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Abstract 40 

  41 

Human gut microbial species are crucial for dietary metabolism and biosynthesis of 42 

micronutrients. Digested products are utilized by the host as well as several gut bacterial species. 43 

These species are influenced by various factors such as diet, age, geographical location, ethnicity, 44 

etc. India is home to the largest human population in the world. It is spread across diverse 45 

ecological and geographical locations. With variable dietary habits and lifestyles, Indians have 46 

unique gut microbial composition. This review captures contrasting and common trends of gut 47 

bacterial community establishment in infants (born through different modes of delivery), and how 48 

that bacterial community manifests itself along infancy, through old age between Indian and global 49 

populations. Because dysbiosis of the gut community structure is associated with various diseases, 50 

this review also highlights the common and unique bacterial species associated with various 51 

communicable as well as non-communicable diseases such as diarrhoea, amoebiasis, malnutrition, 52 

type 2 diabetes, obesity, colorectal cancer, inflammatory bowel disease, and gut inflammation & 53 

damage to the brain in the global and Indian population. 54 

 55 
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Introduction  60 

The human microbiome is a complex microbial community structure that resides at different body 61 

sites namely; skin, oral cavity, gastrointestinal tract (GIT), respiratory tract, and vagina. However,  62 

microbial diversity and richness vary across all body sites (Costello et al., 2009; Human 63 

Microbiome Project Consortium (2012)) The community belongs to several domains of life i.e. 64 

bacteria, viruses, fungi, archaea, and protists (Sender et al., 2016; Shreiner et al., 2015)⁠⁠. Unlike 65 

bacterial species, others have been poorly studied for their role in human physiology (Matijašić et 66 

al., 2020). The extensively researched gut bacterial species outnumbers human body cells and 67 

genes by 10 and 100 times, respectively (Bull and Plummer, 2014)⁠. Its role in breakdown of 68 

complex carbohydrates into Short-chain Fatty Acids (SCFAs) such as acetate, propionate, and 69 

butyrate, branched-chain amino acids, hydrolysis of polyphenols,  and biosynthesis of Vitamin K 70 

and water-soluble B-vitamins is well explored (Chandel et al., 2023, Magnúsdóttir et al., 2015; 71 

Rowland et al., 2018; Sharma et al., 2019)⁠.  72 

The microbiome composition varies across different parts of the gastrointestinal tract with distinct 73 

community structures along the mucosal-lumen axis (Bäckhed et al., 2012; Ruan et al., 2020)⁠⁠, in 74 

different development stages of a particular individual (Rinninella et al., 2019)⁠, and amongst 75 

individuals (Human Microbiome Project Consortium (2012); Rinninella et al., 2019)⁠. A healthy 76 

human gut microbiome is a stable community composed of a defined set of microbial species, 77 

which resist change or return to an equilibrium state following perturbation (Bäckhed et al., 2012)⁠⁠. 78 

It consists of a few phyla with a relatively higher abundance (Bacillota, Bacteroidota, 79 

Actinomycetota, and Pseudomonadota) as compared to several others (Fusobacteriota, 80 

Tenericutes, Spirochaetes, Cyanobacteria, Verrucomicrobia, and TM7) (Human Microbiome 81 

Project Consortium (2012))⁠. Some of the highly abundant and/or prevalent genera include 82 

Bacteroides,  Eubacterium, Faecalibacterium, Alistipes, Ruminococcus, Clostridium, Prevotella, 83 

Roseburia, and Blautia; and highly abundant species include Faecalibacterium prausnitzii, 84 

Oscillospira guillermondii, and Blautia obeum (Arumugam et al., 2011; Piquer-Esteban et al., 85 

2022; Qin et al., 2010; Ruan et al., 2020)⁠⁠. They are also the core taxa of a healthy individual (Qin 86 

et al., 2010). However, there is little consensus about how the taxonomic core microbiome should 87 

be quantified, as different researchers use different quantification metrics (Neu et al., 2021). For 88 

instance, with 90% and 0.01% threshold of prevalence and relative abundance respectively, only 89 

Faecalibacterium prausnitzii was observed as the core microbiome across Indian cohorts from 90 

multiple locations (Chandel et al., 2023). Moreover, the studies on inferring core gut microbiome 91 

haven’t fully captured the variability in microbiome composition due to various factors like 92 

geographical location, race, diet, lifestyle, age, etc. 93 

Large-scale studies on human gut microbiomes have largely been from the US and European 94 

countries (Human Microbiome Project Consortium (2012))⁠. But if we look at  India, it has the 95 

largest human population and is spread across six different physiographic regions, has a huge 96 

diversity in habitat, lifestyle, ethnicity, and dietary habits which makes the Indian gut microbiota 97 

an interesting community to study. While population-specific variations in gut microbial 98 

composition have earlier been reported (Yatsunenko et al., 2012)⁠, a recent study captured the 99 

uniqueness of the Indian gut microbiome (Dhakan et al., 2019)⁠. Not only a substantially large 100 

number (943,395) of unique genes were observed in Indian samples, but a few species belonging 101 

to genera Prevotella, Mitsuokella, Dialister, Megasphaera, and Lactobacillus were also found 102 

highly associated with the India_n population (Dhakan et al., 2019).  103 
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Pulipati et al. (2020)  recently analysed the features, and determinants of Indian gut microbiota 104 

and compared it with worldwide data (Pulipati et al., 2020)⁠⁠. However, the association of gut 105 

microbiota with human health and various infectious/non-infectious diseases in the Indian 106 

population has not been systematically reviewed. This review provides Indian population-specific 107 

characteristics of the gut microbiome at different developmental stages of life, discusses the factors 108 

that shape the gut microbiome, and their association with non-infectious and infectious diseases 109 

while comparing them with the findings or trends in global populations (Figure 1).   110 

ESTABLISHMENT OF GUT MICROBIOME 111 

Pregnancy, Birth, and Infancy  112 

The sterile womb hypothesis and microbial community acquisition from the external environment 113 

(Mackie et al., 1999)⁠ were challenged when microbes were identified in the placenta, amniotic 114 

fluid, and meconium (Perez-Muñoz et al., 2017)⁠. It was further supported by the presence of phyla 115 

Bacillota, Pseudomonadota, and Bacteroidota and genera Enterococcus and Staphylococcus, in the 116 

meconium microbiome, which was majorly affected by maternal rather than perinatal factors  117 

(Jiménez et al., 2008; Perez-Muñoz et al., 2017; Tapiainen et al., 2018)⁠. The similarity of the 118 

placental microbial community with the oral (Walker et al., 2017)⁠⁠, and a higher dissimilarity with 119 

the vaginal and stool microbiome, were highly unlikely the result of contamination (Cariño et al., 120 

2021; Walker et al., 2017; Wassenaar & Panigrahi, 2014)⁠⁠. 121 

A Finland-based study reported highly variable gut microbiota in T3 (third trimester of pregnancy) 122 

as compared to T1, resembling a rather disease-associated dysbiosis. The T3 stage also had a lower 123 

abundance of Faecalibacterium (butyrate producer) and a higher abundance of phyla 124 

Actinomycetota and Pseudomonadota. The Psuedomonadota has often been associated with 125 

inflammation-associated dysbiosis (Koren et al., 2012)⁠ (Figure 2). In contrast, there were no 126 

significant changes in the gut community structure of the Indian population between T1 and T3; 127 

although Pseudomonadota showed a higher abundance during T3, however, this difference was 128 

not statistically significant (Kumbhare et al., 2020)⁠. There were no reported adverse effects of 129 

higher Pseudomonadota in T3 on infants’ health. The difference in the findings was attributed to 130 

either a difference in data analysis or a smaller sample size of the Indian cohort (Kumbhare et al., 131 

2020)⁠.   132 

Mode of delivery i.e., caesarean section delivery (CD) and vaginal delivery (VD), has a strong 133 

influence on infants' gut community. CD infants from Finland and the USA showed a delay in gut 134 

microbial community colonisation and reported a lower Bacteroides abundance as compared to 135 

VD infants (Grönlund et al., 1999; Mitchell et al., 2020)⁠. The inverse correlation of Bacteroides 136 

with Streptococcus or Haemophilus in CD was the result of direct competition between the two 137 

species (Mitchell et al., 2020)⁠. Early colonisation of Bifidobacterium-like and Lactobacillus-like 138 

beneficial bacteria was seen in the VD children (Grönlund et al., 1999)⁠.  Corroborating the findings 139 

from Western countries, an Indian study reported higher Bifidobacterium - a primary coloniser in 140 

VD children along with Acinetobacter sp., Staphylococcus sp. (Pandey et al., 2012)⁠. The absence 141 

of Bifidobacterium, and a higher abundance of opportunistic bacteria (Citrobacter, Clostridium 142 

difficile, and E. coli) were seen in Indian CD infants (Pandey et al., 2012)⁠ (Figure 2)⁠. The exposure 143 

of CD infants to environmental microbes makes them susceptible to colonisation of undesired 144 

microbes, which results in higher microbiome diversity (Pandey et al., 2012)⁠⁠⁠.  145 
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Studies from Italy and the US showed that the maternal microbiome from all body sites was the 146 

main source of the infant’s gut microbiome, however, the gut microbiome was more persistent 147 

compared to other body sites (Ferretti et al., 2018; Mitchell et al., 2020)⁠. Indian infants at six 148 

months of age had a higher abundance of phylum Actinomycetota, genera Bifidobacterium, 149 

Streptococcus, and Veillonella, and a lower abundance of phylum Pseudomonadota, genera 150 

Staphylococcus, and Enterococcus as compared to the birth stage (Kumbhare et al., 2020). 151 

Bifidobacterium and Streptococcus are one of the most abundant and core bacterial members 152 

respectively of an infant’s gut (Jost et al., 2013; Underwood et al., 2015). The role of Veillonella 153 

in infancy is poorly understood (Ferretti et al., 2018; Kumbhare et al., 2020) ⁠(Figure 2). There was 154 

a similarity between Indian infants’ and their mothers’ microbiomes, but the results were not 155 

significant.  156 

Childhood 157 

Three studies from Norway, Sweden, and  Finland were compared with the ones available for 158 

