, e_{i}, e_{j}\right) \leq c_{6}$ (cf. [7]). Consequently,

$$
n+(k-1) d=a_{k-1} x_{k-1}^{l} \leq k^{2} e_{k-1} x_{k-1}^{l} \leq c_{7}
$$

Thus n, d, b, y are all bounded by c_{8}.

Remark In the above proof we used an effective version of the $a b c$-conjecture, when c_{2} is explicitly computable. For $l \geq 7$, we could also use the weak $a b c$-conjecture with $\varepsilon=1$ and $c_{2}=1$.

Acknowledgements We are grateful to Professor Shorey for his useful comments on an earlier version of the paper. We thank Professor Bennett for his kindness in providing us Lemma 4 prior to its publication. The third author wishes to thank the first two authors for their kind hospitality during her visit to Debrecen in May, 2001. The authors are indebted to the referee for his valuable and helpful remarks.

References

[1] M. Bennett and C. Skinner, Ternary Diophantine equations via Galois representations and modular forms. Canad. J. Math. 56(2004), 23-54.
[2] H. Darmon and A. Granville, On the equations $z^{m}=F(x, y)$ and $A x^{p}+B y^{q}=C z^{r}$. Bull. London Math. Soc. 27(1995), 513-543
[3] H. Darmon and L. Merel, Winding quotients and some variants of Fermat's last Theorem. J. Reine Angew. Math. 490(1997), 81-100.
[4] P. Erdős, Note on the product of consecutive integers (II). J. London Math. Soc. 14(1939), 245-249.
[5] P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power. Illinois J. Math. 19(1975), 292-301.
[6] R. K. Guy, Unsolved problems in number theory. Second edition, Springer-Verlag, New York, 1994.
[7] K. Győry, On the number of solutions of linear equations in units of an algebraic number field. Comment. Math. Helv. 54(1979), 583-600.
[8] K. Győry, On the diophantine equation $n(n+1) \cdots(n+k-1)=b x^{l}$. Acta Arith. 83(1998), 87-92.
[9] K. Győry, Power values of products of consecutive integers and binomial coefficients. In: Number Theory and Its Applications, Kluwer, 1999, pp. 145-156.
[10] A. Kraus, Majorations effectives pour l'équation de Fermat généralisée. Canad. J. Math. 49(1997), 1139-1161.
[11] R. Obláth, Über das Produkt fünf aufeinander folgender Zahlen in einer arithmetischer Reihe. Publ. Math. Debrecen 1(1950), 222-226.
[12] P. Ribenboim, Catalan's conjecture. Academic Press, Boston, MA, 1994.
[13] K. Ribet, On the equation $a^{p}+2^{\alpha} b^{p}+c^{p}=0$. Acta Arith. 79(1997), 7-16.
[14] O. Rigge, Über ein diophantisches Problem. In: 9th Congress Math. Scand., Helsingfors 1938, Mercator, 1939, pp. 155-160.
[15] J. W. Sander, Rational points on a class of superelliptic curves. J. London Math. Soc. 59(1999), 422-434.
[16] N. Saradha, On perfect powers in products with terms from arithmetic progressions. Acta Arith. 82(1997), 147-172.
[17] N. Saradha, Squares in products with terms in an arithmetic progression. Acta Arith. 86(1998), 27-43.
[18] N. Saradha and T. N. Shorey, Almost perfect powers in arithmetic progression. Acta Arith. 99(2001), 363-388.
[19] N. Saradha and T. N. Shorey, Almost squares in arithmetic progression. Compositio Math. 138(2003), 73-111.
[20] E. Selmer The diophantine equation $a x^{3}+b y^{3}+c z^{3}=0$. Acta Math. 85(1951), 205-362.
[21] J.-P. Serre, Sur les représentations modulaires de degré 2 de Gal($\overline{(0)} /(\mathbb{O})$). Duke Math. J. 54(1987), 179-230.
[22] T. N. Shorey, Exponential diophantine equations involving products of consecutive integers and related equations. In: Number Theory (eds. R. P. Bambah, V. C, Dumir and R. J. Hans-Crill), Hindustan Book Agency, 1999, pp. 463-495.
[23] T. N. Shorey, Mathematical Contributions. Bombay Mathematical Colloquium 15(1999), 1-19.
[24] T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression. In: A Tribute to Paul Erdős, Cambridge University Press, Cambridge, 1990, pp. 385-389.
[25] R. Tijdeman, Diophantine equations and diophantine approximations. In: Number Theory and Applications, Kluwer, 1989, pp. 215-243.
[26] A. Wiles, Modular elliptic curves and Fermat's Last Theorem. Ann. of Math. 141(1995), 443-451.

Number Theory Research Group
of the Hungarian Academy of Sciences, and Institute of Mathematics
University of Debrecen
P.O. Box 12
4010 Debrecen
Hungary
e-mail: gyory@math.klte.hu
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Mumbai 400005
India
e-mail: saradha@math.tifr.res.in

Number Theory Research Group of the Hungarian Academy of Sciences, and Institute of Mathematics
University of Debrecen
P.O. Box 12

4010 Debrecen
Hungary
e-mail: hajdul@math.klte.hu

[^0]: Received by the editors November 5, 2002.
 The first and second authors were supported in part by the Netherlands Organization for Scientific Research (NWO), the Hungarian Academy of Sciences and by grants T029330 and 042985 of the Hungarian National Foundation for Scientific Research (HNFSR). The first author also received support in part by grant T025157 of the HNFSR. The second author was also supported in part by the János Bolyai Research Fellowship, by grant F034981 of the HNFSR and by the FKFP grant 3272-13/066/2001.

 AMS subject classification: 11D41.
 (C)Canadian Mathematical Society 2004.

