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EXISTENCE OF POSITIVE EVANESCENT SOLUTIONS TO
SOME QUASILINEAR ELLIPTIC EQUATIONS
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Abstract

We establish that the elliptic equation

1u + f (x, u) + g(|x |)x · ∇u = 0,

defined in an exterior domain of Rn , n ≥ 3, has a positive solution which decays to 0 as |x | → +∞ under
quite general assumptions upon f and g.
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1. Introduction

Let us consider the quasilinear elliptic differential equation

1u + f (x, u) + g(|x |)x · ∇u = 0, x ∈ G A, (1)

where G A = {x ∈ Rn
: |x | > A}, A > 0 and n ≥ 3. The existence of positive solutions

of equation (1), either bounded or decaying to 0 (a phenomenon called evanescence),
has been investigated by several authors; see [1, 2, 4, 5, 9].

It has been established (see [1, 2]) that it is sufficient for the functions f , g to be
Hölder continuous or continuously differentiable in order to analyze the asymptotic
behavior of the solutions to equation (1) by the comparison method [7]. To set
the general hypotheses, we assume that there exist the continuous functions a :

[A, +∞) → [0, +∞) and w : [0, +∞) → [0, +∞) such that

0 ≤ f (x, u) ≤ a(|x |)w(u), x ∈ G A, u ∈ [0, ζ ], (2)

for a certain ζ > 0. We assume that w is monotone nondecreasing, w(0) = 0 and
w(u) > 0 for any u > 0.
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In [1, p. 150], A. Constantin asked also that w ∈ C1([0, +∞), [0, +∞)),∫
+∞

1

(
1

w(s)

)
ds = +∞,

and g be bounded. Then, in the circumstances given by the condition∫
+∞

A
s[a(s) + |g(s)|] ds < +∞, (3)

the existence of a positive solution to equation (1) was proved. In a further work
[2, p. 335], it was established that this positive solution actually decays to 0 as
|x | → +∞. By making use of the elementary inequality w(u) ≤ sup{|w′(s)| : s ∈

[0, ζ ]} · u for all u ∈ [0, ζ ], the integral condition regarding w was successfully
removed.

Another improvement was obtained by M. Ehrnström [4, Lemma 3.2] who
concluded that, still for w ∈ C1, the boundedness restriction upon g can be avoided.
Moreover, if g takes only nonnegative values, hypothesis (3) reduces to∫

+∞

A
sa(s) ds < +∞; (4)

see [4, Theorem 3.3].
It is important to remark at this point that by asking w to be merely continuous we

could cover cases such as that where w(u) = uλ for any u ∈ [0, 1] and λ ∈ (0, 1). A
result for simply continuous w’s was obtained in [5, Theorem 1]; however, its main
hypothesis is much more restrictive than (3) unless certain restrictions are imposed
upon g, for example limr→+∞ rg(r) > 0; see [5, Remark 2].

Our aim in this note is to demonstrate a variant of Constantin’s and Ehrnström’s
results in the case where w is only continuous and g is nonnegative-valued.

2. A special ordinary differential equation

In the spirit of [1, 4, 9], the heart of our proof relies upon a result concerning the
positive solutions to the ordinary differential equation

v′′
+ b(t)w

(
v

t

)
= 0, t ≥ t0 ≥ 1. (5)

PROPOSITION 1. Assume that the function b : [t0, +∞) → [0, +∞) is continuous
and such that ∫

+∞

t0
b(t) dt < +∞. (6)
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Then, given c > 0, equation (5) has a solution v(t) defined in [t0, +∞) that verifies
the inequalities

v(t) ≥ c, v′(t) ≤
v(t) − c

t
for all t ≥ t0,

and is developable as

v(t) = o(t) when t → +∞.

PROOF. Suppose that t0 ≥ 1 is large enough so that∫
+∞

t0
b(τ ) dτ ≤

c

w(2c)
. (7)

We introduce the set

D = {v ∈ C([t0, +∞), R) | c ≤ v(t) ≤ 2ct for every t ≥ t0}.

A partial order on D is given by the usual pointwise order ‘≤’, that is, we say that
v1 ≤ v2 if and only if v1(t) ≤ v2(t) for all t ≥ t0, where v1, v2 ∈ D. It is not hard to
see that (D, ≤) is a complete lattice.

For the operator V : D → C([t0, +∞), R) with the formula

V (v)(t) = c + t
∫

+∞

t

1

s2

∫ s

t0
τb(τ )w

(
v(τ)

τ

)
dτ ds, v ∈ D, t ≥ t0,

we may write

c ≤ V (v)(t) ≤ c + w(2c) · t
∫

+∞

t

1

s2

∫ s

t0
τb(τ ) dτ ds

= c + w(2c)t

[
1
t

∫ t

t0
τb(τ ) dτ +

∫
+∞

t
b(τ ) dτ

]
≤ c +

[
w(2c)

∫
+∞

t0
b(τ ) dτ

]
t ≤ 2ct,

leading to V (D) ⊆ D. We also notice that the operator V is isotone, that is,
V (v1) ≤ V (v2) whenever v1 ≤ v2.