Indian cohorts. A Norwegian study showed that a certain bacterial species pool is shared between 159 

mother and infant. Mother-associated Operational Taxonomic Units (OTUs) start depleting after 160 

three months of age. Over the period, microbiota gets enriched with class Bacteroidia and 161 

Clostridia (Avershina et al., 2016) and species Bifidobacterium breve (Agans et al., 2011; 162 

Avershina et al., 2016; Roswall et al., 2021)⁠⁠. Bifidobacterium breve acts as an inhibitor or is 163 

negatively associated with late-appearing microbes (Avershina et al., 2016)⁠⁠. The first five years of 164 

the developmental trajectory in the Swedish population showed a higher abundance of lactic acid 165 

bacteria (Enterococcus, Streptococcus, and Lactobacillus), gamma-Proteobacteria  166 

(Enterobacteriaceae, Citrobacter, and Serratia) along with Bifidobacterium in the first few 167 

months. At the age of one year, adult-associated genera such as Akkermansia, Faecalibacterium, 168 

Prevotella, Roseburia (Roswall et al., 2021)⁠, and Ruminococcus (Agans et al., 2011)⁠ become 169 

highly prevalent, and their abundance increases as they grow older  (Roswall et al., 2021)⁠. 170 

Healthy children from the south Indian slum had a higher abundance of the genera Prevotella, 171 

Bifidobacterium, and Escherichia-Shigella (Shivakumar et al., 2021)⁠. Partially in line with the 172 

Swedish population, children from southern India showed a higher abundance of Lactobacillus, 173 

Bifidobacterium, Eubacterium rectale, and Faecalibacterium prausnitzii (Balamurugan et al., 174 

2008)⁠. A comparison of Indian and Finnish children's microbiomes showed enrichment of 175 

Prevotella and Megasphaera in Indian children (Kumbhare et al., 2017)⁠ (Figure 2). A higher 176 

prevalence of Prevotella indicates enterotype 2 in the Indian population, which is well-established 177 

in other studies as well (Dhakan et al., 2019; Kaur et al., 2020)⁠   178 

 179 

 Adult 180 

The Norwegian data showed that Bifidobacterium breve had a higher prevalence in 1st year of life 181 

and was negatively associated with a range of adult-like species. Its disappearance suggestively 182 

drives (at least partially) the transition from infant to adult-associated gut microbiome (Avershina 183 

et al., 2016)⁠. According to a study from the Netherlands, the adult gut microbiome is stable and 184 

highly diverse compared to children, with the dominance of Blautia and Bacteroides in the former 185 

and latter groups, respectively (Radjabzadeh et al., 2020)⁠. On the contrary, data from Ohio, USA 186 
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showed that it was relative abundance, not the presence-absence of specific genera that 187 

differentiated the two groups (Agans et al., 2011). The western adult gut microbiome is dominated 188 

by phyla Bacillota, Bacteroidota, Actinomycetota, and Pseudomonadota with carbohydrate 189 

metabolism remaining the dominant pathway (Human Microbiome Project Consortium (2012)). 190 

Comparison of the Indian with Chinese populations showed no difference in diversity, however, 191 

composition and relative abundance differed (Jain et al., 2018)⁠. Both the populations were enriched 192 

with Bacillota and Actinomycetota, with fewer Bacteroides. Differences in dietary patterns led to 193 

a significantly higher abundance of Bacteroidota and Prevotella in Indians in contrast to Chinese 194 

(Jain et al., 2018)⁠. Bacterial succession from childhood to adulthood in Indians showed a decline 195 

in Bifidobacterium and Lactobacillus. Contrary to Radjabzadeh et al., 2020 and Jain et al., 2018, 196 

a higher abundance of Bacteroides during late adolescence and adulthood, and a sharp decline of 197 

Eubacterium rectale and F. prausnitzii in Indian adults were reported (Balamurugan et al., 2008; 198 

Jain et al., 2018; Radjabzadeh et al., 2020)⁠.  Similar to the western microbial profile at the phylum 199 

level, Indian communities are also dominated by Bacillota, Bacteroidota, Actinomycetota, and 200 

Pseudomonadota (Figure 2) (Das et al., 2018; Ramakrishna, 2013)⁠. 201 

 202 

Elderly 203 

The transition from a stable and diverse bacterial community in adults to a less diverse one in the 204 

elderly population was compared between four global studies (China, Italy, Ireland, Japan) and 205 

available Indian studies. An increase in Pseudomonadota species was reported in several studies 206 

(Kong et al., 2018; Kumar et al., 2016; Rampelli et al., 2013). An Ireland-based study reported 207 

significantly higher dominance of Prevotella and Ruminococcus in the adults and Alistipes and 208 

Oscillibacter in the elderly group (Claesson et al., 2012)⁠. The study done on the same cohort 209 

showed Bacteroides, Alistipes, Parabacteroides, Faecalibacterium, and Ruminococcus as the core 210 

genera in the elderly population (Jeffery et al., 2015)⁠. An overall decrease in SCFAs production, 211 

shift from proteolytic to saccharolytic fermentation, loss of organisms such as Eubacterium, 212 

Bifidobacterium, and Faecalibacterium, and increased abundance of pathogens such as 213 

Escherichia-Shigella were considered as functions of the aging process (Kong et al., 2018; Kumar 214 

et al., 2016). 215 

In line with the results from other countries, an Indian study done by Tuikhar et al., 2019 also 216 

reported a higher diversity in the Ruminococcaceae family in centenarians (~ 100 years old).  217 

Direct comparison with samples from Italy, Japan, and China in the same study also showed 218 

similar results. A decrease in the abundance of Faecalibacterium was also observed in the Indian 219 

population. Species from genera Akkermansia, Alistipes, and Ruminococcoaceae D16 were 220 

reported as signatures of longevity in all four populations. Akkermansia was reported to be 221 

associated with health and anti-inflammatory activity. The unclassified species Ruminococcoaceae 222 

D16 was reported to be a butyrate producer in herbivorous and omnivorous animals (Figure 2) 223 

(Badal et al., 2020; Tuikhar et al., 2019)⁠.  224 

FACTORS AFFECTING GUT MICROBIOME COMPOSITION  225 

Diet:  226 
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Trends from three studies done on global cohorts (USA, Japan, Europe, and Africa) were compared 227 

with available data on Indian cohorts. The long-term effect of diet has a huge impact on microbial 228 

community structure, however, short-term (5 days) consumption of entirely plant-based or animal-229 

based foods has also rapidly changed the gut community structure (David et al., 2013)⁠. Animal-230 

based diet showed a higher abundance of bile-tolerant bacteria such as Bacteroides, Alistipes, and 231 

Bilophila (David et al., 2013; Pareek et al., 2019)⁠, whereas the higher abundance of Bacillota that 232 

metabolise plant polysaccharides such as Roseburia, Eubacterium rectale, and Ruminococcus 233 

bromii reported in plant-based diet consuming individuals (David et al., 2013). Another study done 234 

by Filippo et al., 2010 on European and African children, consuming western and rural diets 235 

respectively showed partial overlapping patterns. Higher abundance of Bacteroidota (Prevotella), 236 

SCFAs and depletion of Bacillota, family Enterobacteriaceae (Shigella and Escherichia) reported 237 

in Africans (De Filippo et al., 2010)⁠.  In line with the above results, the Indian population 238 

consuming a plant-based diet had a higher abundance of Prevotella (Dhakan et al., 2019; Jain et 239 

al., 2018; Kaur et al., 2020)⁠. It was also reported to have higher lipopolysaccharide pathway genes 240 

and serum BCAA levels; Latter is because of the presence of fewer in-ward transporters in bacteria, 241 

hence they get absorbed in serum (Dhakan et al., 2019). In contrast, the omnivorous group showed 242 

higher bacterial BCAA transporters and hence their high abundance in faecal matter (Dhakan et 243 

al., 2019). Partially overlapping results on the association of omnivorous diet with butyrate-244 

producing bacteria such as Roseburia–E. Rectale (Kabeerdoss et al., 2012)⁠, Bacteroides, 245 

Ruminococcus, and Faecalibacterium, and enrichment of SCFAs biosynthesis pathways were also 246 

observed (Dhakan et al., 2019)⁠. Another Indian study by Bamola et al. (2017), however, presented 247 

a completely different picture, reporting a higher Bacteroidota to Bacillota ratio in the non-248 

vegetarian group as compared to vegetarians⁠. It wasn’t clearly explained if the abundance profile 249 

comparison of taxa between the vegetarian and omnivorous group was statistically significant 250 

(sequence data involved just 96 sequences per group) (Bamola et al., 2017). 251 

Lifestyle:  252 

Despite being crucial in maintaining health, little is known to what extent modernization has 253 

impacted gut microbiota structure.  Less affected Tribal populations still use traditional ways to 254 

survive (Shetty et al., 2013)⁠. Here, the comparison of Indian studies was made with data from 255 

Tanzania, America, Malawi, Mongolia, and Italy. Yanomami, who live a hunter-gatherer lifestyle 256 

similar to human ancestors, not exposed to antibiotics,  were first contacted in ~ 1960 in Venezuela.  257 

Their gut composition showed significantly huge diversity than the US population, with high 258 

Prevotella and low Bacteroides abundance, similar to that in African hunter-gatherers, Guahibo 259 

Amerindians, and Malawians (Clemente et al., 2015). They also showed high functional diversity, 260 

gene prevalence, and less intragroup variation as compared to the US (Clemente et al., 2015). An 261 

interesting pattern of seasonal variation in community structure emerged in Hadza hunter-gatherers 262 

of Tanzania. This seasonal variation was based on food acquisition activities which were affected 263 

by the local environment and type of food availability in two different seasons. Bacillota, for 264 

instance, remained stable in both dry (May-October) and wet (November-April) seasons, however, 265 

the abundance of family  Prevotellace significantly declined during the wet season compared to 266 

the dry season (Smits et al., 2017)⁠.  Surprisingly, seasonally volatile taxa in Hadza differentiated 267 

this traditional population from the industrialized one, indicating a decrease in the prevalence and 268 

abundance of some taxa in modernized populations (Smits et al., 2017)⁠⁠.  Prevotella was the 269 

dominant genus in Mongolian, Amerindian, and Malawian groups, while Faecalibacterium was 270 

in the American, Italian,  and Hadza populations (Dehingia et al., 2015)⁠. India, with six major 271 
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physiographic divisions, viz. The Himalayan mountains, Northern plains, Peninsular plateau, 272 

