(05BIO, 05B05)

BULL. AUSTRAL. MATH. SOC. VOL. 5 (1971), 285-286.

Combinatorial matrices

Jennifer Wallis

We investigate the existence of integer matrices B satisfying the equation

$$BB^{T} = rI + sJ ,$$

where T denotes transpose, r and s are integers, I is the identity matrix and J is the matrix with every element +1.

Hadamard matrices are (1,-1) matrices of order n=2 or 4t which have r=n and s=0 in (1). We discuss equivalence of Hadamard matrices over the integers and show that all Hadamard matrices of order 4t, where t is odd and square-free are equivalent over the integers. Further, if t is even and square-free and there is a Hadamard matrix of order 2t, then there is a Hadamard matrix of order 4t which is equivalent over the integers to the diagonal matrix

diag(1, 2, ..., 2,
$$2m$$
, ..., $2m$, $4m$).
 $2m-1$ times $2m-1$ times

We now develop many methods for constructing Hadamard matrices. Many of these constructions use skew-Hadamard matrices, that is Hadamard matrices H = I + R where $R^T = -R$, or n-type matrices, that is (1, -1) matrices N = I + P of order n where $P^T = P$ and $PP^T = (n-1)I$. We first develop some theory on the Williamson method for constructing skew-Hadamard matrices and show if h is the order of a skew-Hadamard matrix (n-type matrix) then there exists a skew-Hadamard (n-type) matrix of order $(h-1)^U + 1$ where $u = 2^a 3^b 5^c 7^d$, b, c, d non-negative integers while a is a positive (non-negative) integer.

Received 31 March 1971. Thesis submitted to La Trobe University, March 1970. Degree approved, March 1971. Supervisors: Professor B. Mond, Professor G. Szekeres (University of New South Wales).

The concept of supplementary difference sets, that is, a set of subsets such that when we take all the differences in each subset and collect them, each difference occurs a fixed number of times in the totality, is introduced and an example given. Hadamard designs on n distinct letters are shown to exist for n = 2, 4 and 8.

 (v,k,λ) -configurations are considered, that is, (0,1)-matrices B of order v such that $r=k-\lambda$ and $s=\lambda$ in (1). We show two similar but distinct methods for proving there exists a $\left(q^2(q+2),\,q(q+1),\,q\right)$ configuration whenever q is prime or $q=2^2,\,2^3,\,2^4,\,3^2,\,3^3$ or 7^2 . We prove that whenever a (q,k,λ) -configuration exists, q a prime power, then a $\left(q(k^2+\lambda),\,qk,\,k^2+\lambda,\,k,\,\lambda\right)$ -configuration exists.

We consider integer matrices satisfying

$$BB^{T} = vI - J$$
, $BJ = 0 = JB$ and $B^{T} = -B$

and find that either the greatest common divisor of the elements of B is 1 or B has zero diagonal and +1 or -1 elsewhere. Also we show that if B is an integer matrix of order b satisfying

$$BB^{T} = (p-q)I + qJ$$
$$BJ = dJ$$

where $p,\,q$ and d>0 are constants then if z , the least element of B , satisfies

$$z \le \frac{d}{b}$$
 and $z \le \frac{|w|d+P}{d+|w|b}$,

where w is the greatest element of B , then

$$B = \frac{d}{h} J .$$

We give tables of the orders < 4000 of known Hadamard, skew-Hadamard and n-type matrices at the date of submission as well as lists of known classes of these matrices.