Since c ≤ V (c), by applying the Knaster–Tarski fixed point theorem [3, p. 14], we
deduce that the operator V has a fixed point ṽ in D. This is the pointwise limit of the
sequence of functions (V n(c))n≥1, where V 1

= V and V n+1
= V n

◦ V .
Finally, we deduce that

ṽ′(t) = [V (ṽ) − c]′ =
ṽ(t) − c

t
−

1
t

∫ t

t0
b(τ )w

(
ṽ(τ )

τ

)
dτ

≤
ṽ(t) − c

t
, t ≥ t0.

The proof is complete. 2
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REMARK 1. It is not necessary that the solution ṽ of equation (5) obtained in
Proposition 1 be bounded. In fact, if we replace (6) with the stronger hypothesis∫

+∞

t0
tb(t) dt < +∞,

then L’Hospital’s rule yields

lim
t→+∞

ṽ(t) = lim
t→+∞

V (ṽ)(t) = c +

∫
+∞

t0
τb(τ )w

(
ṽ(τ )

τ

)
dτ

≤ c + w(2c)
∫

+∞

t0
τb(τ ) dτ < +∞.

The ordinary differential equation

v′′
+

1

t2
√

ln t

√
v = 0, t ≥ t0 = e2,

has the unbounded solution ṽ(t) = ln t in [t0, +∞) that verifies the conclusion of
Proposition 1. Here, b(t) = t−3/2(ln t)−1/2, w(u) =

√
u and c = 1.

REMARK 2. Proposition 1 is in perfect agreement with the conclusion of
[1, Lemma 2]. The latter result, however, uses in an essential manner the fact that
w ∈ C1. We mention that Constantin’s theorem provides an interesting complement to
old contributions by Staikos and Philos; see [8].

3. Positive solution to equation (1)

The following result is needed in our investigation.

PROPOSITION 2 (see [1, 4]). If there exist a nonnegative subsolution v1 and a positive
supersolution v2 to equation (1) in G A, such that v1(x) ≤ v2(x) for x ∈ G A, then (1)
has a solution u in G A such that v1 ≤ u ≤ v2 throughout G A. In particular, u = v2 on
|x | = A.

Our main contribution here is given next.

THEOREM 1. Assume that there exists α ∈ (0, 1) such that f ∈ Cα(M × J, R)

for every compact set M ⊂ G A and every compact interval J ⊂ R, and
g ∈ C1([A, +∞), [0, +∞)). Suppose further that (2) and (4) hold true.

Then equation (1) has a positive solution u, defined in G B for some B > A, such
that lim|x |→+∞ u(x) = 0.

PROOF. Consider the positive, twice continuously differentiable functions given by

U (x) = y(r) =
ṽ(t)

t
, t ≥ t0,
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where

r = |x | = β(t) =

(
t

n − 2

)1/(n−2)

and t0 ≥ max{1, (n − 2)An−2
}.

Here, ṽ is the solution of equation (5) obtained in Proposition 1 for c = ζ/2.
By a straightforward computation,

tβ ′(t) =
1

n − 2
β(t) (8)

and 
d ṽ

dt
= y + tβ ′(t)

dy

dr
,

d2ṽ

dt2 =
n − 1
n − 2

β ′(t)
dy

dr
+

β(t)β ′(t)

n − 2
d2 y

dr2 .

(9)

Further, taking into account (8) and (9),

rn−1(1U + f (x, U ) + g(|x |)x · ∇U )

=
d

dr

(
rn−1 dy

dr

)
+ rn−1 f (x, U ) + rng(r)

dy

dr

=
n − 2

β(t)β ′(t)
[β(t)]n−1

[
ṽ′′(t) +

1
n − 2

β(t)β ′(t) f (x, U )

+ β(t)β ′(t)g(β(t))

(
ṽ′(t) −

ṽ(t)

t

)]
,

for any t ≥ t0.
We have obtained that

|x |
n−1(1U + f (x, U ) + g(|x |)x · ∇U )

≤
n − 2

β(t)β ′(t)
[β(t)]n−1

[
ṽ′′(t) + b(t)w

(
ṽ(t)

t

)]
= 0,

where b(t) = β(t)β ′(t)a(β(t)).
Now, U is a positive super-solution of (1). Also, the trivial solution of equation (1)

is its (nonnegative) sub-solution. According to Proposition 2 (see [1, 4]) there exists
a nonnegative solution u to (1), defined in G B for B > A large enough (recall (7)).
Since

(1 + g(|x |)x · ∇)(−u) = f (x, u) ≥ 0,

the strong maximum principle [6] can be applied to −u. This means that the function
−u cannot attain a nonnegative maximum at a point of G B unless it is constant.
Since −u is negative on {x : |x | = B} and −u(x) ≤ 0 throughout G B as u is confined
between 0 and a positive super-solution U , it follows that −u cannot have zeros.

We conclude that u is a positive solution of (1) that decays to 0 when |x | → +∞.
The proof is complete. 2
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