Indian desert, Coastal plains, and Islands along with multiple ethnic groups living in each division, 273 

have many distinct dietary habits and lifestyles (urban, rural, tribals from forests, hills, hot deserts, 274 

cold deserts, remote islands, mangroves, etc.). While there are multiple studies on tribal 275 

populations, no proper study has been done on Indian ethnic groups. Similar to the trends 276 

mentioned above, gut bacterial profiles of tribal populations from four different geographical 277 

locations, viz. Assam, Telangana, Manipur, and Sikkim, showed the dominance of Prevotella. 278 

Likewise, a comparison of three different tribes from Mongoloid (Ladakh), Caucasoid (Jaisalmer), 279 

and Australoid (Khargone) ancestry revealed that despite the differences in ethnicity and 280 

geographical locations, genera Prevotella, Bifidobacterium, Bacteroides, Eubacterium, and 281 

Faecalibacterium were abundant in overall populations (Hazarika et al., 2022; Kaur et al., 2020)⁠. 282 

A small cohort size study in Tamilnadu, India, revealed a higher Bacillota/Bacteroidota ratio and 283 

higher Actinomycetota abundance in the rural population than in Tribal  (Ramadass et al., 2017)⁠⁠. 284 

A study on the Nicobarese community, one of the six tribal communities of Andaman & Nicobar 285 

Islands, revealed that their lifestyle has a profound impact on the gut bacterial composition, where 286 

the remote subset of the community had Bacteroides-Prevotella-Porphyromonas as the dominant 287 

bacterial group, while the rural and urban subsets had Clostridium coccoides,  Eubacterium 288 

rectale, and Bifidobacterium as the predominant bacterial groups, respectively (Anwesh et al., 289 

2016)⁠.  290 

Antibiotic usage: 291 

The benefits of antibiotic usage in humans as well as livestock come at a cost with the inevitable 292 

evolution of antibiotic-resistant variants and the collateral damaging effect of antibiotics on 293 

commensal bacteria (Blaser 2016). A longitudinal study conducted on 12 individuals in Denmark 294 

observed that antibiotic usage reduces microbial diversity, especially that of butyrate-producing 295 

species with a restoration period of 1.5 months to obtain the baseline composition (Palleja et al., 296 

2018) A similar restoration period of one month was observed in a study which included 39 297 

children from Finland (Yassour et al., 2016). However, Palleja et.al. observed that several common 298 

species were not restored even after 1.5 months and until the end of their study period which was 299 

180 days (Palleja et al., 2018). Moreover, disruptions in the balance of gut microbial species lead 300 

to an increase in pathobionts such as Clostridium difficile (Buffie and Pamer 2013). Another study 301 

conducted on 21 participants from Spain, who were treated with broad-spectrum antibiotics 302 

indicated a reduction in bacterial diversity due to the elimination of antibiotic-susceptible bacteria 303 

and an increase in the overall microbial load due to the replacement and rapid multiplication of 304 

antibiotic-resistant bacterial species (Panda et al., 2014). Studies conducted across Canada and the 305 

US provide increasing evidence that early antibiotic exposure in life is associated with obesity, 306 

diabetes, inflammatory bowel diseases, allergies, and asthma (Arrieta et al., 2015; Azad et al., 307 

2014; Bokulich et al., 2016) in the later stages of life. Whereas, the short-term and medium-term 308 

consequences include antibiotic-associated diarrhoea, C. difficile infections, and H. pylori-related 309 

gut dysbiosis (Ramirez et al., 2020).   310 

In the Indian context, a study from Southern India, which included 120 infants, revealed that 311 

azithromycin has a moderate impact on their gut microbiota (Parker et. al., 2017). This study 312 

indicated a decrease in the microbial diversity and abundance during antibiotic intake, however, 313 

no effect was observed on the maturity of the microbiota. Although studies depicting the direct 314 

effect of antibiotic usage on the gut microbiota may be rare in India, the other major concern of 315 
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gut microbiota acting as a reservoir for antibiotic resistance genes has been reported in various 316 

studies. Antibiotic abuse is a common phenomenon in low- and middle-income countries. In India, 317 

the usage of antibiotics has increased from 3.2 billion defined daily doses in 2000 to 6.5 billion in 318 

2015, an increase of 103% (Klein et al., 2018). In such situations, the human gut microbiome acts 319 

as a reservoir of antibiotic-resistance genes, capable of transferring the genes rapidly to transient 320 

pathogens within the holobiont through horizontal gene transfer (HGT) (Groussin et al., 2021; 321 

Sitaraman 2018,). An insightful gut microbiome study among 18 Swedish students who travelled 322 

to India on an exchange program, showed that 12 of the students acquired ESBL-producing E. 323 

coli, even without taking antibiotics (Bengtsson-Palme et al., 2015)⁠. Another study on 122 324 

travellers from the Netherlands to India revealed increased acquisition rates of beta-lactam and 325 

quinolone resistance genes (von Wintersdorff et al., 2014). This emphasises the potential for 326 

antibiotic resistance transmission in regions with heightened antibiotic use. Furthermore, a study 327 

conducted in 2019 among 207 healthy individuals from Chandigarh, India, reported that 70.5% of 328 

the stool samples had antibiotic-resistant isolates of which 2.4% were multi-drug resistant and the 329 

most common genes identified were β-lactamases (Gupta et al 2019). Similarly, a high prevalence 330 

of β-lactamases was observed in the rectal swabs collected from neonates and mothers in India 331 

(Carvalho et. al. 2022). A study on 25 healthy individuals from Kolkata, India, reported that all 332 

the samples carried aminoglycoside resistance markers and most of them showed resistance to tetC 333 

and sul-2 genes (De et. al. 2023). 334 

GUT MICROBIOME ASSOCIATION WITH HEALTH AND DISEASES 335 

Gut microbiota has a crucial role in regulating gut homeostasis, maintaining intestinal barrier and 336 

immunity by metabolising complex dietary substrates, and synthesising micronutrients.  The 337 

microbial community dysbiosis or modulation could lead to or associate with various non-338 

communicable and communicable diseases. Studies across the globe and from India have 339 

suggested their role/association in malnourishment, diabetes, obesity, inflammatory diseases, 340 

neurological disorders, diarrhoea, amoebiasis, etc.  341 

Non-communicable diseases 342 

Malnourishment 343 

Excess, deficiency, and/or imbalanced micronutrients and energy intake lead to malnutrition. The 344 

various forms of malnutrition include undernutrition, micronutrient-related malnutrition, 345 

overweight, obesity, and other diet-related diseases. Around 45% of children's deaths are caused 346 

by malnutrition globally (Fact Sheets - Malnutrition, n.d.)⁠.  347 

A comparison of four global studies from Indonesia, Mexico, Bangladesh, South Africa, 348 

Guatemala, and Malawi with Indian studies provides evidence that gut microbiota dysbiosis could 349 

also predispose to various forms of malnutrition. A study from Indonesia reported low 350 

Bacteroidota and high  Bacillota in stunted children of 3-5 years (Surono et al., 2021)⁠, which was 351 

also true in undernourished and obese children from Mexico (Méndez-Salazar et al., 2018)⁠. High 352 

species richness and diversity along with significant enrichment of Prevotella 9 in healthy children 353 

correlated with their height and high dietary fibre intake (Méndez-Salazar et al., 2018; Surono et 354 
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al., 2021)⁠. However, it has not been confirmed if this species could revert the malnutrition. 355 

Malnourished and poorly growing Bangladeshi children had a higher abundance of 356 

Pseudomonadota species such as Klebsiella, Escherichia/Shigella, and a lower abundance of 357 

Prevotella, compared to healthy controls⁠ (Monira et al., 2011, Perin et al., 2020)⁠ (Table 1). The 358 

gastrointestinal infection caused by these pathogenic species could lead to nutrient malabsorption 359 

(Monira et al., 2011), likely by dissolution of the brush border membrane and loss of microvilli 360 

structure due to lesions induced by adherence of pathogens to the intestine (Neto and Scaletsky, 361 

2000)⁠. These pathogens are also associated with poor growth, and inflammation and can also 362 

detoxify nitric oxide, which is produced by colonic epithelial cells as an inflammatory response 363 

(Perin et al., 2020)⁠. Million et al. also reviewed the link between malnutrition and gut microbiota 364 

in studies from countries including South Africa, Guatemala, Bangladesh, Malawi, and India, and 365 

reported early depletion of Bifidobacterium longum as the first step in severe acute malnutrition 366 

(Million et al., 2017).  367 

An Indian study showed enrichment of bacterial genera Prevotella 7, Prevotella 9, and Sutterella, 368 

and depletion of Clostridiaceae 1 family, Intestinibacter and Fusicatenibacter genera and 369 

Bifidobacterium longum subsp longum species in stunted children compared to non-stunted 370 

children (Shivakumar et al., 2021). This conflicting trend (of Prevotella genera in malnourished 371 

children) in Shivakumar et al. (2021), which was also observed in Kristensen et al. (2016), could 372 

be either due to the difference in the age group of children being compared (<2 years vs. 3-5 years) 373 

or due to dietary differences between the cohorts, which needs further examination (Kristensen et 374 

al. (2016); Shivakumar et al., 2021). However, a higher abundance of pathogenic genera 375 

Escherichia/Shigella was in sync with the global trend (Shivakumar et al., 2021; Surono et al., 376 

2021)⁠. A longitudinal study on persistently stunted children from south India showed an increase 377 

in diversity in both groups (stunted and healthy controls) with age.  Partially in line with 378 

Shivakumar et al., stunted children at 12 months of age showed a higher abundance of 379 

Bacteroidota. Enrichment of inflammogenic taxa i.e., genus Desulfovibrio and order 380 

Campylobacterales, and lower abundance of probiotic species Bifidobacterium longum and 381 

