Bull. Austral. Math. Soc. 78 (2008), 157-162
doi:10.1017/S0004972708000580

EXISTENCE OF POSITIVE EVANESCENT SOLUTIONS TO
SOME QUASILINEAR ELLIPTIC EQUATIONS
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Abstract

We establish that the elliptic equation
Au+ fx,u) +g(xDx - Vu =0,

defined in an exterior domain of R”, n > 3, has a positive solution which decays to 0 as |x| — +oo under
quite general assumptions upon f and g.
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1. Introduction

Let us consider the quasilinear elliptic differential equation
Au—+ f(x,u)+g(lxDx-Vu=0, xeGy, (1)

where G4 = {x e R" : |x| > A}, A > 0 and n > 3. The existence of positive solutions
of equation (1), either bounded or decaying to O (a phenomenon called evanescence),
has been investigated by several authors; see [1, 2, 4, 5, 9].

It has been established (see [1, 2]) that it is sufficient for the functions f, g to be
Holder continuous or continuously differentiable in order to analyze the asymptotic
behavior of the solutions to equation (1) by the comparison method [7]. To set
the general hypotheses, we assume that there exist the continuous functions a :
[A, +00) — [0, +00) and w : [0, +00) — [0, +00) such that

0<fx,u)=a(xDw), xeGa,ucl0,], 2

for a certain { > 0. We assume that w is monotone nondecreasing, w(0) =0 and
w(u) > 0 for any u > 0.
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In [1, p. 150], A. Constantin asked also that w € C([0, +00), [0, +00)),

“+00 1
/1 <w<s>> ds = oo,

and g be bounded. Then, in the circumstances given by the condition

+00
/ sla(s) + 1g(s)|] ds < +oo, 3)
A

the existence of a positive solution to equation (1) was proved. In a further work
[2, p. 335], it was established that this positive solution actually decays to O as
|x] — +o00. By making use of the elementary inequality w(u) < sup{|w’(s)|:s €
[0, ¢} - u for all u €[0, ¢], the integral condition regarding w was successfully
removed.

Another improvement was obtained by M. Ehrnstrom [4, Lemma 3.2] who
concluded that, still for w € C!, the boundedness restriction upon g can be avoided.
Moreover, if g takes only nonnegative values, hypothesis (3) reduces to

+o00
/ sa(s) ds < +o0; “4)
A

see [4, Theorem 3.3].

It is important to remark at this point that by asking w to be merely continuous we
could cover cases such as that where w(u) = u* for anyu € [0, IJand A € (0, 1). A
result for simply continuous w’s was obtained in [5, Theorem 1]; however, its main
hypothesis is much more restrictive than (3) unless certain restrictions are imposed
upon g, for example lim;_, y 5, 7g(r) > 0; see [5, Remark 2].

Our aim in this note is to demonstrate a variant of Constantin’s and Ehrnstrom’s
results in the case where w is only continuous and g is nonnegative-valued.

2. A special ordinary differential equation

In the spirit of [1, 4, 9], the heart of our proof relies upon a result concerning the
positive solutions to the ordinary differential equation

v +b(t)w<;> =0, r>1>1. 5)

PROPOSITION 1. Assume that the function b : [ty, +00) — [0, +00) is continuous
and such that

+00
/ b(t) dt < +o0. (6)
fo
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Then, given ¢ > 0, equation (5) has a solution v(t) defined in [ty, +00) that verifies
the inequalities

v(t) —
1

v(it)>c, V()< forall t > to,
and is developable as
v(t) =o(t) whent — +o00.

PROOF. Suppose that 7y > 1 is large enough so that

400
f b(t)dt <
fo

c 7
w(2c) (

We introduce the set
D = {v e C([ty, +0), R) | ¢ < v(t) < 2ct for every t > tp}.

A partial order on D is given by the usual pointwise order ‘<’, that is, we say that
v] < vy if and only if vy (¢) < vy(¢) for all £ > 19, where vy, v, € D. It is not hard to
see that (D, <) is a complete lattice.

For the operator V : D — C([ty, +00), R) with the formula

+00 1 K U(‘L’)
V(v)(t):c—l—t/ —2/ th(t)w - dtrds, veD,t>r1,
t = Jig

we may write

o
IA

+00 K
V)() <c+ w(2c) - t/ SLZ / th(t)dr ds
t 1o

1 t 400
=c+ w(2c)t|:; / th(r)dt + / b(t) dr}
1 t

0
+00
<c+ |:w(2c) / b(t) dri|t <2ct,
Iy

leading to V(D) € D. We also notice that the operator V is isotone, that is,
V(v1) < V(vp) whenever vy < v;.