Lactobacillus mucosae in stunted children were also observed (Dinh et al., 2016; Shivakumar et 382 

al., 2021)⁠. The gut microbiota of children living in Mumbai slums was enriched with 383 

Pseudomonadota and less Actinomycetota, representing the immaturity of the gut (Huey et al., 384 

2020) (Table 1). 385 

The majority of the microbiota-associated malnutrition reports are coming from countries with low 386 

socio-economic status. Increasing poverty, poor hygiene, altered dietary habits, exposure to 387 

pollutants, and accumulation of environmental pathogens could make them more prone to long-388 

term health problems such as malnutrition (Leocádio et al., 2021).  Association of a higher 389 

abundance of pathogenic genera from phylum Pseudomonadota with malnutrition, and depletion 390 

of Bifidobacterium longum emerged as a common trend in both Indian and Global populations. 391 

However, the sample size, age group, and sequenced region of the 16S rRNA gene were different 392 

in the above comparisons.   393 

 394 

Obesity 395 
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Excessive or abnormal accumulation of fat in the body that could impair health is termed obesity 396 

or overweight (Obesity and Overweight, n.d.)⁠⁠. Nearly 650 million people around the globe and 397 

135 million in India are affected by obesity. Changes in gut microbial composition also lead to 398 

excessive energy storage and a high risk of obesity. Four studies from Germany, Finland, USA, 399 

and other European countries were compared with Indian studies. The gut bacterial-regulated low-400 

grade inflammation was associated with obesity. For instance, inflammation associated 401 

Staphylococcus aureus was enriched in overweight mothers (Collado et al., 2008)⁠⁠. The onset of 402 

obesity was associated with an increase in the Pseudomonadota phylum and a decrease in the 403 

family Clostridiaceae and Ruminococcaceae, as reported in a longitudinal study from Europe 404 

(Rampelli et al., 2018)⁠. The gut microbiota of obese individuals was reported to exhibit a lower 405 

abundance of the genus Bifidobacterium (Collado et al., 2008)⁠, Clostridium leptum group of 406 

phylum Bacillota (Schwiertz et al., 2010)⁠, and family Prevotellaceae (Rampelli et al., 2018)⁠. 407 

Additionally, enrichment of Bacteroides (Collado et al., 2008; Rampelli et al., 2018; Schwiertz et 408 

al., 2010)⁠ and faecal SCFAs concentrations, particularly propionate and butyrate, were also 409 

observed. The latter could be a result of factors like higher microbial production, changes in 410 

microbial cross-feeding patterns, low absorption, etc (Schwiertz et al., 2010). (Table 1).  411 

A consistent pattern was observed while comparing the global (USA, Germany, Finland, 6 other 412 

European countries)  results to the Indian gut microbiota, for instance, a higher abundance of 413 

Bacteroides and a higher level of faecal SCFAs in obese as compared to lean/normal individuals 414 

was reported. However, no difference in the distribution of Bacillota and Bacteroidota was 415 

observed. (Ppatil et al., 2012)⁠. Faecalibacterium prausnitzii from the Clostridium leptum group 416 

was higher in obese south Indian Children suggesting an increase in energy salvage from 417 

undigested/unabsorbed carbohydrates, which otherwise would be unavailable (Balamurugan et al., 418 

2010)⁠ (Table 1). Inconsistent with both global as well as other Indian studies, Bahadur et al., 2021 419 

reported bacterial composition with denaturing gradient gel electrophoresis technique. They 420 

detected Collinsella aerofaciens, Dialister, Eubacterium, Mitsuokella, Victivallis in obese and 421 

Paraclostridium bifermentans in lean individuals (Bahadur et al., 2021)⁠⁠. Obesity-related 422 

microbiota differences strongly influenced by geographical location, lifestyle, and diet as western 423 

individuals follow a low fibre and saturated fat-rich diet (Ecklu-Mensah et al., 2023). These could 424 

be the reasons for non overlapping pattern between global and Indian studies.  Inconsistency within 425 

Indian studies could be due to different methodologies used for taxonomy identification, different 426 

targeted regions of the 16S rRNA gene, and variable age groups (Table 1). However, the 427 

association of Bacteroides with obesity has been observed in both Indian and global data. 428 

Type 2 diabetes 429 

The condition of increased blood glucose level due to impaired insulin production by pancreatic 430 

beta-cells and the inability of body cells to utilize it (insulin resistance) is termed Type 2 diabetes 431 

(T2D)⁠⁠. There are about 422 million cases across the globe and India harbors 77 million diabetic 432 

cases in adults with a prevalence rate of 8.3% (Members, n.d.)⁠. This metabolic disorder is caused 433 

by genetic, environmental, or both factors. Here five studies from global cohorts (Africa, China, 434 

and Denmark) were compared with reports from India. A direct link between gut microbiome 435 

alteration and T2D comes from clinical studies reporting an increase in the incidence of T2D in 436 

total or partial colectomy (Jensen et al., 2018). The dysbiosis leading to a reduction in the Bacillota 437 

phylum, which is otherwise enriched in the healthy subjects was observed in Africa and Denmark 438 
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(Doumatey et al., 2020; Zhong et al., 2019). Differences in gut microbial profiles in healthy, pre-439 

diabetic, and, treatment-naive T2D were shown in Chinese cohorts. There was an insignificant 440 

difference in microbial gene-based diversity and richness among all three groups. However, the 441 

butyrate producers from class Clostridia (Dialister invisus and Roseburia hominis) were highly 442 

abundant in healthy compared to the other two groups. Treatment-naive T2D group had a higher 443 

abundance of Bacteroides spp and lower Akkermansia muciniphila compared to healthy and pre-444 

diabetic groups (Zhong et al., 2019)⁠.⁠ Similarly, African, Danish, and Chinese T2D patients also 445 

showed a reduced abundance of butyrate producers (Collinsella, Ruminococcus lactaris, 446 

Anaerostipes, and Clostridium) (Alvarez-Silva et al., 2021; Doumatey et al., 2020; Forslund et al., 447 

2015; Wang et al., 2012)⁠ (Table 1). In contrast to Zhong et al., microbial gene diversity increased 448 

upon treatment with metformin (Forslund et al., 2015)⁠. The high diversity and richness in urban 449 

African T2D patients could be due to different lifestyles (Doumatey et al., 2020)⁠.  450 

Consistent with the above results, Indian T2D patients also showed a reduction in butyrate 451 

producers (family Ruminococcaceae and Lachnospiraceae, genera Prevotella, Fecalibacterium, 452 

Ruminococcus, Roseburia) (Alvarez-Silva et al., 2021; Bhute et al., 2017; Talukdar et al., 2021)⁠. 453 

Reduction in anti-inflammatory (Roseburia, Lachnospira, Coprococcus, Phascolarctobacterium, 454 

Blautia, Anaerostipes), pro-inflammatory (Sutterella), a few pathogens (Haemophilus, 455 

Comamonas),  and enrichment of pathogenic (Escherichia, Enterobacter, Treponem), Pro-456 

inflammatory (Methanobrevibacter), anti-inflammatory bacteria (Butyricimonas, 457 

Acidaminococcus, Weissella) was reported in Indian T2D patient(Das et al., 2021)⁠, indicating that 458 

a balance between anti-inflammatory and pro-inflammatory bacteria is crucial.  Global studies 459 

were fairly different in their experimental design and sample size (Table 1). Taking together, it has 460 

been observed that T2D diseases could be associated with a decreased abundance of butyrate 461 

producers, however, butyrate-producing species can be different.   462 

Colorectal Cancer  463 

Colorectal cancer (CRC), a digestive tract tumour, is a leading cause of morbidity and mortality in 464 

developed countries like Japan and the USA. Mutation in tumour repressor genes (p53, 465 

DPC4/Smad4, APC, MSH2, MLH1, PMS2) and activation of oncogenes (beta-catenin, COX-2, 466 

and K-RAS) are the causes of CRC (Hisamuddin & Yang, 2006)⁠⁠. In this section, four studies from 467 

China and USA were compared with all available Indian ones.  468 

Association studies of gut bacterial dysbiosis with colorectal cancer revealed the reduced 469 

abundance of butyrate producers  (Roseburia spp., Eubacterium spp., E. hallii, E. hadrum, E. 470 

desmolans, Roseburia faecis and Coprococcus comes) (T. Wang et al., 2012; Zhang et al., 2018)⁠ 471 

and a higher abundance of opportunistic pathogens (Enterococcus, Escherichia/Shigella, 472 

Klebsiella, Streptococcus and Peptostreptococcus) in CRC patients of China. Species Bacteroides 473 

vulgatus and Bacteroides uniformis were enriched in healthy (T. Wang et al., 2012)⁠ (Table 1), 474 

however, species Bacteroides fragilis, reported to trigger cell proliferation was enriched in CRC 475 

patients (Pan et al., 2020; T. Wang et al., 2012)⁠. The reduced abundance of  butyrate producers 476 

was possibly due to a higher abundance of pathogens such as Fusobacterium nucleatum (Pan et 477 

al., 2020; Vogtmann et al., 2016; Zhang et al., 2018)⁠, Porphyromonas asaccharolytica, (Vogtmann 478 

et al., 2016; Zhang et al., 2018) Peptostreptococcus stomatis ( Zhang et al., 2018; Pan et al.,2020), 479 

Parvimonas micra etc., which are oral periodontopathic bacteria (Zhang et al., 2018). Healthy and 480 

CRC tissue microbiota from Chinese showed no difference in diversity, however, a significant 481 
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difference was observed while comparing different CRC stages. Cancer progression was marked 482 

by an increasing abundance of phyla Bacteroidota, Bacillota, Fusobacteriota, genera 483 

Fusobacterium, Peptostreptococcus, Streptococcus, and Ruminococcus, Verrucomicrobia,  and a 484 

decreasing abundance of Pseudomonadota (Pan et al.,2020).  485 

In accordance with global studies, Bacteroides fragilis, Peptostreptococcus stomatis, and 486 

Parvimonas micra were associated with Indian CRC patients (Table 1). Apart from them, species 487 

Akkermansia muciniphila, Bacteroides eggerthii, Escherichia coli, Odoribacter splanchnicus, and 488 

Parabacteroides distasonis were also associated with CRC (Gupta et al., 2019). Species 489 

Flavonifractor plautii, a degrader of key flavonoids, was differentially abundant in Indian CRC 490 

samples and separated Indian from Austrian and Chinese samples (Gupta et al., 2019). 491 

Differentially higher abundance of phylum Pseudomonadota and species Alistipes onderdonkii, 492 

Bacteroides massiliensis, Bifidobacterium pseudocatenulatum, and Corynebacterium appendicis 493 

was also reported by Hasan et al., 2022 (Hasan et al., 2022)⁠. The above comparisons revealed a 494 

common trend of higher abundance of genus Bacteroides in both Indian and Global CRC patients, 495 

however, species were different. A higher abundance of Fusobacterium in global and  496 

Flavonifractor in Indian CRC patients was the unique trend.   497 

Inflammatory Bowel Diseases 498 

Inflammatory bowel diseases (IBDs) consist of Crohn’s disease (CD) and Ulcerative colitis (UC). 499 

The CD is an inflammatory disease affecting the gastrointestinal tract with abdominal pain, fever, 500 

diarrhoea with mucus or blood, or both (Baumgart & Sandborn, 2012)⁠. UC is also a relapsing 501 

inflammatory disease mainly affecting the inner linings of the large intestine and rectum 502 

(Gajendran et al., 2019)⁠⁠. Two major hypotheses have emerged for the nature of the pathogenesis 503 

of IBDs. One is an excessive immunological response to the normal gut microbiome by 504 

dysregulation of the mucosal immune system and the second is dysbiosis in the gut microbiome 505 

that evokes an inflammatory response (Kabeerdoss et al., 2013; Strober et al., 2007)⁠⁠. As the gut 506 

microbiome flourishes on dietary components, an anti-inflammatory microbiota could be 507 

nourished by specific food intake. High animal food intake, alcohol, soft drinks, sugar, and 508 

processed food could lead to gut inflammation, while plant-based foods are associated with low 509 

pathobiont abundance and high SCFA producers (Bolte et al., 2021)⁠⁠. Three studies from USA, 510 

Netherlands and China were compared with the Indians. 511 

A characteristic feature of IBD deduced in cohorts from the USA was an increase in facultative 512 

anaerobes with a decrease in obligate anaerobes (butyrate producers), specifically enrichment of 513 

E. coli and depletion of F. prausnitzii and Roseburia hominis in CD. The differential abundance 514 

of two prominent species in IBD, Ruminococcus torques and Ruminococcus gnavus in CD and UC 515 

respectively was also confirmed in this study (Lloyd-Price et al., 2019)⁠. Partially overlapping 516 

results from a study on USA and Netherlands cohorts showed depletion of Roseburia hominis, 517 

Dorea formicigenerans and Ruminococcus obeum and enrichment of unclassified Roseburia 518 

species in IBD patients. Symbiosis of Bifidobacterium breve and Clostridium symbiosum was 519 

uniquely abundant in UC, while species R. gnavus, E. coli and Clostridium clostridioforme were 520 

in CD (Franzosa et al., 2019)⁠. Reduced diversity, low Bacillota, higher Pseudomonadota and 521 

Fusobacteriota, in IBD patients were also reported (Franzosa et al., 2019; T. Wang et al., 2022)⁠ 522 

(Table 1).  523 
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In comparison with the results from global studies, a higher abundance of Pseudomonadota, 524 

depletion of butyrate producers F. prausnitzii and Clostridial cluster IV & XIVa (Roseburia, 525 

Clostridium, Eubacterium, and Ruminococcus) was observed in UC and CD patients of India (Das 526 

et al., 2018; Kabeerdoss et al., 2013; Kumari et al., 2013). In contrast, Verma et al. (2010) reported 527 

a higher abundance of species from  Clostridium cluster XIVa (Eubacterium and 528 

Peptostreptococcus) in CD but not in UC indicating their different roles in pathogenesis in both 529 

groups (Verma et al., 2010)(Table 1)⁠.  530 

Low gut bacterial diversity and reduction in butyrate producers (Kabeerdoss et al., 2013; Lloyd-531 

Price et al., 2019)⁠ which inhibit the gut inflammatory response in IBD patients, were observed in 532 

both Indian as well as global samples (Kabeerdoss et al., 2013; Lloyd-Price et al., 2019)⁠⁠. All these 533 

results suggest that the nature of the pathogenesis of IBD could be explained by the second 534 

hypothesis, that dysbiosis in the gut microbiome evokes an inflammatory response.  535 

 Gut inflammation and damage to the brain function  536 

The bidirectional communication between gut bacterial cells and the brain is called the gut-537 

microbiota brain axis. The bacterial cells produce neurotransmitters, amino acids, and metabolites, 538 

which influence host immune systems, gut barrier integrity, and the brain. Gut barrier integrity 539 

also gets disturbed during stress, anxiety, autism spectrum disorders, and Parkinson's disease 540 

(Morais et al., 2020)⁠. An association study from the UK revealed a positive correlation of abundant 541 

Lactobacillus spp. with positive self-judgement, and an inverse relation of CRP (C-reactive 542 

protein), a pro-inflammatory molecule, with cognitive empathy (Heym et al., 2019)⁠.   543 

Autism Spectrum Disorders (ASD) are a group of complex neurodevelopmental disorders and 544 

unfortunately, the cause is still unclear (Geetha et al., 2019)⁠⁠. However, an association of 545 

socioeconomic and environmental risk factors with ASD has suggested that family history of ASD, 546 

paternal age, nutrition during pregnancy, mode of delivery, breastfeeding, and NICU stay were 547 

statistically significant factors associated with ASDs (Geetha et al., 2019)⁠.  Three gut microbial 548 

association studies with ASD, from Italy and China were compared with an Indian study. A 549 

Chinese and Italian study reported an increased abundance of Bacteroidota in ASD children 550 

(Coretti et al., 2018; Zou et al., 2020)⁠, however, the opposite trend was reported other Chinese data 551 

(Ye et al., 2021).  High bacterial diversity (Ye et al., 2021; Zou et al., 2020)⁠⁠, a significant increase 552 

in BCAAs synthesising species (B. vulgatus and P. copri), a reduction in butyrate-producing 553 

genera clusters Clostridium clusters IV and XIVa, probiotic bacteria like B. fragilis and A. 554 

muciniphila in ASD children compared to normal controls in China (Zou et al., 2020). Depletion 555 

of the dominant infant gut bacterium Bifidobacterium longum (Coretti et al., 2018; Ye et al., 2021)⁠  556 

an increase in Faecalibacterium prausnitzii, a significant butyrate producer and late coloniser of 557 

the healthy gut was also reported (Coretti et al., 2018; Ye et al., 2021) (Table 1). 558 

The results from Indian studies were not in line with the above global studies. However, A 559 

comparison done in the same study with ASD children from the USA showed an overlap. There 560 

was no difference in diversity between the control and ASD groups of Indian children. A higher 561 

relative abundance of families Lactobacillaceae (Lactobacillus), Bifidobacteraceae 562 

(Bifidobacterium), and Veillonellaceae (Megasphaera) was observed in ASD children. Despite the 563 

different diets of Indian ASD children (normal native diet) and the USA (gluten-free), the 564 

Lactobacillus genus was highly abundant compared to healthy. Support for this finding was also 565 
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provided in the articles by Coretti et al., 2018; Zou et al., 2020. However, it remains obscure 566 

whether the higher abundance of Lactobacillus is a cause or an effect of ASD (Pulikkan et al., 567 

2018). Further metagenomic and metabolomic studies are needed to confirm this.⁠ (Table 1).  568 

The other common neurodegenerative disorders are Parkinson’s disease (PD) and Alzheimer’s 569 

disease. The former is caused by dead or impaired dopamine-producing basal ganglia cells, 570 

deposition of alpha-synuclein protein in the cells, and genetic or environmental factors 571 

(Parkinson’s Disease: Causes, Symptoms, and Treatments | National Institute on Aging, n.d.)⁠. The 572 

data from two studies from China and Germany were discussed here. Chinese study showed 573 

decreased levels of BCAAs (Leu, Ile, and Val) and Tyr in advanced as compared to early PD, 574 

which is probably due to increased energy expenditure which further accelerates amino acid 575 

consumption in advanced PD. It also showed a negative correlation between plasma BCAAs, 576 

aromatic amino acids, and microbial taxa such as Streptococcaceae, Streptococcus, and 577 

Lactobacillus, which consume or catabolise them (Zhang et al., 2022)⁠. The German study reported 578 

a decreased abundance of neuroprotective, health-promoting, anti-inflammatory species such as 579 

Faecalibacterium and Fusicatenibacter, enrichment of opportunistic pathogens i.e., Peptoniphilus 580 

and Finegoldia,  higher level of calprotectin, a faecal inflammation marker in PD patients (Weis 581 

et al., 2019). Fang et al., reviewed several articles and revealed a higher abundance of 582 

Bifidobacterium, Lactobacillus, Akkermansia, and a lower abundance of Blautia, Coprococcus, 583 

and Prevotella in PD patients (Fang et al., 2020). The pro-inflammatory Bilophila species were 584 

associated with the progression of disease symptoms (Baldini et al., 2020)⁠ (Table 1). The burden 585 

of non-communicable neurological disorders is increasing in India. There were 771,000 cases of 586 

PD in 2019 and 45300 deaths reported in PD (Singh et al., 2021)⁠. The other non-communicable 587 

disease is Alzheimer’s disease (AD). It is a common type of dementia characterized by 588 

extracellular amyloid beta plaque and intracellular tau protein accumulation. In India, there were 589 

3.69 million cases of AD or other dementias in 2019 (Singh et al., 2021).  590 

Results from an Italian study showed a lower abundance of anti-inflammatory Eubacterium rectale 591 

and anti-inflammatory cytokines (IL-10), and a high abundance of pro-inflammatory 592 

Escherichia/Shigella in patients (cognitively impaired with and without brain amyloidosis) (Table 593 

1). Both the studies from US and Italy showed more elevated pro-inflammatory cytokines 594 