Since ¢ < V(c), by applying the Knaster—Tarski fixed point theorem [3, p. 14], we
deduce that the operator V has a fixed point v in D. This is the pointwise limit of the
sequence of functions (V"(c)),>1, where Vi=vand vitl=vro V.

Finally, we deduce that

S0ty 1 ~
=@ o= ] / b(f)w<£)) dr
TG
t
The proof is complete. O
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REMARK 1. It is not necessary that the solution v of equation (5) obtained in
Proposition 1 be bounded. In fact, if we replace (6) with the stronger hypothesis

+00
/ tb(t) dt < 400,
Io
then L"Hospital’s rule yields

+o00 ~
lim o()= lim V({®)(@)=c +/ Tb(t)w(@) dt

t—+00 f

IA

+00
c+ w(2c) / th(t) dt < +o00.
fo

The ordinary differential equation

1
2/Int

has the unbounded solution v(t) =Int in [f9, +00) that verifies the conclusion of
Proposition 1. Here, b(t) = t32n )~V wu) = Juandc=1.

v+ =0, t>t)=¢?,

REMARK 2. Proposition 1 is in perfect agreement with the conclusion of
[1, Lemma 2]. The latter result, however, uses in an essential manner the fact that
w € C'. We mention that Constantin’s theorem provides an interesting complement to
old contributions by Staikos and Philos; see [8].

3. Positive solution to equation (1)
The following result is needed in our investigation.

PROPOSITION 2 (see [1, 4]). If there exist a nonnegative subsolution v and a positive
supersolution vy to equation (1) in G 4, such that vi(x) < vy(x) for x € G4, then (1)
has a solution u in G 4 such that vi < u < vy throughout G 4. In particular, u = v on
x| = A.

Our main contribution here is given next.

THEOREM 1. Assume that there exists o € (0, 1) such that f € C*(M x J, R)
for every compact set M C Ga and every compact interval J CR, and
g € CY([A, +00), [0, +00)). Suppose further that (2) and (4) hold true.

Then equation (1) has a positive solution u, defined in Gp for some B > A, such
that lim|y | yoo u(x) =0.

PROOF. Consider the positive, twice continuously differentiable functions given by

v(1)
U(x)=y(r)=7, t> 1,
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where

1/(n—-2)
r=|x|=80) = (m) and 19> max{l, (n — 2)A"_2}.

Here, v is the solution of equation (5) obtained in Proposition 1 for ¢ = ¢ /2.
By a straightforward computation,

1B (1) = ;ﬁ(t) (8)
n—2
and .
dt y+1p (t)—
P n— ﬂ(t)ﬁ 0y ®
ar ~ ﬂ 4 )_ T2 ar

Further, taking into account (8) and 9),
YAU + f(x, U) 4 g(x)x - VU)

_4 (r" 1dy)+r" e 0+ 0)
dr d

n- n—1| ~n
BB (t)[ﬂ(t)] [ (f)+—ﬁ(t)ﬁ(t)f(x U)

+ BB (r)g(/ﬁ(z))(”(r) (”)]

for any ¢ > 1.
We have obtained that

IXI"_](AU + f(x U) +g(xDx - VU)

n—1\| ~n b ( ()>]_0’
—ﬂ(t)ﬂ (t)[ﬂ( )] [ ) +bH)w

where b(t) = B(1) ' (1)a(B(1)).

Now, U is a positive super-solution of (1). Also, the trivial solution of equation (1)
is its (nonnegative) sub-solution. According to Proposition 2 (see [1, 4]) there exists
a nonnegative solution u to (1), defined in GpforB> A large enough (recall (7)).
Since

(A +g(xDx - V)(—u) = f(x,u) =0,

the strong maximum principle [6] can be applied to —u. This means that the function
—u cannot attain a nonnegative maximum at a point of Gp unless it is constant.
Since —u is negative on {x : |x| = B} and —u(x) < 0 throughout G 3 as u is confined
between 0 and a positive super-solution U, it follows that —u cannot have zeros.

We conclude that u is a positive solution of (1) that decays to O when |x| — +o0.
The proof is complete. O
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