(CXCL2, IL-1Beta, and NLRP3) in cognitively impaired patients with amyloidosis positively 595 

correlated with Escherichia/Shigella and negatively correlated with E. rectale (Cattaneo et al., 596 

2017; Vogt et al., 2017) (Table 1). Despite increasing neurodegenerative cases in India, and their 597 

evident association with gut health in global studies, there are no studies done in India on gut 598 

microbial association with PD and AD.  599 

Communicable Diseases 600 

Diarrhoea 601 

Diarrhoea is one of the leading causes of mortality and is more prevalent in low and middle-income 602 

countries (Naghavi et al., 2015)⁠⁠. The common causes of diarrhoea are Vibrio cholera, 603 

Cryptosporidium sp., enterotoxigenic Escherichia coli, Clostridioides difficile, Rotavirus, and 604 

Shigella sp. infection (Guerrant et al., 1990; Monaghan et al., 2020)⁠. All the diarroeal studies 605 

compared with Indian ones were from Bangladesh. 606 
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Recovery from V. cholerae infection was characterised by the accumulation of a healthy gut 607 

microbial profile. For instance; upon infecting mice with the pathogen, the species Ruminococcus 608 

obeum consistently increased, which in turn restricted pathogens’ growth. The increased 609 

expression of autoinducer-2 synthase (luxS) in R. obeum repressed several colonization factors of 610 

the pathogen (Table 1) (Hsiao et al., 2014). The recovery mechanism showed that infection or 611 

antibiotic treatment cleared both obligate and facultative anaerobes from the gut, followed by the 612 

accumulation of oxygen and dietary substrates in the gut. Recolonizing facultative anaerobes 613 

majorly from dietary resources lowered the oxygen stress that enabled obligate anaerobes to 614 

colonise and utilise accumulated carbohydrates. Competition for the dietary substrates returned to 615 

the original state community (David et al., 2015)⁠. The disease-specific associations or changes in 616 

microbial composition revealed in a meta-analysis, where a higher abundance of Pseudomonadota 617 

and a low abundance of Bacteroidota and a few Bacillota, in particular, a reduction of butyrate 618 

producers from family Ruminococcaceae and Lachnospiraceae in diarrhoeal patients (Duvallet et 619 

al., 2017)⁠.  620 

Similar to the above trends, Indian infants with acute and persistent diarrhoea showed the 621 

proliferation of facultative anaerobes of phylum Pseudomonadota (Chelonobacter, Granulicatella, 622 

Haemophilus, Klebsiella, Rothia, and Vibrio) and collapse of anaerobic bacteria (Bacillota, 623 

Bacteroides) (Thakur et al., 2018)⁠. However, the sample size was quite small in this study 624 

population. A high Bacillota to Bacteroidota ratio was associated with V. cholera infection (De et 625 

al., 2020; Thakur et al., 2018)⁠. A negative correlation between commensals of the family 626 

Bifidobacteriaceae and Lachnospiraceae and pathogenic families Enterobacteriaceae and 627 

Vibrionaceae, implying the obvious trend in diarrheal dysbiosis (De et al., 2020)⁠ (Table 1). The 628 

gut microbiome of acute diarrheal children from India showed a lower abundance of butyrate 629 

producers (E. rectale, F. prauznitzii, L. acidophilus), compared to after recovery microbiome 630 

(Balamurugan et al., 2008)⁠. Antibiotic-exposed urban diarrheal samples from central India were 631 

positive for Clostridioides difficile infection and were enriched with cephalosporins and 632 

carbapenem resistance genes (Monaghan et al., 2020). The observed differences between Indian 633 

and global studies are possible due to the experiment design, age of participants and targeted region 634 

for the taxonomy profiling (Table 1).  635 

 Amoebiasis 636 

Amoebiasis is caused by Entamoeba histolytica, and is the second most prevalent protozoan 637 

disease, especially in infants in developing countries (Gilchrist et al., 2016)⁠⁠. Upon perturbation or 638 

host immune response compromisation, this can become virulent, and cause diarrhoea, and bloody 639 

stools. It can also invade other organs if left untreated (Sarjapuram et al., 2017; Yanagawa et al., 640 

2021)⁠⁠. Two studies on gut microbial association with amoebiasis from Bangladesh and Japan were 641 

compared with the Indian ones.  642 

A report from Bangladesh showed a significantly higher parasitic load (E. histolytica) during the 643 

first year of life in symptomatic as compared to asymptomatics diarrheal infants and association 644 

of diarrheal onset with P. copri (Gilchrist et al., 2016). Japanese asymptomatic and symptomatic 645 

diarrheal children differed with significantly lower  Streptococcaceae (Streptococcus salivarius 646 

and Streptococcus sinensis) and higher protective bacteria from Ruminococcaceae, 647 

Coriobacteriaceae, and Clostridiaceae families in former as compared to latter. However, there 648 

was no significant difference in the diversity (Yanagawa et al., 2021).   649 
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Real-time PCR quantification of E. histolytica infected gut microbiota of North Indians showed a 650 

significant decrease of predominant gut microbiome members (Bacteroides, Clostridium 651 

coccoides subgroup, Clostridium leptum subgroup, Campylobacter, Eubacterium, and 652 

Lactobacillus). An unusual rise in the Bifidobacterium population (SCFAs producer), which could 653 

also ferment mucin, in E. histolytica infected patients was reported (Verma et al., 2012). E. 654 

histolytica infection induces hypersecretion of mucus from goblet cells to counter adherence of 655 

pathogens, which in turn promotes Bifidobacterium growth (Cornick et al., 2017; Verma et al., 656 

2012)⁠.  Another study by Iyer et al. revealed a decreased abundance of Faecalibacterium, 657 

Prevotella, Sutterella, Subdoligranulum, and Colinsella and a higher abundance of  Escherichia, 658 

Klebsiella, and Ruminococcus in the E. histolytica positive patients from Delhi, India (Iyer et al., 659 

2022)⁠. Association of high P. copri levels with diarrhoea was already reported, however, an 660 

opposite trend was observed in India (Gilchrist et al., 2016; Iyer et al., 2023)⁠ (Table 1).  Another 661 

interesting finding was the preferential phagocytosis of beneficial bacteria from order 662 

Bifidobacteriales, Clostridales, Erysipelotrichales, and Lactobacillales cause dysbiosis which 663 

could help in the proliferation of pathogens (Iyer et al., 2019)⁠. Treatment of this protozoal disease 664 

with antiprotozoal drugs like Metronidazole could give rise to resistant E. histolytica. So efforts 665 

have been made to use LAB as probiotics to prevent this disease. The use of Saccharomyces 666 

boulardii strain and metronidazole in the clinical trial significantly reduced the duration of 667 

diarrhoea (Bansal et al., 2006). Co-culturing Lactobacillus casei and Enterococcus faecium with 668 

E. histolytica showed a significant reduction in parasite survival (Sarjapuram et al., 2017)⁠. The use 669 

of these probiotic strains could lead to amoebiasis treatment without using antibiotics. 670 

 Conclusion  671 

This review provides insight into the establishment of the gut microbiome from pregnancy to birth, 672 

up till old age, and highlights the dynamics of gut microbiota upon perturbation during 673 

communicable and non-communicable diseases. Gut metagenomic studies from diverse 674 

populations of Europe, North and South America, South Africa, and Asia were reviewed and the 675 

emerging global pattern of community composition, diversity, and abundance was compared with 676 

the Indian population. The differences start appearing right from the mode of delivery, where early 677 

colonization of beneficial bacteria (Bifidobacterium and Lactobacillus) was seen in VD infants. 678 

The developmental trajectory from infant, child, and adult to elderly individuals from Indian and 679 

global studies showed overlapping as well as unique Indian-specific patterns. For instance, high 680 

diversity in the Ruminococcaceae family, and decreased abundance of Faecalibacterium in 681 

centenarians were reported in both global as well as Indian studies.  On the other hand, a higher 682 

abundance of Bacteroides during late adolescence and adulthood, and a sharp decline of 683 

Eubacterium rectale and F. prausnitzii in adults were the unique features reported in Indians.  684 

Among key factors influencing gut microbial composition, diet, lifestyle, antibiotic usage, and 685 

various diseased conditions have been discussed in depth. To the question of whether population 686 

affects these trends, both overlapping as well as unique trends were found, based on a limited 687 

number of populations. Since it was earlier reported that the major enterotypes are associated more 688 

with the diet rather than with the populations (Arumugam et al., 2011), so from where do the 689 

unique trends appear? Populations are known to have (a small set of) unique taxa (Dhakan et al., 690 

2019), which may (at least partially) explain the observed unique trends.  This review also 691 

highlighted that although reports on core gut microbiomes exist, they are highly limited in terms 692 
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of capturing the variation present in populations across the globe. This hints towards the need for 693 

a systematic study that will prevent any bias associated with meta-analyses.   694 

Studies within India and their comparison with global data also revealed contradictory/inconsistent 695 

patterns, which reflects the variability and complexity of metagenomic data. Apart from the 696 

various factors mentioned in the article, sampling, storage, DNA isolation methods, library 697 

preparation kits, sequencing techniques, and bioinformatic analysis could also influence the 698 

outcome of the metagenomic study (Szóstak et al., 2022)⁠. The majority of the Indian studies used 699 

amplicon-based different sequencing techniques such as Illumina, pyrosequencing, Ion-torrent, 700 

PCR quantification of specific anaerobes, denaturing gradient gel electrophoresis (DGGE), and 701 

only a few had used whole genome shotgun sequencing, suggesting a possible explanation for 702 

higher level taxonomy resolution in most cases. Small sample size and lack of controls in 703 

comparative studies are other aspects that emerged while reviewing Indian studies. A smaller 704 

sample size doesn’t represent a general population-based outcome and influences the significance 705 

of the results. As an example, a study done by Rituparna et al. on gut microbial signatures in 706 

diarrheal conditions has inferred the results without comparing them with healthy control (De et 707 

al., 2020)⁠. Another important limitation of several studies was their analysis's ignorance of 708 

confounding factors, which might have added bias to the findings.  709 

Lastly, dysbiosis linked with neurodevelopment and neurodegenerative disorders is an active area 710 

of research, yet there is only one study on ASD and none on Alzheimer's and Parkinson’s diseases 711 

in the Indian population. Taken together, a large sample size across multiple geographical 712 

locations, analyzed through the same robust pipeline could give the true picture of the gut 713 

metagenome in healthy as well as diseased conditions. 714 
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 1354 

Table 1. Common and/or unique trends observed between gut microbiome of Indian and global populations in non-communicable and 1355 

communicable diseases.  1356 

Phenotype Country Sample Size 
Age-

group 

Sequence

d Region 

Sequencing 

platform 
High Low 

Reference

s 

Malnutrition 

Indonesia 
Healthy=53, 

Stunted=78 
3–5 years V3-V4 Illumina Miseq p-Bacillota 

p-Bacteroidota, g-

Prevotella 9 

Surono et al., 

2021 

Mexico 

Healthy=12, 

Undernourished=12

, Obese=12 

9-11 years V3-V4 Illumina Miseq p-Pseudomonadota 
alpha diversity, p-

Bacteroidota 

Méndez-

Salazar et al., 

2018 

Bangladesh 
Healthy=7, 

Malnourished=7 
2-3 years V5-V6 

454 parallel 

sequencing 

p-Pseudomonadota, g-

Klebsiella, 

Escherichia,Neisseria 

p-Bacteroidota 
Monira et al., 

2011 

Bangladesh 
Cases and Controls 

= 68 

6–31 

months 
V1-V3 Illumina Miseq 

p-Pseudomonadota,g-

Escherichia/Shigella 
g-Prevotella 

Perin et al., 

2020 

India 
stunted, wasted and 

underweight=41 

18-12 

months 
V3-V4 

llumina 

HiSeq2500 

g-Prevotella 9, 

Bifidobacterium, 

Escherichia-Shigella 

 
Shivakumar 

et al., 2021 

India 
Control=10, 

Stunted=10 

birth-2 

years 
V4 

Illumina 

MiSeq 

g-Desulfovibrio, o-

Campylobacterales 

s-Bifidobacterium 

longum, Lactobacillus 

mucosae 

Dinh et al., 

2016 

India 
Undernourished 

=53 

10-18 

months 
V3-V4 

Illumina 

MiSeq 

p-Pseudomonadota, o-

Aeromonadales, g-

Enterococcus, g- 

Anaerococcus, g-Vibrio 

 
Huey et al., 

2020 

         

Obesity Finland 

Normal-weight 

women=36, 

Overweight 

women=18 

~ 30 years 

fluorescent in situ 

hybridization coupled with 

flow cytometry (FCM-FISH) 

and by quantitative real-time 

g-Bacteroides, g-

Staphylococcus 
g-Bifidobacterium 

Collado et 

al., 2008 

https://doi.org/10.1017/gmb.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/gmb.2024.6


Accepted manuscript 

 

 
 

 

 

polymerase chain reaction 

(qPCR) 

European 

countries (Cyprus, 

Estonia, Germany, 

Hungary, and 

Sweden) 

70 subjects (2 time 

points), Time point 

0: Normal=70, 

Time point 1: 

Normal= 34, 

Obese=36 

2-9 years V3-V4 
Illumina 

MiSeq 

p-Pseudomonadota, f - 

Bacteroidaceae 

diversity, f- 

Clostridiaceae, f- 

Ruminococcaceae, f- 

Prevotellaceae 

Rampelli et 

al., 2018 

Germany 

Normal weight=30, 

Overweight=35, 

Obese=33 

14-74 years 
qPCR to detect a group of 

commensals 

p-Bacteroidota, g-

Bacteroides 

g- Bifidobacterium,s-

Ruminococcus 

flavefaciens 

Schwiertz et 

al., 2010 

India 

20 (5 lean, 5 

Normal, 5 Obese, 5 

Surgically treated 

obese) 

21-62 years 
900 bases 

amplicon 

BigDye™ 

Terminator 

Cycle 

Sequencing 

Ready 

Reaction Kit 

v3.1 in an 

automated 

3730 DNA 

analyser 

g-Bacteroides  
Ppatil et al., 

2012 

India 
Normal=13, 

Obese=15 
11-14 years 16S rRNA qPCR s-F. prausnitzii  

Balamurugan 

et al., 2010 

 India 
Normal=10, 

Obese=10 
NA V3 

Denaturing 

Gradient Gel 

Electrophoresi

s analyzed in 

Gel Compar II 

version 6.6 

software 

(Sequencing 

s-Collinsella 

aerofaciens, g-Dialister, 

g- Eubacterium, g-

Mitsuokella, g-

Victivallis 

diversity 
Bahadur et 

al., 2021 
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platform was 

not mentioned) 

         

Type 2 

diabetes 

West Africa 
Controls=193, 

Cases=98 

57 

years(mean

) 

V4 
Illumina 

MiSeq 

s-Desulfovibrio piger, 

g-Prevotella, g-

Peptostreptococcus, g-

Eubacterium 

f-Clostridiaceae, f-

Peptostreptococcaceaea 

Doumatey et 

al., 2020 

China 

Normal glucose 

tolerance =97, 

Prediabetese 

patients=80, Newly 

diagnosed 

treatment naive 

T2D patient =77 

62.53 years 

(mean) 
WGS 

combinatorial 

probe-anchor 

synthesis 

(cPAS)-based 

BGISEQ-500 

sequencing 

 
s-Dialister invisus, s-

Roseburia hominis 

Zhong et al., 

2019 

Denmark and 

India 

Indian Non-

diabetics =137, 

Danish Non-

diabetic = 138, 

Indian T2D 

patients=157, 

Danish diabetic 

patient = 141 

35-74 years V1-V5 

454 GS FLX+ 

pyrosequencer 

platform 

f-Lachnospiraceae 
g-Subdoligranulum and 

Butyricicoccus 

Alvarez-

Silva et al., 

2021 

Meta-

analysis( Denmark

, Sweden, China) 

Danish non-

diabetic= 277, 

Swedish non-

diabetic= 92, 

Chinese non-

diabetic= 185, 

Danish T2D= 75, 

T1D= 31, Swedish 

T2D= 52, Chinese 

35-75 years 
WGS + 16S 

rRNA 

Illumina 

shotgun 

sequencing 

 

metformin untreated: s-

Roseburia spp., 

Subdoligranulum spp 

Forslund et 

al., 2015 
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T2D =71 

China 
Non-diabetic = 185, 

Diabetic= 183 
13-86 years WGS 

Illumin aHiSeq 

2000 

s- Bacteroides caccae, 

Clostridium hathewayi, 

Clostridium ramosum, 

Clostridium symbiosum, 

Eggerthella lenta and 

Escherichia coli 

s-Clostridiales sp. 

SS3/4, Eubacterium 

rectale, 

Faecalibacterium 

prausnitzii, Roseburia 

intestinalis and 

Roseburia inulinivorans 

Wang et al., 

2012 

India 

Healthy= 19, New 

Diabetic 

patients=14, 

Known Diabetic 

patients=16 

49.37 years 

(mean) 
V3 Ion Torrent 

g-Lactobacillus, p-

Bacillota 

s-P. copri, s- 

Faecalibacterium 

prausnitzii, f- 

Ruminococcaceae, 

Lachnospiraceae 

Bhute et al., 

2017 

India 

Healthy= 9, 

T1D=8, T2D=10, 

T3cD=17 

18-60 years 

(Healthy), 

patient's 

age was not 

mentioned 

V3-V4 
Illumina 

MiSeq 
 

diversity, g-

Fecalibacterium, 

Eubacterium, and 

Ruminococcus 

Talukdar et 

al., 2021 

India 

Healthy= 30, T2D 

& no Diabetic 

Retinopathy(DR) 

=25, T2D + DR=28 

54.86 

years(mean

) 

V3-V4 Illumina HiSeq 

g-Escherichia, 

Enterobacter, 

Methanobrevibacter 

and Treponema 

g-Roseburia, 

Lachnospira, Sutterella, 

Coprococcus, 

Phascolarctobacterium, 

Haemophilus, Blautia, 

Comamonas, 

Anaerostipes and 

Turicibacter 

Das et al., 

2021 
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Colorectal 

cancer 

China 
Healthy=56, 

Patients=46 
40–77 years V3 

454 

pyrosequencin

g 

s- Bacteroides fragilis, 

g- Escherichia/Shigella, 

Klebsiella,Streptococcu

s, Enterococcus, 

Peptostreptococcus, 

Eggerthella, 

Fusobacterium 

s-Bacteroides uniformis, 

Roseburia spp. and 

Eubacterium spp. 

T. Wang et 

al., 2012 

China 
Healthy=130, 

Patients=130 

59.1 years 

(mean) 
V3-V4 

Illumina 

MiSeq 

s- Peptostreptococcus 

stomatis, Fusobacterium 

nucleatum, etc 

s-Roseburia faecis, 

Ruminococcus lactaris, 

Eubacterium 

desmolans,Streptococcu

s salivarius etc 

Zhang et al., 

2018 

China 

Patients=23 

(tumour tissue and 

surrounding healthy 

tissue)(early and 

late stage) 

49-70 years V4 
Illumina 

MiSeq 

late stage: g-

Akkermansia, 

Fusobacterium, 

Peptostreptococcus, 

Streptococcus, and 

Ruminococcus 

 
Pan et al., 

2020 

USA 
Healthy=52, 

Patients=52 

61 years 

(mean) 
WGS 

Illumina HiSeq 

2000/2500 

g-Fusobacterium, 

Porphyromonas 
 

Vogtmann et 

al., 2016 

India 
Healthy=30, 

Patients= 30 

not 

mentioned 
WGS 

Illumina 

NextSeq 500 

diversity, g-Bacteroides, 

s-Flavonifractor plautii 
 

Gupta et al., 

2019 

India 

Patients=5( healthy 

tissue=5, tumor 

tissue=5) 

40- 83 

years 
V3-V4 Ion 520 OT2 

s-Bacteroides 

massiliensis, Alistipes 

sp. Alistipes 

onderdonkii, 

Bifidobacterium 

pseudocatenulatum, 

Corynebacterium 

appendicis, and 

Acidiphilium sp. 

s-Bacillus sp., 

Veillonella atypica etc. 

Hasan et al., 

2022 
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Inflammator

y Bowel 

Diseases 

USA 
Non-IBD=27, 

UC=38, CD=67 

27.5 years 

(mean) 
WGS 

Illumina 

HiSeq2500 

s- E. coli, Ruminococcus 

torques and 

Ruminococcus gnavus 

Faecalibacterium 

prausnitzii and 

Roseburia hominis 

Lloyd-Price 

et al., 2019 

USA and 

Netherlands 

Non-IBD=34, 

UC=53, CD=68 
>18 years WGS 

Illumina 

HiSeq2500 

g-Unclassified 

Roseburia 

s-Roseburia hominis, 

Dorea formicigenerans 

and Ruminococcus 

obeum 

Franzosa et 

al., 2019 

China 
Healthy=30, IBD 

patients=18 

37 years 

(mean) 
V3-V4 

Illumina 

MiSeq 

p- Pseudomonadota, 

Fusobacteriota, g-

Escherichia_Shigella 

s-Eubacterium 

coprostanoligenes, 

Eubacterium hallii 

group 

T. Wang et 

al., 2022 

India 
Health control=17, 

Cd=20, UC=22 

33.6 years 

(mean) 

16S rRNA 

gene 

sequences 

specific to C. 

leptum 

group 

not mentioned  

s-Faecalibacterium 

prausnitzii, C. leptum 

group 

Kabeerdoss 

et al., 2013 

India 

Control individuals 

(hemorrhoid 

patients only)=14, 

UC patients (severe: 

n = 12, moderate: n 

= 6, remission: n = 

8)=26 

36 years 

(mean) 

clostridium 

cluster 

population 

targeted by 

16S rRNA 

gene 

not mentioned  

s-Faecalibacterium 

prausnitzii, R. 

intestinalis, a member of 

the C. coccoides group, 

reduced SCFA 

Kumari et al., 

2013 

India 
Control=65, 

UC=72, CD=12 

38 years 

(mean) 

real-time 

analysis 

using 16S 

rRNA 

 
g-Eubacterium, 

Peptostreptococcus 

g-Lactobacillus, 

Ruminococcus, and 

Bifidobacterium, C. 

leptum group 

Verma et al., 

2010 

         

         

Gut         
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inflammation 

and damage to 

the brain 

function 

ASD 

Italy 

Healthy 

Control=14, ASD 

patients=11 

35 months 

(mean) 
V3-V4 Illumina Miseq 

p-Bacteroidota, 

Proteobacteria, s-F. 

prausnitzii , B. uniformis 

and B. vulgatus and P. 

distasonis, f-

Enterobacteriaceae and 

Pasteurellaceae 

p-Actinomycetota, s-

Bifidobacterium longum 

and Eggerthella lenta 

Coretti et al., 

2018 

China 

Healthy 

Control=48, ASD 

patients=48 

2-7 years V3-V4 Illumina Miseq 

s-P. copri, Bacteroides 

coprocola, B. vulgatus, 

Eubacterium eligens, 

Roseburia faecis 

s- A. muciniphila, 

Dialister invisus, 

Escherichia coli, B. 

fragilis, Haemophilus 

parainfluenzae, 

Flavonifractor plautii 

Zou et al., 

2020 

China 

Healthy 

Control=18, ASD 

patients=71 

3-6 years V1-V2 Illumina Miseq 

Eisenbergiella, 

Klebsiella, 

Faecalibacterium, and 

Blautia 

Escherichia, Shigella, 

Veillonella, 

Akkermansia, 

Provindencia, Dialister, 

Bifidobacterium, 

Streptococcus 

Ye et al., 

2021 

India 

family-matched 

Healthy=24, ASD 

children=30 

3-16 years V3 
Illumin 

NextSeq500 

p-Bacillota, g- 

Lactobacillus (f- 

Lactobacillaceae), 

Bifidobacterium (f- 

Bifidobacteraceae), 

Megasphaera, and 

Mitsuokella (f-

Veillonellaceae) 

f-Prevotellaceae, g-

Faecalibacterium and 

Roseburia 

Pulikkan et 

al., 2018 
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PD 

China 

Healthy 

Control=114, ASD 

patients=106 (early 

stage =48, 

advanced stage=58) 

67.6 years 

(mean) 
V3-V4 Illumina Miseq 

in advanced PD 

patients: p-

Desulfobacterota, f-

Lachnospiraceae, 

Desulfovibrionaceae, g-

Parasutterella 

in advanced PD 

patients: g-

Subdoligranulum 

Zhang et al., 

2022 

Luxembourg 

Healthy 

Control=162, PD 

patients=147 

66.3 years 

(mean) 
V3-V4 Illumina Miseq 

Akkermansia 

muciniphila, Biolophila, 

Christensenella, 

Lactobacillus, 

Christensenella, and 

Lactobacillus 

Turicibacter 
Baldini et al., 

2020 

Germany 

Healthy 

Control=25, PD 

patients=34 

 V4 and V5 
Ion Torrent 

PGM 

Clostridiales family XI, 

Peptoniphilus, 

Faecalibacterium and 

Fusicatenibacter 

Weis et al., 

2019 

         

Alzheimer's 

Disease 

Italy 

no brain 

amyloidosis and no 

cognitive 

impairment=10, 

cognitively 

impaired patients 

with amyloidosis= 

40, cognitively 

impaired patients 

with NO brain 

amyloidosis= 33 

69.6 years 

(mean) 

Selected bacterial DNA 

quantification using the 

Microbial DNA qPCR Assay 

Kit 

Escherichia/Shigella E. rectale 
Cattaneo et 

al., 2017 

USA 

Non-demented 

individulas=25, 

Dementia due to 

AD=25 

70.3 years 

(mean) 
V4 Illumina Miseq 

p-Bacteroidota, g-

Bacteroides, Blautia, 

Phascolarctobacterium, 

Alistipes, Bilophila 

alpha diversity, -p 

Bacillota, 

Actinomycetota, g- 

Bifidobacterium, 

Adlercreutzia, SMB53, 

Dialister, Clostridium, 

Vogt et al., 

2017 
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Turicibacter, and cc115 

         

Diarrhea 

Bangladesh 

time-series 

metagenomic study 

with 7 patients, 50 

healthy children, 12 

healthy adult males 

NA V4 Illumina Miseq 
s-R. obeum restricts V. 

cholerae colonization 
 

Hsiao et al., 

2014 

Bangladesh 

Patients’ household 

members who 

shared a cooking 

pot were defined as 

contacts (n = 27), 

cholera cohort 1 = 

13, cholera cohort 2 

= 10 

>= 6 

months 

16S rRNA 

gene (V4) 

and WGS 

sequencing 

Illumina HiSeq 
microbial succession follows secretory diarrheal 

illness in humans 

David et al., 

2015 

India 
Healthy Control=0, 

Patients=20 

8 months to 

56 years 

V3-V4, 

WGS of 5 

samples 

Illumina 

MiSeq 

p-Bacillota, Presence of 

s-V. cholerae, 

Helicobacter pylori, 

Eschericia sp. 

p-Bacteroidota, 

significantly negative 

coorelation between f-

Enterobacteriaceae and 

Lachnospiraceae and 

Enterobacteriaceae and 

Ruminococcaceae 

De et al., 

2020 

India 

46 children during 

an episode of acute 

diarrhea, 

immediately after 

recovery from 

diarrhea, and 3 

months after 

3 months to 

5 years 

16srRNA 

gene (rDNA) 

sequences of 

specific 

bacterial 

group 

qPCR 

Bacteroides-Prevotella-Porphyromonas group, s-

Eubacterium rectale, Faecalibacterium prauznitzii 

significantly less abundant during or immediately 

after diarrhea than during normal health 

Balamurugan 

et al., 2008 
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recovery 

India 

Healthy infant=1, 

diarrhea infected 

infants =3 

3 to 18 

months 
V3 

Illumina 

MiSeq 

p-Pseudomonadota, g-

Klebsiella, 

Haemophilus, Rothia, 

Granulicatella, 

Chelonobacter and 

Vibrio species were 

identified as key 

pathogenic lineages in 

diarrheal samples 

p-Bacillota, 

Bacteroidota 

Thakur et al., 

2018 

India 

105 Central Indian 

participants 

comprising 35 rural 

(12 with diarrhea) 

and 70 urban (46 

with diarrhea) 

38.8 years 

(mean) 
WGS Illumina 

rural habitants have g-Prevotella-dominant 

microbiome compared with the urban population. 

Urbanization is associated with functional 

enrichment of genes involved in xenobiotic and 

lipid metabolism, have a much higher burden of 

AMR overall. 

Monaghan et 

al., 2020 

Amoebiasis 

Bangladesh 
Uninfected=85, 

Infected=307 

birth to 2 

Years 
qPCR Prevotella copri  

Gilchrist et 

al., 2016 

Japan 

Asymptomatic 

Infection=13, 

Symptomatic 

Infection=51 

43 years 

(mean) 
V3-V4 Illumina Miseq f-Streptococcaceae 

f-Ruminococcaceae, 

Coriobacteriaceae, and 

Clostridiaceae, s-

Collinsella aerofaciens 

Yanagawa et 

al., 2021 

India 

Healthy=22, 

chronic/acute 

diarrheal 

patients=550 

21-40 years 16S rRNA qPCR g-Bifidobacterium 

g-Bacteroides, 

Eubacterium, C. leptum 

subgroup, C. coccoides, 

Lactobacillus 

Verma et al., 

2012 
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India 

healthy=29, E. 

histolytica positive 

patients=14 

15-69 years V1-V5 
Illumina HiSeq 

2500 

g-Escherichia, 

Klebsiella, and 

Ruminococcus 

g-Prevotella, Sutterella, 

and Collinsella 

Iyer et al., 

2023 
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Figures  1358 

Figure 1. Pictorial representation of the key aspects discussed in this review article. 1359 
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Figure 2. Changes in the gut microbiota from pregnancy to old age. 1362 
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